xref: /linux/fs/exec.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
68 
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72 
73 #include <trace/events/task.h>
74 #include "internal.h"
75 
76 #include <trace/events/sched.h>
77 
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79 
80 int suid_dumpable = 0;
81 
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84 
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 	BUG_ON(!fmt);
88 	if (WARN_ON(!fmt->load_binary))
89 		return;
90 	write_lock(&binfmt_lock);
91 	insert ? list_add(&fmt->lh, &formats) :
92 		 list_add_tail(&fmt->lh, &formats);
93 	write_unlock(&binfmt_lock);
94 }
95 
96 EXPORT_SYMBOL(__register_binfmt);
97 
98 void unregister_binfmt(struct linux_binfmt * fmt)
99 {
100 	write_lock(&binfmt_lock);
101 	list_del(&fmt->lh);
102 	write_unlock(&binfmt_lock);
103 }
104 
105 EXPORT_SYMBOL(unregister_binfmt);
106 
107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109 	module_put(fmt->module);
110 }
111 
112 bool path_noexec(const struct path *path)
113 {
114 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117 
118 #ifdef CONFIG_USELIB
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from from the file itself.
124  */
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 	struct linux_binfmt *fmt;
128 	struct file *file;
129 	struct filename *tmp = getname(library);
130 	int error = PTR_ERR(tmp);
131 	static const struct open_flags uselib_flags = {
132 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
133 		.acc_mode = MAY_READ | MAY_EXEC,
134 		.intent = LOOKUP_OPEN,
135 		.lookup_flags = LOOKUP_FOLLOW,
136 	};
137 
138 	if (IS_ERR(tmp))
139 		goto out;
140 
141 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 	putname(tmp);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	/*
148 	 * may_open() has already checked for this, so it should be
149 	 * impossible to trip now. But we need to be extra cautious
150 	 * and check again at the very end too.
151 	 */
152 	error = -EACCES;
153 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154 			 path_noexec(&file->f_path)))
155 		goto exit;
156 
157 	fsnotify_open(file);
158 
159 	error = -ENOEXEC;
160 
161 	read_lock(&binfmt_lock);
162 	list_for_each_entry(fmt, &formats, lh) {
163 		if (!fmt->load_shlib)
164 			continue;
165 		if (!try_module_get(fmt->module))
166 			continue;
167 		read_unlock(&binfmt_lock);
168 		error = fmt->load_shlib(file);
169 		read_lock(&binfmt_lock);
170 		put_binfmt(fmt);
171 		if (error != -ENOEXEC)
172 			break;
173 	}
174 	read_unlock(&binfmt_lock);
175 exit:
176 	fput(file);
177 out:
178   	return error;
179 }
180 #endif /* #ifdef CONFIG_USELIB */
181 
182 #ifdef CONFIG_MMU
183 /*
184  * The nascent bprm->mm is not visible until exec_mmap() but it can
185  * use a lot of memory, account these pages in current->mm temporary
186  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
187  * change the counter back via acct_arg_size(0).
188  */
189 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
190 {
191 	struct mm_struct *mm = current->mm;
192 	long diff = (long)(pages - bprm->vma_pages);
193 
194 	if (!mm || !diff)
195 		return;
196 
197 	bprm->vma_pages = pages;
198 	add_mm_counter(mm, MM_ANONPAGES, diff);
199 }
200 
201 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
202 		int write)
203 {
204 	struct page *page;
205 	int ret;
206 	unsigned int gup_flags = FOLL_FORCE;
207 
208 #ifdef CONFIG_STACK_GROWSUP
209 	if (write) {
210 		ret = expand_downwards(bprm->vma, pos);
211 		if (ret < 0)
212 			return NULL;
213 	}
214 #endif
215 
216 	if (write)
217 		gup_flags |= FOLL_WRITE;
218 
219 	/*
220 	 * We are doing an exec().  'current' is the process
221 	 * doing the exec and bprm->mm is the new process's mm.
222 	 */
223 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
224 			&page, NULL, NULL);
225 	if (ret <= 0)
226 		return NULL;
227 
228 	if (write)
229 		acct_arg_size(bprm, vma_pages(bprm->vma));
230 
231 	return page;
232 }
233 
234 static void put_arg_page(struct page *page)
235 {
236 	put_page(page);
237 }
238 
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242 
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 		struct page *page)
245 {
246 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248 
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251 	int err;
252 	struct vm_area_struct *vma = NULL;
253 	struct mm_struct *mm = bprm->mm;
254 
255 	bprm->vma = vma = vm_area_alloc(mm);
256 	if (!vma)
257 		return -ENOMEM;
258 	vma_set_anonymous(vma);
259 
260 	if (mmap_write_lock_killable(mm)) {
261 		err = -EINTR;
262 		goto err_free;
263 	}
264 
265 	/*
266 	 * Place the stack at the largest stack address the architecture
267 	 * supports. Later, we'll move this to an appropriate place. We don't
268 	 * use STACK_TOP because that can depend on attributes which aren't
269 	 * configured yet.
270 	 */
271 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
272 	vma->vm_end = STACK_TOP_MAX;
273 	vma->vm_start = vma->vm_end - PAGE_SIZE;
274 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
275 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
276 
277 	err = insert_vm_struct(mm, vma);
278 	if (err)
279 		goto err;
280 
281 	mm->stack_vm = mm->total_vm = 1;
282 	mmap_write_unlock(mm);
283 	bprm->p = vma->vm_end - sizeof(void *);
284 	return 0;
285 err:
286 	mmap_write_unlock(mm);
287 err_free:
288 	bprm->vma = NULL;
289 	vm_area_free(vma);
290 	return err;
291 }
292 
293 static bool valid_arg_len(struct linux_binprm *bprm, long len)
294 {
295 	return len <= MAX_ARG_STRLEN;
296 }
297 
298 #else
299 
300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
301 {
302 }
303 
304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
305 		int write)
306 {
307 	struct page *page;
308 
309 	page = bprm->page[pos / PAGE_SIZE];
310 	if (!page && write) {
311 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
312 		if (!page)
313 			return NULL;
314 		bprm->page[pos / PAGE_SIZE] = page;
315 	}
316 
317 	return page;
318 }
319 
320 static void put_arg_page(struct page *page)
321 {
322 }
323 
324 static void free_arg_page(struct linux_binprm *bprm, int i)
325 {
326 	if (bprm->page[i]) {
327 		__free_page(bprm->page[i]);
328 		bprm->page[i] = NULL;
329 	}
330 }
331 
332 static void free_arg_pages(struct linux_binprm *bprm)
333 {
334 	int i;
335 
336 	for (i = 0; i < MAX_ARG_PAGES; i++)
337 		free_arg_page(bprm, i);
338 }
339 
340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
341 		struct page *page)
342 {
343 }
344 
345 static int __bprm_mm_init(struct linux_binprm *bprm)
346 {
347 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
348 	return 0;
349 }
350 
351 static bool valid_arg_len(struct linux_binprm *bprm, long len)
352 {
353 	return len <= bprm->p;
354 }
355 
356 #endif /* CONFIG_MMU */
357 
358 /*
359  * Create a new mm_struct and populate it with a temporary stack
360  * vm_area_struct.  We don't have enough context at this point to set the stack
361  * flags, permissions, and offset, so we use temporary values.  We'll update
362  * them later in setup_arg_pages().
