1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/swap.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/perf_event.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/security.h> 47 #include <linux/syscalls.h> 48 #include <linux/tsacct_kern.h> 49 #include <linux/cn_proc.h> 50 #include <linux/audit.h> 51 #include <linux/tracehook.h> 52 #include <linux/kmod.h> 53 #include <linux/fsnotify.h> 54 #include <linux/fs_struct.h> 55 #include <linux/pipe_fs_i.h> 56 #include <linux/oom.h> 57 #include <linux/compat.h> 58 59 #include <asm/uaccess.h> 60 #include <asm/mmu_context.h> 61 #include <asm/tlb.h> 62 #include "internal.h" 63 64 int core_uses_pid; 65 char core_pattern[CORENAME_MAX_SIZE] = "core"; 66 unsigned int core_pipe_limit; 67 int suid_dumpable = 0; 68 69 struct core_name { 70 char *corename; 71 int used, size; 72 }; 73 static atomic_t call_count = ATOMIC_INIT(1); 74 75 /* The maximal length of core_pattern is also specified in sysctl.c */ 76 77 static LIST_HEAD(formats); 78 static DEFINE_RWLOCK(binfmt_lock); 79 80 int __register_binfmt(struct linux_binfmt * fmt, int insert) 81 { 82 if (!fmt) 83 return -EINVAL; 84 write_lock(&binfmt_lock); 85 insert ? list_add(&fmt->lh, &formats) : 86 list_add_tail(&fmt->lh, &formats); 87 write_unlock(&binfmt_lock); 88 return 0; 89 } 90 91 EXPORT_SYMBOL(__register_binfmt); 92 93 void unregister_binfmt(struct linux_binfmt * fmt) 94 { 95 write_lock(&binfmt_lock); 96 list_del(&fmt->lh); 97 write_unlock(&binfmt_lock); 98 } 99 100 EXPORT_SYMBOL(unregister_binfmt); 101 102 static inline void put_binfmt(struct linux_binfmt * fmt) 103 { 104 module_put(fmt->module); 105 } 106 107 /* 108 * Note that a shared library must be both readable and executable due to 109 * security reasons. 110 * 111 * Also note that we take the address to load from from the file itself. 112 */ 113 SYSCALL_DEFINE1(uselib, const char __user *, library) 114 { 115 struct file *file; 116 char *tmp = getname(library); 117 int error = PTR_ERR(tmp); 118 static const struct open_flags uselib_flags = { 119 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 120 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, 121 .intent = LOOKUP_OPEN 122 }; 123 124 if (IS_ERR(tmp)) 125 goto out; 126 127 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW); 128 putname(tmp); 129 error = PTR_ERR(file); 130 if (IS_ERR(file)) 131 goto out; 132 133 error = -EINVAL; 134 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 135 goto exit; 136 137 error = -EACCES; 138 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 139 goto exit; 140 141 fsnotify_open(file); 142 143 error = -ENOEXEC; 144 if(file->f_op) { 145 struct linux_binfmt * fmt; 146 147 read_lock(&binfmt_lock); 148 list_for_each_entry(fmt, &formats, lh) { 149 if (!fmt->load_shlib) 150 continue; 151 if (!try_module_get(fmt->module)) 152 continue; 153 read_unlock(&binfmt_lock); 154 error = fmt->load_shlib(file); 155 read_lock(&binfmt_lock); 156 put_binfmt(fmt); 157 if (error != -ENOEXEC) 158 break; 159 } 160 read_unlock(&binfmt_lock); 161 } 162 exit: 163 fput(file); 164 out: 165 return error; 166 } 167 168 #ifdef CONFIG_MMU 169 /* 170 * The nascent bprm->mm is not visible until exec_mmap() but it can 171 * use a lot of memory, account these pages in current->mm temporary 172 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 173 * change the counter back via acct_arg_size(0). 174 */ 175 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 176 { 177 struct mm_struct *mm = current->mm; 178 long diff = (long)(pages - bprm->vma_pages); 179 180 if (!mm || !diff) 181 return; 182 183 bprm->vma_pages = pages; 184 add_mm_counter(mm, MM_ANONPAGES, diff); 185 } 186 187 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 188 int write) 189 { 190 struct page *page; 191 int ret; 192 193 #ifdef CONFIG_STACK_GROWSUP 194 if (write) { 195 ret = expand_downwards(bprm->vma, pos); 196 if (ret < 0) 197 return NULL; 198 } 199 #endif 200 ret = get_user_pages(current, bprm->mm, pos, 201 1, write, 1, &page, NULL); 202 if (ret <= 0) 203 return NULL; 204 205 if (write) { 206 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 207 struct rlimit *rlim; 208 209 acct_arg_size(bprm, size / PAGE_SIZE); 210 211 /* 212 * We've historically supported up to 32 pages (ARG_MAX) 213 * of argument strings even with small stacks 214 */ 215 if (size <= ARG_MAX) 216 return page; 217 218 /* 219 * Limit to 1/4-th the stack size for the argv+env strings. 220 * This ensures that: 221 * - the remaining binfmt code will not run out of stack space, 222 * - the program will have a reasonable amount of stack left 223 * to work from. 224 */ 225 rlim = current->signal->rlim; 226 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 227 put_page(page); 228 return NULL; 229 } 230 } 231 232 return page; 233 } 234 235 static void put_arg_page(struct page *page) 236 { 237 put_page(page); 238 } 239 240 static void free_arg_page(struct linux_binprm *bprm, int i) 241 { 242 } 243 244 static void free_arg_pages(struct linux_binprm *bprm) 245 { 246 } 247 248 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 249 struct page *page) 250 { 251 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 252 } 253 254 static int __bprm_mm_init(struct linux_binprm *bprm) 255 { 256 int err; 257 struct vm_area_struct *vma = NULL; 258 struct mm_struct *mm = bprm->mm; 259 260 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 261 if (!vma) 262 return -ENOMEM; 263 264 down_write(&mm->mmap_sem); 265 vma->vm_mm = mm; 266 267 /* 268 * Place the stack at the largest stack address the architecture 269 * supports. Later, we'll move this to an appropriate place. We don't 270 * use STACK_TOP because that can depend on attributes which aren't 271 * configured yet. 272 */ 273 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 274 vma->vm_end = STACK_TOP_MAX; 275 vma->vm_start = vma->vm_end - PAGE_SIZE; 276 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 277 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 278 INIT_LIST_HEAD(&vma->anon_vma_chain); 279 280 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); 281 if (err) 282 goto err; 283 284 err = insert_vm_struct(mm, vma); 285 if (err) 286 goto err; 287 288 mm->stack_vm = mm->total_vm = 1; 289 up_write(&mm->mmap_sem); 290 bprm->p = vma->vm_end - sizeof(void *); 291 return 0; 292 err: 293 up_write(&mm->mmap_sem); 294 bprm->vma = NULL; 295 kmem_cache_free(vm_area_cachep, vma); 296 return err; 297 } 298 299 static bool valid_arg_len(struct linux_binprm *bprm, long len) 300 { 301 return len <= MAX_ARG_STRLEN; 302 } 303 304 #else 305 306 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 307 { 308 } 309 310 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 311 int write) 312 { 313 struct page *page; 314 315 page = bprm->page[pos / PAGE_SIZE]; 316 if (!page && write) { 317 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 318 if (!page) 319 return NULL; 320 bprm->page[pos / PAGE_SIZE] = page; 321 } 322 323 return page; 324 } 325 326 static void put_arg_page(struct page *page) 327 { 328 } 329 330 static void free_arg_page(struct linux_binprm *bprm, int i) 331 { 332 if (bprm->page[i]) { 333 __free_page(bprm->page[i]); 334 bprm->page[i] = NULL; 335 } 336 } 337 338 static void free_arg_pages(struct linux_binprm *bprm) 339 { 340 int i; 341 342 for (i = 0; i < MAX_ARG_PAGES; i++) 343 free_arg_page(bprm, i); 344 } 345 346 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 347 struct page *page) 348 { 349 } 350 351 static int __bprm_mm_init(struct linux_binprm *bprm) 352 { 353 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 354 return 0; 355 } 356 357 static bool valid_arg_len(struct linux_binprm *bprm, long len) 358 { 359 return len <= bprm->p; 360 } 361 362 #endif /* CONFIG_MMU */ 363 364 /* 365 * Create a new mm_struct and populate it with a temporary stack 366 * vm_area_struct. We don't have enough context at this point to set the stack 367 * flags, permissions, and offset, so we use temporary values. We'll update 368 * them later in setup_arg_pages(). 