1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 #include <linux/user_events.h> 69 #include <linux/rseq.h> 70 #include <linux/ksm.h> 71 72 #include <linux/uaccess.h> 73 #include <asm/mmu_context.h> 74 #include <asm/tlb.h> 75 76 #include <trace/events/task.h> 77 #include "internal.h" 78 79 #include <trace/events/sched.h> 80 81 static int bprm_creds_from_file(struct linux_binprm *bprm); 82 83 int suid_dumpable = 0; 84 85 static LIST_HEAD(formats); 86 static DEFINE_RWLOCK(binfmt_lock); 87 88 void __register_binfmt(struct linux_binfmt * fmt, int insert) 89 { 90 write_lock(&binfmt_lock); 91 insert ? list_add(&fmt->lh, &formats) : 92 list_add_tail(&fmt->lh, &formats); 93 write_unlock(&binfmt_lock); 94 } 95 96 EXPORT_SYMBOL(__register_binfmt); 97 98 void unregister_binfmt(struct linux_binfmt * fmt) 99 { 100 write_lock(&binfmt_lock); 101 list_del(&fmt->lh); 102 write_unlock(&binfmt_lock); 103 } 104 105 EXPORT_SYMBOL(unregister_binfmt); 106 107 static inline void put_binfmt(struct linux_binfmt * fmt) 108 { 109 module_put(fmt->module); 110 } 111 112 bool path_noexec(const struct path *path) 113 { 114 return (path->mnt->mnt_flags & MNT_NOEXEC) || 115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 116 } 117 118 #ifdef CONFIG_USELIB 119 /* 120 * Note that a shared library must be both readable and executable due to 121 * security reasons. 122 * 123 * Also note that we take the address to load from the file itself. 124 */ 125 SYSCALL_DEFINE1(uselib, const char __user *, library) 126 { 127 struct linux_binfmt *fmt; 128 struct file *file; 129 struct filename *tmp = getname(library); 130 int error = PTR_ERR(tmp); 131 static const struct open_flags uselib_flags = { 132 .open_flag = O_LARGEFILE | O_RDONLY, 133 .acc_mode = MAY_READ | MAY_EXEC, 134 .intent = LOOKUP_OPEN, 135 .lookup_flags = LOOKUP_FOLLOW, 136 }; 137 138 if (IS_ERR(tmp)) 139 goto out; 140 141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 142 putname(tmp); 143 error = PTR_ERR(file); 144 if (IS_ERR(file)) 145 goto out; 146 147 /* 148 * may_open() has already checked for this, so it should be 149 * impossible to trip now. But we need to be extra cautious 150 * and check again at the very end too. 151 */ 152 error = -EACCES; 153 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 154 path_noexec(&file->f_path))) 155 goto exit; 156 157 error = -ENOEXEC; 158 159 read_lock(&binfmt_lock); 160 list_for_each_entry(fmt, &formats, lh) { 161 if (!fmt->load_shlib) 162 continue; 163 if (!try_module_get(fmt->module)) 164 continue; 165 read_unlock(&binfmt_lock); 166 error = fmt->load_shlib(file); 167 read_lock(&binfmt_lock); 168 put_binfmt(fmt); 169 if (error != -ENOEXEC) 170 break; 171 } 172 read_unlock(&binfmt_lock); 173 exit: 174 fput(file); 175 out: 176 return error; 177 } 178 #endif /* #ifdef CONFIG_USELIB */ 179 180 #ifdef CONFIG_MMU 181 /* 182 * The nascent bprm->mm is not visible until exec_mmap() but it can 183 * use a lot of memory, account these pages in current->mm temporary 184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 185 * change the counter back via acct_arg_size(0). 186 */ 187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 188 { 189 struct mm_struct *mm = current->mm; 190 long diff = (long)(pages - bprm->vma_pages); 191 192 if (!mm || !diff) 193 return; 194 195 bprm->vma_pages = pages; 196 add_mm_counter(mm, MM_ANONPAGES, diff); 197 } 198 199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 200 int write) 201 { 202 struct page *page; 203 struct vm_area_struct *vma = bprm->vma; 204 struct mm_struct *mm = bprm->mm; 205 int ret; 206 207 /* 208 * Avoid relying on expanding the stack down in GUP (which 209 * does not work for STACK_GROWSUP anyway), and just do it 210 * by hand ahead of time. 211 */ 212 if (write && pos < vma->vm_start) { 213 mmap_write_lock(mm); 214 ret = expand_downwards(vma, pos); 215 if (unlikely(ret < 0)) { 216 mmap_write_unlock(mm); 217 return NULL; 218 } 219 mmap_write_downgrade(mm); 220 } else 221 mmap_read_lock(mm); 222 223 /* 224 * We are doing an exec(). 'current' is the process 225 * doing the exec and 'mm' is the new process's mm. 226 */ 227 ret = get_user_pages_remote(mm, pos, 1, 228 write ? FOLL_WRITE : 0, 229 &page, NULL); 230 mmap_read_unlock(mm); 231 if (ret <= 0) 232 return NULL; 233 234 if (write) 235 acct_arg_size(bprm, vma_pages(vma)); 236 237 return page; 238 } 239 240 static void put_arg_page(struct page *page) 241 { 242 put_page(page); 243 } 244 245 static void free_arg_pages(struct linux_binprm *bprm) 246 { 247 } 248 249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 250 struct page *page) 251 { 252 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 253 } 254 255 static int __bprm_mm_init(struct linux_binprm *bprm) 256 { 257 int err; 258 struct vm_area_struct *vma = NULL; 259 struct mm_struct *mm = bprm->mm; 260 261 bprm->vma = vma = vm_area_alloc(mm); 262 if (!vma) 263 return -ENOMEM; 264 vma_set_anonymous(vma); 265 266 if (mmap_write_lock_killable(mm)) { 267 err = -EINTR; 268 goto err_free; 269 } 270 271 /* 272 * Need to be called with mmap write lock 273 * held, to avoid race with ksmd. 274 */ 275 err = ksm_execve(mm); 276 if (err) 277 goto err_ksm; 278 279 /* 280 * Place the stack at the largest stack address the architecture 281 * supports. Later, we'll move this to an appropriate place. We don't 282 * use STACK_TOP because that can depend on attributes which aren't 283 * configured yet. 284 */ 285 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 286 vma->vm_end = STACK_TOP_MAX; 287 vma->vm_start = vma->vm_end - PAGE_SIZE; 288 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP); 289 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 290 291 err = insert_vm_struct(mm, vma); 292 if (err) 293 goto err; 294 295 mm->stack_vm = mm->total_vm = 1; 296 mmap_write_unlock(mm); 297 bprm->p = vma->vm_end - sizeof(void *); 298 return 0; 299 err: 300 ksm_exit(mm); 301 err_ksm: 302 mmap_write_unlock(mm); 303 err_free: 304 bprm->vma = NULL; 305 vm_area_free(vma); 306 return err; 307 } 308 309 static bool valid_arg_len(struct linux_binprm *bprm, long len) 310 { 311 return len <= MAX_ARG_STRLEN; 312 } 313 314 #else 315 316 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 317 { 318 } 319 320 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 321 int write) 322 { 323 struct page *page; 324 325 page = bprm->page[pos / PAGE_SIZE]; 326 if (!page && write) { 327 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 328 if (!page) 329 return NULL; 330 bprm->page[pos / PAGE_SIZE] = page; 331 } 332 333 return page; 334 } 335 336 static void put_arg_page(struct page *page) 337 { 338 } 339 340 static void free_arg_page(struct linux_binprm *bprm, int i) 341 { 342 if (bprm->page[i]) { 343 __free_page(bprm->page[i]); 344 bprm->page[i] = NULL; 345 } 346 } 347 348 static void free_arg_pages(struct linux_binprm *bprm) 349 { 350 int i; 351 352 for (i = 0; i < MAX_ARG_PAGES; i++) 353 free_arg_page(bprm, i); 354 } 355 356 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 357 struct page *page) 358 { 359 } 360 361 static int __bprm_mm_init(struct linux_binprm *bprm) 362 { 363 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 364 return 0; 365 } 366 367 static bool valid_arg_len(struct linux_binprm *bprm, long len) 368 { 369 return len <= bprm->p; 370 } 371 372 #endif /* CONFIG_MMU */ 373 374 /* 375 * Create a new mm_struct and populate it with a temporary stack 376 * vm_area_struct. We don't have enough context at this point to set the stack 377 * flags, permissions, and offset, so we use temporary values. We'll update 378 * them later in setup_arg_pages(). 