363  */
364 static int bprm_mm_init(struct linux_binprm *bprm)
365 {
366 	int err;
367 	struct mm_struct *mm = NULL;
368 
369 	bprm->mm = mm = mm_alloc();
370 	err = -ENOMEM;
371 	if (!mm)
372 		goto err;
373 
374 	/* Save current stack limit for all calculations made during exec. */
375 	task_lock(current->group_leader);
376 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
377 	task_unlock(current->group_leader);
378 
379 	err = __bprm_mm_init(bprm);
380 	if (err)
381 		goto err;
382 
383 	return 0;
384 
385 err:
386 	if (mm) {
387 		bprm->mm = NULL;
388 		mmdrop(mm);
389 	}
390 
391 	return err;
392 }
393 
394 struct user_arg_ptr {
395 #ifdef CONFIG_COMPAT
396 	bool is_compat;
397 #endif
398 	union {
399 		const char __user *const __user *native;
400 #ifdef CONFIG_COMPAT
401 		const compat_uptr_t __user *compat;
402 #endif
403 	} ptr;
404 };
405 
406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
407 {
408 	const char __user *native;
409 
410 #ifdef CONFIG_COMPAT
411 	if (unlikely(argv.is_compat)) {
412 		compat_uptr_t compat;
413 
414 		if (get_user(compat, argv.ptr.compat + nr))
415 			return ERR_PTR(-EFAULT);
416 
417 		return compat_ptr(compat);
418 	}
419 #endif
420 
421 	if (get_user(native, argv.ptr.native + nr))
422 		return ERR_PTR(-EFAULT);
423 
424 	return native;
425 }
426 
427 /*
428  * count() counts the number of strings in array ARGV.
429  */
430 static int count(struct user_arg_ptr argv, int max)
431 {
432 	int i = 0;
433 
434 	if (argv.ptr.native != NULL) {
435 		for (;;) {
436 			const char __user *p = get_user_arg_ptr(argv, i);
437 
438 			if (!p)
439 				break;
440 
441 			if (IS_ERR(p))
442 				return -EFAULT;
443 
444 			if (i >= max)
445 				return -E2BIG;
446 			++i;
447 
448 			if (fatal_signal_pending(current))
449 				return -ERESTARTNOHAND;
450 			cond_resched();
451 		}
452 	}
453 	return i;
454 }
455 
456 static int count_strings_kernel(const char *const *argv)
457 {
458 	int i;
459 
460 	if (!argv)
461 		return 0;
462 
463 	for (i = 0; argv[i]; ++i) {
464 		if (i >= MAX_ARG_STRINGS)
465 			return -E2BIG;
466 		if (fatal_signal_pending(current))
467 			return -ERESTARTNOHAND;
468 		cond_resched();
469 	}
470 	return i;
471 }
472 
473 static int bprm_stack_limits(struct linux_binprm *bprm)
474 {
475 	unsigned long limit, ptr_size;
476 
477 	/*
478 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
479 	 * (whichever is smaller) for the argv+env strings.
480 	 * This ensures that:
481 	 *  - the remaining binfmt code will not run out of stack space,
482 	 *  - the program will have a reasonable amount of stack left
483 	 *    to work from.
484 	 */
485 	limit = _STK_LIM / 4 * 3;
486 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
487 	/*
488 	 * We've historically supported up to 32 pages (ARG_MAX)
489 	 * of argument strings even with small stacks
490 	 */
491 	limit = max_t(unsigned long, limit, ARG_MAX);
492 	/*
493 	 * We must account for the size of all the argv and envp pointers to
494 	 * the argv and envp strings, since they will also take up space in
495 	 * the stack. They aren't stored until much later when we can't
496 	 * signal to the parent that the child has run out of stack space.
497 	 * Instead, calculate it here so it's possible to fail gracefully.
498 	 */
499 	ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
500 	if (limit <= ptr_size)
501 		return -E2BIG;
502 	limit -= ptr_size;
503 
504 	bprm->argmin = bprm->p - limit;
505 	return 0;
506 }
507 
508 /*
509  * 'copy_strings()' copies argument/environment strings from the old
510  * processes's memory to the new process's stack.  The call to get_user_pages()
511  * ensures the destination page is created and not swapped out.
512  */
513 static int copy_strings(int argc, struct user_arg_ptr argv,
514 			struct linux_binprm *bprm)
515 {
516 	struct page *kmapped_page = NULL;
517 	char *kaddr = NULL;
518 	unsigned long kpos = 0;
519 	int ret;
520 
521 	while (argc-- > 0) {
522 		const char __user *str;
523 		int len;
524 		unsigned long pos;
525 
526 		ret = -EFAULT;
527 		str = get_user_arg_ptr(argv, argc);
528 		if (IS_ERR(str))
529 			goto out;
530 
531 		len = strnlen_user(str, MAX_ARG_STRLEN);
532 		if (!len)
533 			goto out;
534 
535 		ret = -E2BIG;
536 		if (!valid_arg_len(bprm, len))
537 			goto out;
538 
539 		/* We're going to work our way backwords. */
540 		pos = bprm->p;
541 		str += len;
542 		bprm->p -= len;
543 #ifdef CONFIG_MMU
544 		if (bprm->p < bprm->argmin)
545 			goto out;
546 #endif
547 
548 		while (len > 0) {
549 			int offset, bytes_to_copy;
550 
551 			if (fatal_signal_pending(current)) {
552 				ret = -ERESTARTNOHAND;
553 				goto out;
554 			}
555 			cond_resched();
556 
557 			offset = pos % PAGE_SIZE;
558 			if (offset == 0)
559 				offset = PAGE_SIZE;
560 
561 			bytes_to_copy = offset;
562 			if (bytes_to_copy > len)
563 				bytes_to_copy = len;
564 
565 			offset -= bytes_to_copy;
566 			pos -= bytes_to_copy;
567 			str -= bytes_to_copy;
568 			len -= bytes_to_copy;
569 
570 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
571 				struct page *page;
572 
573 				page = get_arg_page(bprm, pos, 1);
574 				if (!page) {
575 					ret = -E2BIG;
576 					goto out;
577 				}
578 
579 				if (kmapped_page) {
580 					flush_kernel_dcache_page(kmapped_page);
581 					kunmap(kmapped_page);
582 					put_arg_page(kmapped_page);
583 				}
584 				kmapped_page = page;
585 				kaddr = kmap(kmapped_page);
586 				kpos = pos & PAGE_MASK;
587 				flush_arg_page(bprm, kpos, kmapped_page);
588 			}
589 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
590 				ret = -EFAULT;
591 				goto out;
592 			}
593 		}
594 	}
595 	ret = 0;
596 out:
597 	if (kmapped_page) {
598 		flush_kernel_dcache_page(kmapped_page);
599 		kunmap(kmapped_page);
600 		put_arg_page(kmapped_page);
601 	}
602 	return ret;
603 }
604 
605 /*
606  * Copy and argument/environment string from the kernel to the processes stack.
607  */
608 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
609 {
610 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
611 	unsigned long pos = bprm->p;
612 
613 	if (len == 0)
614 		return -EFAULT;
615 	if (!valid_arg_len(bprm, len))
616 		return -E2BIG;
617 
618 	/* We're going to work our way backwards. */
619 	arg += len;
620 	bprm->p -= len;
621 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
622 		return -E2BIG;
623 
624 	while (len > 0) {
625 		unsigned int bytes_to_copy = min_t(unsigned int, len,
626 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
627 		struct page *page;
628 		char *kaddr;
629 
630 		pos -= bytes_to_copy;
631 		arg -= bytes_to_copy;
632 		len -= bytes_to_copy;
633 
634 		page = get_arg_page(bprm, pos, 1);
635 		if (!page)
636 			return -E2BIG;
637 		kaddr = kmap_atomic(page);
638 		flush_arg_page(bprm, pos & PAGE_MASK, page);
639 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
640 		flush_kernel_dcache_page(page);
641 		kunmap_atomic(kaddr);
642 		put_arg_page(page);
643 	}
644 
645 	return 0;
646 }
647 EXPORT_SYMBOL(copy_string_kernel);
648 
649 static int copy_strings_kernel(int argc, const char *const *argv,
650 			       struct linux_binprm *bprm)
651 {
652 	while (argc-- > 0) {
653 		int ret = copy_string_kernel(argv[argc], bprm);
654 		if (ret < 0)
655 			return ret;
656 		if (fatal_signal_pending(current))
657 			return -ERESTARTNOHAND;
658 		cond_resched();
659 	}
660 	return 0;
661 }
662 
663 #ifdef CONFIG_MMU
664 
665 /*
666  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
667  * the binfmt code determines where the new stack should reside, we shift it to
668  * its final location.  The process proceeds as follows:
669  *
670  * 1) Use shift to calculate the new vma endpoints.
