xref: /linux/fs/exec.c (revision 9bfbaa5e44c52422a046ce291469c8ebeb6c475d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
71 
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/tlb.h>
75 
76 #include <trace/events/task.h>
77 #include "internal.h"
78 
79 #include <trace/events/sched.h>
80 
81 static int bprm_creds_from_file(struct linux_binprm *bprm);
82 
83 int suid_dumpable = 0;
84 
85 static LIST_HEAD(formats);
86 static DEFINE_RWLOCK(binfmt_lock);
87 
88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
89 {
90 	write_lock(&binfmt_lock);
91 	insert ? list_add(&fmt->lh, &formats) :
92 		 list_add_tail(&fmt->lh, &formats);
93 	write_unlock(&binfmt_lock);
94 }
95 
96 EXPORT_SYMBOL(__register_binfmt);
97 
98 void unregister_binfmt(struct linux_binfmt * fmt)
99 {
100 	write_lock(&binfmt_lock);
101 	list_del(&fmt->lh);
102 	write_unlock(&binfmt_lock);
103 }
104 
105 EXPORT_SYMBOL(unregister_binfmt);
106 
107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109 	module_put(fmt->module);
110 }
111 
112 bool path_noexec(const struct path *path)
113 {
114 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117 
118 #ifdef CONFIG_USELIB
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from the file itself.
124  */
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 	struct linux_binfmt *fmt;
128 	struct file *file;
129 	struct filename *tmp = getname(library);
130 	int error = PTR_ERR(tmp);
131 	static const struct open_flags uselib_flags = {
132 		.open_flag = O_LARGEFILE | O_RDONLY,
133 		.acc_mode = MAY_READ | MAY_EXEC,
134 		.intent = LOOKUP_OPEN,
135 		.lookup_flags = LOOKUP_FOLLOW,
136 	};
137 
138 	if (IS_ERR(tmp))
139 		goto out;
140 
141 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 	putname(tmp);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	/*
148 	 * may_open() has already checked for this, so it should be
149 	 * impossible to trip now. But we need to be extra cautious
150 	 * and check again at the very end too.
151 	 */
152 	error = -EACCES;
153 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154 			 path_noexec(&file->f_path)))
155 		goto exit;
156 
157 	error = -ENOEXEC;
158 
159 	read_lock(&binfmt_lock);
160 	list_for_each_entry(fmt, &formats, lh) {
161 		if (!fmt->load_shlib)
162 			continue;
163 		if (!try_module_get(fmt->module))
164 			continue;
165 		read_unlock(&binfmt_lock);
166 		error = fmt->load_shlib(file);
167 		read_lock(&binfmt_lock);
168 		put_binfmt(fmt);
169 		if (error != -ENOEXEC)
170 			break;
171 	}
172 	read_unlock(&binfmt_lock);
173 exit:
174 	fput(file);
175 out:
176 	return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179 
180 #ifdef CONFIG_MMU
181 /*
182  * The nascent bprm->mm is not visible until exec_mmap() but it can
183  * use a lot of memory, account these pages in current->mm temporary
184  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185  * change the counter back via acct_arg_size(0).
186  */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 	struct mm_struct *mm = current->mm;
190 	long diff = (long)(pages - bprm->vma_pages);
191 
192 	if (!mm || !diff)
193 		return;
194 
195 	bprm->vma_pages = pages;
196 	add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198 
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 		int write)
201 {
202 	struct page *page;
203 	struct vm_area_struct *vma = bprm->vma;
204 	struct mm_struct *mm = bprm->mm;
205 	int ret;
206 
207 	/*
208 	 * Avoid relying on expanding the stack down in GUP (which
209 	 * does not work for STACK_GROWSUP anyway), and just do it
210 	 * by hand ahead of time.
211 	 */
212 	if (write && pos < vma->vm_start) {
213 		mmap_write_lock(mm);
214 		ret = expand_downwards(vma, pos);
215 		if (unlikely(ret < 0)) {
216 			mmap_write_unlock(mm);
217 			return NULL;
218 		}
219 		mmap_write_downgrade(mm);
220 	} else
221 		mmap_read_lock(mm);
222 
223 	/*
224 	 * We are doing an exec().  'current' is the process
225 	 * doing the exec and 'mm' is the new process's mm.
226 	 */
227 	ret = get_user_pages_remote(mm, pos, 1,
228 			write ? FOLL_WRITE : 0,
229 			&page, NULL);
230 	mmap_read_unlock(mm);
231 	if (ret <= 0)
232 		return NULL;
233 
234 	if (write)
235 		acct_arg_size(bprm, vma_pages(vma));
236 
237 	return page;
238 }
239 
240 static void put_arg_page(struct page *page)
241 {
242 	put_page(page);
243 }
244 
245 static void free_arg_pages(struct linux_binprm *bprm)
246 {
247 }
248 
249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250 		struct page *page)
251 {
252 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 }
254 
255 static int __bprm_mm_init(struct linux_binprm *bprm)
256 {
257 	int err;
258 	struct vm_area_struct *vma = NULL;
259 	struct mm_struct *mm = bprm->mm;
260 
261 	bprm->vma = vma = vm_area_alloc(mm);
262 	if (!vma)
263 		return -ENOMEM;
264 	vma_set_anonymous(vma);
265 
266 	if (mmap_write_lock_killable(mm)) {
267 		err = -EINTR;
268 		goto err_free;
269 	}
270 
271 	/*
272 	 * Need to be called with mmap write lock
273 	 * held, to avoid race with ksmd.
274 	 */
275 	err = ksm_execve(mm);
276 	if (err)
277 		goto err_ksm;
278 
279 	/*
280 	 * Place the stack at the largest stack address the architecture
281 	 * supports. Later, we'll move this to an appropriate place. We don't
282 	 * use STACK_TOP because that can depend on attributes which aren't
283 	 * configured yet.
284 	 */
285 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286 	vma->vm_end = STACK_TOP_MAX;
287 	vma->vm_start = vma->vm_end - PAGE_SIZE;
288 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
289 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
290 
291 	err = insert_vm_struct(mm, vma);
292 	if (err)
293 		goto err;
294 
295 	mm->stack_vm = mm->total_vm = 1;
296 	mmap_write_unlock(mm);
297 	bprm->p = vma->vm_end - sizeof(void *);
298 	return 0;
299 err:
300 	ksm_exit(mm);
301 err_ksm:
302 	mmap_write_unlock(mm);
303 err_free:
304 	bprm->vma = NULL;
305 	vm_area_free(vma);
306 	return err;
307 }
308 
309 static bool valid_arg_len(struct linux_binprm *bprm, long len)
310 {
311 	return len <= MAX_ARG_STRLEN;
312 }
313 
314 #else
315 
316 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
317 {
318 }
319 
320 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
321 		int write)
322 {
323 	struct page *page;
324 
325 	page = bprm->page[pos / PAGE_SIZE];
326 	if (!page && write) {
327 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
328 		if (!page)
329 			return NULL;
330 		bprm->page[pos / PAGE_SIZE] = page;
331 	}
332 
333 	return page;
334 }
335 
336 static void put_arg_page(struct page *page)
337 {
338 }
339 
340 static void free_arg_page(struct linux_binprm *bprm, int i)
341 {
342 	if (bprm->page[i]) {
343 		__free_page(bprm->page[i]);
344 		bprm->page[i] = NULL;
345 	}
346 }
347 
348 static void free_arg_pages(struct linux_binprm *bprm)
349 {
350 	int i;
351 
352 	for (i = 0; i < MAX_ARG_PAGES; i++)
353 		free_arg_page(bprm, i);
354 }
355 
356 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
357 		struct page *page)
358 {
359 }
360 
361 static int __bprm_mm_init(struct linux_binprm *bprm)
362 {
363 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
364 	return 0;
365 }
366 
367 static bool valid_arg_len(struct linux_binprm *bprm, long len)
368 {
369 	return len <= bprm->p;
370 }
371 
372 #endif /* CONFIG_MMU */
373 
374 /*
375  * Create a new mm_struct and populate it with a temporary stack
376  * vm_area_struct.  We don't have enough context at this point to set the stack
377  * flags, permissions, and offset, so we use temporary values.  We'll update
378  * them later in setup_arg_pages().