379 */ 380 static int bprm_mm_init(struct linux_binprm *bprm) 381 { 382 int err; 383 struct mm_struct *mm = NULL; 384 385 bprm->mm = mm = mm_alloc(); 386 err = -ENOMEM; 387 if (!mm) 388 goto err; 389 390 /* Save current stack limit for all calculations made during exec. */ 391 task_lock(current->group_leader); 392 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 393 task_unlock(current->group_leader); 394 395 err = __bprm_mm_init(bprm); 396 if (err) 397 goto err; 398 399 return 0; 400 401 err: 402 if (mm) { 403 bprm->mm = NULL; 404 mmdrop(mm); 405 } 406 407 return err; 408 } 409 410 struct user_arg_ptr { 411 #ifdef CONFIG_COMPAT 412 bool is_compat; 413 #endif 414 union { 415 const char __user *const __user *native; 416 #ifdef CONFIG_COMPAT 417 const compat_uptr_t __user *compat; 418 #endif 419 } ptr; 420 }; 421 422 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 423 { 424 const char __user *native; 425 426 #ifdef CONFIG_COMPAT 427 if (unlikely(argv.is_compat)) { 428 compat_uptr_t compat; 429 430 if (get_user(compat, argv.ptr.compat + nr)) 431 return ERR_PTR(-EFAULT); 432 433 return compat_ptr(compat); 434 } 435 #endif 436 437 if (get_user(native, argv.ptr.native + nr)) 438 return ERR_PTR(-EFAULT); 439 440 return native; 441 } 442 443 /* 444 * count() counts the number of strings in array ARGV. 445 */ 446 static int count(struct user_arg_ptr argv, int max) 447 { 448 int i = 0; 449 450 if (argv.ptr.native != NULL) { 451 for (;;) { 452 const char __user *p = get_user_arg_ptr(argv, i); 453 454 if (!p) 455 break; 456 457 if (IS_ERR(p)) 458 return -EFAULT; 459 460 if (i >= max) 461 return -E2BIG; 462 ++i; 463 464 if (fatal_signal_pending(current)) 465 return -ERESTARTNOHAND; 466 cond_resched(); 467 } 468 } 469 return i; 470 } 471 472 static int count_strings_kernel(const char *const *argv) 473 { 474 int i; 475 476 if (!argv) 477 return 0; 478 479 for (i = 0; argv[i]; ++i) { 480 if (i >= MAX_ARG_STRINGS) 481 return -E2BIG; 482 if (fatal_signal_pending(current)) 483 return -ERESTARTNOHAND; 484 cond_resched(); 485 } 486 return i; 487 } 488 489 static inline int bprm_set_stack_limit(struct linux_binprm *bprm, 490 unsigned long limit) 491 { 492 #ifdef CONFIG_MMU 493 /* Avoid a pathological bprm->p. */ 494 if (bprm->p < limit) 495 return -E2BIG; 496 bprm->argmin = bprm->p - limit; 497 #endif 498 return 0; 499 } 500 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm) 501 { 502 #ifdef CONFIG_MMU 503 return bprm->p < bprm->argmin; 504 #else 505 return false; 506 #endif 507 } 508 509 /* 510 * Calculate bprm->argmin from: 511 * - _STK_LIM 512 * - ARG_MAX 513 * - bprm->rlim_stack.rlim_cur 514 * - bprm->argc 515 * - bprm->envc 516 * - bprm->p 517 */ 518 static int bprm_stack_limits(struct linux_binprm *bprm) 519 { 520 unsigned long limit, ptr_size; 521 522 /* 523 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 524 * (whichever is smaller) for the argv+env strings. 525 * This ensures that: 526 * - the remaining binfmt code will not run out of stack space, 527 * - the program will have a reasonable amount of stack left 528 * to work from. 529 */ 530 limit = _STK_LIM / 4 * 3; 531 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 532 /* 533 * We've historically supported up to 32 pages (ARG_MAX) 534 * of argument strings even with small stacks 535 */ 536 limit = max_t(unsigned long, limit, ARG_MAX); 537 /* Reject totally pathological counts. */ 538 if (bprm->argc < 0 || bprm->envc < 0) 539 return -E2BIG; 540 /* 541 * We must account for the size of all the argv and envp pointers to 542 * the argv and envp strings, since they will also take up space in 543 * the stack. They aren't stored until much later when we can't 544 * signal to the parent that the child has run out of stack space. 545 * Instead, calculate it here so it's possible to fail gracefully. 546 * 547 * In the case of argc = 0, make sure there is space for adding a 548 * empty string (which will bump argc to 1), to ensure confused 549 * userspace programs don't start processing from argv[1], thinking 550 * argc can never be 0, to keep them from walking envp by accident. 551 * See do_execveat_common(). 552 */ 553 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) || 554 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size)) 555 return -E2BIG; 556 if (limit <= ptr_size) 557 return -E2BIG; 558 limit -= ptr_size; 559 560 return bprm_set_stack_limit(bprm, limit); 561 } 562 563 /* 564 * 'copy_strings()' copies argument/environment strings from the old 565 * processes's memory to the new process's stack. The call to get_user_pages() 566 * ensures the destination page is created and not swapped out. 567 */ 568 static int copy_strings(int argc, struct user_arg_ptr argv, 569 struct linux_binprm *bprm) 570 { 571 struct page *kmapped_page = NULL; 572 char *kaddr = NULL; 573 unsigned long kpos = 0; 574 int ret; 575 576 while (argc-- > 0) { 577 const char __user *str; 578 int len; 579 unsigned long pos; 580 581 ret = -EFAULT; 582 str = get_user_arg_ptr(argv, argc); 583 if (IS_ERR(str)) 584 goto out; 585 586 len = strnlen_user(str, MAX_ARG_STRLEN); 587 if (!len) 588 goto out; 589 590 ret = -E2BIG; 591 if (!valid_arg_len(bprm, len)) 592 goto out; 593 594 /* We're going to work our way backwards. */ 595 pos = bprm->p; 596 str += len; 597 bprm->p -= len; 598 if (bprm_hit_stack_limit(bprm)) 599 goto out; 600 601 while (len > 0) { 602 int offset, bytes_to_copy; 603 604 if (fatal_signal_pending(current)) { 605 ret = -ERESTARTNOHAND; 606 goto out; 607 } 608 cond_resched(); 609 610 offset = pos % PAGE_SIZE; 611 if (offset == 0) 612 offset = PAGE_SIZE; 613 614 bytes_to_copy = offset; 615 if (bytes_to_copy > len) 616 bytes_to_copy = len; 617 618 offset -= bytes_to_copy; 619 pos -= bytes_to_copy; 620 str -= bytes_to_copy; 621 len -= bytes_to_copy; 622 623 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 624 struct page *page; 625 626 page = get_arg_page(bprm, pos, 1); 627 if (!page) { 628 ret = -E2BIG; 629 goto out; 630 } 631 632 if (kmapped_page) { 633 flush_dcache_page(kmapped_page); 634 kunmap_local(kaddr); 635 put_arg_page(kmapped_page); 636 } 637 kmapped_page = page; 638 kaddr = kmap_local_page(kmapped_page); 639 kpos = pos & PAGE_MASK; 640 flush_arg_page(bprm, kpos, kmapped_page); 641 } 642 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 643 ret = -EFAULT; 644 goto out; 645 } 646 } 647 } 648 ret = 0; 649 out: 650 if (kmapped_page) { 651 flush_dcache_page(kmapped_page); 652 kunmap_local(kaddr); 653 put_arg_page(kmapped_page); 654 } 655 return ret; 656 } 657 658 /* 659 * Copy and argument/environment string from the kernel to the processes stack. 