xref: /linux/fs/exec.c (revision 962fad301c33dec69324dc2d9320fd84a119a24c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69 
70 #include <trace/events/task.h>
71 #include "internal.h"
72 
73 #include <trace/events/sched.h>
74 
75 static int bprm_creds_from_file(struct linux_binprm *bprm);
76 
77 int suid_dumpable = 0;
78 
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81 
82 void __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84 	BUG_ON(!fmt);
85 	if (WARN_ON(!fmt->load_binary))
86 		return;
87 	write_lock(&binfmt_lock);
88 	insert ? list_add(&fmt->lh, &formats) :
89 		 list_add_tail(&fmt->lh, &formats);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(__register_binfmt);
94 
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	write_lock(&binfmt_lock);
98 	list_del(&fmt->lh);
99 	write_unlock(&binfmt_lock);
100 }
101 
102 EXPORT_SYMBOL(unregister_binfmt);
103 
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 	module_put(fmt->module);
107 }
108 
109 bool path_noexec(const struct path *path)
110 {
111 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114 
115 #ifdef CONFIG_USELIB
116 /*
117  * Note that a shared library must be both readable and executable due to
118  * security reasons.
119  *
120  * Also note that we take the address to load from from the file itself.
121  */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 	struct linux_binfmt *fmt;
125 	struct file *file;
126 	struct filename *tmp = getname(library);
127 	int error = PTR_ERR(tmp);
128 	static const struct open_flags uselib_flags = {
129 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 		.acc_mode = MAY_READ | MAY_EXEC,
131 		.intent = LOOKUP_OPEN,
132 		.lookup_flags = LOOKUP_FOLLOW,
133 	};
134 
135 	if (IS_ERR(tmp))
136 		goto out;
137 
138 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 	putname(tmp);
140 	error = PTR_ERR(file);
141 	if (IS_ERR(file))
142 		goto out;
143 
144 	/*
145 	 * may_open() has already checked for this, so it should be
146 	 * impossible to trip now. But we need to be extra cautious
147 	 * and check again at the very end too.
148 	 */
149 	error = -EACCES;
150 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151 			 path_noexec(&file->f_path)))
152 		goto exit;
153 
154 	fsnotify_open(file);
155 
156 	error = -ENOEXEC;
157 
158 	read_lock(&binfmt_lock);
159 	list_for_each_entry(fmt, &formats, lh) {
160 		if (!fmt->load_shlib)
161 			continue;
162 		if (!try_module_get(fmt->module))
163 			continue;
164 		read_unlock(&binfmt_lock);
165 		error = fmt->load_shlib(file);
166 		read_lock(&binfmt_lock);
167 		put_binfmt(fmt);
168 		if (error != -ENOEXEC)
169 			break;
170 	}
171 	read_unlock(&binfmt_lock);
172 exit:
173 	fput(file);
174 out:
175   	return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178 
179 #ifdef CONFIG_MMU
180 /*
181  * The nascent bprm->mm is not visible until exec_mmap() but it can
182  * use a lot of memory, account these pages in current->mm temporary
183  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184  * change the counter back via acct_arg_size(0).
185  */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 	struct mm_struct *mm = current->mm;
189 	long diff = (long)(pages - bprm->vma_pages);
190 
191 	if (!mm || !diff)
192 		return;
193 
194 	bprm->vma_pages = pages;
195 	add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197 
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 		int write)
200 {
201 	struct page *page;
202 	int ret;
203 	unsigned int gup_flags = FOLL_FORCE;
204 
205 #ifdef CONFIG_STACK_GROWSUP
206 	if (write) {
207 		ret = expand_downwards(bprm->vma, pos);
208 		if (ret < 0)
209 			return NULL;
210 	}
211 #endif
212 
213 	if (write)
214 		gup_flags |= FOLL_WRITE;
215 
216 	/*
217 	 * We are doing an exec().  'current' is the process
218 	 * doing the exec and bprm->mm is the new process's mm.
219 	 */
220 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
221 			&page, NULL, NULL);
222 	if (ret <= 0)
223 		return NULL;
224 
225 	if (write)
226 		acct_arg_size(bprm, vma_pages(bprm->vma));
227 
228 	return page;
229 }
230 
231 static void put_arg_page(struct page *page)
232 {
233 	put_page(page);
234 }
235 
236 static void free_arg_pages(struct linux_binprm *bprm)
237 {
238 }
239 
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241 		struct page *page)
242 {
243 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 }
245 
246 static int __bprm_mm_init(struct linux_binprm *bprm)
247 {
248 	int err;
249 	struct vm_area_struct *vma = NULL;
250 	struct mm_struct *mm = bprm->mm;
251 
252 	bprm->vma = vma = vm_area_alloc(mm);
253 	if (!vma)
254 		return -ENOMEM;
255 	vma_set_anonymous(vma);
256 
257 	if (mmap_write_lock_killable(mm)) {
258 		err = -EINTR;
259 		goto err_free;
260 	}
261 
262 	/*
263 	 * Place the stack at the largest stack address the architecture
264 	 * supports. Later, we'll move this to an appropriate place. We don't
265 	 * use STACK_TOP because that can depend on attributes which aren't
266 	 * configured yet.