379  */
380 static int bprm_mm_init(struct linux_binprm *bprm)
381 {
382 	int err;
383 	struct mm_struct *mm = NULL;
384 
385 	bprm->mm = mm = mm_alloc();
386 	err = -ENOMEM;
387 	if (!mm)
388 		goto err;
389 
390 	/* Save current stack limit for all calculations made during exec. */
391 	task_lock(current->group_leader);
392 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
393 	task_unlock(current->group_leader);
394 
395 	err = __bprm_mm_init(bprm);
396 	if (err)
397 		goto err;
398 
399 	return 0;
400 
401 err:
402 	if (mm) {
403 		bprm->mm = NULL;
404 		mmdrop(mm);
405 	}
406 
407 	return err;
408 }
409 
410 struct user_arg_ptr {
411 #ifdef CONFIG_COMPAT
412 	bool is_compat;
413 #endif
414 	union {
415 		const char __user *const __user *native;
416 #ifdef CONFIG_COMPAT
417 		const compat_uptr_t __user *compat;
418 #endif
419 	} ptr;
420 };
421 
422 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
423 {
424 	const char __user *native;
425 
426 #ifdef CONFIG_COMPAT
427 	if (unlikely(argv.is_compat)) {
428 		compat_uptr_t compat;
429 
430 		if (get_user(compat, argv.ptr.compat + nr))
431 			return ERR_PTR(-EFAULT);
432 
433 		return compat_ptr(compat);
434 	}
435 #endif
436 
437 	if (get_user(native, argv.ptr.native + nr))
438 		return ERR_PTR(-EFAULT);
439 
440 	return native;
441 }
442 
443 /*
444  * count() counts the number of strings in array ARGV.
445  */
446 static int count(struct user_arg_ptr argv, int max)
447 {
448 	int i = 0;
449 
450 	if (argv.ptr.native != NULL) {
451 		for (;;) {
452 			const char __user *p = get_user_arg_ptr(argv, i);
453 
454 			if (!p)
455 				break;
456 
457 			if (IS_ERR(p))
458 				return -EFAULT;
459 
460 			if (i >= max)
461 				return -E2BIG;
462 			++i;
463 
464 			if (fatal_signal_pending(current))
465 				return -ERESTARTNOHAND;
466 			cond_resched();
467 		}
468 	}
469 	return i;
470 }
471 
472 static int count_strings_kernel(const char *const *argv)
473 {
474 	int i;
475 
476 	if (!argv)
477 		return 0;
478 
479 	for (i = 0; argv[i]; ++i) {
480 		if (i >= MAX_ARG_STRINGS)
481 			return -E2BIG;
482 		if (fatal_signal_pending(current))
483 			return -ERESTARTNOHAND;
484 		cond_resched();
485 	}
486 	return i;
487 }
488 
489 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
490 				       unsigned long limit)
491 {
492 #ifdef CONFIG_MMU
493 	/* Avoid a pathological bprm->p. */
494 	if (bprm->p < limit)
495 		return -E2BIG;
496 	bprm->argmin = bprm->p - limit;
497 #endif
498 	return 0;
499 }
500 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
501 {
502 #ifdef CONFIG_MMU
503 	return bprm->p < bprm->argmin;
504 #else
505 	return false;
506 #endif
507 }
508 
509 /*
510  * Calculate bprm->argmin from:
511  * - _STK_LIM
512  * - ARG_MAX
513  * - bprm->rlim_stack.rlim_cur
514  * - bprm->argc
515  * - bprm->envc
516  * - bprm->p
517  */
518 static int bprm_stack_limits(struct linux_binprm *bprm)
519 {
520 	unsigned long limit, ptr_size;
521 
522 	/*
523 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
524 	 * (whichever is smaller) for the argv+env strings.
525 	 * This ensures that:
526 	 *  - the remaining binfmt code will not run out of stack space,
527 	 *  - the program will have a reasonable amount of stack left
528 	 *    to work from.
529 	 */
530 	limit = _STK_LIM / 4 * 3;
531 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
532 	/*
533 	 * We've historically supported up to 32 pages (ARG_MAX)
534 	 * of argument strings even with small stacks
535 	 */
536 	limit = max_t(unsigned long, limit, ARG_MAX);
537 	/* Reject totally pathological counts. */
538 	if (bprm->argc < 0 || bprm->envc < 0)
539 		return -E2BIG;
540 	/*
541 	 * We must account for the size of all the argv and envp pointers to
542 	 * the argv and envp strings, since they will also take up space in
543 	 * the stack. They aren't stored until much later when we can't
544 	 * signal to the parent that the child has run out of stack space.
545 	 * Instead, calculate it here so it's possible to fail gracefully.
546 	 *
547 	 * In the case of argc = 0, make sure there is space for adding a
548 	 * empty string (which will bump argc to 1), to ensure confused
549 	 * userspace programs don't start processing from argv[1], thinking
550 	 * argc can never be 0, to keep them from walking envp by accident.
551 	 * See do_execveat_common().
552 	 */
553 	if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
554 	    check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
555 		return -E2BIG;
556 	if (limit <= ptr_size)
557 		return -E2BIG;
558 	limit -= ptr_size;
559 
560 	return bprm_set_stack_limit(bprm, limit);
561 }
562 
563 /*
564  * 'copy_strings()' copies argument/environment strings from the old
565  * processes's memory to the new process's stack.  The call to get_user_pages()
566  * ensures the destination page is created and not swapped out.
567  */
568 static int copy_strings(int argc, struct user_arg_ptr argv,
569 			struct linux_binprm *bprm)
570 {
571 	struct page *kmapped_page = NULL;
572 	char *kaddr = NULL;
573 	unsigned long kpos = 0;
574 	int ret;
575 
576 	while (argc-- > 0) {
577 		const char __user *str;
578 		int len;
579 		unsigned long pos;
580 
581 		ret = -EFAULT;
582 		str = get_user_arg_ptr(argv, argc);
583 		if (IS_ERR(str))
584 			goto out;
585 
586 		len = strnlen_user(str, MAX_ARG_STRLEN);
587 		if (!len)
588 			goto out;
589 
590 		ret = -E2BIG;
591 		if (!valid_arg_len(bprm, len))
592 			goto out;
593 
594 		/* We're going to work our way backwards. */
595 		pos = bprm->p;
596 		str += len;
597 		bprm->p -= len;
598 		if (bprm_hit_stack_limit(bprm))
599 			goto out;
600 
601 		while (len > 0) {
602 			int offset, bytes_to_copy;
603 
604 			if (fatal_signal_pending(current)) {
605 				ret = -ERESTARTNOHAND;
606 				goto out;
607 			}
608 			cond_resched();
609 
610 			offset = pos % PAGE_SIZE;
611 			if (offset == 0)
612 				offset = PAGE_SIZE;
613 
614 			bytes_to_copy = offset;
615 			if (bytes_to_copy > len)
616 				bytes_to_copy = len;
617 
618 			offset -= bytes_to_copy;
619 			pos -= bytes_to_copy;
620 			str -= bytes_to_copy;
621 			len -= bytes_to_copy;
622 
623 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
624 				struct page *page;
625 
626 				page = get_arg_page(bprm, pos, 1);
627 				if (!page) {
628 					ret = -E2BIG;
629 					goto out;
630 				}
631 
632 				if (kmapped_page) {
633 					flush_dcache_page(kmapped_page);
634 					kunmap_local(kaddr);
635 					put_arg_page(kmapped_page);
636 				}
637 				kmapped_page = page;
638 				kaddr = kmap_local_page(kmapped_page);
639 				kpos = pos & PAGE_MASK;
640 				flush_arg_page(bprm, kpos, kmapped_page);
641 			}
642 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
643 				ret = -EFAULT;
644 				goto out;
645 			}
646 		}
647 	}
648 	ret = 0;
649 out:
650 	if (kmapped_page) {
651 		flush_dcache_page(kmapped_page);
652 		kunmap_local(kaddr);
653 		put_arg_page(kmapped_page);
654 	}
655 	return ret;
656 }
657 
658 /*
659  * Copy and argument/environment string from the kernel to the processes stack.