660 */ 661 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 662 { 663 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 664 unsigned long pos = bprm->p; 665 666 if (len == 0) 667 return -EFAULT; 668 if (!valid_arg_len(bprm, len)) 669 return -E2BIG; 670 671 /* We're going to work our way backwards. */ 672 arg += len; 673 bprm->p -= len; 674 if (bprm_hit_stack_limit(bprm)) 675 return -E2BIG; 676 677 while (len > 0) { 678 unsigned int bytes_to_copy = min_t(unsigned int, len, 679 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 680 struct page *page; 681 682 pos -= bytes_to_copy; 683 arg -= bytes_to_copy; 684 len -= bytes_to_copy; 685 686 page = get_arg_page(bprm, pos, 1); 687 if (!page) 688 return -E2BIG; 689 flush_arg_page(bprm, pos & PAGE_MASK, page); 690 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 691 put_arg_page(page); 692 } 693 694 return 0; 695 } 696 EXPORT_SYMBOL(copy_string_kernel); 697 698 static int copy_strings_kernel(int argc, const char *const *argv, 699 struct linux_binprm *bprm) 700 { 701 while (argc-- > 0) { 702 int ret = copy_string_kernel(argv[argc], bprm); 703 if (ret < 0) 704 return ret; 705 if (fatal_signal_pending(current)) 706 return -ERESTARTNOHAND; 707 cond_resched(); 708 } 709 return 0; 710 } 711 712 #ifdef CONFIG_MMU 713 714 /* 715 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 716 * the stack is optionally relocated, and some extra space is added. 717 */ 718 int setup_arg_pages(struct linux_binprm *bprm, 719 unsigned long stack_top, 720 int executable_stack) 721 { 722 unsigned long ret; 723 unsigned long stack_shift; 724 struct mm_struct *mm = current->mm; 725 struct vm_area_struct *vma = bprm->vma; 726 struct vm_area_struct *prev = NULL; 727 unsigned long vm_flags; 728 unsigned long stack_base; 729 unsigned long stack_size; 730 unsigned long stack_expand; 731 unsigned long rlim_stack; 732 struct mmu_gather tlb; 733 struct vma_iterator vmi; 734 735 #ifdef CONFIG_STACK_GROWSUP 736 /* Limit stack size */ 737 stack_base = bprm->rlim_stack.rlim_max; 738 739 stack_base = calc_max_stack_size(stack_base); 740 741 /* Add space for stack randomization. */ 742 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 743 744 /* Make sure we didn't let the argument array grow too large. */ 745 if (vma->vm_end - vma->vm_start > stack_base) 746 return -ENOMEM; 747 748 stack_base = PAGE_ALIGN(stack_top - stack_base); 749 750 stack_shift = vma->vm_start - stack_base; 751 mm->arg_start = bprm->p - stack_shift; 752 bprm->p = vma->vm_end - stack_shift; 753 #else 754 stack_top = arch_align_stack(stack_top); 755 stack_top = PAGE_ALIGN(stack_top); 756 757 if (unlikely(stack_top < mmap_min_addr) || 758 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 759 return -ENOMEM; 760 761 stack_shift = vma->vm_end - stack_top; 762 763 bprm->p -= stack_shift; 764 mm->arg_start = bprm->p; 765 #endif 766 767 if (bprm->loader) 768 bprm->loader -= stack_shift; 769 bprm->exec -= stack_shift; 770 771 if (mmap_write_lock_killable(mm)) 772 return -EINTR; 773 774 vm_flags = VM_STACK_FLAGS; 775 776 /* 777 * Adjust stack execute permissions; explicitly enable for 778 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 779 * (arch default) otherwise. 780 */ 781 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 782 vm_flags |= VM_EXEC; 783 else if (executable_stack == EXSTACK_DISABLE_X) 784 vm_flags &= ~VM_EXEC; 785 vm_flags |= mm->def_flags; 786 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 787 788 vma_iter_init(&vmi, mm, vma->vm_start); 789 790 tlb_gather_mmu(&tlb, mm); 791 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end, 792 vm_flags); 793 tlb_finish_mmu(&tlb); 794 795 if (ret) 796 goto out_unlock; 797 BUG_ON(prev != vma); 798 799 if (unlikely(vm_flags & VM_EXEC)) { 800 pr_warn_once("process '%pD4' started with executable stack\n", 801 bprm->file); 802 } 803 804 /* Move stack pages down in memory. */ 805 if (stack_shift) { 806 /* 807 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 808 * the binfmt code determines where the new stack should reside, we shift it to 809 * its final location. 810 */ 811 ret = relocate_vma_down(vma, stack_shift); 812 if (ret) 813 goto out_unlock; 814 } 815 816 /* mprotect_fixup is overkill to remove the temporary stack flags */ 817 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); 818 819 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 820 stack_size = vma->vm_end - vma->vm_start; 821 /* 822 * Align this down to a page boundary as expand_stack 823 * will align it up. 824 */ 825 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 826 827 stack_expand = min(rlim_stack, stack_size + stack_expand); 828 829 #ifdef CONFIG_STACK_GROWSUP 830 stack_base = vma->vm_start + stack_expand; 831 #else 832 stack_base = vma->vm_end - stack_expand; 833 #endif 834 current->mm->start_stack = bprm->p; 835 ret = expand_stack_locked(vma, stack_base); 836 if (ret) 837 ret = -EFAULT; 838 839 out_unlock: 840 mmap_write_unlock(mm); 841 return ret; 842 } 843 EXPORT_SYMBOL(setup_arg_pages); 844 845 #else 846 847 /* 848 * Transfer the program arguments and environment from the holding pages 849 * onto the stack. The provided stack pointer is adjusted accordingly. 850 */ 851 int transfer_args_to_stack(struct linux_binprm *bprm, 852 unsigned long *sp_location) 853 { 854 unsigned long index, stop, sp; 855 int ret = 0; 856 857 stop = bprm->p >> PAGE_SHIFT; 858 sp = *sp_location; 859 860 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 861 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 862 char *src = kmap_local_page(bprm->page[index]) + offset; 863 sp -= PAGE_SIZE - offset; 864 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 865 ret = -EFAULT; 866 kunmap_local(src); 867 if (ret) 868 goto out; 869 } 870 871 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE; 872 *sp_location = sp; 873 874 out: 875 return ret; 876 } 877 EXPORT_SYMBOL(transfer_args_to_stack); 878 879 #endif /* CONFIG_MMU */ 880 881 /* 882 * On success, caller must call do_close_execat() on the returned 883 * struct file to close it. 884 */ 885 static struct file *do_open_execat(int fd, struct filename *name, int flags) 886 { 887 struct file *file; 888 int err; 889 struct open_flags open_exec_flags = { 890 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 891 .acc_mode = MAY_EXEC, 892 .intent = LOOKUP_OPEN, 893 .lookup_flags = LOOKUP_FOLLOW, 894 }; 895 896 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 897 return ERR_PTR(-EINVAL); 898 if (flags & AT_SYMLINK_NOFOLLOW) 899 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 900 if (flags & AT_EMPTY_PATH) 901 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 902 903 file = do_filp_open(fd, name, &open_exec_flags); 904 if (IS_ERR(file)) 905 goto out; 906 907 /* 908 * may_open() has already checked for this, so it should be 909 * impossible to trip now. But we need to be extra cautious 910 * and check again at the very end too. 911 */ 912 err = -EACCES; 913 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 914 path_noexec(&file->f_path))) 915 goto exit; 916 917 out: 918 return file; 919 920 exit: 921 fput(file); 922 return ERR_PTR(err); 923 } 924 925 /** 926 * open_exec - Open a path name for execution 927 * 928 * @name: path name to open with the intent of executing it. 929 * 930 * Returns ERR_PTR on failure or allocated struct file on success. 