671  * 2) Extend vma to cover both the old and new ranges.  This ensures the
672  *    arguments passed to subsequent functions are consistent.
673  * 3) Move vma's page tables to the new range.
674  * 4) Free up any cleared pgd range.
675  * 5) Shrink the vma to cover only the new range.
676  */
677 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
678 {
679 	struct mm_struct *mm = vma->vm_mm;
680 	unsigned long old_start = vma->vm_start;
681 	unsigned long old_end = vma->vm_end;
682 	unsigned long length = old_end - old_start;
683 	unsigned long new_start = old_start - shift;
684 	unsigned long new_end = old_end - shift;
685 	struct mmu_gather tlb;
686 
687 	BUG_ON(new_start > new_end);
688 
689 	/*
690 	 * ensure there are no vmas between where we want to go
691 	 * and where we are
692 	 */
693 	if (vma != find_vma(mm, new_start))
694 		return -EFAULT;
695 
696 	/*
697 	 * cover the whole range: [new_start, old_end)
698 	 */
699 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
700 		return -ENOMEM;
701 
702 	/*
703 	 * move the page tables downwards, on failure we rely on
704 	 * process cleanup to remove whatever mess we made.
705 	 */
706 	if (length != move_page_tables(vma, old_start,
707 				       vma, new_start, length, false))
708 		return -ENOMEM;
709 
710 	lru_add_drain();
711 	tlb_gather_mmu(&tlb, mm);
712 	if (new_end > old_start) {
713 		/*
714 		 * when the old and new regions overlap clear from new_end.
715 		 */
716 		free_pgd_range(&tlb, new_end, old_end, new_end,
717 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
718 	} else {
719 		/*
720 		 * otherwise, clean from old_start; this is done to not touch
721 		 * the address space in [new_end, old_start) some architectures
722 		 * have constraints on va-space that make this illegal (IA64) -
723 		 * for the others its just a little faster.
724 		 */
725 		free_pgd_range(&tlb, old_start, old_end, new_end,
726 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
727 	}
728 	tlb_finish_mmu(&tlb);
729 
730 	/*
731 	 * Shrink the vma to just the new range.  Always succeeds.
732 	 */
733 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
734 
735 	return 0;
736 }
737 
738 /*
739  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
740  * the stack is optionally relocated, and some extra space is added.
741  */
742 int setup_arg_pages(struct linux_binprm *bprm,
743 		    unsigned long stack_top,
744 		    int executable_stack)
745 {
746 	unsigned long ret;
747 	unsigned long stack_shift;
748 	struct mm_struct *mm = current->mm;
749 	struct vm_area_struct *vma = bprm->vma;
750 	struct vm_area_struct *prev = NULL;
751 	unsigned long vm_flags;
752 	unsigned long stack_base;
753 	unsigned long stack_size;
754 	unsigned long stack_expand;
755 	unsigned long rlim_stack;
756 
757 #ifdef CONFIG_STACK_GROWSUP
758 	/* Limit stack size */
759 	stack_base = bprm->rlim_stack.rlim_max;
760 
761 	stack_base = calc_max_stack_size(stack_base);
762 
763 	/* Add space for stack randomization. */
764 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
765 
766 	/* Make sure we didn't let the argument array grow too large. */
767 	if (vma->vm_end - vma->vm_start > stack_base)
768 		return -ENOMEM;
769 
770 	stack_base = PAGE_ALIGN(stack_top - stack_base);
771 
772 	stack_shift = vma->vm_start - stack_base;
773 	mm->arg_start = bprm->p - stack_shift;
774 	bprm->p = vma->vm_end - stack_shift;
775 #else
776 	stack_top = arch_align_stack(stack_top);
777 	stack_top = PAGE_ALIGN(stack_top);
778 
779 	if (unlikely(stack_top < mmap_min_addr) ||
780 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
781 		return -ENOMEM;
782 
783 	stack_shift = vma->vm_end - stack_top;
784 
785 	bprm->p -= stack_shift;
786 	mm->arg_start = bprm->p;
787 #endif
788 
789 	if (bprm->loader)
790 		bprm->loader -= stack_shift;
791 	bprm->exec -= stack_shift;
792 
793 	if (mmap_write_lock_killable(mm))
794 		return -EINTR;
795 
796 	vm_flags = VM_STACK_FLAGS;
797 
798 	/*
799 	 * Adjust stack execute permissions; explicitly enable for
800 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
801 	 * (arch default) otherwise.
802 	 */
803 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
804 		vm_flags |= VM_EXEC;
805 	else if (executable_stack == EXSTACK_DISABLE_X)
806 		vm_flags &= ~VM_EXEC;
807 	vm_flags |= mm->def_flags;
808 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
809 
810 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
811 			vm_flags);
812 	if (ret)
813 		goto out_unlock;
814 	BUG_ON(prev != vma);
815 
816 	if (unlikely(vm_flags & VM_EXEC)) {
817 		pr_warn_once("process '%pD4' started with executable stack\n",
818 			     bprm->file);
819 	}
820 
821 	/* Move stack pages down in memory. */
822 	if (stack_shift) {
823 		ret = shift_arg_pages(vma, stack_shift);
824 		if (ret)
825 			goto out_unlock;
826 	}
827 
828 	/* mprotect_fixup is overkill to remove the temporary stack flags */
829 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
830 
831 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
832 	stack_size = vma->vm_end - vma->vm_start;
833 	/*
834 	 * Align this down to a page boundary as expand_stack
835 	 * will align it up.
836 	 */
837 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
838 #ifdef CONFIG_STACK_GROWSUP
839 	if (stack_size + stack_expand > rlim_stack)
840 		stack_base = vma->vm_start + rlim_stack;
841 	else
842 		stack_base = vma->vm_end + stack_expand;
843 #else
844 	if (stack_size + stack_expand > rlim_stack)
845 		stack_base = vma->vm_end - rlim_stack;
846 	else
847 		stack_base = vma->vm_start - stack_expand;
848 #endif
849 	current->mm->start_stack = bprm->p;
850 	ret = expand_stack(vma, stack_base);
851 	if (ret)
852 		ret = -EFAULT;
853 
854 out_unlock:
855 	mmap_write_unlock(mm);
856 	return ret;
857 }
858 EXPORT_SYMBOL(setup_arg_pages);
859 
860 #else
861 
862 /*
863  * Transfer the program arguments and environment from the holding pages
864  * onto the stack. The provided stack pointer is adjusted accordingly.