267 	 */
268 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 	vma->vm_end = STACK_TOP_MAX;
270 	vma->vm_start = vma->vm_end - PAGE_SIZE;
271 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273 
274 	err = insert_vm_struct(mm, vma);
275 	if (err)
276 		goto err;
277 
278 	mm->stack_vm = mm->total_vm = 1;
279 	mmap_write_unlock(mm);
280 	bprm->p = vma->vm_end - sizeof(void *);
281 	return 0;
282 err:
283 	mmap_write_unlock(mm);
284 err_free:
285 	bprm->vma = NULL;
286 	vm_area_free(vma);
287 	return err;
288 }
289 
290 static bool valid_arg_len(struct linux_binprm *bprm, long len)
291 {
292 	return len <= MAX_ARG_STRLEN;
293 }
294 
295 #else
296 
297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298 {
299 }
300 
301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
302 		int write)
303 {
304 	struct page *page;
305 
306 	page = bprm->page[pos / PAGE_SIZE];
307 	if (!page && write) {
308 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309 		if (!page)
310 			return NULL;
311 		bprm->page[pos / PAGE_SIZE] = page;
312 	}
313 
314 	return page;
315 }
316 
317 static void put_arg_page(struct page *page)
318 {
319 }
320 
321 static void free_arg_page(struct linux_binprm *bprm, int i)
322 {
323 	if (bprm->page[i]) {
324 		__free_page(bprm->page[i]);
325 		bprm->page[i] = NULL;
326 	}
327 }
328 
329 static void free_arg_pages(struct linux_binprm *bprm)
330 {
331 	int i;
332 
333 	for (i = 0; i < MAX_ARG_PAGES; i++)
334 		free_arg_page(bprm, i);
335 }
336 
337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
338 		struct page *page)
339 {
340 }
341 
342 static int __bprm_mm_init(struct linux_binprm *bprm)
343 {
344 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345 	return 0;
346 }
347 
348 static bool valid_arg_len(struct linux_binprm *bprm, long len)
349 {
350 	return len <= bprm->p;
351 }
352 
353 #endif /* CONFIG_MMU */
354 
355 /*
356  * Create a new mm_struct and populate it with a temporary stack
357  * vm_area_struct.  We don't have enough context at this point to set the stack
358  * flags, permissions, and offset, so we use temporary values.  We'll update
359  * them later in setup_arg_pages().
360  */
361 static int bprm_mm_init(struct linux_binprm *bprm)
362 {
363 	int err;
364 	struct mm_struct *mm = NULL;
365 
366 	bprm->mm = mm = mm_alloc();
367 	err = -ENOMEM;
368 	if (!mm)
369 		goto err;
370 
371 	/* Save current stack limit for all calculations made during exec. */
372 	task_lock(current->group_leader);
373 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
374 	task_unlock(current->group_leader);
375 
376 	err = __bprm_mm_init(bprm);
377 	if (err)
378 		goto err;
379 
380 	return 0;
381 
382 err:
383 	if (mm) {
384 		bprm->mm = NULL;
385 		mmdrop(mm);
386 	}
387 
388 	return err;
389 }
390 
391 struct user_arg_ptr {
392 #ifdef CONFIG_COMPAT
393 	bool is_compat;
394 #endif
395 	union {
396 		const char __user *const __user *native;
397 #ifdef CONFIG_COMPAT
398 		const compat_uptr_t __user *compat;
399 #endif
400 	} ptr;
401 };
402 
403 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
404 {
405 	const char __user *native;
406 
407 #ifdef CONFIG_COMPAT
408 	if (unlikely(argv.is_compat)) {
409 		compat_uptr_t compat;
410 
411 		if (get_user(compat, argv.ptr.compat + nr))
412 			return ERR_PTR(-EFAULT);
413 
414 		return compat_ptr(compat);
415 	}
416 #endif
417 
418 	if (get_user(native, argv.ptr.native + nr))
419 		return ERR_PTR(-EFAULT);
420 
421 	return native;
422 }
423 
424 /*
425  * count() counts the number of strings in array ARGV.
426  */
427 static int count(struct user_arg_ptr argv, int max)
428 {
429 	int i = 0;
430 
431 	if (argv.ptr.native != NULL) {
432 		for (;;) {
433 			const char __user *p = get_user_arg_ptr(argv, i);
434 
435 			if (!p)
436 				break;
437 
438 			if (IS_ERR(p))
439 				return -EFAULT;
440 
441 			if (i >= max)
442 				return -E2BIG;
443 			++i;
444 
445 			if (fatal_signal_pending(current))
446 				return -ERESTARTNOHAND;
447 			cond_resched();
448 		}
449 	}
450 	return i;
451 }
452 
453 static int count_strings_kernel(const char *const *argv)
454 {
455 	int i;
456 
457 	if (!argv)
458 		return 0;
459 
460 	for (i = 0; argv[i]; ++i) {
461 		if (i >= MAX_ARG_STRINGS)
462 			return -E2BIG;
463 		if (fatal_signal_pending(current))
464 			return -ERESTARTNOHAND;
465 		cond_resched();
466 	}
467 	return i;
468 }
469 
470 static int bprm_stack_limits(struct linux_binprm *bprm)
471 {
472 	unsigned long limit, ptr_size;
473 
474 	/*
475 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
476 	 * (whichever is smaller) for the argv+env strings.
477 	 * This ensures that:
478 	 *  - the remaining binfmt code will not run out of stack space,
479 	 *  - the program will have a reasonable amount of stack left
480 	 *    to work from.