931 * 932 * As this is a wrapper for the internal do_open_execat(). Also see 933 * do_close_execat(). 934 */ 935 struct file *open_exec(const char *name) 936 { 937 struct filename *filename = getname_kernel(name); 938 struct file *f = ERR_CAST(filename); 939 940 if (!IS_ERR(filename)) { 941 f = do_open_execat(AT_FDCWD, filename, 0); 942 putname(filename); 943 } 944 return f; 945 } 946 EXPORT_SYMBOL(open_exec); 947 948 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 949 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 950 { 951 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 952 if (res > 0) 953 flush_icache_user_range(addr, addr + len); 954 return res; 955 } 956 EXPORT_SYMBOL(read_code); 957 #endif 958 959 /* 960 * Maps the mm_struct mm into the current task struct. 961 * On success, this function returns with exec_update_lock 962 * held for writing. 963 */ 964 static int exec_mmap(struct mm_struct *mm) 965 { 966 struct task_struct *tsk; 967 struct mm_struct *old_mm, *active_mm; 968 int ret; 969 970 /* Notify parent that we're no longer interested in the old VM */ 971 tsk = current; 972 old_mm = current->mm; 973 exec_mm_release(tsk, old_mm); 974 975 ret = down_write_killable(&tsk->signal->exec_update_lock); 976 if (ret) 977 return ret; 978 979 if (old_mm) { 980 /* 981 * If there is a pending fatal signal perhaps a signal 982 * whose default action is to create a coredump get 983 * out and die instead of going through with the exec. 984 */ 985 ret = mmap_read_lock_killable(old_mm); 986 if (ret) { 987 up_write(&tsk->signal->exec_update_lock); 988 return ret; 989 } 990 } 991 992 task_lock(tsk); 993 membarrier_exec_mmap(mm); 994 995 local_irq_disable(); 996 active_mm = tsk->active_mm; 997 tsk->active_mm = mm; 998 tsk->mm = mm; 999 mm_init_cid(mm); 1000 /* 1001 * This prevents preemption while active_mm is being loaded and 1002 * it and mm are being updated, which could cause problems for 1003 * lazy tlb mm refcounting when these are updated by context 1004 * switches. Not all architectures can handle irqs off over 1005 * activate_mm yet. 1006 */ 1007 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1008 local_irq_enable(); 1009 activate_mm(active_mm, mm); 1010 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1011 local_irq_enable(); 1012 lru_gen_add_mm(mm); 1013 task_unlock(tsk); 1014 lru_gen_use_mm(mm); 1015 if (old_mm) { 1016 mmap_read_unlock(old_mm); 1017 BUG_ON(active_mm != old_mm); 1018 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1019 mm_update_next_owner(old_mm); 1020 mmput(old_mm); 1021 return 0; 1022 } 1023 mmdrop_lazy_tlb(active_mm); 1024 return 0; 1025 } 1026 1027 static int de_thread(struct task_struct *tsk) 1028 { 1029 struct signal_struct *sig = tsk->signal; 1030 struct sighand_struct *oldsighand = tsk->sighand; 1031 spinlock_t *lock = &oldsighand->siglock; 1032 1033 if (thread_group_empty(tsk)) 1034 goto no_thread_group; 1035 1036 /* 1037 * Kill all other threads in the thread group. 1038 */ 1039 spin_lock_irq(lock); 1040 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1041 /* 1042 * Another group action in progress, just 1043 * return so that the signal is processed. 1044 */ 1045 spin_unlock_irq(lock); 1046 return -EAGAIN; 1047 } 1048 1049 sig->group_exec_task = tsk; 1050 sig->notify_count = zap_other_threads(tsk); 1051 if (!thread_group_leader(tsk)) 1052 sig->notify_count--; 1053 1054 while (sig->notify_count) { 1055 __set_current_state(TASK_KILLABLE); 1056 spin_unlock_irq(lock); 1057 schedule(); 1058 if (__fatal_signal_pending(tsk)) 1059 goto killed; 1060 spin_lock_irq(lock); 1061 } 1062 spin_unlock_irq(lock); 1063 1064 /* 1065 * At this point all other threads have exited, all we have to 1066 * do is to wait for the thread group leader to become inactive, 1067 * and to assume its PID: 1068 */ 1069 if (!thread_group_leader(tsk)) { 1070 struct task_struct *leader = tsk->group_leader; 1071 1072 for (;;) { 1073 cgroup_threadgroup_change_begin(tsk); 1074 write_lock_irq(&tasklist_lock); 1075 /* 1076 * Do this under tasklist_lock to ensure that 1077 * exit_notify() can't miss ->group_exec_task 1078 */ 1079 sig->notify_count = -1; 1080 if (likely(leader->exit_state)) 1081 break; 1082 __set_current_state(TASK_KILLABLE); 1083 write_unlock_irq(&tasklist_lock); 1084 cgroup_threadgroup_change_end(tsk); 1085 schedule(); 1086 if (__fatal_signal_pending(tsk)) 1087 goto killed; 1088 } 1089 1090 /* 1091 * The only record we have of the real-time age of a 1092 * process, regardless of execs it's done, is start_time. 1093 * All the past CPU time is accumulated in signal_struct 1094 * from sister threads now dead. But in this non-leader 1095 * exec, nothing survives from the original leader thread, 1096 * whose birth marks the true age of this process now. 1097 * When we take on its identity by switching to its PID, we 1098 * also take its birthdate (always earlier than our own). 1099 */ 1100 tsk->start_time = leader->start_time; 1101 tsk->start_boottime = leader->start_boottime; 1102 1103 BUG_ON(!same_thread_group(leader, tsk)); 1104 /* 1105 * An exec() starts a new thread group with the 1106 * TGID of the previous thread group. Rehash the 1107 * two threads with a switched PID, and release 1108 * the former thread group leader: 1109 */ 1110 1111 /* Become a process group leader with the old leader's pid. 1112 * The old leader becomes a thread of the this thread group. 1113 */ 1114 exchange_tids(tsk, leader); 1115 transfer_pid(leader, tsk, PIDTYPE_TGID); 1116 transfer_pid(leader, tsk, PIDTYPE_PGID); 1117 transfer_pid(leader, tsk, PIDTYPE_SID); 1118 1119 list_replace_rcu(&leader->tasks, &tsk->tasks); 1120 list_replace_init(&leader->sibling, &tsk->sibling); 1121 1122 tsk->group_leader = tsk; 1123 leader->group_leader = tsk; 1124 1125 tsk->exit_signal = SIGCHLD; 1126 leader->exit_signal = -1; 1127 1128 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1129 leader->exit_state = EXIT_DEAD; 1130 /* 1131 * We are going to release_task()->ptrace_unlink() silently, 1132 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1133 * the tracer won't block again waiting for this thread. 1134 */ 1135 if (unlikely(leader->ptrace)) 1136 __wake_up_parent(leader, leader->parent); 1137 write_unlock_irq(&tasklist_lock); 1138 cgroup_threadgroup_change_end(tsk); 1139 1140 release_task(leader); 1141 } 1142 1143 sig->group_exec_task = NULL; 1144 sig->notify_count = 0; 1145 1146 no_thread_group: 1147 /* we have changed execution domain */ 1148 tsk->exit_signal = SIGCHLD; 1149 1150 BUG_ON(!thread_group_leader(tsk)); 1151 return 0; 1152 1153 killed: 1154 /* protects against exit_notify() and __exit_signal() */ 1155 read_lock(&tasklist_lock); 1156 sig->group_exec_task = NULL; 1157 sig->notify_count = 0; 1158 read_unlock(&tasklist_lock); 1159 return -EAGAIN; 1160 } 1161 1162 1163 /* 1164 * This function makes sure the current process has its own signal table, 1165 * so that flush_signal_handlers can later reset the handlers without 1166 * disturbing other processes. (Other processes might share the signal 1167 * table via the CLONE_SIGHAND option to clone().) 