369 */ 370 int bprm_mm_init(struct linux_binprm *bprm) 371 { 372 int err; 373 struct mm_struct *mm = NULL; 374 375 bprm->mm = mm = mm_alloc(); 376 err = -ENOMEM; 377 if (!mm) 378 goto err; 379 380 err = init_new_context(current, mm); 381 if (err) 382 goto err; 383 384 err = __bprm_mm_init(bprm); 385 if (err) 386 goto err; 387 388 return 0; 389 390 err: 391 if (mm) { 392 bprm->mm = NULL; 393 mmdrop(mm); 394 } 395 396 return err; 397 } 398 399 struct user_arg_ptr { 400 #ifdef CONFIG_COMPAT 401 bool is_compat; 402 #endif 403 union { 404 const char __user *const __user *native; 405 #ifdef CONFIG_COMPAT 406 compat_uptr_t __user *compat; 407 #endif 408 } ptr; 409 }; 410 411 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 412 { 413 const char __user *native; 414 415 #ifdef CONFIG_COMPAT 416 if (unlikely(argv.is_compat)) { 417 compat_uptr_t compat; 418 419 if (get_user(compat, argv.ptr.compat + nr)) 420 return ERR_PTR(-EFAULT); 421 422 return compat_ptr(compat); 423 } 424 #endif 425 426 if (get_user(native, argv.ptr.native + nr)) 427 return ERR_PTR(-EFAULT); 428 429 return native; 430 } 431 432 /* 433 * count() counts the number of strings in array ARGV. 434 */ 435 static int count(struct user_arg_ptr argv, int max) 436 { 437 int i = 0; 438 439 if (argv.ptr.native != NULL) { 440 for (;;) { 441 const char __user *p = get_user_arg_ptr(argv, i); 442 443 if (!p) 444 break; 445 446 if (IS_ERR(p)) 447 return -EFAULT; 448 449 if (i++ >= max) 450 return -E2BIG; 451 452 if (fatal_signal_pending(current)) 453 return -ERESTARTNOHAND; 454 cond_resched(); 455 } 456 } 457 return i; 458 } 459 460 /* 461 * 'copy_strings()' copies argument/environment strings from the old 462 * processes's memory to the new process's stack. The call to get_user_pages() 463 * ensures the destination page is created and not swapped out. 464 */ 465 static int copy_strings(int argc, struct user_arg_ptr argv, 466 struct linux_binprm *bprm) 467 { 468 struct page *kmapped_page = NULL; 469 char *kaddr = NULL; 470 unsigned long kpos = 0; 471 int ret; 472 473 while (argc-- > 0) { 474 const char __user *str; 475 int len; 476 unsigned long pos; 477 478 ret = -EFAULT; 479 str = get_user_arg_ptr(argv, argc); 480 if (IS_ERR(str)) 481 goto out; 482 483 len = strnlen_user(str, MAX_ARG_STRLEN); 484 if (!len) 485 goto out; 486 487 ret = -E2BIG; 488 if (!valid_arg_len(bprm, len)) 489 goto out; 490 491 /* We're going to work our way backwords. */ 492 pos = bprm->p; 493 str += len; 494 bprm->p -= len; 495 496 while (len > 0) { 497 int offset, bytes_to_copy; 498 499 if (fatal_signal_pending(current)) { 500 ret = -ERESTARTNOHAND; 501 goto out; 502 } 503 cond_resched(); 504 505 offset = pos % PAGE_SIZE; 506 if (offset == 0) 507 offset = PAGE_SIZE; 508 509 bytes_to_copy = offset; 510 if (bytes_to_copy > len) 511 bytes_to_copy = len; 512 513 offset -= bytes_to_copy; 514 pos -= bytes_to_copy; 515 str -= bytes_to_copy; 516 len -= bytes_to_copy; 517 518 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 519 struct page *page; 520 521 page = get_arg_page(bprm, pos, 1); 522 if (!page) { 523 ret = -E2BIG; 524 goto out; 525 } 526 527 if (kmapped_page) { 528 flush_kernel_dcache_page(kmapped_page); 529 kunmap(kmapped_page); 530 put_arg_page(kmapped_page); 531 } 532 kmapped_page = page; 533 kaddr = kmap(kmapped_page); 534 kpos = pos & PAGE_MASK; 535 flush_arg_page(bprm, kpos, kmapped_page); 536 } 537 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 538 ret = -EFAULT; 539 goto out; 540 } 541 } 542 } 543 ret = 0; 544 out: 545 if (kmapped_page) { 546 flush_kernel_dcache_page(kmapped_page); 547 kunmap(kmapped_page); 548 put_arg_page(kmapped_page); 549 } 550 return ret; 551 } 552 553 /* 554 * Like copy_strings, but get argv and its values from kernel memory. 555 */ 556 int copy_strings_kernel(int argc, const char *const *__argv, 557 struct linux_binprm *bprm) 558 { 559 int r; 560 mm_segment_t oldfs = get_fs(); 561 struct user_arg_ptr argv = { 562 .ptr.native = (const char __user *const __user *)__argv, 563 }; 564 565 set_fs(KERNEL_DS); 566 r = copy_strings(argc, argv, bprm); 567 set_fs(oldfs); 568 569 return r; 570 } 571 EXPORT_SYMBOL(copy_strings_kernel); 572 573 #ifdef CONFIG_MMU 574 575 /* 576 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 577 * the binfmt code determines where the new stack should reside, we shift it to 578 * its final location. The process proceeds as follows: 579 * 580 * 1) Use shift to calculate the new vma endpoints. 581 * 2) Extend vma to cover both the old and new ranges. This ensures the 582 * arguments passed to subsequent functions are consistent. 583 * 3) Move vma's page tables to the new range. 584 * 4) Free up any cleared pgd range. 585 * 5) Shrink the vma to cover only the new range. 586 */ 587 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 588 { 589 struct mm_struct *mm = vma->vm_mm; 590 unsigned long old_start = vma->vm_start; 591 unsigned long old_end = vma->vm_end; 592 unsigned long length = old_end - old_start; 593 unsigned long new_start = old_start - shift; 594 unsigned long new_end = old_end - shift; 595 struct mmu_gather tlb; 596 597 BUG_ON(new_start > new_end); 598 599 /* 600 * ensure there are no vmas between where we want to go 601 * and where we are 602 */ 603 if (vma != find_vma(mm, new_start)) 604 return -EFAULT; 605 606 /* 607 * cover the whole range: [new_start, old_end) 608 */ 609 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 610 return -ENOMEM; 611 612 /* 613 * move the page tables downwards, on failure we rely on 614 * process cleanup to remove whatever mess we made. 615 */ 616 if (length != move_page_tables(vma, old_start, 617 vma, new_start, length)) 618 return -ENOMEM; 619 620 lru_add_drain(); 621 tlb_gather_mmu(&tlb, mm, 0); 622 if (new_end > old_start) { 623 /* 624 * when the old and new regions overlap clear from new_end. 625 */ 626 free_pgd_range(&tlb, new_end, old_end, new_end, 627 vma->vm_next ? vma->vm_next->vm_start : 0); 628 } else { 629 /* 630 * otherwise, clean from old_start; this is done to not touch 631 * the address space in [new_end, old_start) some architectures 632 * have constraints on va-space that make this illegal (IA64) - 633 * for the others its just a little faster. 634 */ 635 free_pgd_range(&tlb, old_start, old_end, new_end, 636 vma->vm_next ? vma->vm_next->vm_start : 0); 637 } 638 tlb_finish_mmu(&tlb, new_end, old_end); 639 640 /* 641 * Shrink the vma to just the new range. Always succeeds. 642 */ 643 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 644 645 return 0; 646 } 647 648 /* 649 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 650 * the stack is optionally relocated, and some extra space is added. 