481 	 */
482 	limit = _STK_LIM / 4 * 3;
483 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
484 	/*
485 	 * We've historically supported up to 32 pages (ARG_MAX)
486 	 * of argument strings even with small stacks
487 	 */
488 	limit = max_t(unsigned long, limit, ARG_MAX);
489 	/*
490 	 * We must account for the size of all the argv and envp pointers to
491 	 * the argv and envp strings, since they will also take up space in
492 	 * the stack. They aren't stored until much later when we can't
493 	 * signal to the parent that the child has run out of stack space.
494 	 * Instead, calculate it here so it's possible to fail gracefully.
495 	 */
496 	ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
497 	if (limit <= ptr_size)
498 		return -E2BIG;
499 	limit -= ptr_size;
500 
501 	bprm->argmin = bprm->p - limit;
502 	return 0;
503 }
504 
505 /*
506  * 'copy_strings()' copies argument/environment strings from the old
507  * processes's memory to the new process's stack.  The call to get_user_pages()
508  * ensures the destination page is created and not swapped out.
509  */
510 static int copy_strings(int argc, struct user_arg_ptr argv,
511 			struct linux_binprm *bprm)
512 {
513 	struct page *kmapped_page = NULL;
514 	char *kaddr = NULL;
515 	unsigned long kpos = 0;
516 	int ret;
517 
518 	while (argc-- > 0) {
519 		const char __user *str;
520 		int len;
521 		unsigned long pos;
522 
523 		ret = -EFAULT;
524 		str = get_user_arg_ptr(argv, argc);
525 		if (IS_ERR(str))
526 			goto out;
527 
528 		len = strnlen_user(str, MAX_ARG_STRLEN);
529 		if (!len)
530 			goto out;
531 
532 		ret = -E2BIG;
533 		if (!valid_arg_len(bprm, len))
534 			goto out;
535 
536 		/* We're going to work our way backwords. */
537 		pos = bprm->p;
538 		str += len;
539 		bprm->p -= len;
540 #ifdef CONFIG_MMU
541 		if (bprm->p < bprm->argmin)
542 			goto out;
543 #endif
544 
545 		while (len > 0) {
546 			int offset, bytes_to_copy;
547 
548 			if (fatal_signal_pending(current)) {
549 				ret = -ERESTARTNOHAND;
550 				goto out;
551 			}
552 			cond_resched();
553 
554 			offset = pos % PAGE_SIZE;
555 			if (offset == 0)
556 				offset = PAGE_SIZE;
557 
558 			bytes_to_copy = offset;
559 			if (bytes_to_copy > len)
560 				bytes_to_copy = len;
561 
562 			offset -= bytes_to_copy;
563 			pos -= bytes_to_copy;
564 			str -= bytes_to_copy;
565 			len -= bytes_to_copy;
566 
567 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
568 				struct page *page;
569 
570 				page = get_arg_page(bprm, pos, 1);
571 				if (!page) {
572 					ret = -E2BIG;
573 					goto out;
574 				}
575 
576 				if (kmapped_page) {
577 					flush_kernel_dcache_page(kmapped_page);
578 					kunmap(kmapped_page);
579 					put_arg_page(kmapped_page);
580 				}
581 				kmapped_page = page;
582 				kaddr = kmap(kmapped_page);
583 				kpos = pos & PAGE_MASK;
584 				flush_arg_page(bprm, kpos, kmapped_page);
585 			}
586 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
587 				ret = -EFAULT;
588 				goto out;
589 			}
590 		}
591 	}
592 	ret = 0;
593 out:
594 	if (kmapped_page) {
595 		flush_kernel_dcache_page(kmapped_page);
596 		kunmap(kmapped_page);
597 		put_arg_page(kmapped_page);
598 	}
599 	return ret;
600 }
601 
602 /*
603  * Copy and argument/environment string from the kernel to the processes stack.
604  */
605 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
606 {
607 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
608 	unsigned long pos = bprm->p;
609 
610 	if (len == 0)
611 		return -EFAULT;
612 	if (!valid_arg_len(bprm, len))
613 		return -E2BIG;
614 
615 	/* We're going to work our way backwards. */
616 	arg += len;
617 	bprm->p -= len;
618 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
619 		return -E2BIG;
620 
621 	while (len > 0) {
622 		unsigned int bytes_to_copy = min_t(unsigned int, len,
623 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
624 		struct page *page;
625 		char *kaddr;
626 
627 		pos -= bytes_to_copy;
628 		arg -= bytes_to_copy;
629 		len -= bytes_to_copy;
630 
631 		page = get_arg_page(bprm, pos, 1);
632 		if (!page)
633 			return -E2BIG;
634 		kaddr = kmap_atomic(page);
635 		flush_arg_page(bprm, pos & PAGE_MASK, page);
636 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
637 		flush_kernel_dcache_page(page);
638 		kunmap_atomic(kaddr);
639 		put_arg_page(page);
640 	}
641 
642 	return 0;
643 }
644 EXPORT_SYMBOL(copy_string_kernel);
645 
646 static int copy_strings_kernel(int argc, const char *const *argv,
647 			       struct linux_binprm *bprm)
648 {
649 	while (argc-- > 0) {
650 		int ret = copy_string_kernel(argv[argc], bprm);
651 		if (ret < 0)
652 			return ret;
653 		if (fatal_signal_pending(current))
654 			return -ERESTARTNOHAND;
655 		cond_resched();
656 	}
657 	return 0;
658 }
659 
660 #ifdef CONFIG_MMU
661 
662 /*
663  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
664  * the binfmt code determines where the new stack should reside, we shift it to
665  * its final location.  The process proceeds as follows:
666  *
667  * 1) Use shift to calculate the new vma endpoints.