1168 */ 1169 static int unshare_sighand(struct task_struct *me) 1170 { 1171 struct sighand_struct *oldsighand = me->sighand; 1172 1173 if (refcount_read(&oldsighand->count) != 1) { 1174 struct sighand_struct *newsighand; 1175 /* 1176 * This ->sighand is shared with the CLONE_SIGHAND 1177 * but not CLONE_THREAD task, switch to the new one. 1178 */ 1179 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1180 if (!newsighand) 1181 return -ENOMEM; 1182 1183 refcount_set(&newsighand->count, 1); 1184 1185 write_lock_irq(&tasklist_lock); 1186 spin_lock(&oldsighand->siglock); 1187 memcpy(newsighand->action, oldsighand->action, 1188 sizeof(newsighand->action)); 1189 rcu_assign_pointer(me->sighand, newsighand); 1190 spin_unlock(&oldsighand->siglock); 1191 write_unlock_irq(&tasklist_lock); 1192 1193 __cleanup_sighand(oldsighand); 1194 } 1195 return 0; 1196 } 1197 1198 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1199 { 1200 task_lock(tsk); 1201 /* Always NUL terminated and zero-padded */ 1202 strscpy_pad(buf, tsk->comm, buf_size); 1203 task_unlock(tsk); 1204 return buf; 1205 } 1206 EXPORT_SYMBOL_GPL(__get_task_comm); 1207 1208 /* 1209 * These functions flushes out all traces of the currently running executable 1210 * so that a new one can be started 1211 */ 1212 1213 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1214 { 1215 task_lock(tsk); 1216 trace_task_rename(tsk, buf); 1217 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1218 task_unlock(tsk); 1219 perf_event_comm(tsk, exec); 1220 } 1221 1222 /* 1223 * Calling this is the point of no return. None of the failures will be 1224 * seen by userspace since either the process is already taking a fatal 1225 * signal (via de_thread() or coredump), or will have SEGV raised 1226 * (after exec_mmap()) by search_binary_handler (see below). 1227 */ 1228 int begin_new_exec(struct linux_binprm * bprm) 1229 { 1230 struct task_struct *me = current; 1231 int retval; 1232 1233 /* Once we are committed compute the creds */ 1234 retval = bprm_creds_from_file(bprm); 1235 if (retval) 1236 return retval; 1237 1238 /* 1239 * This tracepoint marks the point before flushing the old exec where 1240 * the current task is still unchanged, but errors are fatal (point of 1241 * no return). The later "sched_process_exec" tracepoint is called after 1242 * the current task has successfully switched to the new exec. 1243 */ 1244 trace_sched_prepare_exec(current, bprm); 1245 1246 /* 1247 * Ensure all future errors are fatal. 1248 */ 1249 bprm->point_of_no_return = true; 1250 1251 /* 1252 * Make this the only thread in the thread group. 1253 */ 1254 retval = de_thread(me); 1255 if (retval) 1256 goto out; 1257 1258 /* 1259 * Cancel any io_uring activity across execve 1260 */ 1261 io_uring_task_cancel(); 1262 1263 /* Ensure the files table is not shared. */ 1264 retval = unshare_files(); 1265 if (retval) 1266 goto out; 1267 1268 /* 1269 * Must be called _before_ exec_mmap() as bprm->mm is 1270 * not visible until then. Doing it here also ensures 1271 * we don't race against replace_mm_exe_file(). 1272 */ 1273 retval = set_mm_exe_file(bprm->mm, bprm->file); 1274 if (retval) 1275 goto out; 1276 1277 /* If the binary is not readable then enforce mm->dumpable=0 */ 1278 would_dump(bprm, bprm->file); 1279 if (bprm->have_execfd) 1280 would_dump(bprm, bprm->executable); 1281 1282 /* 1283 * Release all of the old mmap stuff 1284 */ 1285 acct_arg_size(bprm, 0); 1286 retval = exec_mmap(bprm->mm); 1287 if (retval) 1288 goto out; 1289 1290 bprm->mm = NULL; 1291 1292 retval = exec_task_namespaces(); 1293 if (retval) 1294 goto out_unlock; 1295 1296 #ifdef CONFIG_POSIX_TIMERS 1297 spin_lock_irq(&me->sighand->siglock); 1298 posix_cpu_timers_exit(me); 1299 spin_unlock_irq(&me->sighand->siglock); 1300 exit_itimers(me); 1301 flush_itimer_signals(); 1302 #endif 1303 1304 /* 1305 * Make the signal table private. 1306 */ 1307 retval = unshare_sighand(me); 1308 if (retval) 1309 goto out_unlock; 1310 1311 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1312 PF_NOFREEZE | PF_NO_SETAFFINITY); 1313 flush_thread(); 1314 me->personality &= ~bprm->per_clear; 1315 1316 clear_syscall_work_syscall_user_dispatch(me); 1317 1318 /* 1319 * We have to apply CLOEXEC before we change whether the process is 1320 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1321 * trying to access the should-be-closed file descriptors of a process 1322 * undergoing exec(2). 1323 */ 1324 do_close_on_exec(me->files); 1325 1326 if (bprm->secureexec) { 1327 /* Make sure parent cannot signal privileged process. */ 1328 me->pdeath_signal = 0; 1329 1330 /* 1331 * For secureexec, reset the stack limit to sane default to 1332 * avoid bad behavior from the prior rlimits. This has to 1333 * happen before arch_pick_mmap_layout(), which examines 1334 * RLIMIT_STACK, but after the point of no return to avoid 1335 * needing to clean up the change on failure. 1336 */ 1337 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1338 bprm->rlim_stack.rlim_cur = _STK_LIM; 1339 } 1340 1341 me->sas_ss_sp = me->sas_ss_size = 0; 1342 1343 /* 1344 * Figure out dumpability. Note that this checking only of current 1345 * is wrong, but userspace depends on it. This should be testing 1346 * bprm->secureexec instead. 1347 */ 1348 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1349 !(uid_eq(current_euid(), current_uid()) && 1350 gid_eq(current_egid(), current_gid()))) 1351 set_dumpable(current->mm, suid_dumpable); 1352 else 1353 set_dumpable(current->mm, SUID_DUMP_USER); 1354 1355 perf_event_exec(); 1356 __set_task_comm(me, kbasename(bprm->filename), true); 1357 1358 /* An exec changes our domain. We are no longer part of the thread 1359 group */ 1360 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1361 flush_signal_handlers(me, 0); 1362 1363 retval = set_cred_ucounts(bprm->cred); 1364 if (retval < 0) 1365 goto out_unlock; 1366 1367 /* 1368 * install the new credentials for this executable 1369 */ 1370 security_bprm_committing_creds(bprm); 1371 1372 commit_creds(bprm->cred); 1373 bprm->cred = NULL; 1374 1375 /* 1376 * Disable monitoring for regular users 1377 * when executing setuid binaries. Must 1378 * wait until new credentials are committed 1379 * by commit_creds() above 1380 */ 1381 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1382 perf_event_exit_task(me); 1383 /* 1384 * cred_guard_mutex must be held at least to this point to prevent 1385 * ptrace_attach() from altering our determination of the task's 1386 * credentials; any time after this it may be unlocked. 