865  */
866 int transfer_args_to_stack(struct linux_binprm *bprm,
867 			   unsigned long *sp_location)
868 {
869 	unsigned long index, stop, sp;
870 	int ret = 0;
871 
872 	stop = bprm->p >> PAGE_SHIFT;
873 	sp = *sp_location;
874 
875 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
876 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
877 		char *src = kmap(bprm->page[index]) + offset;
878 		sp -= PAGE_SIZE - offset;
879 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
880 			ret = -EFAULT;
881 		kunmap(bprm->page[index]);
882 		if (ret)
883 			goto out;
884 	}
885 
886 	*sp_location = sp;
887 
888 out:
889 	return ret;
890 }
891 EXPORT_SYMBOL(transfer_args_to_stack);
892 
893 #endif /* CONFIG_MMU */
894 
895 static struct file *do_open_execat(int fd, struct filename *name, int flags)
896 {
897 	struct file *file;
898 	int err;
899 	struct open_flags open_exec_flags = {
900 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
901 		.acc_mode = MAY_EXEC,
902 		.intent = LOOKUP_OPEN,
903 		.lookup_flags = LOOKUP_FOLLOW,
904 	};
905 
906 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
907 		return ERR_PTR(-EINVAL);
908 	if (flags & AT_SYMLINK_NOFOLLOW)
909 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
910 	if (flags & AT_EMPTY_PATH)
911 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
912 
913 	file = do_filp_open(fd, name, &open_exec_flags);
914 	if (IS_ERR(file))
915 		goto out;
916 
917 	/*
918 	 * may_open() has already checked for this, so it should be
919 	 * impossible to trip now. But we need to be extra cautious
920 	 * and check again at the very end too.
921 	 */
922 	err = -EACCES;
923 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
924 			 path_noexec(&file->f_path)))
925 		goto exit;
926 
927 	err = deny_write_access(file);
928 	if (err)
929 		goto exit;
930 
931 	if (name->name[0] != '\0')
932 		fsnotify_open(file);
933 
934 out:
935 	return file;
936 
937 exit:
938 	fput(file);
939 	return ERR_PTR(err);
940 }
941 
942 struct file *open_exec(const char *name)
943 {
944 	struct filename *filename = getname_kernel(name);
945 	struct file *f = ERR_CAST(filename);
946 
947 	if (!IS_ERR(filename)) {
948 		f = do_open_execat(AT_FDCWD, filename, 0);
949 		putname(filename);
950 	}
951 	return f;
952 }
953 EXPORT_SYMBOL(open_exec);
954 
955 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
956     defined(CONFIG_BINFMT_ELF_FDPIC)
957 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
958 {
959 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
960 	if (res > 0)
961 		flush_icache_user_range(addr, addr + len);
962 	return res;
963 }
964 EXPORT_SYMBOL(read_code);
965 #endif
966 
967 /*
968  * Maps the mm_struct mm into the current task struct.
969  * On success, this function returns with exec_update_lock
970  * held for writing.
971  */
972 static int exec_mmap(struct mm_struct *mm)
973 {
974 	struct task_struct *tsk;
975 	struct mm_struct *old_mm, *active_mm;
976 	int ret;
977 
978 	/* Notify parent that we're no longer interested in the old VM */
979 	tsk = current;
980 	old_mm = current->mm;
981 	exec_mm_release(tsk, old_mm);
982 	if (old_mm)
983 		sync_mm_rss(old_mm);
984 
985 	ret = down_write_killable(&tsk->signal->exec_update_lock);
986 	if (ret)
987 		return ret;
988 
989 	if (old_mm) {
990 		/*
991 		 * Make sure that if there is a core dump in progress
992 		 * for the old mm, we get out and die instead of going
993 		 * through with the exec.  We must hold mmap_lock around
994 		 * checking core_state and changing tsk->mm.
995 		 */
996 		mmap_read_lock(old_mm);
997 		if (unlikely(old_mm->core_state)) {
998 			mmap_read_unlock(old_mm);
999 			up_write(&tsk->signal->exec_update_lock);
1000 			return -EINTR;
1001 		}
1002 	}
1003 
1004 	task_lock(tsk);
1005 	membarrier_exec_mmap(mm);
1006 
1007 	local_irq_disable();
1008 	active_mm = tsk->active_mm;
1009 	tsk->active_mm = mm;
1010 	tsk->mm = mm;
1011 	/*
1012 	 * This prevents preemption while active_mm is being loaded and
1013 	 * it and mm are being updated, which could cause problems for
1014 	 * lazy tlb mm refcounting when these are updated by context
1015 	 * switches. Not all architectures can handle irqs off over
1016 	 * activate_mm yet.
1017 	 */
1018 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1019 		local_irq_enable();
1020 	activate_mm(active_mm, mm);
1021 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1022 		local_irq_enable();
1023 	tsk->mm->vmacache_seqnum = 0;
1024 	vmacache_flush(tsk);
1025 	task_unlock(tsk);
1026 	if (old_mm) {
1027 		mmap_read_unlock(old_mm);
1028 		BUG_ON(active_mm != old_mm);
1029 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1030 		mm_update_next_owner(old_mm);
1031 		mmput(old_mm);
1032 		return 0;
1033 	}
1034 	mmdrop(active_mm);
1035 	return 0;
1036 }
1037 
1038 static int de_thread(struct task_struct *tsk)
1039 {
1040 	struct signal_struct *sig = tsk->signal;
1041 	struct sighand_struct *oldsighand = tsk->sighand;
1042 	spinlock_t *lock = &oldsighand->siglock;
1043 
1044 	if (thread_group_empty(tsk))
1045 		goto no_thread_group;
1046 
1047 	/*
1048 	 * Kill all other threads in the thread group.
1049 	 */
1050 	spin_lock_irq(lock);
1051 	if (signal_group_exit(sig)) {
1052 		/*
1053 		 * Another group action in progress, just
1054 		 * return so that the signal is processed.
1055 		 */
1056 		spin_unlock_irq(lock);
1057 		return -EAGAIN;
1058 	}
1059 
1060 	sig->group_exit_task = tsk;
1061 	sig->notify_count = zap_other_threads(tsk);
1062 	if (!thread_group_leader(tsk))
1063 		sig->notify_count--;
1064 
1065 	while (sig->notify_count) {
1066 		__set_current_state(TASK_KILLABLE);
1067 		spin_unlock_irq(lock);
1068 		schedule();
1069 		if (__fatal_signal_pending(tsk))
1070 			goto killed;
1071 		spin_lock_irq(lock);
1072 	}
1073 	spin_unlock_irq(lock);
1074 
1075 	/*
1076 	 * At this point all other threads have exited, all we have to
1077 	 * do is to wait for the thread group leader to become inactive,
1078 	 * and to assume its PID:
1079 	 */
1080 	if (!thread_group_leader(tsk)) {
1081 		struct task_struct *leader = tsk->group_leader;
1082 
1083 		for (;;) {
1084 			cgroup_threadgroup_change_begin(tsk);
1085 			write_lock_irq(&tasklist_lock);
1086 			/*
1087 			 * Do this under tasklist_lock to ensure that
1088 			 * exit_notify() can't miss ->group_exit_task
1089 			 */
1090 			sig->notify_count = -1;
1091 			if (likely(leader->exit_state))
1092 				break;
1093 			__set_current_state(TASK_KILLABLE);
1094 			write_unlock_irq(&tasklist_lock);
1095 			cgroup_threadgroup_change_end(tsk);
1096 			schedule();
1097 			if (__fatal_signal_pending(tsk))
1098 				goto killed;
1099 		}
1100 
1101 		/*
1102 		 * The only record we have of the real-time age of a
1103 		 * process, regardless of execs it's done, is start_time.
1104 		 * All the past CPU time is accumulated in signal_struct
1105 		 * from sister threads now dead.  But in this non-leader
1106 		 * exec, nothing survives from the original leader thread,
1107 		 * whose birth marks the true age of this process now.
1108 		 * When we take on its identity by switching to its PID, we
1109 		 * also take its birthdate (always earlier than our own).
1110 		 */
1111 		tsk->start_time = leader->start_time;
1112 		tsk->start_boottime = leader->start_boottime;
1113 
1114 		BUG_ON(!same_thread_group(leader, tsk));
1115 		/*
1116 		 * An exec() starts a new thread group with the
1117 		 * TGID of the previous thread group. Rehash the
1118 		 * two threads with a switched PID, and release
1119 		 * the former thread group leader:
1120 		 */
1121 
1122 		/* Become a process group leader with the old leader's pid.