660  */
661 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
662 {
663 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
664 	unsigned long pos = bprm->p;
665 
666 	if (len == 0)
667 		return -EFAULT;
668 	if (!valid_arg_len(bprm, len))
669 		return -E2BIG;
670 
671 	/* We're going to work our way backwards. */
672 	arg += len;
673 	bprm->p -= len;
674 	if (bprm_hit_stack_limit(bprm))
675 		return -E2BIG;
676 
677 	while (len > 0) {
678 		unsigned int bytes_to_copy = min_t(unsigned int, len,
679 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
680 		struct page *page;
681 
682 		pos -= bytes_to_copy;
683 		arg -= bytes_to_copy;
684 		len -= bytes_to_copy;
685 
686 		page = get_arg_page(bprm, pos, 1);
687 		if (!page)
688 			return -E2BIG;
689 		flush_arg_page(bprm, pos & PAGE_MASK, page);
690 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
691 		put_arg_page(page);
692 	}
693 
694 	return 0;
695 }
696 EXPORT_SYMBOL(copy_string_kernel);
697 
698 static int copy_strings_kernel(int argc, const char *const *argv,
699 			       struct linux_binprm *bprm)
700 {
701 	while (argc-- > 0) {
702 		int ret = copy_string_kernel(argv[argc], bprm);
703 		if (ret < 0)
704 			return ret;
705 		if (fatal_signal_pending(current))
706 			return -ERESTARTNOHAND;
707 		cond_resched();
708 	}
709 	return 0;
710 }
711 
712 #ifdef CONFIG_MMU
713 
714 /*
715  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
716  * the stack is optionally relocated, and some extra space is added.
717  */
718 int setup_arg_pages(struct linux_binprm *bprm,
719 		    unsigned long stack_top,
720 		    int executable_stack)
721 {
722 	unsigned long ret;
723 	unsigned long stack_shift;
724 	struct mm_struct *mm = current->mm;
725 	struct vm_area_struct *vma = bprm->vma;
726 	struct vm_area_struct *prev = NULL;
727 	unsigned long vm_flags;
728 	unsigned long stack_base;
729 	unsigned long stack_size;
730 	unsigned long stack_expand;
731 	unsigned long rlim_stack;
732 	struct mmu_gather tlb;
733 	struct vma_iterator vmi;
734 
735 #ifdef CONFIG_STACK_GROWSUP
736 	/* Limit stack size */
737 	stack_base = bprm->rlim_stack.rlim_max;
738 
739 	stack_base = calc_max_stack_size(stack_base);
740 
741 	/* Add space for stack randomization. */
742 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
743 
744 	/* Make sure we didn't let the argument array grow too large. */
745 	if (vma->vm_end - vma->vm_start > stack_base)
746 		return -ENOMEM;
747 
748 	stack_base = PAGE_ALIGN(stack_top - stack_base);
749 
750 	stack_shift = vma->vm_start - stack_base;
751 	mm->arg_start = bprm->p - stack_shift;
752 	bprm->p = vma->vm_end - stack_shift;
753 #else
754 	stack_top = arch_align_stack(stack_top);
755 	stack_top = PAGE_ALIGN(stack_top);
756 
757 	if (unlikely(stack_top < mmap_min_addr) ||
758 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
759 		return -ENOMEM;
760 
761 	stack_shift = vma->vm_end - stack_top;
762 
763 	bprm->p -= stack_shift;
764 	mm->arg_start = bprm->p;
765 #endif
766 
767 	if (bprm->loader)
768 		bprm->loader -= stack_shift;
769 	bprm->exec -= stack_shift;
770 
771 	if (mmap_write_lock_killable(mm))
772 		return -EINTR;
773 
774 	vm_flags = VM_STACK_FLAGS;
775 
776 	/*
777 	 * Adjust stack execute permissions; explicitly enable for
778 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
779 	 * (arch default) otherwise.
780 	 */
781 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
782 		vm_flags |= VM_EXEC;
783 	else if (executable_stack == EXSTACK_DISABLE_X)
784 		vm_flags &= ~VM_EXEC;
785 	vm_flags |= mm->def_flags;
786 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
787 
788 	vma_iter_init(&vmi, mm, vma->vm_start);
789 
790 	tlb_gather_mmu(&tlb, mm);
791 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
792 			vm_flags);
793 	tlb_finish_mmu(&tlb);
794 
795 	if (ret)
796 		goto out_unlock;
797 	BUG_ON(prev != vma);
798 
799 	if (unlikely(vm_flags & VM_EXEC)) {
800 		pr_warn_once("process '%pD4' started with executable stack\n",
801 			     bprm->file);
802 	}
803 
804 	/* Move stack pages down in memory. */
805 	if (stack_shift) {
806 		/*
807 		 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
808 		 * the binfmt code determines where the new stack should reside, we shift it to
809 		 * its final location.
810 		 */
811 		ret = relocate_vma_down(vma, stack_shift);
812 		if (ret)
813 			goto out_unlock;
814 	}
815 
816 	/* mprotect_fixup is overkill to remove the temporary stack flags */
817 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
818 
819 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
820 	stack_size = vma->vm_end - vma->vm_start;
821 	/*
822 	 * Align this down to a page boundary as expand_stack
823 	 * will align it up.
824 	 */
825 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
826 
827 	stack_expand = min(rlim_stack, stack_size + stack_expand);
828 
829 #ifdef CONFIG_STACK_GROWSUP
830 	stack_base = vma->vm_start + stack_expand;
831 #else
832 	stack_base = vma->vm_end - stack_expand;
833 #endif
834 	current->mm->start_stack = bprm->p;
835 	ret = expand_stack_locked(vma, stack_base);
836 	if (ret)
837 		ret = -EFAULT;
838 
839 out_unlock:
840 	mmap_write_unlock(mm);
841 	return ret;
842 }
843 EXPORT_SYMBOL(setup_arg_pages);
844 
845 #else
846 
847 /*
848  * Transfer the program arguments and environment from the holding pages
849  * onto the stack. The provided stack pointer is adjusted accordingly.
850  */
851 int transfer_args_to_stack(struct linux_binprm *bprm,
852 			   unsigned long *sp_location)
853 {
854 	unsigned long index, stop, sp;
855 	int ret = 0;
856 
857 	stop = bprm->p >> PAGE_SHIFT;
858 	sp = *sp_location;
859 
860 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
861 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
862 		char *src = kmap_local_page(bprm->page[index]) + offset;
863 		sp -= PAGE_SIZE - offset;
864 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
865 			ret = -EFAULT;
866 		kunmap_local(src);
867 		if (ret)
868 			goto out;
869 	}
870 
871 	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
872 	*sp_location = sp;
873 
874 out:
875 	return ret;
876 }
877 EXPORT_SYMBOL(transfer_args_to_stack);
878 
879 #endif /* CONFIG_MMU */
880 
881 /*
882  * On success, caller must call do_close_execat() on the returned
883  * struct file to close it.
884  */
885 static struct file *do_open_execat(int fd, struct filename *name, int flags)
886 {
887 	struct file *file;
888 	int err;
889 	struct open_flags open_exec_flags = {
890 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
891 		.acc_mode = MAY_EXEC,
892 		.intent = LOOKUP_OPEN,
893 		.lookup_flags = LOOKUP_FOLLOW,
894 	};
895 
896 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
897 		return ERR_PTR(-EINVAL);
898 	if (flags & AT_SYMLINK_NOFOLLOW)
899 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
900 	if (flags & AT_EMPTY_PATH)
901 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
902 
903 	file = do_filp_open(fd, name, &open_exec_flags);
904 	if (IS_ERR(file))
905 		goto out;
906 
907 	/*
908 	 * may_open() has already checked for this, so it should be
909 	 * impossible to trip now. But we need to be extra cautious
910 	 * and check again at the very end too.
911 	 */
912 	err = -EACCES;
913 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
914 			 path_noexec(&file->f_path)))
915 		goto exit;
916 
917 out:
918 	return file;
919 
920 exit:
921 	fput(file);
922 	return ERR_PTR(err);
923 }
924 
925 /**
926  * open_exec - Open a path name for execution
927  *
928  * @name: path name to open with the intent of executing it.