1387 */ 1388 security_bprm_committed_creds(bprm); 1389 1390 /* Pass the opened binary to the interpreter. */ 1391 if (bprm->have_execfd) { 1392 retval = get_unused_fd_flags(0); 1393 if (retval < 0) 1394 goto out_unlock; 1395 fd_install(retval, bprm->executable); 1396 bprm->executable = NULL; 1397 bprm->execfd = retval; 1398 } 1399 return 0; 1400 1401 out_unlock: 1402 up_write(&me->signal->exec_update_lock); 1403 if (!bprm->cred) 1404 mutex_unlock(&me->signal->cred_guard_mutex); 1405 1406 out: 1407 return retval; 1408 } 1409 EXPORT_SYMBOL(begin_new_exec); 1410 1411 void would_dump(struct linux_binprm *bprm, struct file *file) 1412 { 1413 struct inode *inode = file_inode(file); 1414 struct mnt_idmap *idmap = file_mnt_idmap(file); 1415 if (inode_permission(idmap, inode, MAY_READ) < 0) { 1416 struct user_namespace *old, *user_ns; 1417 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1418 1419 /* Ensure mm->user_ns contains the executable */ 1420 user_ns = old = bprm->mm->user_ns; 1421 while ((user_ns != &init_user_ns) && 1422 !privileged_wrt_inode_uidgid(user_ns, idmap, inode)) 1423 user_ns = user_ns->parent; 1424 1425 if (old != user_ns) { 1426 bprm->mm->user_ns = get_user_ns(user_ns); 1427 put_user_ns(old); 1428 } 1429 } 1430 } 1431 EXPORT_SYMBOL(would_dump); 1432 1433 void setup_new_exec(struct linux_binprm * bprm) 1434 { 1435 /* Setup things that can depend upon the personality */ 1436 struct task_struct *me = current; 1437 1438 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1439 1440 arch_setup_new_exec(); 1441 1442 /* Set the new mm task size. We have to do that late because it may 1443 * depend on TIF_32BIT which is only updated in flush_thread() on 1444 * some architectures like powerpc 1445 */ 1446 me->mm->task_size = TASK_SIZE; 1447 up_write(&me->signal->exec_update_lock); 1448 mutex_unlock(&me->signal->cred_guard_mutex); 1449 } 1450 EXPORT_SYMBOL(setup_new_exec); 1451 1452 /* Runs immediately before start_thread() takes over. */ 1453 void finalize_exec(struct linux_binprm *bprm) 1454 { 1455 /* Store any stack rlimit changes before starting thread. */ 1456 task_lock(current->group_leader); 1457 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1458 task_unlock(current->group_leader); 1459 } 1460 EXPORT_SYMBOL(finalize_exec); 1461 1462 /* 1463 * Prepare credentials and lock ->cred_guard_mutex. 1464 * setup_new_exec() commits the new creds and drops the lock. 1465 * Or, if exec fails before, free_bprm() should release ->cred 1466 * and unlock. 1467 */ 1468 static int prepare_bprm_creds(struct linux_binprm *bprm) 1469 { 1470 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1471 return -ERESTARTNOINTR; 1472 1473 bprm->cred = prepare_exec_creds(); 1474 if (likely(bprm->cred)) 1475 return 0; 1476 1477 mutex_unlock(¤t->signal->cred_guard_mutex); 1478 return -ENOMEM; 1479 } 1480 1481 /* Matches do_open_execat() */ 1482 static void do_close_execat(struct file *file) 1483 { 1484 if (file) 1485 fput(file); 1486 } 1487 1488 static void free_bprm(struct linux_binprm *bprm) 1489 { 1490 if (bprm->mm) { 1491 acct_arg_size(bprm, 0); 1492 mmput(bprm->mm); 1493 } 1494 free_arg_pages(bprm); 1495 if (bprm->cred) { 1496 mutex_unlock(¤t->signal->cred_guard_mutex); 1497 abort_creds(bprm->cred); 1498 } 1499 do_close_execat(bprm->file); 1500 if (bprm->executable) 1501 fput(bprm->executable); 1502 /* If a binfmt changed the interp, free it. */ 1503 if (bprm->interp != bprm->filename) 1504 kfree(bprm->interp); 1505 kfree(bprm->fdpath); 1506 kfree(bprm); 1507 } 1508 1509 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags) 1510 { 1511 struct linux_binprm *bprm; 1512 struct file *file; 1513 int retval = -ENOMEM; 1514 1515 file = do_open_execat(fd, filename, flags); 1516 if (IS_ERR(file)) 1517 return ERR_CAST(file); 1518 1519 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1520 if (!bprm) { 1521 do_close_execat(file); 1522 return ERR_PTR(-ENOMEM); 1523 } 1524 1525 bprm->file = file; 1526 1527 if (fd == AT_FDCWD || filename->name[0] == '/') { 1528 bprm->filename = filename->name; 1529 } else { 1530 if (filename->name[0] == '\0') 1531 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1532 else 1533 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1534 fd, filename->name); 1535 if (!bprm->fdpath) 1536 goto out_free; 1537 1538 /* 1539 * Record that a name derived from an O_CLOEXEC fd will be 1540 * inaccessible after exec. This allows the code in exec to 1541 * choose to fail when the executable is not mmaped into the 1542 * interpreter and an open file descriptor is not passed to 1543 * the interpreter. This makes for a better user experience 1544 * than having the interpreter start and then immediately fail 1545 * when it finds the executable is inaccessible. 1546 */ 1547 if (get_close_on_exec(fd)) 1548 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1549 1550 bprm->filename = bprm->fdpath; 1551 } 1552 bprm->interp = bprm->filename; 1553 1554 retval = bprm_mm_init(bprm); 1555 if (!retval) 1556 return bprm; 1557 1558 out_free: 1559 free_bprm(bprm); 1560 return ERR_PTR(retval); 1561 } 1562 1563 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1564 { 1565 /* If a binfmt changed the interp, free it first. */ 1566 if (bprm->interp != bprm->filename) 1567 kfree(bprm->interp); 1568 bprm->interp = kstrdup(interp, GFP_KERNEL); 1569 if (!bprm->interp) 1570 return -ENOMEM; 1571 return 0; 1572 } 1573 EXPORT_SYMBOL(bprm_change_interp); 1574 1575 /* 1576 * determine how safe it is to execute the proposed program 1577 * - the caller must hold ->cred_guard_mutex to protect against 1578 * PTRACE_ATTACH or seccomp thread-sync 1579 */ 1580 static void check_unsafe_exec(struct linux_binprm *bprm) 1581 { 1582 struct task_struct *p = current, *t; 1583 unsigned n_fs; 1584 1585 if (p->ptrace) 1586 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1587 1588 /* 1589 * This isn't strictly necessary, but it makes it harder for LSMs to 1590 * mess up. 1591 */ 1592 if (task_no_new_privs(current)) 1593 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1594 1595 /* 1596 * If another task is sharing our fs, we cannot safely 1597 * suid exec because the differently privileged task 1598 * will be able to manipulate the current directory, etc. 1599 * It would be nice to force an unshare instead... 1600 */ 1601 n_fs = 1; 1602 spin_lock(&p->fs->lock); 1603 rcu_read_lock(); 1604 for_other_threads(p, t) { 1605 if (t->fs == p->fs) 1606 n_fs++; 1607 } 1608 rcu_read_unlock(); 1609 1610 /* "users" and "in_exec" locked for copy_fs() */ 1611 if (p->fs->users > n_fs) 1612 bprm->unsafe |= LSM_UNSAFE_SHARE; 1613 else 1614 p->fs->in_exec = 1; 1615 spin_unlock(&p->fs->lock); 1616 } 1617 1618 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1619 { 1620 /* Handle suid and sgid on files */ 1621 struct mnt_idmap *idmap; 1622 struct inode *inode = file_inode(file); 1623 unsigned int mode; 1624 vfsuid_t vfsuid; 1625 vfsgid_t vfsgid; 1626 int err; 1627 1628 if (!mnt_may_suid(file->f_path.mnt)) 1629 return; 1630 1631 if (task_no_new_privs(current)) 1632 return; 1633 1634 mode = READ_ONCE(inode->i_mode); 1635 if (!