651 */ 652 int setup_arg_pages(struct linux_binprm *bprm, 653 unsigned long stack_top, 654 int executable_stack) 655 { 656 unsigned long ret; 657 unsigned long stack_shift; 658 struct mm_struct *mm = current->mm; 659 struct vm_area_struct *vma = bprm->vma; 660 struct vm_area_struct *prev = NULL; 661 unsigned long vm_flags; 662 unsigned long stack_base; 663 unsigned long stack_size; 664 unsigned long stack_expand; 665 unsigned long rlim_stack; 666 667 #ifdef CONFIG_STACK_GROWSUP 668 /* Limit stack size to 1GB */ 669 stack_base = rlimit_max(RLIMIT_STACK); 670 if (stack_base > (1 << 30)) 671 stack_base = 1 << 30; 672 673 /* Make sure we didn't let the argument array grow too large. */ 674 if (vma->vm_end - vma->vm_start > stack_base) 675 return -ENOMEM; 676 677 stack_base = PAGE_ALIGN(stack_top - stack_base); 678 679 stack_shift = vma->vm_start - stack_base; 680 mm->arg_start = bprm->p - stack_shift; 681 bprm->p = vma->vm_end - stack_shift; 682 #else 683 stack_top = arch_align_stack(stack_top); 684 stack_top = PAGE_ALIGN(stack_top); 685 686 if (unlikely(stack_top < mmap_min_addr) || 687 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 688 return -ENOMEM; 689 690 stack_shift = vma->vm_end - stack_top; 691 692 bprm->p -= stack_shift; 693 mm->arg_start = bprm->p; 694 #endif 695 696 if (bprm->loader) 697 bprm->loader -= stack_shift; 698 bprm->exec -= stack_shift; 699 700 down_write(&mm->mmap_sem); 701 vm_flags = VM_STACK_FLAGS; 702 703 /* 704 * Adjust stack execute permissions; explicitly enable for 705 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 706 * (arch default) otherwise. 707 */ 708 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 709 vm_flags |= VM_EXEC; 710 else if (executable_stack == EXSTACK_DISABLE_X) 711 vm_flags &= ~VM_EXEC; 712 vm_flags |= mm->def_flags; 713 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 714 715 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 716 vm_flags); 717 if (ret) 718 goto out_unlock; 719 BUG_ON(prev != vma); 720 721 /* Move stack pages down in memory. */ 722 if (stack_shift) { 723 ret = shift_arg_pages(vma, stack_shift); 724 if (ret) 725 goto out_unlock; 726 } 727 728 /* mprotect_fixup is overkill to remove the temporary stack flags */ 729 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 730 731 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 732 stack_size = vma->vm_end - vma->vm_start; 733 /* 734 * Align this down to a page boundary as expand_stack 735 * will align it up. 736 */ 737 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 738 #ifdef CONFIG_STACK_GROWSUP 739 if (stack_size + stack_expand > rlim_stack) 740 stack_base = vma->vm_start + rlim_stack; 741 else 742 stack_base = vma->vm_end + stack_expand; 743 #else 744 if (stack_size + stack_expand > rlim_stack) 745 stack_base = vma->vm_end - rlim_stack; 746 else 747 stack_base = vma->vm_start - stack_expand; 748 #endif 749 current->mm->start_stack = bprm->p; 750 ret = expand_stack(vma, stack_base); 751 if (ret) 752 ret = -EFAULT; 753 754 out_unlock: 755 up_write(&mm->mmap_sem); 756 return ret; 757 } 758 EXPORT_SYMBOL(setup_arg_pages); 759 760 #endif /* CONFIG_MMU */ 761 762 struct file *open_exec(const char *name) 763 { 764 struct file *file; 765 int err; 766 static const struct open_flags open_exec_flags = { 767 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 768 .acc_mode = MAY_EXEC | MAY_OPEN, 769 .intent = LOOKUP_OPEN 770 }; 771 772 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW); 773 if (IS_ERR(file)) 774 goto out; 775 776 err = -EACCES; 777 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 778 goto exit; 779 780 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 781 goto exit; 782 783 fsnotify_open(file); 784 785 err = deny_write_access(file); 786 if (err) 787 goto exit; 788 789 out: 790 return file; 791 792 exit: 793 fput(file); 794 return ERR_PTR(err); 795 } 796 EXPORT_SYMBOL(open_exec); 797 798 int kernel_read(struct file *file, loff_t offset, 799 char *addr, unsigned long count) 800 { 801 mm_segment_t old_fs; 802 loff_t pos = offset; 803 int result; 804 805 old_fs = get_fs(); 806 set_fs(get_ds()); 807 /* The cast to a user pointer is valid due to the set_fs() */ 808 result = vfs_read(file, (void __user *)addr, count, &pos); 809 set_fs(old_fs); 810 return result; 811 } 812 813 EXPORT_SYMBOL(kernel_read); 814 815 static int exec_mmap(struct mm_struct *mm) 816 { 817 struct task_struct *tsk; 818 struct mm_struct * old_mm, *active_mm; 819 820 /* Notify parent that we're no longer interested in the old VM */ 821 tsk = current; 822 old_mm = current->mm; 823 sync_mm_rss(tsk, old_mm); 824 mm_release(tsk, old_mm); 825 826 if (old_mm) { 827 /* 828 * Make sure that if there is a core dump in progress 829 * for the old mm, we get out and die instead of going 830 * through with the exec. We must hold mmap_sem around 831 * checking core_state and changing tsk->mm. 832 */ 833 down_read(&old_mm->mmap_sem); 834 if (unlikely(old_mm->core_state)) { 835 up_read(&old_mm->mmap_sem); 836 return -EINTR; 837 } 838 } 839 task_lock(tsk); 840 active_mm = tsk->active_mm; 841 tsk->mm = mm; 842 tsk->active_mm = mm; 843 activate_mm(active_mm, mm); 844 task_unlock(tsk); 845 arch_pick_mmap_layout(mm); 846 if (old_mm) { 847 up_read(&old_mm->mmap_sem); 848 BUG_ON(active_mm != old_mm); 849 mm_update_next_owner(old_mm); 850 mmput(old_mm); 851 return 0; 852 } 853 mmdrop(active_mm); 854 return 0; 855 } 856 857 /* 858 * This function makes sure the current process has its own signal table, 859 * so that flush_signal_handlers can later reset the handlers without 860 * disturbing other processes. (Other processes might share the signal 861 * table via the CLONE_SIGHAND option to clone().) 862 */ 863 static int de_thread(struct task_struct *tsk) 864 { 865 struct signal_struct *sig = tsk->signal; 866 struct sighand_struct *oldsighand = tsk->sighand; 867 spinlock_t *lock = &oldsighand->siglock; 868 869 if (thread_group_empty(tsk)) 870 goto no_thread_group; 871 872 /* 873 * Kill all other threads in the thread group. 874 */ 875 spin_lock_irq(lock); 876 if (signal_group_exit(sig)) { 877 /* 878 * Another group action in progress, just 879 * return so that the signal is processed. 880 */ 881 spin_unlock_irq(lock); 882 return -EAGAIN; 883 } 884 885 sig->group_exit_task = tsk; 886 sig->notify_count = zap_other_threads(tsk); 887 if (!thread_group_leader(tsk)) 888 sig->notify_count--; 889 890 while (sig->notify_count) { 891 __set_current_state(TASK_UNINTERRUPTIBLE); 892 spin_unlock_irq(lock); 893 schedule(); 894 spin_lock_irq(lock); 895 } 896 spin_unlock_irq(lock); 897 898 /* 899 * At this point all other threads have exited, all we have to 900 * do is to wait for the thread group leader to become inactive, 901 * and to assume its PID: 902 */ 903 if (!thread_group_leader(tsk)) { 904 struct task_struct *leader = tsk->group_leader; 905 906 sig->notify_count = -1; /* for exit_notify() */ 907 for (;;) { 908 write_lock_irq(&tasklist_lock); 909 if (likely(leader->exit_state)) 910 break; 911 __set_current_state(TASK_UNINTERRUPTIBLE); 912 write_unlock_irq(&tasklist_lock); 913 schedule(); 914 } 915 916 /* 917 * The only record we have of the real-time age of a 918 * process, regardless of execs it's done, is start_time. 919 * All the past CPU time is accumulated in signal_struct 920 * from sister threads now dead. But in this non-leader 921 * exec, nothing survives from the original leader thread, 922 * whose birth marks the true age of this process now. 923 * When we take on its identity by switching to its PID, we 924 * also take its birthdate (always earlier than our own). 