668  * 2) Extend vma to cover both the old and new ranges.  This ensures the
669  *    arguments passed to subsequent functions are consistent.
670  * 3) Move vma's page tables to the new range.
671  * 4) Free up any cleared pgd range.
672  * 5) Shrink the vma to cover only the new range.
673  */
674 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
675 {
676 	struct mm_struct *mm = vma->vm_mm;
677 	unsigned long old_start = vma->vm_start;
678 	unsigned long old_end = vma->vm_end;
679 	unsigned long length = old_end - old_start;
680 	unsigned long new_start = old_start - shift;
681 	unsigned long new_end = old_end - shift;
682 	struct mmu_gather tlb;
683 
684 	BUG_ON(new_start > new_end);
685 
686 	/*
687 	 * ensure there are no vmas between where we want to go
688 	 * and where we are
689 	 */
690 	if (vma != find_vma(mm, new_start))
691 		return -EFAULT;
692 
693 	/*
694 	 * cover the whole range: [new_start, old_end)
695 	 */
696 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
697 		return -ENOMEM;
698 
699 	/*
700 	 * move the page tables downwards, on failure we rely on
701 	 * process cleanup to remove whatever mess we made.
702 	 */
703 	if (length != move_page_tables(vma, old_start,
704 				       vma, new_start, length, false))
705 		return -ENOMEM;
706 
707 	lru_add_drain();
708 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
709 	if (new_end > old_start) {
710 		/*
711 		 * when the old and new regions overlap clear from new_end.
712 		 */
713 		free_pgd_range(&tlb, new_end, old_end, new_end,
714 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
715 	} else {
716 		/*
717 		 * otherwise, clean from old_start; this is done to not touch
718 		 * the address space in [new_end, old_start) some architectures
719 		 * have constraints on va-space that make this illegal (IA64) -
720 		 * for the others its just a little faster.
721 		 */
722 		free_pgd_range(&tlb, old_start, old_end, new_end,
723 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
724 	}
725 	tlb_finish_mmu(&tlb, old_start, old_end);
726 
727 	/*
728 	 * Shrink the vma to just the new range.  Always succeeds.
729 	 */
730 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
731 
732 	return 0;
733 }
734 
735 /*
736  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
737  * the stack is optionally relocated, and some extra space is added.
738  */
739 int setup_arg_pages(struct linux_binprm *bprm,
740 		    unsigned long stack_top,
741 		    int executable_stack)
742 {
743 	unsigned long ret;
744 	unsigned long stack_shift;
745 	struct mm_struct *mm = current->mm;
746 	struct vm_area_struct *vma = bprm->vma;
747 	struct vm_area_struct *prev = NULL;
748 	unsigned long vm_flags;
749 	unsigned long stack_base;
750 	unsigned long stack_size;
751 	unsigned long stack_expand;
752 	unsigned long rlim_stack;
753 
754 #ifdef CONFIG_STACK_GROWSUP
755 	/* Limit stack size */
756 	stack_base = bprm->rlim_stack.rlim_max;
757 	if (stack_base > STACK_SIZE_MAX)
758 		stack_base = STACK_SIZE_MAX;
759 
760 	/* Add space for stack randomization. */
761 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
762 
763 	/* Make sure we didn't let the argument array grow too large. */
764 	if (vma->vm_end - vma->vm_start > stack_base)
765 		return -ENOMEM;
766 
767 	stack_base = PAGE_ALIGN(stack_top - stack_base);
768 
769 	stack_shift = vma->vm_start - stack_base;
770 	mm->arg_start = bprm->p - stack_shift;
771 	bprm->p = vma->vm_end - stack_shift;
772 #else
773 	stack_top = arch_align_stack(stack_top);
774 	stack_top = PAGE_ALIGN(stack_top);
775 
776 	if (unlikely(stack_top < mmap_min_addr) ||
777 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
778 		return -ENOMEM;
779 
780 	stack_shift = vma->vm_end - stack_top;
781 
782 	bprm->p -= stack_shift;
783 	mm->arg_start = bprm->p;
784 #endif
785 
786 	if (bprm->loader)
787 		bprm->loader -= stack_shift;
788 	bprm->exec -= stack_shift;
789 
790 	if (mmap_write_lock_killable(mm))
791 		return -EINTR;
792 
793 	vm_flags = VM_STACK_FLAGS;
794 
795 	/*
796 	 * Adjust stack execute permissions; explicitly enable for
797 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
798 	 * (arch default) otherwise.
799 	 */
800 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
801 		vm_flags |= VM_EXEC;
802 	else if (executable_stack == EXSTACK_DISABLE_X)
803 		vm_flags &= ~VM_EXEC;
804 	vm_flags |= mm->def_flags;
805 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
806 
807 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
808 			vm_flags);
809 	if (ret)
810 		goto out_unlock;
811 	BUG_ON(prev != vma);
812 
813 	if (unlikely(vm_flags & VM_EXEC)) {
814 		pr_warn_once("process '%pD4' started with executable stack\n",
815 			     bprm->file);
816 	}
817 
818 	/* Move stack pages down in memory. */
819 	if (stack_shift) {
820 		ret = shift_arg_pages(vma, stack_shift);
821 		if (ret)
822 			goto out_unlock;
823 	}
824 
825 	/* mprotect_fixup is overkill to remove the temporary stack flags */
826 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
827 
828 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
829 	stack_size = vma->vm_end - vma->vm_start;
830 	/*
831 	 * Align this down to a page boundary as expand_stack
832 	 * will align it up.