(mode & (S_ISUID|S_ISGID))) 1636 return; 1637 1638 idmap = file_mnt_idmap(file); 1639 1640 /* Be careful if suid/sgid is set */ 1641 inode_lock(inode); 1642 1643 /* Atomically reload and check mode/uid/gid now that lock held. */ 1644 mode = inode->i_mode; 1645 vfsuid = i_uid_into_vfsuid(idmap, inode); 1646 vfsgid = i_gid_into_vfsgid(idmap, inode); 1647 err = inode_permission(idmap, inode, MAY_EXEC); 1648 inode_unlock(inode); 1649 1650 /* Did the exec bit vanish out from under us? Give up. */ 1651 if (err) 1652 return; 1653 1654 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1655 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1656 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1657 return; 1658 1659 if (mode & S_ISUID) { 1660 bprm->per_clear |= PER_CLEAR_ON_SETID; 1661 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1662 } 1663 1664 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1665 bprm->per_clear |= PER_CLEAR_ON_SETID; 1666 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1667 } 1668 } 1669 1670 /* 1671 * Compute brpm->cred based upon the final binary. 1672 */ 1673 static int bprm_creds_from_file(struct linux_binprm *bprm) 1674 { 1675 /* Compute creds based on which file? */ 1676 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1677 1678 bprm_fill_uid(bprm, file); 1679 return security_bprm_creds_from_file(bprm, file); 1680 } 1681 1682 /* 1683 * Fill the binprm structure from the inode. 1684 * Read the first BINPRM_BUF_SIZE bytes 1685 * 1686 * This may be called multiple times for binary chains (scripts for example). 1687 */ 1688 static int prepare_binprm(struct linux_binprm *bprm) 1689 { 1690 loff_t pos = 0; 1691 1692 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1693 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1694 } 1695 1696 /* 1697 * Arguments are '\0' separated strings found at the location bprm->p 1698 * points to; chop off the first by relocating brpm->p to right after 1699 * the first '\0' encountered. 1700 */ 1701 int remove_arg_zero(struct linux_binprm *bprm) 1702 { 1703 unsigned long offset; 1704 char *kaddr; 1705 struct page *page; 1706 1707 if (!bprm->argc) 1708 return 0; 1709 1710 do { 1711 offset = bprm->p & ~PAGE_MASK; 1712 page = get_arg_page(bprm, bprm->p, 0); 1713 if (!page) 1714 return -EFAULT; 1715 kaddr = kmap_local_page(page); 1716 1717 for (; offset < PAGE_SIZE && kaddr[offset]; 1718 offset++, bprm->p++) 1719 ; 1720 1721 kunmap_local(kaddr); 1722 put_arg_page(page); 1723 } while (offset == PAGE_SIZE); 1724 1725 bprm->p++; 1726 bprm->argc--; 1727 1728 return 0; 1729 } 1730 EXPORT_SYMBOL(remove_arg_zero); 1731 1732 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1733 /* 1734 * cycle the list of binary formats handler, until one recognizes the image 1735 */ 1736 static int search_binary_handler(struct linux_binprm *bprm) 1737 { 1738 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1739 struct linux_binfmt *fmt; 1740 int retval; 1741 1742 retval = prepare_binprm(bprm); 1743 if (retval < 0) 1744 return retval; 1745 1746 retval = security_bprm_check(bprm); 1747 if (retval) 1748 return retval; 1749 1750 retval = -ENOENT; 1751 retry: 1752 read_lock(&binfmt_lock); 1753 list_for_each_entry(fmt, &formats, lh) { 1754 if (!try_module_get(fmt->module)) 1755 continue; 1756 read_unlock(&binfmt_lock); 1757 1758 retval = fmt->load_binary(bprm); 1759 1760 read_lock(&binfmt_lock); 1761 put_binfmt(fmt); 1762 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1763 read_unlock(&binfmt_lock); 1764 return retval; 1765 } 1766 } 1767 read_unlock(&binfmt_lock); 1768 1769 if (need_retry) { 1770 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1771 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1772 return retval; 1773 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1774 return retval; 1775 need_retry = false; 1776 goto retry; 1777 } 1778 1779 return retval; 1780 } 1781 1782 /* binfmt handlers will call back into begin_new_exec() on success. */ 1783 static int exec_binprm(struct linux_binprm *bprm) 1784 { 1785 pid_t old_pid, old_vpid; 1786 int ret, depth; 1787 1788 /* Need to fetch pid before load_binary changes it */ 1789 old_pid = current->pid; 1790 rcu_read_lock(); 1791 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1792 rcu_read_unlock(); 1793 1794 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1795 for (depth = 0;; depth++) { 1796 struct file *exec; 1797 if (depth > 5) 1798 return -ELOOP; 1799 1800 ret = search_binary_handler(bprm); 1801 if (ret < 0) 1802 return ret; 1803 if (!bprm->interpreter) 1804 break; 1805 1806 exec = bprm->file; 1807 bprm->file = bprm->interpreter; 1808 bprm->interpreter = NULL; 1809 1810 if (unlikely(bprm->have_execfd)) { 1811 if (bprm->executable) { 1812 fput(exec); 1813 return -ENOEXEC; 1814 } 1815 bprm->executable = exec; 1816 } else 1817 fput(exec); 1818 } 1819 1820 audit_bprm(bprm); 1821 trace_sched_process_exec(current, old_pid, bprm); 1822 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1823 proc_exec_connector(current); 1824 return 0; 1825 } 1826 1827 static int bprm_execve(struct linux_binprm *bprm) 1828 { 1829 int retval; 1830 1831 retval = prepare_bprm_creds(bprm); 1832 if (retval) 1833 return retval; 1834 1835 /* 1836 * Check for unsafe execution states before exec_binprm(), which 1837 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1838 * where setuid-ness is evaluated. 1839 */ 1840 check_unsafe_exec(bprm); 1841 current->in_execve = 1; 1842 sched_mm_cid_before_execve(current); 1843 1844 sched_exec(); 1845 1846 /* Set the unchanging part of bprm->cred */ 1847 retval = security_bprm_creds_for_exec(bprm); 1848 if (retval) 1849 goto out; 1850 1851 retval = exec_binprm(bprm); 1852 if (retval < 0) 1853 goto out; 1854 1855 sched_mm_cid_after_execve(current); 1856 /* execve succeeded */ 1857 current->fs->in_exec = 0; 1858 current->in_execve = 0; 1859 rseq_execve(current); 1860 user_events_execve(current); 1861 acct_update_integrals(current); 1862 task_numa_free(current, false); 1863 return retval; 1864 1865 out: 1866 /* 1867 * If past the point of no return ensure the code never 1868 * returns to the userspace process. Use an existing fatal 1869 * signal if present otherwise terminate the process with 1870 * SIGSEGV. 1871 */ 1872 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1873 force_fatal_sig(SIGSEGV); 1874 1875 sched_mm_cid_after_execve(current); 1876 current->fs->in_exec = 0; 1877 current->in_execve = 0; 1878 1879 return retval; 1880 } 1881 1882 static int do_execveat_common(int fd, struct filename *filename, 1883 struct user_arg_ptr argv, 1884 struct user_arg_ptr envp, 1885 int flags) 1886 { 1887 struct linux_binprm *bprm; 1888 int retval; 1889 1890 if (IS_ERR(filename)) 1891 return PTR_ERR(filename); 1892 1893 /* 1894 * We move the actual failure in case of RLIMIT_NPROC excess from 1895 * set*uid() to execve() because too many poorly written programs 1896 * don't check setuid() return code. Here we additionally recheck 1897 * whether NPROC limit is still exceeded. 