929  *
930  * Returns ERR_PTR on failure or allocated struct file on success.
931  *
932  * As this is a wrapper for the internal do_open_execat(). Also see
933  * do_close_execat().
934  */
935 struct file *open_exec(const char *name)
936 {
937 	struct filename *filename = getname_kernel(name);
938 	struct file *f = ERR_CAST(filename);
939 
940 	if (!IS_ERR(filename)) {
941 		f = do_open_execat(AT_FDCWD, filename, 0);
942 		putname(filename);
943 	}
944 	return f;
945 }
946 EXPORT_SYMBOL(open_exec);
947 
948 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
949 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
950 {
951 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
952 	if (res > 0)
953 		flush_icache_user_range(addr, addr + len);
954 	return res;
955 }
956 EXPORT_SYMBOL(read_code);
957 #endif
958 
959 /*
960  * Maps the mm_struct mm into the current task struct.
961  * On success, this function returns with exec_update_lock
962  * held for writing.
963  */
964 static int exec_mmap(struct mm_struct *mm)
965 {
966 	struct task_struct *tsk;
967 	struct mm_struct *old_mm, *active_mm;
968 	int ret;
969 
970 	/* Notify parent that we're no longer interested in the old VM */
971 	tsk = current;
972 	old_mm = current->mm;
973 	exec_mm_release(tsk, old_mm);
974 
975 	ret = down_write_killable(&tsk->signal->exec_update_lock);
976 	if (ret)
977 		return ret;
978 
979 	if (old_mm) {
980 		/*
981 		 * If there is a pending fatal signal perhaps a signal
982 		 * whose default action is to create a coredump get
983 		 * out and die instead of going through with the exec.
984 		 */
985 		ret = mmap_read_lock_killable(old_mm);
986 		if (ret) {
987 			up_write(&tsk->signal->exec_update_lock);
988 			return ret;
989 		}
990 	}
991 
992 	task_lock(tsk);
993 	membarrier_exec_mmap(mm);
994 
995 	local_irq_disable();
996 	active_mm = tsk->active_mm;
997 	tsk->active_mm = mm;
998 	tsk->mm = mm;
999 	mm_init_cid(mm);
1000 	/*
1001 	 * This prevents preemption while active_mm is being loaded and
1002 	 * it and mm are being updated, which could cause problems for
1003 	 * lazy tlb mm refcounting when these are updated by context
1004 	 * switches. Not all architectures can handle irqs off over
1005 	 * activate_mm yet.
1006 	 */
1007 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1008 		local_irq_enable();
1009 	activate_mm(active_mm, mm);
1010 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1011 		local_irq_enable();
1012 	lru_gen_add_mm(mm);
1013 	task_unlock(tsk);
1014 	lru_gen_use_mm(mm);
1015 	if (old_mm) {
1016 		mmap_read_unlock(old_mm);
1017 		BUG_ON(active_mm != old_mm);
1018 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1019 		mm_update_next_owner(old_mm);
1020 		mmput(old_mm);
1021 		return 0;
1022 	}
1023 	mmdrop_lazy_tlb(active_mm);
1024 	return 0;
1025 }
1026 
1027 static int de_thread(struct task_struct *tsk)
1028 {
1029 	struct signal_struct *sig = tsk->signal;
1030 	struct sighand_struct *oldsighand = tsk->sighand;
1031 	spinlock_t *lock = &oldsighand->siglock;
1032 
1033 	if (thread_group_empty(tsk))
1034 		goto no_thread_group;
1035 
1036 	/*
1037 	 * Kill all other threads in the thread group.
1038 	 */
1039 	spin_lock_irq(lock);
1040 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1041 		/*
1042 		 * Another group action in progress, just
1043 		 * return so that the signal is processed.
1044 		 */
1045 		spin_unlock_irq(lock);
1046 		return -EAGAIN;
1047 	}
1048 
1049 	sig->group_exec_task = tsk;
1050 	sig->notify_count = zap_other_threads(tsk);
1051 	if (!thread_group_leader(tsk))
1052 		sig->notify_count--;
1053 
1054 	while (sig->notify_count) {
1055 		__set_current_state(TASK_KILLABLE);
1056 		spin_unlock_irq(lock);
1057 		schedule();
1058 		if (__fatal_signal_pending(tsk))
1059 			goto killed;
1060 		spin_lock_irq(lock);
1061 	}
1062 	spin_unlock_irq(lock);
1063 
1064 	/*
1065 	 * At this point all other threads have exited, all we have to
1066 	 * do is to wait for the thread group leader to become inactive,
1067 	 * and to assume its PID:
1068 	 */
1069 	if (!thread_group_leader(tsk)) {
1070 		struct task_struct *leader = tsk->group_leader;
1071 
1072 		for (;;) {
1073 			cgroup_threadgroup_change_begin(tsk);
1074 			write_lock_irq(&tasklist_lock);
1075 			/*
1076 			 * Do this under tasklist_lock to ensure that
1077 			 * exit_notify() can't miss ->group_exec_task
1078 			 */
1079 			sig->notify_count = -1;
1080 			if (likely(leader->exit_state))
1081 				break;
1082 			__set_current_state(TASK_KILLABLE);
1083 			write_unlock_irq(&tasklist_lock);
1084 			cgroup_threadgroup_change_end(tsk);
1085 			schedule();
1086 			if (__fatal_signal_pending(tsk))
1087 				goto killed;
1088 		}
1089 
1090 		/*
1091 		 * The only record we have of the real-time age of a
1092 		 * process, regardless of execs it's done, is start_time.
1093 		 * All the past CPU time is accumulated in signal_struct
1094 		 * from sister threads now dead.  But in this non-leader
1095 		 * exec, nothing survives from the original leader thread,
1096 		 * whose birth marks the true age of this process now.
1097 		 * When we take on its identity by switching to its PID, we
1098 		 * also take its birthdate (always earlier than our own).
1099 		 */
1100 		tsk->start_time = leader->start_time;
1101 		tsk->start_boottime = leader->start_boottime;
1102 
1103 		BUG_ON(!same_thread_group(leader, tsk));
1104 		/*
1105 		 * An exec() starts a new thread group with the
1106 		 * TGID of the previous thread group. Rehash the
1107 		 * two threads with a switched PID, and release
1108 		 * the former thread group leader:
1109 		 */
1110 
1111 		/* Become a process group leader with the old leader's pid.
1112 		 * The old leader becomes a thread of the this thread group.
1113 		 */
1114 		exchange_tids(tsk, leader);
1115 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1116 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1117 		transfer_pid(leader, tsk, PIDTYPE_SID);
1118 
1119 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1120 		list_replace_init(&leader->sibling, &tsk->sibling);
1121 
1122 		tsk->group_leader = tsk;
1123 		leader->group_leader = tsk;
1124 
1125 		tsk->exit_signal = SIGCHLD;
1126 		leader->exit_signal = -1;
1127 
1128 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1129 		leader->exit_state = EXIT_DEAD;
1130 		/*
1131 		 * We are going to release_task()->ptrace_unlink() silently,
1132 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1133 		 * the tracer won't block again waiting for this thread.
1134 		 */
1135 		if (unlikely(leader->ptrace))
1136 			__wake_up_parent(leader, leader->parent);
1137 		write_unlock_irq(&tasklist_lock);
1138 		cgroup_threadgroup_change_end(tsk);
1139 
1140 		release_task(leader);
1141 	}
1142 
1143 	sig->group_exec_task = NULL;
1144 	sig->notify_count = 0;
1145 
1146 no_thread_group:
1147 	/* we have changed execution domain */
1148 	tsk->exit_signal = SIGCHLD;
1149 
1150 	BUG_ON(!thread_group_leader(tsk));
1151 	return 0;
1152 
1153 killed:
1154 	/* protects against exit_notify() and __exit_signal() */
1155 	read_lock(&tasklist_lock);
1156 	sig->group_exec_task = NULL;
1157 	sig->notify_count = 0;
1158 	read_unlock(&tasklist_lock);
1159 	return -EAGAIN;
1160 }
1161 
1162 
1163 /*
1164  * This function makes sure the current process has its own signal table,
1165  * so that flush_signal_handlers can later reset the handlers without
1166  * disturbing other processes.  (Other processes might share the signal
1167  * table via the CLONE_SIGHAND option to clone().)