925 */ 926 tsk->start_time = leader->start_time; 927 928 BUG_ON(!same_thread_group(leader, tsk)); 929 BUG_ON(has_group_leader_pid(tsk)); 930 /* 931 * An exec() starts a new thread group with the 932 * TGID of the previous thread group. Rehash the 933 * two threads with a switched PID, and release 934 * the former thread group leader: 935 */ 936 937 /* Become a process group leader with the old leader's pid. 938 * The old leader becomes a thread of the this thread group. 939 * Note: The old leader also uses this pid until release_task 940 * is called. Odd but simple and correct. 941 */ 942 detach_pid(tsk, PIDTYPE_PID); 943 tsk->pid = leader->pid; 944 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 945 transfer_pid(leader, tsk, PIDTYPE_PGID); 946 transfer_pid(leader, tsk, PIDTYPE_SID); 947 948 list_replace_rcu(&leader->tasks, &tsk->tasks); 949 list_replace_init(&leader->sibling, &tsk->sibling); 950 951 tsk->group_leader = tsk; 952 leader->group_leader = tsk; 953 954 tsk->exit_signal = SIGCHLD; 955 leader->exit_signal = -1; 956 957 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 958 leader->exit_state = EXIT_DEAD; 959 960 /* 961 * We are going to release_task()->ptrace_unlink() silently, 962 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 963 * the tracer wont't block again waiting for this thread. 964 */ 965 if (unlikely(leader->ptrace)) 966 __wake_up_parent(leader, leader->parent); 967 write_unlock_irq(&tasklist_lock); 968 969 release_task(leader); 970 } 971 972 sig->group_exit_task = NULL; 973 sig->notify_count = 0; 974 975 no_thread_group: 976 if (current->mm) 977 setmax_mm_hiwater_rss(&sig->maxrss, current->mm); 978 979 exit_itimers(sig); 980 flush_itimer_signals(); 981 982 if (atomic_read(&oldsighand->count) != 1) { 983 struct sighand_struct *newsighand; 984 /* 985 * This ->sighand is shared with the CLONE_SIGHAND 986 * but not CLONE_THREAD task, switch to the new one. 987 */ 988 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 989 if (!newsighand) 990 return -ENOMEM; 991 992 atomic_set(&newsighand->count, 1); 993 memcpy(newsighand->action, oldsighand->action, 994 sizeof(newsighand->action)); 995 996 write_lock_irq(&tasklist_lock); 997 spin_lock(&oldsighand->siglock); 998 rcu_assign_pointer(tsk->sighand, newsighand); 999 spin_unlock(&oldsighand->siglock); 1000 write_unlock_irq(&tasklist_lock); 1001 1002 __cleanup_sighand(oldsighand); 1003 } 1004 1005 BUG_ON(!thread_group_leader(tsk)); 1006 return 0; 1007 } 1008 1009 /* 1010 * These functions flushes out all traces of the currently running executable 1011 * so that a new one can be started 1012 */ 1013 static void flush_old_files(struct files_struct * files) 1014 { 1015 long j = -1; 1016 struct fdtable *fdt; 1017 1018 spin_lock(&files->file_lock); 1019 for (;;) { 1020 unsigned long set, i; 1021 1022 j++; 1023 i = j * __NFDBITS; 1024 fdt = files_fdtable(files); 1025 if (i >= fdt->max_fds) 1026 break; 1027 set = fdt->close_on_exec->fds_bits[j]; 1028 if (!set) 1029 continue; 1030 fdt->close_on_exec->fds_bits[j] = 0; 1031 spin_unlock(&files->file_lock); 1032 for ( ; set ; i++,set >>= 1) { 1033 if (set & 1) { 1034 sys_close(i); 1035 } 1036 } 1037 spin_lock(&files->file_lock); 1038 1039 } 1040 spin_unlock(&files->file_lock); 1041 } 1042 1043 char *get_task_comm(char *buf, struct task_struct *tsk) 1044 { 1045 /* buf must be at least sizeof(tsk->comm) in size */ 1046 task_lock(tsk); 1047 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1048 task_unlock(tsk); 1049 return buf; 1050 } 1051 EXPORT_SYMBOL_GPL(get_task_comm); 1052 1053 void set_task_comm(struct task_struct *tsk, char *buf) 1054 { 1055 task_lock(tsk); 1056 1057 /* 1058 * Threads may access current->comm without holding 1059 * the task lock, so write the string carefully. 1060 * Readers without a lock may see incomplete new 1061 * names but are safe from non-terminating string reads. 1062 */ 1063 memset(tsk->comm, 0, TASK_COMM_LEN); 1064 wmb(); 1065 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1066 task_unlock(tsk); 1067 perf_event_comm(tsk); 1068 } 1069 1070 int flush_old_exec(struct linux_binprm * bprm) 1071 { 1072 int retval; 1073 1074 /* 1075 * Make sure we have a private signal table and that 1076 * we are unassociated from the previous thread group. 1077 */ 1078 retval = de_thread(current); 1079 if (retval) 1080 goto out; 1081 1082 set_mm_exe_file(bprm->mm, bprm->file); 1083 1084 /* 1085 * Release all of the old mmap stuff 1086 */ 1087 acct_arg_size(bprm, 0); 1088 retval = exec_mmap(bprm->mm); 1089 if (retval) 1090 goto out; 1091 1092 bprm->mm = NULL; /* We're using it now */ 1093 1094 set_fs(USER_DS); 1095 current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD); 1096 flush_thread(); 1097 current->personality &= ~bprm->per_clear; 1098 1099 return 0; 1100 1101 out: 1102 return retval; 1103 } 1104 EXPORT_SYMBOL(flush_old_exec); 1105 1106 void would_dump(struct linux_binprm *bprm, struct file *file) 1107 { 1108 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0) 1109 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1110 } 1111 EXPORT_SYMBOL(would_dump); 1112 1113 void setup_new_exec(struct linux_binprm * bprm) 1114 { 1115 int i, ch; 1116 const char *name; 1117 char tcomm[sizeof(current->comm)]; 1118 1119 arch_pick_mmap_layout(current->mm); 1120 1121 /* This is the point of no return */ 1122 current->sas_ss_sp = current->sas_ss_size = 0; 1123 1124 if (current_euid() == current_uid() && current_egid() == current_gid()) 1125 set_dumpable(current->mm, 1); 1126 else 1127 set_dumpable(current->mm, suid_dumpable); 1128 1129 name = bprm->filename; 1130 1131 /* Copies the binary name from after last slash */ 1132 for (i=0; (ch = *(name++)) != '\0';) { 1133 if (ch == '/') 1134 i = 0; /* overwrite what we wrote */ 1135 else 1136 if (i < (sizeof(tcomm) - 1)) 1137 tcomm[i++] = ch; 1138 } 1139 tcomm[i] = '\0'; 1140 set_task_comm(current, tcomm); 1141 1142 /* Set the new mm task size. We have to do that late because it may 1143 * depend on TIF_32BIT which is only updated in flush_thread() on 1144 * some architectures like powerpc 1145 */ 1146 current->mm->task_size = TASK_SIZE; 1147 1148 /* install the new credentials */ 1149 if (bprm->cred->uid != current_euid() || 1150 bprm->cred->gid != current_egid()) { 1151 current->pdeath_signal = 0; 1152 } else { 1153 would_dump(bprm, bprm->file); 1154 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1155 set_dumpable(current->mm, suid_dumpable); 1156 } 1157 1158 /* 1159 * Flush performance counters when crossing a 1160 * security domain: 1161 */ 1162 if (!get_dumpable(current->mm)) 1163 perf_event_exit_task(current); 1164 1165 /* An exec changes our domain. We are no longer part of the thread 1166 group */ 1167 1168 current->self_exec_id++; 1169 1170 flush_signal_handlers(current, 0); 1171 flush_old_files(current->files); 1172 } 1173 EXPORT_SYMBOL(setup_new_exec); 1174 1175 /* 1176 * Prepare credentials and lock ->cred_guard_mutex. 1177 * install_exec_creds() commits the new creds and drops the lock. 1178 * Or, if exec fails before, free_bprm() should release ->cred and 1179 * and unlock. 