833 	 */
834 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
835 #ifdef CONFIG_STACK_GROWSUP
836 	if (stack_size + stack_expand > rlim_stack)
837 		stack_base = vma->vm_start + rlim_stack;
838 	else
839 		stack_base = vma->vm_end + stack_expand;
840 #else
841 	if (stack_size + stack_expand > rlim_stack)
842 		stack_base = vma->vm_end - rlim_stack;
843 	else
844 		stack_base = vma->vm_start - stack_expand;
845 #endif
846 	current->mm->start_stack = bprm->p;
847 	ret = expand_stack(vma, stack_base);
848 	if (ret)
849 		ret = -EFAULT;
850 
851 out_unlock:
852 	mmap_write_unlock(mm);
853 	return ret;
854 }
855 EXPORT_SYMBOL(setup_arg_pages);
856 
857 #else
858 
859 /*
860  * Transfer the program arguments and environment from the holding pages
861  * onto the stack. The provided stack pointer is adjusted accordingly.
862  */
863 int transfer_args_to_stack(struct linux_binprm *bprm,
864 			   unsigned long *sp_location)
865 {
866 	unsigned long index, stop, sp;
867 	int ret = 0;
868 
869 	stop = bprm->p >> PAGE_SHIFT;
870 	sp = *sp_location;
871 
872 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
873 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
874 		char *src = kmap(bprm->page[index]) + offset;
875 		sp -= PAGE_SIZE - offset;
876 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
877 			ret = -EFAULT;
878 		kunmap(bprm->page[index]);
879 		if (ret)
880 			goto out;
881 	}
882 
883 	*sp_location = sp;
884 
885 out:
886 	return ret;
887 }
888 EXPORT_SYMBOL(transfer_args_to_stack);
889 
890 #endif /* CONFIG_MMU */
891 
892 static struct file *do_open_execat(int fd, struct filename *name, int flags)
893 {
894 	struct file *file;
895 	int err;
896 	struct open_flags open_exec_flags = {
897 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
898 		.acc_mode = MAY_EXEC,
899 		.intent = LOOKUP_OPEN,
900 		.lookup_flags = LOOKUP_FOLLOW,
901 	};
902 
903 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
904 		return ERR_PTR(-EINVAL);
905 	if (flags & AT_SYMLINK_NOFOLLOW)
906 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
907 	if (flags & AT_EMPTY_PATH)
908 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
909 
910 	file = do_filp_open(fd, name, &open_exec_flags);
911 	if (IS_ERR(file))
912 		goto out;
913 
914 	/*
915 	 * may_open() has already checked for this, so it should be
916 	 * impossible to trip now. But we need to be extra cautious
917 	 * and check again at the very end too.
918 	 */
919 	err = -EACCES;
920 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
921 			 path_noexec(&file->f_path)))
922 		goto exit;
923 
924 	err = deny_write_access(file);
925 	if (err)
926 		goto exit;
927 
928 	if (name->name[0] != '\0')
929 		fsnotify_open(file);
930 
931 out:
932 	return file;
933 
934 exit:
935 	fput(file);
936 	return ERR_PTR(err);
937 }
938 
939 struct file *open_exec(const char *name)
940 {
941 	struct filename *filename = getname_kernel(name);
942 	struct file *f = ERR_CAST(filename);
943 
944 	if (!IS_ERR(filename)) {
945 		f = do_open_execat(AT_FDCWD, filename, 0);
946 		putname(filename);
947 	}
948 	return f;
949 }
950 EXPORT_SYMBOL(open_exec);
951 
952 int kernel_read_file(struct file *file, void **buf, loff_t *size,
953 		     loff_t max_size, enum kernel_read_file_id id)
954 {
955 	loff_t i_size, pos;
956 	ssize_t bytes = 0;
957 	int ret;
958 
959 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
960 		return -EINVAL;
961 
962 	ret = deny_write_access(file);
963 	if (ret)
964 		return ret;
965 
966 	ret = security_kernel_read_file(file, id);
967 	if (ret)
968 		goto out;
969 
970 	i_size = i_size_read(file_inode(file));
971 	if (i_size <= 0) {
972 		ret = -EINVAL;
973 		goto out;
974 	}
975 	if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
976 		ret = -EFBIG;
977 		goto out;
978 	}
979 
980 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
981 		*buf = vmalloc(i_size);
982 	if (!*buf) {
983 		ret = -ENOMEM;
984 		goto out;
985 	}
986 
987 	pos = 0;
988 	while (pos < i_size) {
989 		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
990 		if (bytes < 0) {
991 			ret = bytes;
992 			goto out_free;
993 		}
994 
995 		if (bytes == 0)
996 			break;
997 	}
998 
999 	if (pos != i_size) {
1000 		ret = -EIO;
1001 		goto out_free;
1002 	}
1003 
1004 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
1005 	if (!ret)
1006 		*size = pos;
1007 
1008 out_free:
1009 	if (ret < 0) {
1010 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
1011 			vfree(*buf);
1012 			*buf = NULL;
1013 		}
1014 	}
1015 
1016 out:
1017 	allow_write_access(file);
1018 	return ret;
1019 }
1020 EXPORT_SYMBOL_GPL(kernel_read_file);
1021 
1022 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
1023 			       loff_t max_size, enum kernel_read_file_id id)
1024 {
1025 	struct file *file;
1026 	int ret;
1027 
1028 	if (!path || !*path)
1029 		return -EINVAL;
1030 
1031 	file = filp_open(path, O_RDONLY, 0);
1032 	if (IS_ERR(file))
1033 		return PTR_ERR(file);
1034 
1035 	ret = kernel_read_file(file, buf, size, max_size, id);
1036 	fput(file);
1037 	return ret;
1038 }
1039 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1040 
1041 int kernel_read_file_from_path_initns(const char *path, void **buf,
1042 				      loff_t *size, loff_t max_size,
1043 				      enum kernel_read_file_id id)
1044 {
1045 	struct file *file;
1046 	struct path root;
1047 	int ret;
1048 
1049 	if (!path || !*path)
1050 		return -EINVAL;
1051 
1052 	task_lock(&init_task);
1053 	get_fs_root(init_task.fs, &root);
1054 	task_unlock(&init_task);
1055 
1056 	file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1057 	path_put(&root);
1058 	if (IS_ERR(file))
1059 		return PTR_ERR(file);
1060 
1061 	ret = kernel_read_file(file, buf, size, max_size, id);
1062 	fput(file);
1063 	return ret;
1064 }
1065 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1066 
1067 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1068 			     enum kernel_read_file_id id)
1069 {
1070 	struct fd f = fdget(fd);
1071 	int ret = -EBADF;
1072 
1073 	if (!f.file)
1074 		goto out;
1075 
1076 	ret = kernel_read_file(f.file, buf, size, max_size, id);
1077 out:
1078 	fdput(f);
1079 	return ret;
1080 }
1081 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1082 
1083 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1084     defined(CONFIG_BINFMT_ELF_FDPIC)
1085 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1086 {
1087 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1088 	if (res > 0)
1089 		flush_icache_user_range(addr, addr + len);
1090 	return res;
1091 }
1092 EXPORT_SYMBOL(read_code);
1093 #endif
1094 
1095 /*
1096  * Maps the mm_struct mm into the current task struct.
1097  * On success, this function returns with the mutex
1098  * exec_update_mutex locked.
1099  */
1100 static int exec_mmap(struct mm_struct *mm)
1101 {
1102 	struct task_struct *tsk;
1103 	struct mm_struct *old_mm, *active_mm;
1104 	int ret;
1105 
1106 	/* Notify parent that we're no longer interested in the old VM */
1107 	tsk = current;
1108 	old_mm = current->mm;
1109 	exec_mm_release(tsk, old_mm);
1110 	if (old_mm)
1111 		sync_mm_rss(old_mm);
1112 
1113 	ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
1114 	if (ret)
1115 		return ret;
1116 
1117 	if (old_mm) {
1118 		/*
1119 		 * Make sure that if there is a core dump in progress
1120 		 * for the old mm, we get out and die instead of going
1121 		 * through with the exec.  We must hold mmap_lock around
1122 		 * checking core_state and changing tsk->mm.
1123 		 */
1124 		mmap_read_lock(old_mm);
1125 		if (unlikely(old_mm->core_state)) {
1126 			mmap_read_unlock(old_mm);
1127 			mutex_unlock(&tsk->signal->exec_update_mutex);
1128 			return -EINTR;
1129 		}
1130 	}
1131 
1132 	task_lock(tsk);
1133 	active_mm = tsk->active_mm;
1134 	membarrier_exec_mmap(mm);
1135 	tsk->mm = mm;
1136 	tsk->active_mm = mm;
1137 	activate_mm(active_mm, mm);
1138 	tsk->mm->vmacache_seqnum = 0;
1139 	vmacache_flush(tsk);
1140 	task_unlock(tsk);
1141 	if (old_mm) {
1142 		mmap_read_unlock(old_mm);
1143 		BUG_ON(active_mm != old_mm);
1144 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1145 		mm_update_next_owner(old_mm);
1146 		mmput(old_mm);
1147 		return 0;
1148 	}
1149 	mmdrop(active_mm);
1150 	return 0;
1151 }
1152 
1153 static int de_thread(struct task_struct *tsk)
1154 {
1155 	struct signal_struct *sig = tsk->signal;
1156 	struct sighand_struct *oldsighand = tsk->sighand;
1157 	spinlock_t *lock = &oldsighand->siglock;
1158 
1159 	if (thread_group_empty(tsk))
1160 		goto no_thread_group;
1161 
1162 	/*
1163 	 * Kill all other threads in the thread group.
1164 	 */
1165 	spin_lock_irq(lock);
1166 	if (signal_group_exit(sig)) {
1167 		/*
1168 		 * Another group action in progress, just
1169 		 * return so that the signal is processed.