1123 		 * The old leader becomes a thread of the this thread group.
1124 		 */
1125 		exchange_tids(tsk, leader);
1126 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1127 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1128 		transfer_pid(leader, tsk, PIDTYPE_SID);
1129 
1130 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1131 		list_replace_init(&leader->sibling, &tsk->sibling);
1132 
1133 		tsk->group_leader = tsk;
1134 		leader->group_leader = tsk;
1135 
1136 		tsk->exit_signal = SIGCHLD;
1137 		leader->exit_signal = -1;
1138 
1139 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1140 		leader->exit_state = EXIT_DEAD;
1141 
1142 		/*
1143 		 * We are going to release_task()->ptrace_unlink() silently,
1144 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1145 		 * the tracer wont't block again waiting for this thread.
1146 		 */
1147 		if (unlikely(leader->ptrace))
1148 			__wake_up_parent(leader, leader->parent);
1149 		write_unlock_irq(&tasklist_lock);
1150 		cgroup_threadgroup_change_end(tsk);
1151 
1152 		release_task(leader);
1153 	}
1154 
1155 	sig->group_exit_task = NULL;
1156 	sig->notify_count = 0;
1157 
1158 no_thread_group:
1159 	/* we have changed execution domain */
1160 	tsk->exit_signal = SIGCHLD;
1161 
1162 	BUG_ON(!thread_group_leader(tsk));
1163 	return 0;
1164 
1165 killed:
1166 	/* protects against exit_notify() and __exit_signal() */
1167 	read_lock(&tasklist_lock);
1168 	sig->group_exit_task = NULL;
1169 	sig->notify_count = 0;
1170 	read_unlock(&tasklist_lock);
1171 	return -EAGAIN;
1172 }
1173 
1174 
1175 /*
1176  * This function makes sure the current process has its own signal table,
1177  * so that flush_signal_handlers can later reset the handlers without
1178  * disturbing other processes.  (Other processes might share the signal
1179  * table via the CLONE_SIGHAND option to clone().)
1180  */
1181 static int unshare_sighand(struct task_struct *me)
1182 {
1183 	struct sighand_struct *oldsighand = me->sighand;
1184 
1185 	if (refcount_read(&oldsighand->count) != 1) {
1186 		struct sighand_struct *newsighand;
1187 		/*
1188 		 * This ->sighand is shared with the CLONE_SIGHAND
1189 		 * but not CLONE_THREAD task, switch to the new one.
1190 		 */
1191 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1192 		if (!newsighand)
1193 			return -ENOMEM;
1194 
1195 		refcount_set(&newsighand->count, 1);
1196 		memcpy(newsighand->action, oldsighand->action,
1197 		       sizeof(newsighand->action));
1198 
1199 		write_lock_irq(&tasklist_lock);
1200 		spin_lock(&oldsighand->siglock);
1201 		rcu_assign_pointer(me->sighand, newsighand);
1202 		spin_unlock(&oldsighand->siglock);
1203 		write_unlock_irq(&tasklist_lock);
1204 
1205 		__cleanup_sighand(oldsighand);
1206 	}
1207 	return 0;
1208 }
1209 
1210 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1211 {
1212 	task_lock(tsk);
1213 	strncpy(buf, tsk->comm, buf_size);
1214 	task_unlock(tsk);
1215 	return buf;
1216 }
1217 EXPORT_SYMBOL_GPL(__get_task_comm);
1218 
1219 /*
1220  * These functions flushes out all traces of the currently running executable
1221  * so that a new one can be started
1222  */
1223 
1224 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1225 {
1226 	task_lock(tsk);
1227 	trace_task_rename(tsk, buf);
1228 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1229 	task_unlock(tsk);
1230 	perf_event_comm(tsk, exec);
1231 }
1232 
1233 /*
1234  * Calling this is the point of no return. None of the failures will be
1235  * seen by userspace since either the process is already taking a fatal
1236  * signal (via de_thread() or coredump), or will have SEGV raised
1237  * (after exec_mmap()) by search_binary_handler (see below).
1238  */
1239 int begin_new_exec(struct linux_binprm * bprm)
1240 {
1241 	struct task_struct *me = current;
1242 	int retval;
1243 
1244 	/* Once we are committed compute the creds */
1245 	retval = bprm_creds_from_file(bprm);
1246 	if (retval)
1247 		return retval;
1248 
1249 	/*
1250 	 * Ensure all future errors are fatal.
1251 	 */
1252 	bprm->point_of_no_return = true;
1253 
1254 	/*
1255 	 * Make this the only thread in the thread group.
1256 	 */
1257 	retval = de_thread(me);
1258 	if (retval)
1259 		goto out;
1260 
1261 	/*
1262 	 * Cancel any io_uring activity across execve
1263 	 */
1264 	io_uring_task_cancel();
1265 
1266 	/* Ensure the files table is not shared. */
1267 	retval = unshare_files();
1268 	if (retval)
1269 		goto out;
1270 
1271 	/*
1272 	 * Must be called _before_ exec_mmap() as bprm->mm is
1273 	 * not visibile until then. This also enables the update
1274 	 * to be lockless.
1275 	 */
1276 	set_mm_exe_file(bprm->mm, bprm->file);
1277 
1278 	/* If the binary is not readable then enforce mm->dumpable=0 */
1279 	would_dump(bprm, bprm->file);
1280 	if (bprm->have_execfd)
1281 		would_dump(bprm, bprm->executable);
1282 
1283 	/*
1284 	 * Release all of the old mmap stuff
1285 	 */
1286 	acct_arg_size(bprm, 0);
1287 	retval = exec_mmap(bprm->mm);
1288 	if (retval)
1289 		goto out;
1290 
1291 	bprm->mm = NULL;
1292 
1293 #ifdef CONFIG_POSIX_TIMERS
1294 	exit_itimers(me->signal);
1295 	flush_itimer_signals();
1296 #endif
1297 
1298 	/*
1299 	 * Make the signal table private.
1300 	 */
1301 	retval = unshare_sighand(me);
1302 	if (retval)
1303 		goto out_unlock;
1304 
1305 	/*
1306 	 * Ensure that the uaccess routines can actually operate on userspace
1307 	 * pointers:
1308 	 */
1309 	force_uaccess_begin();
1310 
1311 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1312 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1313 	flush_thread();
1314 	me->personality &= ~bprm->per_clear;
1315 
1316 	clear_syscall_work_syscall_user_dispatch(me);
1317 
1318 	/*
1319 	 * We have to apply CLOEXEC before we change whether the process is
1320 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1321 	 * trying to access the should-be-closed file descriptors of a process
1322 	 * undergoing exec(2).
1323 	 */
1324 	do_close_on_exec(me->files);
1325 
1326 	if (bprm->secureexec) {
1327 		/* Make sure parent cannot signal privileged process. */
1328 		me->pdeath_signal = 0;
1329 
1330 		/*
1331 		 * For secureexec, reset the stack limit to sane default to
1332 		 * avoid bad behavior from the prior rlimits. This has to
1333 		 * happen before arch_pick_mmap_layout(), which examines
1334 		 * RLIMIT_STACK, but after the point of no return to avoid
1335 		 * needing to clean up the change on failure.
1336 		 */
1337 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1338 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1339 	}
1340 
1341 	me->sas_ss_sp = me->sas_ss_size = 0;
1342 
1343 	/*
1344 	 * Figure out dumpability. Note that this checking only of current
1345 	 * is wrong, but userspace depends on it. This should be testing
1346 	 * bprm->secureexec instead.