1168  */
1169 static int unshare_sighand(struct task_struct *me)
1170 {
1171 	struct sighand_struct *oldsighand = me->sighand;
1172 
1173 	if (refcount_read(&oldsighand->count) != 1) {
1174 		struct sighand_struct *newsighand;
1175 		/*
1176 		 * This ->sighand is shared with the CLONE_SIGHAND
1177 		 * but not CLONE_THREAD task, switch to the new one.
1178 		 */
1179 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1180 		if (!newsighand)
1181 			return -ENOMEM;
1182 
1183 		refcount_set(&newsighand->count, 1);
1184 
1185 		write_lock_irq(&tasklist_lock);
1186 		spin_lock(&oldsighand->siglock);
1187 		memcpy(newsighand->action, oldsighand->action,
1188 		       sizeof(newsighand->action));
1189 		rcu_assign_pointer(me->sighand, newsighand);
1190 		spin_unlock(&oldsighand->siglock);
1191 		write_unlock_irq(&tasklist_lock);
1192 
1193 		__cleanup_sighand(oldsighand);
1194 	}
1195 	return 0;
1196 }
1197 
1198 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1199 {
1200 	task_lock(tsk);
1201 	/* Always NUL terminated and zero-padded */
1202 	strscpy_pad(buf, tsk->comm, buf_size);
1203 	task_unlock(tsk);
1204 	return buf;
1205 }
1206 EXPORT_SYMBOL_GPL(__get_task_comm);
1207 
1208 /*
1209  * These functions flushes out all traces of the currently running executable
1210  * so that a new one can be started
1211  */
1212 
1213 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1214 {
1215 	task_lock(tsk);
1216 	trace_task_rename(tsk, buf);
1217 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1218 	task_unlock(tsk);
1219 	perf_event_comm(tsk, exec);
1220 }
1221 
1222 /*
1223  * Calling this is the point of no return. None of the failures will be
1224  * seen by userspace since either the process is already taking a fatal
1225  * signal (via de_thread() or coredump), or will have SEGV raised
1226  * (after exec_mmap()) by search_binary_handler (see below).
1227  */
1228 int begin_new_exec(struct linux_binprm * bprm)
1229 {
1230 	struct task_struct *me = current;
1231 	int retval;
1232 
1233 	/* Once we are committed compute the creds */
1234 	retval = bprm_creds_from_file(bprm);
1235 	if (retval)
1236 		return retval;
1237 
1238 	/*
1239 	 * This tracepoint marks the point before flushing the old exec where
1240 	 * the current task is still unchanged, but errors are fatal (point of
1241 	 * no return). The later "sched_process_exec" tracepoint is called after
1242 	 * the current task has successfully switched to the new exec.
1243 	 */
1244 	trace_sched_prepare_exec(current, bprm);
1245 
1246 	/*
1247 	 * Ensure all future errors are fatal.
1248 	 */
1249 	bprm->point_of_no_return = true;
1250 
1251 	/*
1252 	 * Make this the only thread in the thread group.
1253 	 */
1254 	retval = de_thread(me);
1255 	if (retval)
1256 		goto out;
1257 
1258 	/*
1259 	 * Cancel any io_uring activity across execve
1260 	 */
1261 	io_uring_task_cancel();
1262 
1263 	/* Ensure the files table is not shared. */
1264 	retval = unshare_files();
1265 	if (retval)
1266 		goto out;
1267 
1268 	/*
1269 	 * Must be called _before_ exec_mmap() as bprm->mm is
1270 	 * not visible until then. Doing it here also ensures
1271 	 * we don't race against replace_mm_exe_file().
1272 	 */
1273 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1274 	if (retval)
1275 		goto out;
1276 
1277 	/* If the binary is not readable then enforce mm->dumpable=0 */
1278 	would_dump(bprm, bprm->file);
1279 	if (bprm->have_execfd)
1280 		would_dump(bprm, bprm->executable);
1281 
1282 	/*
1283 	 * Release all of the old mmap stuff
1284 	 */
1285 	acct_arg_size(bprm, 0);
1286 	retval = exec_mmap(bprm->mm);
1287 	if (retval)
1288 		goto out;
1289 
1290 	bprm->mm = NULL;
1291 
1292 	retval = exec_task_namespaces();
1293 	if (retval)
1294 		goto out_unlock;
1295 
1296 #ifdef CONFIG_POSIX_TIMERS
1297 	spin_lock_irq(&me->sighand->siglock);
1298 	posix_cpu_timers_exit(me);
1299 	spin_unlock_irq(&me->sighand->siglock);
1300 	exit_itimers(me);
1301 	flush_itimer_signals();
1302 #endif
1303 
1304 	/*
1305 	 * Make the signal table private.
1306 	 */
1307 	retval = unshare_sighand(me);
1308 	if (retval)
1309 		goto out_unlock;
1310 
1311 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1312 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1313 	flush_thread();
1314 	me->personality &= ~bprm->per_clear;
1315 
1316 	clear_syscall_work_syscall_user_dispatch(me);
1317 
1318 	/*
1319 	 * We have to apply CLOEXEC before we change whether the process is
1320 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1321 	 * trying to access the should-be-closed file descriptors of a process
1322 	 * undergoing exec(2).
1323 	 */
1324 	do_close_on_exec(me->files);
1325 
1326 	if (bprm->secureexec) {
1327 		/* Make sure parent cannot signal privileged process. */
1328 		me->pdeath_signal = 0;
1329 
1330 		/*
1331 		 * For secureexec, reset the stack limit to sane default to
1332 		 * avoid bad behavior from the prior rlimits. This has to
1333 		 * happen before arch_pick_mmap_layout(), which examines
1334 		 * RLIMIT_STACK, but after the point of no return to avoid
1335 		 * needing to clean up the change on failure.
1336 		 */
1337 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1338 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1339 	}
1340 
1341 	me->sas_ss_sp = me->sas_ss_size = 0;
1342 
1343 	/*
1344 	 * Figure out dumpability. Note that this checking only of current
1345 	 * is wrong, but userspace depends on it. This should be testing
1346 	 * bprm->secureexec instead.
1347 	 */
1348 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1349 	    !(uid_eq(current_euid(), current_uid()) &&
1350 	      gid_eq(current_egid(), current_gid())))
1351 		set_dumpable(current->mm, suid_dumpable);
1352 	else
1353 		set_dumpable(current->mm, SUID_DUMP_USER);
1354 
1355 	perf_event_exec();
1356 	__set_task_comm(me, kbasename(bprm->filename), true);
1357 
1358 	/* An exec changes our domain. We are no longer part of the thread
1359 	   group */
1360 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1361 	flush_signal_handlers(me, 0);
1362 
1363 	retval = set_cred_ucounts(bprm->cred);
1364 	if (retval < 0)
1365 		goto out_unlock;
1366 
1367 	/*
1368 	 * install the new credentials for this executable
1369 	 */
1370 	security_bprm_committing_creds(bprm);
1371 
1372 	commit_creds(bprm->cred);
1373 	bprm->cred = NULL;
1374 
1375 	/*
1376 	 * Disable monitoring for regular users
1377 	 * when executing setuid binaries. Must
1378 	 * wait until new credentials are committed
1379 	 * by commit_creds() above
1380 	 */
1381 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1382 		perf_event_exit_task(me);
1383 	/*
1384 	 * cred_guard_mutex must be held at least to this point to prevent
1385 	 * ptrace_attach() from altering our determination of the task's
1386 	 * credentials; any time after this it may be unlocked.