1180 */ 1181 int prepare_bprm_creds(struct linux_binprm *bprm) 1182 { 1183 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1184 return -ERESTARTNOINTR; 1185 1186 bprm->cred = prepare_exec_creds(); 1187 if (likely(bprm->cred)) 1188 return 0; 1189 1190 mutex_unlock(¤t->signal->cred_guard_mutex); 1191 return -ENOMEM; 1192 } 1193 1194 void free_bprm(struct linux_binprm *bprm) 1195 { 1196 free_arg_pages(bprm); 1197 if (bprm->cred) { 1198 mutex_unlock(¤t->signal->cred_guard_mutex); 1199 abort_creds(bprm->cred); 1200 } 1201 kfree(bprm); 1202 } 1203 1204 /* 1205 * install the new credentials for this executable 1206 */ 1207 void install_exec_creds(struct linux_binprm *bprm) 1208 { 1209 security_bprm_committing_creds(bprm); 1210 1211 commit_creds(bprm->cred); 1212 bprm->cred = NULL; 1213 /* 1214 * cred_guard_mutex must be held at least to this point to prevent 1215 * ptrace_attach() from altering our determination of the task's 1216 * credentials; any time after this it may be unlocked. 1217 */ 1218 security_bprm_committed_creds(bprm); 1219 mutex_unlock(¤t->signal->cred_guard_mutex); 1220 } 1221 EXPORT_SYMBOL(install_exec_creds); 1222 1223 /* 1224 * determine how safe it is to execute the proposed program 1225 * - the caller must hold ->cred_guard_mutex to protect against 1226 * PTRACE_ATTACH 1227 */ 1228 int check_unsafe_exec(struct linux_binprm *bprm) 1229 { 1230 struct task_struct *p = current, *t; 1231 unsigned n_fs; 1232 int res = 0; 1233 1234 if (p->ptrace) { 1235 if (p->ptrace & PT_PTRACE_CAP) 1236 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP; 1237 else 1238 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1239 } 1240 1241 n_fs = 1; 1242 spin_lock(&p->fs->lock); 1243 rcu_read_lock(); 1244 for (t = next_thread(p); t != p; t = next_thread(t)) { 1245 if (t->fs == p->fs) 1246 n_fs++; 1247 } 1248 rcu_read_unlock(); 1249 1250 if (p->fs->users > n_fs) { 1251 bprm->unsafe |= LSM_UNSAFE_SHARE; 1252 } else { 1253 res = -EAGAIN; 1254 if (!p->fs->in_exec) { 1255 p->fs->in_exec = 1; 1256 res = 1; 1257 } 1258 } 1259 spin_unlock(&p->fs->lock); 1260 1261 return res; 1262 } 1263 1264 /* 1265 * Fill the binprm structure from the inode. 1266 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1267 * 1268 * This may be called multiple times for binary chains (scripts for example). 1269 */ 1270 int prepare_binprm(struct linux_binprm *bprm) 1271 { 1272 umode_t mode; 1273 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1274 int retval; 1275 1276 mode = inode->i_mode; 1277 if (bprm->file->f_op == NULL) 1278 return -EACCES; 1279 1280 /* clear any previous set[ug]id data from a previous binary */ 1281 bprm->cred->euid = current_euid(); 1282 bprm->cred->egid = current_egid(); 1283 1284 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1285 /* Set-uid? */ 1286 if (mode & S_ISUID) { 1287 bprm->per_clear |= PER_CLEAR_ON_SETID; 1288 bprm->cred->euid = inode->i_uid; 1289 } 1290 1291 /* Set-gid? */ 1292 /* 1293 * If setgid is set but no group execute bit then this 1294 * is a candidate for mandatory locking, not a setgid 1295 * executable. 1296 */ 1297 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1298 bprm->per_clear |= PER_CLEAR_ON_SETID; 1299 bprm->cred->egid = inode->i_gid; 1300 } 1301 } 1302 1303 /* fill in binprm security blob */ 1304 retval = security_bprm_set_creds(bprm); 1305 if (retval) 1306 return retval; 1307 bprm->cred_prepared = 1; 1308 1309 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1310 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1311 } 1312 1313 EXPORT_SYMBOL(prepare_binprm); 1314 1315 /* 1316 * Arguments are '\0' separated strings found at the location bprm->p 1317 * points to; chop off the first by relocating brpm->p to right after 1318 * the first '\0' encountered. 1319 */ 1320 int remove_arg_zero(struct linux_binprm *bprm) 1321 { 1322 int ret = 0; 1323 unsigned long offset; 1324 char *kaddr; 1325 struct page *page; 1326 1327 if (!bprm->argc) 1328 return 0; 1329 1330 do { 1331 offset = bprm->p & ~PAGE_MASK; 1332 page = get_arg_page(bprm, bprm->p, 0); 1333 if (!page) { 1334 ret = -EFAULT; 1335 goto out; 1336 } 1337 kaddr = kmap_atomic(page, KM_USER0); 1338 1339 for (; offset < PAGE_SIZE && kaddr[offset]; 1340 offset++, bprm->p++) 1341 ; 1342 1343 kunmap_atomic(kaddr, KM_USER0); 1344 put_arg_page(page); 1345 1346 if (offset == PAGE_SIZE) 1347 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1348 } while (offset == PAGE_SIZE); 1349 1350 bprm->p++; 1351 bprm->argc--; 1352 ret = 0; 1353 1354 out: 1355 return ret; 1356 } 1357 EXPORT_SYMBOL(remove_arg_zero); 1358 1359 /* 1360 * cycle the list of binary formats handler, until one recognizes the image 1361 */ 1362 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1363 { 1364 unsigned int depth = bprm->recursion_depth; 1365 int try,retval; 1366 struct linux_binfmt *fmt; 1367 pid_t old_pid; 1368 1369 retval = security_bprm_check(bprm); 1370 if (retval) 1371 return retval; 1372 1373 retval = audit_bprm(bprm); 1374 if (retval) 1375 return retval; 1376 1377 /* Need to fetch pid before load_binary changes it */ 1378 rcu_read_lock(); 1379 old_pid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1380 rcu_read_unlock(); 1381 1382 retval = -ENOENT; 1383 for (try=0; try<2; try++) { 1384 read_lock(&binfmt_lock); 1385 list_for_each_entry(fmt, &formats, lh) { 1386 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1387 if (!fn) 1388 continue; 1389 if (!try_module_get(fmt->module)) 1390 continue; 1391 read_unlock(&binfmt_lock); 1392 retval = fn(bprm, regs); 1393 /* 1394 * Restore the depth counter to its starting value 1395 * in this call, so we don't have to rely on every 1396 * load_binary function to restore it on return. 1397 */ 1398 bprm->recursion_depth = depth; 1399 if (retval >= 0) { 1400 if (depth == 0) 1401 ptrace_event(PTRACE_EVENT_EXEC, 1402 old_pid); 1403 put_binfmt(fmt); 1404 allow_write_access(bprm->file); 1405 if (bprm->file) 1406 fput(bprm->file); 1407 bprm->file = NULL; 1408 current->did_exec = 1; 1409 proc_exec_connector(current); 1410 return retval; 1411 } 1412 read_lock(&binfmt_lock); 1413 put_binfmt(fmt); 1414 if (retval != -ENOEXEC || bprm->mm == NULL) 1415 break; 1416 if (!bprm->file) { 1417 read_unlock(&binfmt_lock); 1418 return retval; 1419 } 1420 } 1421 read_unlock(&binfmt_lock); 1422 #ifdef CONFIG_MODULES 1423 if (retval != -ENOEXEC || bprm->mm == NULL) { 1424 break; 1425 } else { 1426 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1427 if (printable(bprm->buf[0]) && 1428 printable(bprm->buf[1]) && 1429 printable(bprm->buf[2]) && 1430 printable(bprm->buf[3])) 1431 break; /* -ENOEXEC */ 1432 if (try) 1433 break; /* -ENOEXEC */ 1434 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1435 } 1436 #else 1437 break; 1438 #endif 1439 } 1440 return retval; 1441 } 1442 1443 EXPORT_SYMBOL(search_binary_handler); 1444 1445 /* 1446 * sys_execve() executes a new program. 1447 */ 1448 static int do_execve_common(const char *filename, 1449 struct user_arg_ptr argv, 1450 struct user_arg_ptr envp, 1451 struct pt_regs *regs) 1452 { 1453 struct linux_binprm *bprm; 1454 struct file *file; 1455 struct files_struct *displaced; 1456 bool clear_in_exec; 1457 int retval; 1458 const struct cred *cred = current_cred(); 1459 1460 /* 1461 * We move the actual failure in case of RLIMIT_NPROC excess from 1462 * set*uid() to execve() because too many poorly written programs 1463 * don't check setuid() return code. Here we additionally recheck 1464 * whether NPROC limit is still exceeded. 