1347 	 */
1348 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1349 	    !(uid_eq(current_euid(), current_uid()) &&
1350 	      gid_eq(current_egid(), current_gid())))
1351 		set_dumpable(current->mm, suid_dumpable);
1352 	else
1353 		set_dumpable(current->mm, SUID_DUMP_USER);
1354 
1355 	perf_event_exec();
1356 	__set_task_comm(me, kbasename(bprm->filename), true);
1357 
1358 	/* An exec changes our domain. We are no longer part of the thread
1359 	   group */
1360 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1361 	flush_signal_handlers(me, 0);
1362 
1363 	/*
1364 	 * install the new credentials for this executable
1365 	 */
1366 	security_bprm_committing_creds(bprm);
1367 
1368 	commit_creds(bprm->cred);
1369 	bprm->cred = NULL;
1370 
1371 	/*
1372 	 * Disable monitoring for regular users
1373 	 * when executing setuid binaries. Must
1374 	 * wait until new credentials are committed
1375 	 * by commit_creds() above
1376 	 */
1377 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1378 		perf_event_exit_task(me);
1379 	/*
1380 	 * cred_guard_mutex must be held at least to this point to prevent
1381 	 * ptrace_attach() from altering our determination of the task's
1382 	 * credentials; any time after this it may be unlocked.
1383 	 */
1384 	security_bprm_committed_creds(bprm);
1385 
1386 	/* Pass the opened binary to the interpreter. */
1387 	if (bprm->have_execfd) {
1388 		retval = get_unused_fd_flags(0);
1389 		if (retval < 0)
1390 			goto out_unlock;
1391 		fd_install(retval, bprm->executable);
1392 		bprm->executable = NULL;
1393 		bprm->execfd = retval;
1394 	}
1395 	return 0;
1396 
1397 out_unlock:
1398 	up_write(&me->signal->exec_update_lock);
1399 out:
1400 	return retval;
1401 }
1402 EXPORT_SYMBOL(begin_new_exec);
1403 
1404 void would_dump(struct linux_binprm *bprm, struct file *file)
1405 {
1406 	struct inode *inode = file_inode(file);
1407 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1408 	if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1409 		struct user_namespace *old, *user_ns;
1410 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1411 
1412 		/* Ensure mm->user_ns contains the executable */
1413 		user_ns = old = bprm->mm->user_ns;
1414 		while ((user_ns != &init_user_ns) &&
1415 		       !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1416 			user_ns = user_ns->parent;
1417 
1418 		if (old != user_ns) {
1419 			bprm->mm->user_ns = get_user_ns(user_ns);
1420 			put_user_ns(old);
1421 		}
1422 	}
1423 }
1424 EXPORT_SYMBOL(would_dump);
1425 
1426 void setup_new_exec(struct linux_binprm * bprm)
1427 {
1428 	/* Setup things that can depend upon the personality */
1429 	struct task_struct *me = current;
1430 
1431 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1432 
1433 	arch_setup_new_exec();
1434 
1435 	/* Set the new mm task size. We have to do that late because it may
1436 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1437 	 * some architectures like powerpc
1438 	 */
1439 	me->mm->task_size = TASK_SIZE;
1440 	up_write(&me->signal->exec_update_lock);
1441 	mutex_unlock(&me->signal->cred_guard_mutex);
1442 }
1443 EXPORT_SYMBOL(setup_new_exec);
1444 
1445 /* Runs immediately before start_thread() takes over. */
1446 void finalize_exec(struct linux_binprm *bprm)
1447 {
1448 	/* Store any stack rlimit changes before starting thread. */
1449 	task_lock(current->group_leader);
1450 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1451 	task_unlock(current->group_leader);
1452 }
1453 EXPORT_SYMBOL(finalize_exec);
1454 
1455 /*
1456  * Prepare credentials and lock ->cred_guard_mutex.
1457  * setup_new_exec() commits the new creds and drops the lock.
1458  * Or, if exec fails before, free_bprm() should release ->cred
1459  * and unlock.
1460  */
1461 static int prepare_bprm_creds(struct linux_binprm *bprm)
1462 {
1463 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1464 		return -ERESTARTNOINTR;
1465 
1466 	bprm->cred = prepare_exec_creds();
1467 	if (likely(bprm->cred))
1468 		return 0;
1469 
1470 	mutex_unlock(&current->signal->cred_guard_mutex);
1471 	return -ENOMEM;
1472 }
1473 
1474 static void free_bprm(struct linux_binprm *bprm)
1475 {
1476 	if (bprm->mm) {
1477 		acct_arg_size(bprm, 0);
1478 		mmput(bprm->mm);
1479 	}
1480 	free_arg_pages(bprm);
1481 	if (bprm->cred) {
1482 		mutex_unlock(&current->signal->cred_guard_mutex);
1483 		abort_creds(bprm->cred);
1484 	}
1485 	if (bprm->file) {
1486 		allow_write_access(bprm->file);
1487 		fput(bprm->file);
1488 	}
1489 	if (bprm->executable)
1490 		fput(bprm->executable);
1491 	/* If a binfmt changed the interp, free it. */
1492 	if (bprm->interp != bprm->filename)
1493 		kfree(bprm->interp);
1494 	kfree(bprm->fdpath);
1495 	kfree(bprm);
1496 }
1497 
1498 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1499 {
1500 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1501 	int retval = -ENOMEM;
1502 	if (!bprm)
1503 		goto out;
1504 
1505 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1506 		bprm->filename = filename->name;
1507 	} else {
1508 		if (filename->name[0] == '\0')
1509 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1510 		else
1511 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1512 						  fd, filename->name);
1513 		if (!bprm->fdpath)
1514 			goto out_free;
1515 
1516 		bprm->filename = bprm->fdpath;
1517 	}
1518 	bprm->interp = bprm->filename;
1519 
1520 	retval = bprm_mm_init(bprm);
1521 	if (retval)
1522 		goto out_free;
1523 	return bprm;
1524 
1525 out_free:
1526 	free_bprm(bprm);
1527 out:
1528 	return ERR_PTR(retval);
1529 }
1530 
1531 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1532 {
1533 	/* If a binfmt changed the interp, free it first. */
1534 	if (bprm->interp != bprm->filename)
1535 		kfree(bprm->interp);
1536 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1537 	if (!bprm->interp)
1538 		return -ENOMEM;
1539 	return 0;
1540 }
1541 EXPORT_SYMBOL(bprm_change_interp);
1542 
1543 /*
1544  * determine how safe it is to execute the proposed program
1545  * - the caller must hold ->cred_guard_mutex to protect against
1546  *   PTRACE_ATTACH or seccomp thread-sync
1547  */
1548 static void check_unsafe_exec(struct linux_binprm *bprm)
1549 {
1550 	struct task_struct *p = current, *t;
1551 	unsigned n_fs;
1552 
1553 	if (p->ptrace)
1554 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1555 
1556 	/*
1557 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1558 	 * mess up.
1559 	 */
1560 	if (task_no_new_privs(current))
1561 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1562 
1563 	t = p;
1564 	n_fs = 1;
1565 	spin_lock(&p->fs->lock);
1566 	rcu_read_lock();
1567 	while_each_thread(p, t) {
1568 		if (t->fs == p->fs)
1569 			n_fs++;
1570 	}
1571 	rcu_read_unlock();
1572 
1573 	if (p->fs->users > n_fs)
1574 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1575 	else
1576 		p->fs->in_exec = 1;
1577 	spin_unlock(&p->fs->lock);
1578 }
1579 
1580 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1581 {
1582 	/* Handle suid and sgid on files */
1583 	struct user_namespace *mnt_userns;
1584 	struct inode *inode;
1585 	unsigned int mode;
1586 	kuid_t uid;
1587 	kgid_t gid;
1588 
1589 	if (!mnt_may_suid(file->f_path.mnt))
1590 		return;
1591 
1592 	if (task_no_new_privs(current))
1593 		return;
1594 
1595 	inode = file->f_path.dentry->d_inode;
1596 	mode = READ_ONCE(inode->i_mode);
1597 	if (!(mode & (S_ISUID|S_ISGID)))
1598 		return;
1599 
1600 	mnt_userns = file_mnt_user_ns(file);
1601 
1602 	/* Be careful if suid/sgid is set */
1603 	inode_lock(inode);
1604 
1605 	/* reload atomically mode/uid/gid now that lock held */
1606 	mode = inode->i_mode;
1607 	uid = i_uid_into_mnt(mnt_userns, inode);
1608 	gid = i_gid_into_mnt(mnt_userns, inode);
1609 	inode_unlock(inode);
1610 
1611 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1612 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1613 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1614 		return;
1615 
1616 	if (mode & S_ISUID) {
1617 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1618 		bprm->cred->euid = uid;
1619 	}
1620 
1621 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1622 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1623 		bprm->cred->egid = gid;
1624 	}
1625 }
1626 
1627 /*
1628  * Compute brpm->cred based upon the final binary.