1387 	 */
1388 	security_bprm_committed_creds(bprm);
1389 
1390 	/* Pass the opened binary to the interpreter. */
1391 	if (bprm->have_execfd) {
1392 		retval = get_unused_fd_flags(0);
1393 		if (retval < 0)
1394 			goto out_unlock;
1395 		fd_install(retval, bprm->executable);
1396 		bprm->executable = NULL;
1397 		bprm->execfd = retval;
1398 	}
1399 	return 0;
1400 
1401 out_unlock:
1402 	up_write(&me->signal->exec_update_lock);
1403 	if (!bprm->cred)
1404 		mutex_unlock(&me->signal->cred_guard_mutex);
1405 
1406 out:
1407 	return retval;
1408 }
1409 EXPORT_SYMBOL(begin_new_exec);
1410 
1411 void would_dump(struct linux_binprm *bprm, struct file *file)
1412 {
1413 	struct inode *inode = file_inode(file);
1414 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1415 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1416 		struct user_namespace *old, *user_ns;
1417 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1418 
1419 		/* Ensure mm->user_ns contains the executable */
1420 		user_ns = old = bprm->mm->user_ns;
1421 		while ((user_ns != &init_user_ns) &&
1422 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1423 			user_ns = user_ns->parent;
1424 
1425 		if (old != user_ns) {
1426 			bprm->mm->user_ns = get_user_ns(user_ns);
1427 			put_user_ns(old);
1428 		}
1429 	}
1430 }
1431 EXPORT_SYMBOL(would_dump);
1432 
1433 void setup_new_exec(struct linux_binprm * bprm)
1434 {
1435 	/* Setup things that can depend upon the personality */
1436 	struct task_struct *me = current;
1437 
1438 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1439 
1440 	arch_setup_new_exec();
1441 
1442 	/* Set the new mm task size. We have to do that late because it may
1443 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1444 	 * some architectures like powerpc
1445 	 */
1446 	me->mm->task_size = TASK_SIZE;
1447 	up_write(&me->signal->exec_update_lock);
1448 	mutex_unlock(&me->signal->cred_guard_mutex);
1449 }
1450 EXPORT_SYMBOL(setup_new_exec);
1451 
1452 /* Runs immediately before start_thread() takes over. */
1453 void finalize_exec(struct linux_binprm *bprm)
1454 {
1455 	/* Store any stack rlimit changes before starting thread. */
1456 	task_lock(current->group_leader);
1457 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1458 	task_unlock(current->group_leader);
1459 }
1460 EXPORT_SYMBOL(finalize_exec);
1461 
1462 /*
1463  * Prepare credentials and lock ->cred_guard_mutex.
1464  * setup_new_exec() commits the new creds and drops the lock.
1465  * Or, if exec fails before, free_bprm() should release ->cred
1466  * and unlock.
1467  */
1468 static int prepare_bprm_creds(struct linux_binprm *bprm)
1469 {
1470 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1471 		return -ERESTARTNOINTR;
1472 
1473 	bprm->cred = prepare_exec_creds();
1474 	if (likely(bprm->cred))
1475 		return 0;
1476 
1477 	mutex_unlock(&current->signal->cred_guard_mutex);
1478 	return -ENOMEM;
1479 }
1480 
1481 /* Matches do_open_execat() */
1482 static void do_close_execat(struct file *file)
1483 {
1484 	if (file)
1485 		fput(file);
1486 }
1487 
1488 static void free_bprm(struct linux_binprm *bprm)
1489 {
1490 	if (bprm->mm) {
1491 		acct_arg_size(bprm, 0);
1492 		mmput(bprm->mm);
1493 	}
1494 	free_arg_pages(bprm);
1495 	if (bprm->cred) {
1496 		mutex_unlock(&current->signal->cred_guard_mutex);
1497 		abort_creds(bprm->cred);
1498 	}
1499 	do_close_execat(bprm->file);
1500 	if (bprm->executable)
1501 		fput(bprm->executable);
1502 	/* If a binfmt changed the interp, free it. */
1503 	if (bprm->interp != bprm->filename)
1504 		kfree(bprm->interp);
1505 	kfree(bprm->fdpath);
1506 	kfree(bprm);
1507 }
1508 
1509 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1510 {
1511 	struct linux_binprm *bprm;
1512 	struct file *file;
1513 	int retval = -ENOMEM;
1514 
1515 	file = do_open_execat(fd, filename, flags);
1516 	if (IS_ERR(file))
1517 		return ERR_CAST(file);
1518 
1519 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1520 	if (!bprm) {
1521 		do_close_execat(file);
1522 		return ERR_PTR(-ENOMEM);
1523 	}
1524 
1525 	bprm->file = file;
1526 
1527 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1528 		bprm->filename = filename->name;
1529 	} else {
1530 		if (filename->name[0] == '\0')
1531 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1532 		else
1533 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1534 						  fd, filename->name);
1535 		if (!bprm->fdpath)
1536 			goto out_free;
1537 
1538 		/*
1539 		 * Record that a name derived from an O_CLOEXEC fd will be
1540 		 * inaccessible after exec.  This allows the code in exec to
1541 		 * choose to fail when the executable is not mmaped into the
1542 		 * interpreter and an open file descriptor is not passed to
1543 		 * the interpreter.  This makes for a better user experience
1544 		 * than having the interpreter start and then immediately fail
1545 		 * when it finds the executable is inaccessible.
1546 		 */
1547 		if (get_close_on_exec(fd))
1548 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1549 
1550 		bprm->filename = bprm->fdpath;
1551 	}
1552 	bprm->interp = bprm->filename;
1553 
1554 	retval = bprm_mm_init(bprm);
1555 	if (!retval)
1556 		return bprm;
1557 
1558 out_free:
1559 	free_bprm(bprm);
1560 	return ERR_PTR(retval);
1561 }
1562 
1563 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1564 {
1565 	/* If a binfmt changed the interp, free it first. */
1566 	if (bprm->interp != bprm->filename)
1567 		kfree(bprm->interp);
1568 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1569 	if (!bprm->interp)
1570 		return -ENOMEM;
1571 	return 0;
1572 }
1573 EXPORT_SYMBOL(bprm_change_interp);
1574 
1575 /*
1576  * determine how safe it is to execute the proposed program
1577  * - the caller must hold ->cred_guard_mutex to protect against
1578  *   PTRACE_ATTACH or seccomp thread-sync
1579  */
1580 static void check_unsafe_exec(struct linux_binprm *bprm)
1581 {
1582 	struct task_struct *p = current, *t;
1583 	unsigned n_fs;
1584 
1585 	if (p->ptrace)
1586 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1587 
1588 	/*
1589 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1590 	 * mess up.
1591 	 */
1592 	if (task_no_new_privs(current))
1593 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1594 
1595 	/*
1596 	 * If another task is sharing our fs, we cannot safely
1597 	 * suid exec because the differently privileged task
1598 	 * will be able to manipulate the current directory, etc.
1599 	 * It would be nice to force an unshare instead...
1600 	 */
1601 	n_fs = 1;
1602 	spin_lock(&p->fs->lock);
1603 	rcu_read_lock();
1604 	for_other_threads(p, t) {
1605 		if (t->fs == p->fs)
1606 			n_fs++;
1607 	}
1608 	rcu_read_unlock();
1609 
1610 	/* "users" and "in_exec" locked for copy_fs() */
1611 	if (p->fs->users > n_fs)
1612 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1613 	else
1614 		p->fs->in_exec = 1;
1615 	spin_unlock(&p->fs->lock);
1616 }
1617 
1618 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1619 {
1620 	/* Handle suid and sgid on files */
1621 	struct mnt_idmap *idmap;
1622 	struct inode *inode = file_inode(file);
1623 	unsigned int mode;
1624 	vfsuid_t vfsuid;
1625 	vfsgid_t vfsgid;
1626 	int err;
1627 
1628 	if (!mnt_may_suid(file->f_path.mnt))
1629 		return;
1630 
1631 	if (task_no_new_privs(current))
1632 		return;
1633 
1634 	mode = READ_ONCE(inode->i_mode);
1635 	if (!(mode & (S_ISUID|S_ISGID)))
1636 		return;
1637 
1638 	idmap = file_mnt_idmap(file);
1639 
1640 	/* Be careful if suid/sgid is set */
1641 	inode_lock(inode);
1642 
1643 	/* Atomically reload and check mode/uid/gid now that lock held. */
1644 	mode = inode->i_mode;
1645 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1646 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1647 	err = inode_permission(idmap, inode, MAY_EXEC);
1648 	inode_unlock(inode);
1649 
1650 	/* Did the exec bit vanish out from under us? Give up. */
1651 	if (err)
1652 		return;
1653 
1654 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1655 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1656 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1657 		return;
1658 
1659 	if (mode & S_ISUID) {
1660 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1661 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1662 	}
1663 
1664 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1665 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1666 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1667 	}
1668 }
1669 
1670 /*
1671  * Compute brpm->cred based upon the final binary.