1898 */ 1899 if ((current->flags & PF_NPROC_EXCEEDED) && 1900 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1901 retval = -EAGAIN; 1902 goto out_ret; 1903 } 1904 1905 /* We're below the limit (still or again), so we don't want to make 1906 * further execve() calls fail. */ 1907 current->flags &= ~PF_NPROC_EXCEEDED; 1908 1909 bprm = alloc_bprm(fd, filename, flags); 1910 if (IS_ERR(bprm)) { 1911 retval = PTR_ERR(bprm); 1912 goto out_ret; 1913 } 1914 1915 retval = count(argv, MAX_ARG_STRINGS); 1916 if (retval == 0) 1917 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1918 current->comm, bprm->filename); 1919 if (retval < 0) 1920 goto out_free; 1921 bprm->argc = retval; 1922 1923 retval = count(envp, MAX_ARG_STRINGS); 1924 if (retval < 0) 1925 goto out_free; 1926 bprm->envc = retval; 1927 1928 retval = bprm_stack_limits(bprm); 1929 if (retval < 0) 1930 goto out_free; 1931 1932 retval = copy_string_kernel(bprm->filename, bprm); 1933 if (retval < 0) 1934 goto out_free; 1935 bprm->exec = bprm->p; 1936 1937 retval = copy_strings(bprm->envc, envp, bprm); 1938 if (retval < 0) 1939 goto out_free; 1940 1941 retval = copy_strings(bprm->argc, argv, bprm); 1942 if (retval < 0) 1943 goto out_free; 1944 1945 /* 1946 * When argv is empty, add an empty string ("") as argv[0] to 1947 * ensure confused userspace programs that start processing 1948 * from argv[1] won't end up walking envp. See also 1949 * bprm_stack_limits(). 1950 */ 1951 if (bprm->argc == 0) { 1952 retval = copy_string_kernel("", bprm); 1953 if (retval < 0) 1954 goto out_free; 1955 bprm->argc = 1; 1956 } 1957 1958 retval = bprm_execve(bprm); 1959 out_free: 1960 free_bprm(bprm); 1961 1962 out_ret: 1963 putname(filename); 1964 return retval; 1965 } 1966 1967 int kernel_execve(const char *kernel_filename, 1968 const char *const *argv, const char *const *envp) 1969 { 1970 struct filename *filename; 1971 struct linux_binprm *bprm; 1972 int fd = AT_FDCWD; 1973 int retval; 1974 1975 /* It is non-sense for kernel threads to call execve */ 1976 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1977 return -EINVAL; 1978 1979 filename = getname_kernel(kernel_filename); 1980 if (IS_ERR(filename)) 1981 return PTR_ERR(filename); 1982 1983 bprm = alloc_bprm(fd, filename, 0); 1984 if (IS_ERR(bprm)) { 1985 retval = PTR_ERR(bprm); 1986 goto out_ret; 1987 } 1988 1989 retval = count_strings_kernel(argv); 1990 if (WARN_ON_ONCE(retval == 0)) 1991 retval = -EINVAL; 1992 if (retval < 0) 1993 goto out_free; 1994 bprm->argc = retval; 1995 1996 retval = count_strings_kernel(envp); 1997 if (retval < 0) 1998 goto out_free; 1999 bprm->envc = retval; 2000 2001 retval = bprm_stack_limits(bprm); 2002 if (retval < 0) 2003 goto out_free; 2004 2005 retval = copy_string_kernel(bprm->filename, bprm); 2006 if (retval < 0) 2007 goto out_free; 2008 bprm->exec = bprm->p; 2009 2010 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2011 if (retval < 0) 2012 goto out_free; 2013 2014 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2015 if (retval < 0) 2016 goto out_free; 2017 2018 retval = bprm_execve(bprm); 2019 out_free: 2020 free_bprm(bprm); 2021 out_ret: 2022 putname(filename); 2023 return retval; 2024 } 2025 2026 static int do_execve(struct filename *filename, 2027 const char __user *const __user *__argv, 2028 const char __user *const __user *__envp) 2029 { 2030 struct user_arg_ptr argv = { .ptr.native = __argv }; 2031 struct user_arg_ptr envp = { .ptr.native = __envp }; 2032 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2033 } 2034 2035 static int do_execveat(int fd, struct filename *filename, 2036 const char __user *const __user *__argv, 2037 const char __user *const __user *__envp, 2038 int flags) 2039 { 2040 struct user_arg_ptr argv = { .ptr.native = __argv }; 2041 struct user_arg_ptr envp = { .ptr.native = __envp }; 2042 2043 return do_execveat_common(fd, filename, argv, envp, flags); 2044 } 2045 2046 #ifdef CONFIG_COMPAT 2047 static int compat_do_execve(struct filename *filename, 2048 const compat_uptr_t __user *__argv, 2049 const compat_uptr_t __user *__envp) 2050 { 2051 struct user_arg_ptr argv = { 2052 .is_compat = true, 2053 .ptr.compat = __argv, 2054 }; 2055 struct user_arg_ptr envp = { 2056 .is_compat = true, 2057 .ptr.compat = __envp, 2058 }; 2059 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2060 } 2061 2062 static int compat_do_execveat(int fd, struct filename *filename, 2063 const compat_uptr_t __user *__argv, 2064 const compat_uptr_t __user *__envp, 2065 int flags) 2066 { 2067 struct user_arg_ptr argv = { 2068 .is_compat = true, 2069 .ptr.compat = __argv, 2070 }; 2071 struct user_arg_ptr envp = { 2072 .is_compat = true, 2073 .ptr.compat = __envp, 2074 }; 2075 return do_execveat_common(fd, filename, argv, envp, flags); 2076 } 2077 #endif 2078 2079 void set_binfmt(struct linux_binfmt *new) 2080 { 2081 struct mm_struct *mm = current->mm; 2082 2083 if (mm->binfmt) 2084 module_put(mm->binfmt->module); 2085 2086 mm->binfmt = new; 2087 if (new) 2088 __module_get(new->module); 2089 } 2090 EXPORT_SYMBOL(set_binfmt); 2091 2092 /* 2093 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2094 */ 2095 void set_dumpable(struct mm_struct *mm, int value) 2096 { 2097 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2098 return; 2099 2100 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2101 } 2102 2103 SYSCALL_DEFINE3(execve, 2104 const char __user *, filename, 2105 const char __user *const __user *, argv, 2106 const char __user *const __user *, envp) 2107 { 2108 return do_execve(getname(filename), argv, envp); 2109 } 2110 2111 SYSCALL_DEFINE5(execveat, 2112 int, fd, const char __user *, filename, 2113 const char __user *const __user *, argv, 2114 const char __user *const __user *, envp, 2115 int, flags) 2116 { 2117 return do_execveat(fd, 2118 getname_uflags(filename, flags), 2119 argv, envp, flags); 2120 } 2121 2122 #ifdef CONFIG_COMPAT 2123 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2124 const compat_uptr_t __user *, argv, 2125 const compat_uptr_t __user *, envp) 2126 { 2127 return compat_do_execve(getname(filename), argv, envp); 2128 } 2129 2130 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2131 const char __user *, filename, 2132 const compat_uptr_t __user *, argv, 2133 const compat_uptr_t __user *, envp, 2134 int, flags) 2135 { 2136 return compat_do_execveat(fd, 2137 getname_uflags(filename, flags), 2138 argv, envp, flags); 2139 } 2140 #endif 2141 2142 #ifdef CONFIG_SYSCTL 2143 2144 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write, 2145 void *buffer, size_t *lenp, loff_t *ppos) 2146 { 2147 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2148 2149 if (!error) 2150 validate_coredump_safety(); 2151 return error; 2152 } 2153 2154 static struct ctl_table fs_exec_sysctls[] = { 2155 { 2156 .procname = "suid_dumpable", 2157 .data = &suid_dumpable, 2158 .maxlen = sizeof(int), 2159 .mode = 0644, 2160 .proc_handler = proc_dointvec_minmax_coredump, 2161 .extra1 = SYSCTL_ZERO, 2162 .extra2 = SYSCTL_TWO, 2163 }, 2164 }; 2165 2166 static int __init init_fs_exec_sysctls(void) 2167 { 2168 register_sysctl_init("fs", fs_exec_sysctls); 2169 return 0; 2170 } 2171 2172 fs_initcall(init_fs_exec_sysctls); 2173 #endif /* CONFIG_SYSCTL */ 2174 2175 #ifdef CONFIG_EXEC_KUNIT_TEST 2176 #include "tests/exec_kunit.c" 2177 #endif 2178