1465 */ 1466 if ((current->flags & PF_NPROC_EXCEEDED) && 1467 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) { 1468 retval = -EAGAIN; 1469 goto out_ret; 1470 } 1471 1472 /* We're below the limit (still or again), so we don't want to make 1473 * further execve() calls fail. */ 1474 current->flags &= ~PF_NPROC_EXCEEDED; 1475 1476 retval = unshare_files(&displaced); 1477 if (retval) 1478 goto out_ret; 1479 1480 retval = -ENOMEM; 1481 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1482 if (!bprm) 1483 goto out_files; 1484 1485 retval = prepare_bprm_creds(bprm); 1486 if (retval) 1487 goto out_free; 1488 1489 retval = check_unsafe_exec(bprm); 1490 if (retval < 0) 1491 goto out_free; 1492 clear_in_exec = retval; 1493 current->in_execve = 1; 1494 1495 file = open_exec(filename); 1496 retval = PTR_ERR(file); 1497 if (IS_ERR(file)) 1498 goto out_unmark; 1499 1500 sched_exec(); 1501 1502 bprm->file = file; 1503 bprm->filename = filename; 1504 bprm->interp = filename; 1505 1506 retval = bprm_mm_init(bprm); 1507 if (retval) 1508 goto out_file; 1509 1510 bprm->argc = count(argv, MAX_ARG_STRINGS); 1511 if ((retval = bprm->argc) < 0) 1512 goto out; 1513 1514 bprm->envc = count(envp, MAX_ARG_STRINGS); 1515 if ((retval = bprm->envc) < 0) 1516 goto out; 1517 1518 retval = prepare_binprm(bprm); 1519 if (retval < 0) 1520 goto out; 1521 1522 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1523 if (retval < 0) 1524 goto out; 1525 1526 bprm->exec = bprm->p; 1527 retval = copy_strings(bprm->envc, envp, bprm); 1528 if (retval < 0) 1529 goto out; 1530 1531 retval = copy_strings(bprm->argc, argv, bprm); 1532 if (retval < 0) 1533 goto out; 1534 1535 retval = search_binary_handler(bprm,regs); 1536 if (retval < 0) 1537 goto out; 1538 1539 /* execve succeeded */ 1540 current->fs->in_exec = 0; 1541 current->in_execve = 0; 1542 acct_update_integrals(current); 1543 free_bprm(bprm); 1544 if (displaced) 1545 put_files_struct(displaced); 1546 return retval; 1547 1548 out: 1549 if (bprm->mm) { 1550 acct_arg_size(bprm, 0); 1551 mmput(bprm->mm); 1552 } 1553 1554 out_file: 1555 if (bprm->file) { 1556 allow_write_access(bprm->file); 1557 fput(bprm->file); 1558 } 1559 1560 out_unmark: 1561 if (clear_in_exec) 1562 current->fs->in_exec = 0; 1563 current->in_execve = 0; 1564 1565 out_free: 1566 free_bprm(bprm); 1567 1568 out_files: 1569 if (displaced) 1570 reset_files_struct(displaced); 1571 out_ret: 1572 return retval; 1573 } 1574 1575 int do_execve(const char *filename, 1576 const char __user *const __user *__argv, 1577 const char __user *const __user *__envp, 1578 struct pt_regs *regs) 1579 { 1580 struct user_arg_ptr argv = { .ptr.native = __argv }; 1581 struct user_arg_ptr envp = { .ptr.native = __envp }; 1582 return do_execve_common(filename, argv, envp, regs); 1583 } 1584 1585 #ifdef CONFIG_COMPAT 1586 int compat_do_execve(char *filename, 1587 compat_uptr_t __user *__argv, 1588 compat_uptr_t __user *__envp, 1589 struct pt_regs *regs) 1590 { 1591 struct user_arg_ptr argv = { 1592 .is_compat = true, 1593 .ptr.compat = __argv, 1594 }; 1595 struct user_arg_ptr envp = { 1596 .is_compat = true, 1597 .ptr.compat = __envp, 1598 }; 1599 return do_execve_common(filename, argv, envp, regs); 1600 } 1601 #endif 1602 1603 void set_binfmt(struct linux_binfmt *new) 1604 { 1605 struct mm_struct *mm = current->mm; 1606 1607 if (mm->binfmt) 1608 module_put(mm->binfmt->module); 1609 1610 mm->binfmt = new; 1611 if (new) 1612 __module_get(new->module); 1613 } 1614 1615 EXPORT_SYMBOL(set_binfmt); 1616 1617 static int expand_corename(struct core_name *cn) 1618 { 1619 char *old_corename = cn->corename; 1620 1621 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count); 1622 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL); 1623 1624 if (!cn->corename) { 1625 kfree(old_corename); 1626 return -ENOMEM; 1627 } 1628 1629 return 0; 1630 } 1631 1632 static int cn_printf(struct core_name *cn, const char *fmt, ...) 1633 { 1634 char *cur; 1635 int need; 1636 int ret; 1637 va_list arg; 1638 1639 va_start(arg, fmt); 1640 need = vsnprintf(NULL, 0, fmt, arg); 1641 va_end(arg); 1642 1643 if (likely(need < cn->size - cn->used - 1)) 1644 goto out_printf; 1645 1646 ret = expand_corename(cn); 1647 if (ret) 1648 goto expand_fail; 1649 1650 out_printf: 1651 cur = cn->corename + cn->used; 1652 va_start(arg, fmt); 1653 vsnprintf(cur, need + 1, fmt, arg); 1654 va_end(arg); 1655 cn->used += need; 1656 return 0; 1657 1658 expand_fail: 1659 return ret; 1660 } 1661 1662 static void cn_escape(char *str) 1663 { 1664 for (; *str; str++) 1665 if (*str == '/') 1666 *str = '!'; 1667 } 1668 1669 static int cn_print_exe_file(struct core_name *cn) 1670 { 1671 struct file *exe_file; 1672 char *pathbuf, *path; 1673 int ret; 1674 1675 exe_file = get_mm_exe_file(current->mm); 1676 if (!exe_file) { 1677 char *commstart = cn->corename + cn->used; 1678 ret = cn_printf(cn, "%s (path unknown)", current->comm); 1679 cn_escape(commstart); 1680 return ret; 1681 } 1682 1683 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY); 1684 if (!pathbuf) { 1685 ret = -ENOMEM; 1686 goto put_exe_file; 1687 } 1688 1689 path = d_path(&exe_file->f_path, pathbuf, PATH_MAX); 1690 if (IS_ERR(path)) { 1691 ret = PTR_ERR(path); 1692 goto free_buf; 1693 } 1694 1695 cn_escape(path); 1696 1697 ret = cn_printf(cn, "%s", path); 1698 1699 free_buf: 1700 kfree(pathbuf); 1701 put_exe_file: 1702 fput(exe_file); 1703 return ret; 1704 } 1705 1706 /* format_corename will inspect the pattern parameter, and output a 1707 * name into corename, which must have space for at least 1708 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1709 */ 1710 static int format_corename(struct core_name *cn, long signr) 1711 { 1712 const struct cred *cred = current_cred(); 1713 const char *pat_ptr = core_pattern; 1714 int ispipe = (*pat_ptr == '|'); 1715 int pid_in_pattern = 0; 1716 int err = 0; 1717 1718 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count); 1719 cn->corename = kmalloc(cn->size, GFP_KERNEL); 1720 cn->used = 0; 1721 1722 if (!cn->corename) 1723 return -ENOMEM; 1724 1725 /* Repeat as long as we have more pattern to process and more output 1726 space */ 1727 while (*pat_ptr) { 1728 if (*pat_ptr != '%') { 1729 if (*pat_ptr == 0) 1730 goto out; 1731 err = cn_printf(cn, "%c", *pat_ptr++); 1732 } else { 1733 switch (*++pat_ptr) { 1734 /* single % at the end, drop that */ 1735 case 0: 1736 goto out; 1737 /* Double percent, output one percent */ 1738 case '%': 1739 err = cn_printf(cn, "%c", '%'); 1740 break; 1741 /* pid */ 1742 case 'p': 1743 pid_in_pattern = 1; 1744 err = cn_printf(cn, "%d", 1745 task_tgid_vnr(current)); 1746 break; 1747 /* uid */ 1748 case 'u': 1749 err = cn_printf(cn, "%d", cred->uid); 1750 break; 1751 /* gid */ 1752 case 'g': 1753 err = cn_printf(cn, "%d", cred->gid); 1754 break; 1755 /* signal that caused the coredump */ 1756 case 's': 1757 err = cn_printf(cn, "%ld", signr); 1758 break; 1759 /* UNIX time of coredump */ 1760 case 't': { 1761 struct timeval tv; 1762 do_gettimeofday(&tv); 1763 err = cn_printf(cn, "%lu", tv.tv_sec); 1764 break; 1765 } 1766 /* hostname */ 1767 case 'h': { 1768 char *namestart = cn->corename + cn->used; 1769 down_read(&uts_sem); 1770 err = cn_printf(cn, "%s", 1771 utsname()->nodename); 1772 up_read(&uts_sem); 1773 cn_escape(namestart); 1774 break; 1775 } 1776 /* executable */ 1777 case 'e': { 1778 char *commstart = cn->corename + cn->used; 1779 err = cn_printf(cn, "%s", current->comm); 1780 cn_escape(commstart); 1781 break; 1782 } 1783 case 'E': 1784 err = cn_print_exe_file(cn); 1785 break; 1786 /* core limit size */ 1787 case 'c': 1788 err = cn_printf(cn, "%lu", 1789 rlimit(RLIMIT_CORE)); 1790 break; 1791 default: 1792 break; 1793 } 1794 ++pat_ptr; 1795 } 1796 1797 if (err) 1798 return err; 1799 } 1800 1801 /* Backward compatibility with core_uses_pid: 1802 * 1803 * If core_pattern does not include a %p (as is the default) 1804 * and core_uses_pid is set, then .