1672  */
1673 static int bprm_creds_from_file(struct linux_binprm *bprm)
1674 {
1675 	/* Compute creds based on which file? */
1676 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1677 
1678 	bprm_fill_uid(bprm, file);
1679 	return security_bprm_creds_from_file(bprm, file);
1680 }
1681 
1682 /*
1683  * Fill the binprm structure from the inode.
1684  * Read the first BINPRM_BUF_SIZE bytes
1685  *
1686  * This may be called multiple times for binary chains (scripts for example).
1687  */
1688 static int prepare_binprm(struct linux_binprm *bprm)
1689 {
1690 	loff_t pos = 0;
1691 
1692 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1693 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1694 }
1695 
1696 /*
1697  * Arguments are '\0' separated strings found at the location bprm->p
1698  * points to; chop off the first by relocating brpm->p to right after
1699  * the first '\0' encountered.
1700  */
1701 int remove_arg_zero(struct linux_binprm *bprm)
1702 {
1703 	unsigned long offset;
1704 	char *kaddr;
1705 	struct page *page;
1706 
1707 	if (!bprm->argc)
1708 		return 0;
1709 
1710 	do {
1711 		offset = bprm->p & ~PAGE_MASK;
1712 		page = get_arg_page(bprm, bprm->p, 0);
1713 		if (!page)
1714 			return -EFAULT;
1715 		kaddr = kmap_local_page(page);
1716 
1717 		for (; offset < PAGE_SIZE && kaddr[offset];
1718 				offset++, bprm->p++)
1719 			;
1720 
1721 		kunmap_local(kaddr);
1722 		put_arg_page(page);
1723 	} while (offset == PAGE_SIZE);
1724 
1725 	bprm->p++;
1726 	bprm->argc--;
1727 
1728 	return 0;
1729 }
1730 EXPORT_SYMBOL(remove_arg_zero);
1731 
1732 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1733 /*
1734  * cycle the list of binary formats handler, until one recognizes the image
1735  */
1736 static int search_binary_handler(struct linux_binprm *bprm)
1737 {
1738 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1739 	struct linux_binfmt *fmt;
1740 	int retval;
1741 
1742 	retval = prepare_binprm(bprm);
1743 	if (retval < 0)
1744 		return retval;
1745 
1746 	retval = security_bprm_check(bprm);
1747 	if (retval)
1748 		return retval;
1749 
1750 	retval = -ENOENT;
1751  retry:
1752 	read_lock(&binfmt_lock);
1753 	list_for_each_entry(fmt, &formats, lh) {
1754 		if (!try_module_get(fmt->module))
1755 			continue;
1756 		read_unlock(&binfmt_lock);
1757 
1758 		retval = fmt->load_binary(bprm);
1759 
1760 		read_lock(&binfmt_lock);
1761 		put_binfmt(fmt);
1762 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1763 			read_unlock(&binfmt_lock);
1764 			return retval;
1765 		}
1766 	}
1767 	read_unlock(&binfmt_lock);
1768 
1769 	if (need_retry) {
1770 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1771 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1772 			return retval;
1773 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1774 			return retval;
1775 		need_retry = false;
1776 		goto retry;
1777 	}
1778 
1779 	return retval;
1780 }
1781 
1782 /* binfmt handlers will call back into begin_new_exec() on success. */
1783 static int exec_binprm(struct linux_binprm *bprm)
1784 {
1785 	pid_t old_pid, old_vpid;
1786 	int ret, depth;
1787 
1788 	/* Need to fetch pid before load_binary changes it */
1789 	old_pid = current->pid;
1790 	rcu_read_lock();
1791 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1792 	rcu_read_unlock();
1793 
1794 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1795 	for (depth = 0;; depth++) {
1796 		struct file *exec;
1797 		if (depth > 5)
1798 			return -ELOOP;
1799 
1800 		ret = search_binary_handler(bprm);
1801 		if (ret < 0)
1802 			return ret;
1803 		if (!bprm->interpreter)
1804 			break;
1805 
1806 		exec = bprm->file;
1807 		bprm->file = bprm->interpreter;
1808 		bprm->interpreter = NULL;
1809 
1810 		if (unlikely(bprm->have_execfd)) {
1811 			if (bprm->executable) {
1812 				fput(exec);
1813 				return -ENOEXEC;
1814 			}
1815 			bprm->executable = exec;
1816 		} else
1817 			fput(exec);
1818 	}
1819 
1820 	audit_bprm(bprm);
1821 	trace_sched_process_exec(current, old_pid, bprm);
1822 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1823 	proc_exec_connector(current);
1824 	return 0;
1825 }
1826 
1827 static int bprm_execve(struct linux_binprm *bprm)
1828 {
1829 	int retval;
1830 
1831 	retval = prepare_bprm_creds(bprm);
1832 	if (retval)
1833 		return retval;
1834 
1835 	/*
1836 	 * Check for unsafe execution states before exec_binprm(), which
1837 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1838 	 * where setuid-ness is evaluated.
1839 	 */
1840 	check_unsafe_exec(bprm);
1841 	current->in_execve = 1;
1842 	sched_mm_cid_before_execve(current);
1843 
1844 	sched_exec();
1845 
1846 	/* Set the unchanging part of bprm->cred */
1847 	retval = security_bprm_creds_for_exec(bprm);
1848 	if (retval)
1849 		goto out;
1850 
1851 	retval = exec_binprm(bprm);
1852 	if (retval < 0)
1853 		goto out;
1854 
1855 	sched_mm_cid_after_execve(current);
1856 	/* execve succeeded */
1857 	current->fs->in_exec = 0;
1858 	current->in_execve = 0;
1859 	rseq_execve(current);
1860 	user_events_execve(current);
1861 	acct_update_integrals(current);
1862 	task_numa_free(current, false);
1863 	return retval;
1864 
1865 out:
1866 	/*
1867 	 * If past the point of no return ensure the code never
1868 	 * returns to the userspace process.  Use an existing fatal
1869 	 * signal if present otherwise terminate the process with
1870 	 * SIGSEGV.
1871 	 */
1872 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1873 		force_fatal_sig(SIGSEGV);
1874 
1875 	sched_mm_cid_after_execve(current);
1876 	current->fs->in_exec = 0;
1877 	current->in_execve = 0;
1878 
1879 	return retval;
1880 }
1881 
1882 static int do_execveat_common(int fd, struct filename *filename,
1883 			      struct user_arg_ptr argv,
1884 			      struct user_arg_ptr envp,
1885 			      int flags)
1886 {
1887 	struct linux_binprm *bprm;
1888 	int retval;
1889 
1890 	if (IS_ERR(filename))
1891 		return PTR_ERR(filename);
1892 
1893 	/*
1894 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1895 	 * set*uid() to execve() because too many poorly written programs
1896 	 * don't check setuid() return code.  Here we additionally recheck
1897 	 * whether NPROC limit is still exceeded.