1170 		 */
1171 		spin_unlock_irq(lock);
1172 		return -EAGAIN;
1173 	}
1174 
1175 	sig->group_exit_task = tsk;
1176 	sig->notify_count = zap_other_threads(tsk);
1177 	if (!thread_group_leader(tsk))
1178 		sig->notify_count--;
1179 
1180 	while (sig->notify_count) {
1181 		__set_current_state(TASK_KILLABLE);
1182 		spin_unlock_irq(lock);
1183 		schedule();
1184 		if (__fatal_signal_pending(tsk))
1185 			goto killed;
1186 		spin_lock_irq(lock);
1187 	}
1188 	spin_unlock_irq(lock);
1189 
1190 	/*
1191 	 * At this point all other threads have exited, all we have to
1192 	 * do is to wait for the thread group leader to become inactive,
1193 	 * and to assume its PID:
1194 	 */
1195 	if (!thread_group_leader(tsk)) {
1196 		struct task_struct *leader = tsk->group_leader;
1197 
1198 		for (;;) {
1199 			cgroup_threadgroup_change_begin(tsk);
1200 			write_lock_irq(&tasklist_lock);
1201 			/*
1202 			 * Do this under tasklist_lock to ensure that
1203 			 * exit_notify() can't miss ->group_exit_task
1204 			 */
1205 			sig->notify_count = -1;
1206 			if (likely(leader->exit_state))
1207 				break;
1208 			__set_current_state(TASK_KILLABLE);
1209 			write_unlock_irq(&tasklist_lock);
1210 			cgroup_threadgroup_change_end(tsk);
1211 			schedule();
1212 			if (__fatal_signal_pending(tsk))
1213 				goto killed;
1214 		}
1215 
1216 		/*
1217 		 * The only record we have of the real-time age of a
1218 		 * process, regardless of execs it's done, is start_time.
1219 		 * All the past CPU time is accumulated in signal_struct
1220 		 * from sister threads now dead.  But in this non-leader
1221 		 * exec, nothing survives from the original leader thread,
1222 		 * whose birth marks the true age of this process now.
1223 		 * When we take on its identity by switching to its PID, we
1224 		 * also take its birthdate (always earlier than our own).
1225 		 */
1226 		tsk->start_time = leader->start_time;
1227 		tsk->start_boottime = leader->start_boottime;
1228 
1229 		BUG_ON(!same_thread_group(leader, tsk));
1230 		/*
1231 		 * An exec() starts a new thread group with the
1232 		 * TGID of the previous thread group. Rehash the
1233 		 * two threads with a switched PID, and release
1234 		 * the former thread group leader:
1235 		 */
1236 
1237 		/* Become a process group leader with the old leader's pid.
1238 		 * The old leader becomes a thread of the this thread group.
1239 		 */
1240 		exchange_tids(tsk, leader);
1241 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1242 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1243 		transfer_pid(leader, tsk, PIDTYPE_SID);
1244 
1245 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1246 		list_replace_init(&leader->sibling, &tsk->sibling);
1247 
1248 		tsk->group_leader = tsk;
1249 		leader->group_leader = tsk;
1250 
1251 		tsk->exit_signal = SIGCHLD;
1252 		leader->exit_signal = -1;
1253 
1254 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1255 		leader->exit_state = EXIT_DEAD;
1256 
1257 		/*
1258 		 * We are going to release_task()->ptrace_unlink() silently,
1259 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1260 		 * the tracer wont't block again waiting for this thread.
1261 		 */
1262 		if (unlikely(leader->ptrace))
1263 			__wake_up_parent(leader, leader->parent);
1264 		write_unlock_irq(&tasklist_lock);
1265 		cgroup_threadgroup_change_end(tsk);
1266 
1267 		release_task(leader);
1268 	}
1269 
1270 	sig->group_exit_task = NULL;
1271 	sig->notify_count = 0;
1272 
1273 no_thread_group:
1274 	/* we have changed execution domain */
1275 	tsk->exit_signal = SIGCHLD;
1276 
1277 	BUG_ON(!thread_group_leader(tsk));
1278 	return 0;
1279 
1280 killed:
1281 	/* protects against exit_notify() and __exit_signal() */
1282 	read_lock(&tasklist_lock);
1283 	sig->group_exit_task = NULL;
1284 	sig->notify_count = 0;
1285 	read_unlock(&tasklist_lock);
1286 	return -EAGAIN;
1287 }
1288 
1289 
1290 /*
1291  * This function makes sure the current process has its own signal table,
1292  * so that flush_signal_handlers can later reset the handlers without
1293  * disturbing other processes.  (Other processes might share the signal
1294  * table via the CLONE_SIGHAND option to clone().)
1295  */
1296 static int unshare_sighand(struct task_struct *me)
1297 {
1298 	struct sighand_struct *oldsighand = me->sighand;
1299 
1300 	if (refcount_read(&oldsighand->count) != 1) {
1301 		struct sighand_struct *newsighand;
1302 		/*
1303 		 * This ->sighand is shared with the CLONE_SIGHAND
1304 		 * but not CLONE_THREAD task, switch to the new one.
1305 		 */
1306 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1307 		if (!newsighand)
1308 			return -ENOMEM;
1309 
1310 		refcount_set(&newsighand->count, 1);
1311 		memcpy(newsighand->action, oldsighand->action,
1312 		       sizeof(newsighand->action));
1313 
1314 		write_lock_irq(&tasklist_lock);
1315 		spin_lock(&oldsighand->siglock);
1316 		rcu_assign_pointer(me->sighand, newsighand);
1317 		spin_unlock(&oldsighand->siglock);
1318 		write_unlock_irq(&tasklist_lock);
1319 
1320 		__cleanup_sighand(oldsighand);
1321 	}
1322 	return 0;
1323 }
1324 
1325 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1326 {
1327 	task_lock(tsk);
1328 	strncpy(buf, tsk->comm, buf_size);
1329 	task_unlock(tsk);
1330 	return buf;
1331 }
1332 EXPORT_SYMBOL_GPL(__get_task_comm);
1333 
1334 /*
1335  * These functions flushes out all traces of the currently running executable
1336  * so that a new one can be started
1337  */
1338 
1339 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1340 {
1341 	task_lock(tsk);
1342 	trace_task_rename(tsk, buf);
1343 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1344 	task_unlock(tsk);
1345 	perf_event_comm(tsk, exec);
1346 }
1347 
1348 /*
1349  * Calling this is the point of no return. None of the failures will be
1350  * seen by userspace since either the process is already taking a fatal
1351  * signal (via de_thread() or coredump), or will have SEGV raised
1352  * (after exec_mmap()) by search_binary_handler (see below).