%pid will be appended to 1805 * the filename. Do not do this for piped commands. */ 1806 if (!ispipe && !pid_in_pattern && core_uses_pid) { 1807 err = cn_printf(cn, ".%d", task_tgid_vnr(current)); 1808 if (err) 1809 return err; 1810 } 1811 out: 1812 return ispipe; 1813 } 1814 1815 static int zap_process(struct task_struct *start, int exit_code) 1816 { 1817 struct task_struct *t; 1818 int nr = 0; 1819 1820 start->signal->flags = SIGNAL_GROUP_EXIT; 1821 start->signal->group_exit_code = exit_code; 1822 start->signal->group_stop_count = 0; 1823 1824 t = start; 1825 do { 1826 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1827 if (t != current && t->mm) { 1828 sigaddset(&t->pending.signal, SIGKILL); 1829 signal_wake_up(t, 1); 1830 nr++; 1831 } 1832 } while_each_thread(start, t); 1833 1834 return nr; 1835 } 1836 1837 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1838 struct core_state *core_state, int exit_code) 1839 { 1840 struct task_struct *g, *p; 1841 unsigned long flags; 1842 int nr = -EAGAIN; 1843 1844 spin_lock_irq(&tsk->sighand->siglock); 1845 if (!signal_group_exit(tsk->signal)) { 1846 mm->core_state = core_state; 1847 nr = zap_process(tsk, exit_code); 1848 } 1849 spin_unlock_irq(&tsk->sighand->siglock); 1850 if (unlikely(nr < 0)) 1851 return nr; 1852 1853 if (atomic_read(&mm->mm_users) == nr + 1) 1854 goto done; 1855 /* 1856 * We should find and kill all tasks which use this mm, and we should 1857 * count them correctly into ->nr_threads. We don't take tasklist 1858 * lock, but this is safe wrt: 1859 * 1860 * fork: 1861 * None of sub-threads can fork after zap_process(leader). All 1862 * processes which were created before this point should be 1863 * visible to zap_threads() because copy_process() adds the new 1864 * process to the tail of init_task.tasks list, and lock/unlock 1865 * of ->siglock provides a memory barrier. 1866 * 1867 * do_exit: 1868 * The caller holds mm->mmap_sem. This means that the task which 1869 * uses this mm can't pass exit_mm(), so it can't exit or clear 1870 * its ->mm. 1871 * 1872 * de_thread: 1873 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1874 * we must see either old or new leader, this does not matter. 1875 * However, it can change p->sighand, so lock_task_sighand(p) 1876 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1877 * it can't fail. 1878 * 1879 * Note also that "g" can be the old leader with ->mm == NULL 1880 * and already unhashed and thus removed from ->thread_group. 1881 * This is OK, __unhash_process()->list_del_rcu() does not 1882 * clear the ->next pointer, we will find the new leader via 1883 * next_thread(). 1884 */ 1885 rcu_read_lock(); 1886 for_each_process(g) { 1887 if (g == tsk->group_leader) 1888 continue; 1889 if (g->flags & PF_KTHREAD) 1890 continue; 1891 p = g; 1892 do { 1893 if (p->mm) { 1894 if (unlikely(p->mm == mm)) { 1895 lock_task_sighand(p, &flags); 1896 nr += zap_process(p, exit_code); 1897 unlock_task_sighand(p, &flags); 1898 } 1899 break; 1900 } 1901 } while_each_thread(g, p); 1902 } 1903 rcu_read_unlock(); 1904 done: 1905 atomic_set(&core_state->nr_threads, nr); 1906 return nr; 1907 } 1908 1909 static int coredump_wait(int exit_code, struct core_state *core_state) 1910 { 1911 struct task_struct *tsk = current; 1912 struct mm_struct *mm = tsk->mm; 1913 struct completion *vfork_done; 1914 int core_waiters = -EBUSY; 1915 1916 init_completion(&core_state->startup); 1917 core_state->dumper.task = tsk; 1918 core_state->dumper.next = NULL; 1919 1920 down_write(&mm->mmap_sem); 1921 if (!mm->core_state) 1922 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1923 up_write(&mm->mmap_sem); 1924 1925 if (unlikely(core_waiters < 0)) 1926 goto fail; 1927 1928 /* 1929 * Make sure nobody is waiting for us to release the VM, 1930 * otherwise we can deadlock when we wait on each other 1931 */ 1932 vfork_done = tsk->vfork_done; 1933 if (vfork_done) { 1934 tsk->vfork_done = NULL; 1935 complete(vfork_done); 1936 } 1937 1938 if (core_waiters) 1939 wait_for_completion(&core_state->startup); 1940 fail: 1941 return core_waiters; 1942 } 1943 1944 static void coredump_finish(struct mm_struct *mm) 1945 { 1946 struct core_thread *curr, *next; 1947 struct task_struct *task; 1948 1949 next = mm->core_state->dumper.next; 1950 while ((curr = next) != NULL) { 1951 next = curr->next; 1952 task = curr->task; 1953 /* 1954 * see exit_mm(), curr->task must not see 1955 * ->task == NULL before we read ->next. 1956 */ 1957 smp_mb(); 1958 curr->task = NULL; 1959 wake_up_process(task); 1960 } 1961 1962 mm->core_state = NULL; 1963 } 1964 1965 /* 1966 * set_dumpable converts traditional three-value dumpable to two flags and 1967 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1968 * these bits are not changed atomically. So get_dumpable can observe the 1969 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1970 * return either old dumpable or new one by paying attention to the order of 1971 * modifying the bits. 1972 * 1973 * dumpable | mm->flags (binary) 1974 * old new | initial interim final 1975 * ---------+----------------------- 1976 * 0 1 | 00 01 01 1977 * 0 2 | 00 10(*) 11 1978 * 1 0 | 01 00 00 1979 * 1 2 | 01 11 11 1980 * 2 0 | 11 10(*) 00 1981 * 2 1 | 11 11 01 1982 * 1983 * (*) get_dumpable regards interim value of 10 as 11. 1984 */ 1985 void set_dumpable(struct mm_struct *mm, int value) 1986 { 1987 switch (value) { 1988 case 0: 1989 clear_bit(MMF_DUMPABLE, &mm->flags); 1990 smp_wmb(); 1991 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1992 break; 1993 case 1: 1994 set_bit(MMF_DUMPABLE, &mm->flags); 1995 smp_wmb(); 1996 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1997 break; 1998 case 2: 1999 set_bit(MMF_DUMP_SECURELY, &mm->flags); 2000 smp_wmb(); 2001 set_bit(MMF_DUMPABLE, &mm->flags); 2002 break; 2003 } 2004 } 2005 2006 static int __get_dumpable(unsigned long mm_flags) 2007 { 2008 int ret; 2009 2010 ret = mm_flags & MMF_DUMPABLE_MASK; 2011 return (ret >= 2) ? 2 : ret; 2012 } 2013 2014 int get_dumpable(struct mm_struct *mm) 2015 { 2016 return __get_dumpable(mm->flags); 2017 } 2018 2019 static void wait_for_dump_helpers(struct file *file) 2020 { 2021 struct pipe_inode_info *pipe; 2022 2023 pipe = file->f_path.dentry->d_inode->i_pipe; 2024 2025 pipe_lock(pipe); 2026 pipe->readers++; 2027 pipe->writers--; 2028 2029 while ((pipe->readers > 1) && (!signal_pending(current))) { 2030 wake_up_interruptible_sync(&pipe->wait); 2031 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 2032 pipe_wait(pipe); 2033 } 2034 2035 pipe->readers--; 2036 pipe->writers++; 2037 pipe_unlock(pipe); 2038 2039 } 2040 2041 2042 /* 2043 * umh_pipe_setup 2044 * helper function to customize the process used 2045 * to collect the core in userspace. Specifically 2046 * it sets up a pipe and installs it as fd 0 (stdin) 2047 * for the process. Returns 0 on success, or 2048 * PTR_ERR on failure. 