1898 	 */
1899 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1900 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1901 		retval = -EAGAIN;
1902 		goto out_ret;
1903 	}
1904 
1905 	/* We're below the limit (still or again), so we don't want to make
1906 	 * further execve() calls fail. */
1907 	current->flags &= ~PF_NPROC_EXCEEDED;
1908 
1909 	bprm = alloc_bprm(fd, filename, flags);
1910 	if (IS_ERR(bprm)) {
1911 		retval = PTR_ERR(bprm);
1912 		goto out_ret;
1913 	}
1914 
1915 	retval = count(argv, MAX_ARG_STRINGS);
1916 	if (retval == 0)
1917 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1918 			     current->comm, bprm->filename);
1919 	if (retval < 0)
1920 		goto out_free;
1921 	bprm->argc = retval;
1922 
1923 	retval = count(envp, MAX_ARG_STRINGS);
1924 	if (retval < 0)
1925 		goto out_free;
1926 	bprm->envc = retval;
1927 
1928 	retval = bprm_stack_limits(bprm);
1929 	if (retval < 0)
1930 		goto out_free;
1931 
1932 	retval = copy_string_kernel(bprm->filename, bprm);
1933 	if (retval < 0)
1934 		goto out_free;
1935 	bprm->exec = bprm->p;
1936 
1937 	retval = copy_strings(bprm->envc, envp, bprm);
1938 	if (retval < 0)
1939 		goto out_free;
1940 
1941 	retval = copy_strings(bprm->argc, argv, bprm);
1942 	if (retval < 0)
1943 		goto out_free;
1944 
1945 	/*
1946 	 * When argv is empty, add an empty string ("") as argv[0] to
1947 	 * ensure confused userspace programs that start processing
1948 	 * from argv[1] won't end up walking envp. See also
1949 	 * bprm_stack_limits().
1950 	 */
1951 	if (bprm->argc == 0) {
1952 		retval = copy_string_kernel("", bprm);
1953 		if (retval < 0)
1954 			goto out_free;
1955 		bprm->argc = 1;
1956 	}
1957 
1958 	retval = bprm_execve(bprm);
1959 out_free:
1960 	free_bprm(bprm);
1961 
1962 out_ret:
1963 	putname(filename);
1964 	return retval;
1965 }
1966 
1967 int kernel_execve(const char *kernel_filename,
1968 		  const char *const *argv, const char *const *envp)
1969 {
1970 	struct filename *filename;
1971 	struct linux_binprm *bprm;
1972 	int fd = AT_FDCWD;
1973 	int retval;
1974 
1975 	/* It is non-sense for kernel threads to call execve */
1976 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1977 		return -EINVAL;
1978 
1979 	filename = getname_kernel(kernel_filename);
1980 	if (IS_ERR(filename))
1981 		return PTR_ERR(filename);
1982 
1983 	bprm = alloc_bprm(fd, filename, 0);
1984 	if (IS_ERR(bprm)) {
1985 		retval = PTR_ERR(bprm);
1986 		goto out_ret;
1987 	}
1988 
1989 	retval = count_strings_kernel(argv);
1990 	if (WARN_ON_ONCE(retval == 0))
1991 		retval = -EINVAL;
1992 	if (retval < 0)
1993 		goto out_free;
1994 	bprm->argc = retval;
1995 
1996 	retval = count_strings_kernel(envp);
1997 	if (retval < 0)
1998 		goto out_free;
1999 	bprm->envc = retval;
2000 
2001 	retval = bprm_stack_limits(bprm);
2002 	if (retval < 0)
2003 		goto out_free;
2004 
2005 	retval = copy_string_kernel(bprm->filename, bprm);
2006 	if (retval < 0)
2007 		goto out_free;
2008 	bprm->exec = bprm->p;
2009 
2010 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2011 	if (retval < 0)
2012 		goto out_free;
2013 
2014 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2015 	if (retval < 0)
2016 		goto out_free;
2017 
2018 	retval = bprm_execve(bprm);
2019 out_free:
2020 	free_bprm(bprm);
2021 out_ret:
2022 	putname(filename);
2023 	return retval;
2024 }
2025 
2026 static int do_execve(struct filename *filename,
2027 	const char __user *const __user *__argv,
2028 	const char __user *const __user *__envp)
2029 {
2030 	struct user_arg_ptr argv = { .ptr.native = __argv };
2031 	struct user_arg_ptr envp = { .ptr.native = __envp };
2032 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2033 }
2034 
2035 static int do_execveat(int fd, struct filename *filename,
2036 		const char __user *const __user *__argv,
2037 		const char __user *const __user *__envp,
2038 		int flags)
2039 {
2040 	struct user_arg_ptr argv = { .ptr.native = __argv };
2041 	struct user_arg_ptr envp = { .ptr.native = __envp };
2042 
2043 	return do_execveat_common(fd, filename, argv, envp, flags);
2044 }
2045 
2046 #ifdef CONFIG_COMPAT
2047 static int compat_do_execve(struct filename *filename,
2048 	const compat_uptr_t __user *__argv,
2049 	const compat_uptr_t __user *__envp)
2050 {
2051 	struct user_arg_ptr argv = {
2052 		.is_compat = true,
2053 		.ptr.compat = __argv,
2054 	};
2055 	struct user_arg_ptr envp = {
2056 		.is_compat = true,
2057 		.ptr.compat = __envp,
2058 	};
2059 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2060 }
2061 
2062 static int compat_do_execveat(int fd, struct filename *filename,
2063 			      const compat_uptr_t __user *__argv,
2064 			      const compat_uptr_t __user *__envp,
2065 			      int flags)
2066 {
2067 	struct user_arg_ptr argv = {
2068 		.is_compat = true,
2069 		.ptr.compat = __argv,
2070 	};
2071 	struct user_arg_ptr envp = {
2072 		.is_compat = true,
2073 		.ptr.compat = __envp,
2074 	};
2075 	return do_execveat_common(fd, filename, argv, envp, flags);
2076 }
2077 #endif
2078 
2079 void set_binfmt(struct linux_binfmt *new)
2080 {
2081 	struct mm_struct *mm = current->mm;
2082 
2083 	if (mm->binfmt)
2084 		module_put(mm->binfmt->module);
2085 
2086 	mm->binfmt = new;
2087 	if (new)
2088 		__module_get(new->module);
2089 }
2090 EXPORT_SYMBOL(set_binfmt);
2091 
2092 /*
2093  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2094  */
2095 void set_dumpable(struct mm_struct *mm, int value)
2096 {
2097 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2098 		return;
2099 
2100 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2101 }
2102 
2103 SYSCALL_DEFINE3(execve,
2104 		const char __user *, filename,
2105 		const char __user *const __user *, argv,
2106 		const char __user *const __user *, envp)
2107 {
2108 	return do_execve(getname(filename), argv, envp);
2109 }
2110 
2111 SYSCALL_DEFINE5(execveat,
2112 		int, fd, const char __user *, filename,
2113 		const char __user *const __user *, argv,
2114 		const char __user *const __user *, envp,
2115 		int, flags)
2116 {
2117 	return do_execveat(fd,
2118 			   getname_uflags(filename, flags),
2119 			   argv, envp, flags);
2120 }
2121 
2122 #ifdef CONFIG_COMPAT
2123 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2124 	const compat_uptr_t __user *, argv,
2125 	const compat_uptr_t __user *, envp)
2126 {
2127 	return compat_do_execve(getname(filename), argv, envp);
2128 }
2129 
2130 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2131 		       const char __user *, filename,
2132 		       const compat_uptr_t __user *, argv,
2133 		       const compat_uptr_t __user *, envp,
2134 		       int,  flags)
2135 {
2136 	return compat_do_execveat(fd,
2137 				  getname_uflags(filename, flags),
2138 				  argv, envp, flags);
2139 }
2140 #endif
2141 
2142 #ifdef CONFIG_SYSCTL
2143 
2144 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2145 		void *buffer, size_t *lenp, loff_t *ppos)
2146 {
2147 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2148 
2149 	if (!error)
2150 		validate_coredump_safety();
2151 	return error;
2152 }
2153 
2154 static struct ctl_table fs_exec_sysctls[] = {
2155 	{
2156 		.procname	= "suid_dumpable",
2157 		.data		= &suid_dumpable,
2158 		.maxlen		= sizeof(int),
2159 		.mode		= 0644,
2160 		.proc_handler	= proc_dointvec_minmax_coredump,
2161 		.extra1		= SYSCTL_ZERO,
2162 		.extra2		= SYSCTL_TWO,
2163 	},
2164 };
2165 
2166 static int __init init_fs_exec_sysctls(void)
2167 {
2168 	register_sysctl_init("fs", fs_exec_sysctls);
2169 	return 0;
2170 }
2171 
2172 fs_initcall(init_fs_exec_sysctls);
2173 #endif /* CONFIG_SYSCTL */
2174 
2175 #ifdef CONFIG_EXEC_KUNIT_TEST
2176 #include "tests/exec_kunit.c"
2177 #endif
2178