1629  */
1630 static int bprm_creds_from_file(struct linux_binprm *bprm)
1631 {
1632 	/* Compute creds based on which file? */
1633 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1634 
1635 	bprm_fill_uid(bprm, file);
1636 	return security_bprm_creds_from_file(bprm, file);
1637 }
1638 
1639 /*
1640  * Fill the binprm structure from the inode.
1641  * Read the first BINPRM_BUF_SIZE bytes
1642  *
1643  * This may be called multiple times for binary chains (scripts for example).
1644  */
1645 static int prepare_binprm(struct linux_binprm *bprm)
1646 {
1647 	loff_t pos = 0;
1648 
1649 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1650 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1651 }
1652 
1653 /*
1654  * Arguments are '\0' separated strings found at the location bprm->p
1655  * points to; chop off the first by relocating brpm->p to right after
1656  * the first '\0' encountered.
1657  */
1658 int remove_arg_zero(struct linux_binprm *bprm)
1659 {
1660 	int ret = 0;
1661 	unsigned long offset;
1662 	char *kaddr;
1663 	struct page *page;
1664 
1665 	if (!bprm->argc)
1666 		return 0;
1667 
1668 	do {
1669 		offset = bprm->p & ~PAGE_MASK;
1670 		page = get_arg_page(bprm, bprm->p, 0);
1671 		if (!page) {
1672 			ret = -EFAULT;
1673 			goto out;
1674 		}
1675 		kaddr = kmap_atomic(page);
1676 
1677 		for (; offset < PAGE_SIZE && kaddr[offset];
1678 				offset++, bprm->p++)
1679 			;
1680 
1681 		kunmap_atomic(kaddr);
1682 		put_arg_page(page);
1683 	} while (offset == PAGE_SIZE);
1684 
1685 	bprm->p++;
1686 	bprm->argc--;
1687 	ret = 0;
1688 
1689 out:
1690 	return ret;
1691 }
1692 EXPORT_SYMBOL(remove_arg_zero);
1693 
1694 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1695 /*
1696  * cycle the list of binary formats handler, until one recognizes the image
1697  */
1698 static int search_binary_handler(struct linux_binprm *bprm)
1699 {
1700 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1701 	struct linux_binfmt *fmt;
1702 	int retval;
1703 
1704 	retval = prepare_binprm(bprm);
1705 	if (retval < 0)
1706 		return retval;
1707 
1708 	retval = security_bprm_check(bprm);
1709 	if (retval)
1710 		return retval;
1711 
1712 	retval = -ENOENT;
1713  retry:
1714 	read_lock(&binfmt_lock);
1715 	list_for_each_entry(fmt, &formats, lh) {
1716 		if (!try_module_get(fmt->module))
1717 			continue;
1718 		read_unlock(&binfmt_lock);
1719 
1720 		retval = fmt->load_binary(bprm);
1721 
1722 		read_lock(&binfmt_lock);
1723 		put_binfmt(fmt);
1724 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1725 			read_unlock(&binfmt_lock);
1726 			return retval;
1727 		}
1728 	}
1729 	read_unlock(&binfmt_lock);
1730 
1731 	if (need_retry) {
1732 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1733 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1734 			return retval;
1735 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1736 			return retval;
1737 		need_retry = false;
1738 		goto retry;
1739 	}
1740 
1741 	return retval;
1742 }
1743 
1744 static int exec_binprm(struct linux_binprm *bprm)
1745 {
1746 	pid_t old_pid, old_vpid;
1747 	int ret, depth;
1748 
1749 	/* Need to fetch pid before load_binary changes it */
1750 	old_pid = current->pid;
1751 	rcu_read_lock();
1752 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1753 	rcu_read_unlock();
1754 
1755 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1756 	for (depth = 0;; depth++) {
1757 		struct file *exec;
1758 		if (depth > 5)
1759 			return -ELOOP;
1760 
1761 		ret = search_binary_handler(bprm);
1762 		if (ret < 0)
1763 			return ret;
1764 		if (!bprm->interpreter)
1765 			break;
1766 
1767 		exec = bprm->file;
1768 		bprm->file = bprm->interpreter;
1769 		bprm->interpreter = NULL;
1770 
1771 		allow_write_access(exec);
1772 		if (unlikely(bprm->have_execfd)) {
1773 			if (bprm->executable) {
1774 				fput(exec);
1775 				return -ENOEXEC;
1776 			}
1777 			bprm->executable = exec;
1778 		} else
1779 			fput(exec);
1780 	}
1781 
1782 	audit_bprm(bprm);
1783 	trace_sched_process_exec(current, old_pid, bprm);
1784 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1785 	proc_exec_connector(current);
1786 	return 0;
1787 }
1788 
1789 /*
1790  * sys_execve() executes a new program.
1791  */
1792 static int bprm_execve(struct linux_binprm *bprm,
1793 		       int fd, struct filename *filename, int flags)
1794 {
1795 	struct file *file;
1796 	int retval;
1797 
1798 	retval = prepare_bprm_creds(bprm);
1799 	if (retval)
1800 		return retval;
1801 
1802 	check_unsafe_exec(bprm);
1803 	current->in_execve = 1;
1804 
1805 	file = do_open_execat(fd, filename, flags);
1806 	retval = PTR_ERR(file);
1807 	if (IS_ERR(file))
1808 		goto out_unmark;
1809 
1810 	sched_exec();
1811 
1812 	bprm->file = file;
1813 	/*
1814 	 * Record that a name derived from an O_CLOEXEC fd will be
1815 	 * inaccessible after exec.  This allows the code in exec to
1816 	 * choose to fail when the executable is not mmaped into the
1817 	 * interpreter and an open file descriptor is not passed to
1818 	 * the interpreter.  This makes for a better user experience
1819 	 * than having the interpreter start and then immediately fail
1820 	 * when it finds the executable is inaccessible.
1821 	 */
1822 	if (bprm->fdpath && get_close_on_exec(fd))
1823 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1824 
1825 	/* Set the unchanging part of bprm->cred */
1826 	retval = security_bprm_creds_for_exec(bprm);
1827 	if (retval)
1828 		goto out;
1829 
1830 	retval = exec_binprm(bprm);
1831 	if (retval < 0)
1832 		goto out;
1833 
1834 	/* execve succeeded */
1835 	current->fs->in_exec = 0;
1836 	current->in_execve = 0;
1837 	rseq_execve(current);
1838 	acct_update_integrals(current);
1839 	task_numa_free(current, false);
1840 	return retval;
1841 
1842 out:
1843 	/*
1844 	 * If past the point of no return ensure the code never
1845 	 * returns to the userspace process.  Use an existing fatal
1846 	 * signal if present otherwise terminate the process with
1847 	 * SIGSEGV.