2049 * Note that it also sets the core limit to 1. This 2050 * is a special value that we use to trap recursive 2051 * core dumps 2052 */ 2053 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) 2054 { 2055 struct file *rp, *wp; 2056 struct fdtable *fdt; 2057 struct coredump_params *cp = (struct coredump_params *)info->data; 2058 struct files_struct *cf = current->files; 2059 2060 wp = create_write_pipe(0); 2061 if (IS_ERR(wp)) 2062 return PTR_ERR(wp); 2063 2064 rp = create_read_pipe(wp, 0); 2065 if (IS_ERR(rp)) { 2066 free_write_pipe(wp); 2067 return PTR_ERR(rp); 2068 } 2069 2070 cp->file = wp; 2071 2072 sys_close(0); 2073 fd_install(0, rp); 2074 spin_lock(&cf->file_lock); 2075 fdt = files_fdtable(cf); 2076 FD_SET(0, fdt->open_fds); 2077 FD_CLR(0, fdt->close_on_exec); 2078 spin_unlock(&cf->file_lock); 2079 2080 /* and disallow core files too */ 2081 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 2082 2083 return 0; 2084 } 2085 2086 void do_coredump(long signr, int exit_code, struct pt_regs *regs) 2087 { 2088 struct core_state core_state; 2089 struct core_name cn; 2090 struct mm_struct *mm = current->mm; 2091 struct linux_binfmt * binfmt; 2092 const struct cred *old_cred; 2093 struct cred *cred; 2094 int retval = 0; 2095 int flag = 0; 2096 int ispipe; 2097 static atomic_t core_dump_count = ATOMIC_INIT(0); 2098 struct coredump_params cprm = { 2099 .signr = signr, 2100 .regs = regs, 2101 .limit = rlimit(RLIMIT_CORE), 2102 /* 2103 * We must use the same mm->flags while dumping core to avoid 2104 * inconsistency of bit flags, since this flag is not protected 2105 * by any locks. 2106 */ 2107 .mm_flags = mm->flags, 2108 }; 2109 2110 audit_core_dumps(signr); 2111 2112 binfmt = mm->binfmt; 2113 if (!binfmt || !binfmt->core_dump) 2114 goto fail; 2115 if (!__get_dumpable(cprm.mm_flags)) 2116 goto fail; 2117 2118 cred = prepare_creds(); 2119 if (!cred) 2120 goto fail; 2121 /* 2122 * We cannot trust fsuid as being the "true" uid of the 2123 * process nor do we know its entire history. We only know it 2124 * was tainted so we dump it as root in mode 2. 2125 */ 2126 if (__get_dumpable(cprm.mm_flags) == 2) { 2127 /* Setuid core dump mode */ 2128 flag = O_EXCL; /* Stop rewrite attacks */ 2129 cred->fsuid = 0; /* Dump root private */ 2130 } 2131 2132 retval = coredump_wait(exit_code, &core_state); 2133 if (retval < 0) 2134 goto fail_creds; 2135 2136 old_cred = override_creds(cred); 2137 2138 /* 2139 * Clear any false indication of pending signals that might 2140 * be seen by the filesystem code called to write the core file. 2141 */ 2142 clear_thread_flag(TIF_SIGPENDING); 2143 2144 ispipe = format_corename(&cn, signr); 2145 2146 if (ispipe) { 2147 int dump_count; 2148 char **helper_argv; 2149 2150 if (ispipe < 0) { 2151 printk(KERN_WARNING "format_corename failed\n"); 2152 printk(KERN_WARNING "Aborting core\n"); 2153 goto fail_corename; 2154 } 2155 2156 if (cprm.limit == 1) { 2157 /* 2158 * Normally core limits are irrelevant to pipes, since 2159 * we're not writing to the file system, but we use 2160 * cprm.limit of 1 here as a speacial value. Any 2161 * non-1 limit gets set to RLIM_INFINITY below, but 2162 * a limit of 0 skips the dump. This is a consistent 2163 * way to catch recursive crashes. We can still crash 2164 * if the core_pattern binary sets RLIM_CORE = !1 2165 * but it runs as root, and can do lots of stupid things 2166 * Note that we use task_tgid_vnr here to grab the pid 2167 * of the process group leader. That way we get the 2168 * right pid if a thread in a multi-threaded 2169 * core_pattern process dies. 2170 */ 2171 printk(KERN_WARNING 2172 "Process %d(%s) has RLIMIT_CORE set to 1\n", 2173 task_tgid_vnr(current), current->comm); 2174 printk(KERN_WARNING "Aborting core\n"); 2175 goto fail_unlock; 2176 } 2177 cprm.limit = RLIM_INFINITY; 2178 2179 dump_count = atomic_inc_return(&core_dump_count); 2180 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 2181 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 2182 task_tgid_vnr(current), current->comm); 2183 printk(KERN_WARNING "Skipping core dump\n"); 2184 goto fail_dropcount; 2185 } 2186 2187 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL); 2188 if (!helper_argv) { 2189 printk(KERN_WARNING "%s failed to allocate memory\n", 2190 __func__); 2191 goto fail_dropcount; 2192 } 2193 2194 retval = call_usermodehelper_fns(helper_argv[0], helper_argv, 2195 NULL, UMH_WAIT_EXEC, umh_pipe_setup, 2196 NULL, &cprm); 2197 argv_free(helper_argv); 2198 if (retval) { 2199 printk(KERN_INFO "Core dump to %s pipe failed\n", 2200 cn.corename); 2201 goto close_fail; 2202 } 2203 } else { 2204 struct inode *inode; 2205 2206 if (cprm.limit < binfmt->min_coredump) 2207 goto fail_unlock; 2208 2209 cprm.file = filp_open(cn.corename, 2210 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 2211 0600); 2212 if (IS_ERR(cprm.file)) 2213 goto fail_unlock; 2214 2215 inode = cprm.file->f_path.dentry->d_inode; 2216 if (inode->i_nlink > 1) 2217 goto close_fail; 2218 if (d_unhashed(cprm.file->f_path.dentry)) 2219 goto close_fail; 2220 /* 2221 * AK: actually i see no reason to not allow this for named 2222 * pipes etc, but keep the previous behaviour for now. 2223 */ 2224 if (!S_ISREG(inode->i_mode)) 2225 goto close_fail; 2226 /* 2227 * Dont allow local users get cute and trick others to coredump 2228 * into their pre-created files. 2229 */ 2230 if (inode->i_uid != current_fsuid()) 2231 goto close_fail; 2232 if (!cprm.file->f_op || !cprm.file->f_op->write) 2233 goto close_fail; 2234 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) 2235 goto close_fail; 2236 } 2237 2238 retval = binfmt->core_dump(&cprm); 2239 if (retval) 2240 current->signal->group_exit_code |= 0x80; 2241 2242 if (ispipe && core_pipe_limit) 2243 wait_for_dump_helpers(cprm.file); 2244 close_fail: 2245 if (cprm.file) 2246 filp_close(cprm.file, NULL); 2247 fail_dropcount: 2248 if (ispipe) 2249 atomic_dec(&core_dump_count); 2250 fail_unlock: 2251 kfree(cn.corename); 2252 fail_corename: 2253 coredump_finish(mm); 2254 revert_creds(old_cred); 2255 fail_creds: 2256 put_cred(cred); 2257 fail: 2258 return; 2259 } 2260 2261 /* 2262 * Core dumping helper functions. These are the only things you should 2263 * do on a core-file: use only these functions to write out all the 2264 * necessary info. 2265 */ 2266 int dump_write(struct file *file, const void *addr, int nr) 2267 { 2268 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr; 2269 } 2270 EXPORT_SYMBOL(dump_write); 2271 2272 int dump_seek(struct file *file, loff_t off) 2273 { 2274 int ret = 1; 2275 2276 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 2277 if (file->f_op->llseek(file, off, SEEK_CUR) < 0) 2278 return 0; 2279 } else { 2280 char *buf = (char *)get_zeroed_page(GFP_KERNEL); 2281 2282 if (!buf) 2283 return 0; 2284 while (off > 0) { 2285 unsigned long n = off; 2286 2287 if (n > PAGE_SIZE) 2288 n = PAGE_SIZE; 2289 if (!dump_write(file, buf, n)) { 2290 ret = 0; 2291 break; 2292 } 2293 off -= n; 2294 } 2295 free_page((unsigned long)buf); 2296 } 2297 return ret; 2298 } 2299 EXPORT_SYMBOL(dump_seek); 2300