1848 	 */
1849 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1850 		force_sigsegv(SIGSEGV);
1851 
1852 out_unmark:
1853 	current->fs->in_exec = 0;
1854 	current->in_execve = 0;
1855 
1856 	return retval;
1857 }
1858 
1859 static int do_execveat_common(int fd, struct filename *filename,
1860 			      struct user_arg_ptr argv,
1861 			      struct user_arg_ptr envp,
1862 			      int flags)
1863 {
1864 	struct linux_binprm *bprm;
1865 	int retval;
1866 
1867 	if (IS_ERR(filename))
1868 		return PTR_ERR(filename);
1869 
1870 	/*
1871 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1872 	 * set*uid() to execve() because too many poorly written programs
1873 	 * don't check setuid() return code.  Here we additionally recheck
1874 	 * whether NPROC limit is still exceeded.
1875 	 */
1876 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1877 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1878 		retval = -EAGAIN;
1879 		goto out_ret;
1880 	}
1881 
1882 	/* We're below the limit (still or again), so we don't want to make
1883 	 * further execve() calls fail. */
1884 	current->flags &= ~PF_NPROC_EXCEEDED;
1885 
1886 	bprm = alloc_bprm(fd, filename);
1887 	if (IS_ERR(bprm)) {
1888 		retval = PTR_ERR(bprm);
1889 		goto out_ret;
1890 	}
1891 
1892 	retval = count(argv, MAX_ARG_STRINGS);
1893 	if (retval < 0)
1894 		goto out_free;
1895 	bprm->argc = retval;
1896 
1897 	retval = count(envp, MAX_ARG_STRINGS);
1898 	if (retval < 0)
1899 		goto out_free;
1900 	bprm->envc = retval;
1901 
1902 	retval = bprm_stack_limits(bprm);
1903 	if (retval < 0)
1904 		goto out_free;
1905 
1906 	retval = copy_string_kernel(bprm->filename, bprm);
1907 	if (retval < 0)
1908 		goto out_free;
1909 	bprm->exec = bprm->p;
1910 
1911 	retval = copy_strings(bprm->envc, envp, bprm);
1912 	if (retval < 0)
1913 		goto out_free;
1914 
1915 	retval = copy_strings(bprm->argc, argv, bprm);
1916 	if (retval < 0)
1917 		goto out_free;
1918 
1919 	retval = bprm_execve(bprm, fd, filename, flags);
1920 out_free:
1921 	free_bprm(bprm);
1922 
1923 out_ret:
1924 	putname(filename);
1925 	return retval;
1926 }
1927 
1928 int kernel_execve(const char *kernel_filename,
1929 		  const char *const *argv, const char *const *envp)
1930 {
1931 	struct filename *filename;
1932 	struct linux_binprm *bprm;
1933 	int fd = AT_FDCWD;
1934 	int retval;
1935 
1936 	filename = getname_kernel(kernel_filename);
1937 	if (IS_ERR(filename))
1938 		return PTR_ERR(filename);
1939 
1940 	bprm = alloc_bprm(fd, filename);
1941 	if (IS_ERR(bprm)) {
1942 		retval = PTR_ERR(bprm);
1943 		goto out_ret;
1944 	}
1945 
1946 	retval = count_strings_kernel(argv);
1947 	if (retval < 0)
1948 		goto out_free;
1949 	bprm->argc = retval;
1950 
1951 	retval = count_strings_kernel(envp);
1952 	if (retval < 0)
1953 		goto out_free;
1954 	bprm->envc = retval;
1955 
1956 	retval = bprm_stack_limits(bprm);
1957 	if (retval < 0)
1958 		goto out_free;
1959 
1960 	retval = copy_string_kernel(bprm->filename, bprm);
1961 	if (retval < 0)
1962 		goto out_free;
1963 	bprm->exec = bprm->p;
1964 
1965 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
1966 	if (retval < 0)
1967 		goto out_free;
1968 
1969 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
1970 	if (retval < 0)
1971 		goto out_free;
1972 
1973 	retval = bprm_execve(bprm, fd, filename, 0);
1974 out_free:
1975 	free_bprm(bprm);
1976 out_ret:
1977 	putname(filename);
1978 	return retval;
1979 }
1980 
1981 static int do_execve(struct filename *filename,
1982 	const char __user *const __user *__argv,
1983 	const char __user *const __user *__envp)
1984 {
1985 	struct user_arg_ptr argv = { .ptr.native = __argv };
1986 	struct user_arg_ptr envp = { .ptr.native = __envp };
1987 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1988 }
1989 
1990 static int do_execveat(int fd, struct filename *filename,
1991 		const char __user *const __user *__argv,
1992 		const char __user *const __user *__envp,
1993 		int flags)
1994 {
1995 	struct user_arg_ptr argv = { .ptr.native = __argv };
1996 	struct user_arg_ptr envp = { .ptr.native = __envp };
1997 
1998 	return do_execveat_common(fd, filename, argv, envp, flags);
1999 }
2000 
2001 #ifdef CONFIG_COMPAT
2002 static int compat_do_execve(struct filename *filename,
2003 	const compat_uptr_t __user *__argv,
2004 	const compat_uptr_t __user *__envp)
2005 {
2006 	struct user_arg_ptr argv = {
2007 		.is_compat = true,
2008 		.ptr.compat = __argv,
2009 	};
2010 	struct user_arg_ptr envp = {
2011 		.is_compat = true,
2012 		.ptr.compat = __envp,
2013 	};
2014 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2015 }
2016 
2017 static int compat_do_execveat(int fd, struct filename *filename,
2018 			      const compat_uptr_t __user *__argv,
2019 			      const compat_uptr_t __user *__envp,
2020 			      int flags)
2021 {
2022 	struct user_arg_ptr argv = {
2023 		.is_compat = true,
2024 		.ptr.compat = __argv,
2025 	};
2026 	struct user_arg_ptr envp = {
2027 		.is_compat = true,
2028 		.ptr.compat = __envp,
2029 	};
2030 	return do_execveat_common(fd, filename, argv, envp, flags);
2031 }
2032 #endif
2033 
2034 void set_binfmt(struct linux_binfmt *new)
2035 {
2036 	struct mm_struct *mm = current->mm;
2037 
2038 	if (mm->binfmt)
2039 		module_put(mm->binfmt->module);
2040 
2041 	mm->binfmt = new;
2042 	if (new)
2043 		__module_get(new->module);
2044 }
2045 EXPORT_SYMBOL(set_binfmt);
2046 
2047 /*
2048  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2049  */
2050 void set_dumpable(struct mm_struct *mm, int value)
2051 {
2052 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2053 		return;
2054 
2055 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2056 }
2057 
2058 SYSCALL_DEFINE3(execve,
2059 		const char __user *, filename,
2060 		const char __user *const __user *, argv,
2061 		const char __user *const __user *, envp)
2062 {
2063 	return do_execve(getname(filename), argv, envp);
2064 }
2065 
2066 SYSCALL_DEFINE5(execveat,
2067 		int, fd, const char __user *, filename,
2068 		const char __user *const __user *, argv,
2069 		const char __user *const __user *, envp,
2070 		int, flags)
2071 {
2072 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2073 
2074 	return do_execveat(fd,
2075 			   getname_flags(filename, lookup_flags, NULL),
2076 			   argv, envp, flags);
2077 }
2078 
2079 #ifdef CONFIG_COMPAT
2080 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2081 	const compat_uptr_t __user *, argv,
2082 	const compat_uptr_t __user *, envp)
2083 {
2084 	return compat_do_execve(getname(filename), argv, envp);
2085 }
2086 
2087 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2088 		       const char __user *, filename,
2089 		       const compat_uptr_t __user *, argv,
2090 		       const compat_uptr_t __user *, envp,
2091 		       int,  flags)
2092 {
2093 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2094 
2095 	return compat_do_execveat(fd,
2096 				  getname_flags(filename, lookup_flags, NULL),
2097 				  argv, envp, flags);
2098 }
2099 #endif
2100