1353  */
1354 int begin_new_exec(struct linux_binprm * bprm)
1355 {
1356 	struct task_struct *me = current;
1357 	int retval;
1358 
1359 	/* Once we are committed compute the creds */
1360 	retval = bprm_creds_from_file(bprm);
1361 	if (retval)
1362 		return retval;
1363 
1364 	/*
1365 	 * Ensure all future errors are fatal.
1366 	 */
1367 	bprm->point_of_no_return = true;
1368 
1369 	/*
1370 	 * Make this the only thread in the thread group.
1371 	 */
1372 	retval = de_thread(me);
1373 	if (retval)
1374 		goto out;
1375 
1376 	/*
1377 	 * Must be called _before_ exec_mmap() as bprm->mm is
1378 	 * not visibile until then. This also enables the update
1379 	 * to be lockless.
1380 	 */
1381 	set_mm_exe_file(bprm->mm, bprm->file);
1382 
1383 	/* If the binary is not readable then enforce mm->dumpable=0 */
1384 	would_dump(bprm, bprm->file);
1385 	if (bprm->have_execfd)
1386 		would_dump(bprm, bprm->executable);
1387 
1388 	/*
1389 	 * Release all of the old mmap stuff
1390 	 */
1391 	acct_arg_size(bprm, 0);
1392 	retval = exec_mmap(bprm->mm);
1393 	if (retval)
1394 		goto out;
1395 
1396 	bprm->mm = NULL;
1397 
1398 #ifdef CONFIG_POSIX_TIMERS
1399 	exit_itimers(me->signal);
1400 	flush_itimer_signals();
1401 #endif
1402 
1403 	/*
1404 	 * Make the signal table private.
1405 	 */
1406 	retval = unshare_sighand(me);
1407 	if (retval)
1408 		goto out_unlock;
1409 
1410 	/*
1411 	 * Ensure that the uaccess routines can actually operate on userspace
1412 	 * pointers:
1413 	 */
1414 	force_uaccess_begin();
1415 
1416 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1417 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1418 	flush_thread();
1419 	me->personality &= ~bprm->per_clear;
1420 
1421 	/*
1422 	 * We have to apply CLOEXEC before we change whether the process is
1423 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1424 	 * trying to access the should-be-closed file descriptors of a process
1425 	 * undergoing exec(2).
1426 	 */
1427 	do_close_on_exec(me->files);
1428 
1429 	if (bprm->secureexec) {
1430 		/* Make sure parent cannot signal privileged process. */
1431 		me->pdeath_signal = 0;
1432 
1433 		/*
1434 		 * For secureexec, reset the stack limit to sane default to
1435 		 * avoid bad behavior from the prior rlimits. This has to
1436 		 * happen before arch_pick_mmap_layout(), which examines
1437 		 * RLIMIT_STACK, but after the point of no return to avoid
1438 		 * needing to clean up the change on failure.
1439 		 */
1440 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1441 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1442 	}
1443 
1444 	me->sas_ss_sp = me->sas_ss_size = 0;
1445 
1446 	/*
1447 	 * Figure out dumpability. Note that this checking only of current
1448 	 * is wrong, but userspace depends on it. This should be testing
1449 	 * bprm->secureexec instead.
1450 	 */
1451 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1452 	    !(uid_eq(current_euid(), current_uid()) &&
1453 	      gid_eq(current_egid(), current_gid())))
1454 		set_dumpable(current->mm, suid_dumpable);
1455 	else
1456 		set_dumpable(current->mm, SUID_DUMP_USER);
1457 
1458 	perf_event_exec();
1459 	__set_task_comm(me, kbasename(bprm->filename), true);
1460 
1461 	/* An exec changes our domain. We are no longer part of the thread
1462 	   group */
1463 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1464 	flush_signal_handlers(me, 0);
1465 
1466 	/*
1467 	 * install the new credentials for this executable
1468 	 */
1469 	security_bprm_committing_creds(bprm);
1470 
1471 	commit_creds(bprm->cred);
1472 	bprm->cred = NULL;
1473 
1474 	/*
1475 	 * Disable monitoring for regular users
1476 	 * when executing setuid binaries. Must
1477 	 * wait until new credentials are committed
1478 	 * by commit_creds() above
1479 	 */
1480 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1481 		perf_event_exit_task(me);
1482 	/*
1483 	 * cred_guard_mutex must be held at least to this point to prevent
1484 	 * ptrace_attach() from altering our determination of the task's
1485 	 * credentials; any time after this it may be unlocked.
1486 	 */
1487 	security_bprm_committed_creds(bprm);
1488 
1489 	/* Pass the opened binary to the interpreter. */
1490 	if (bprm->have_execfd) {
1491 		retval = get_unused_fd_flags(0);
1492 		if (retval < 0)
1493 			goto out_unlock;
1494 		fd_install(retval, bprm->executable);
1495 		bprm->executable = NULL;
1496 		bprm->execfd = retval;
1497 	}
1498 	return 0;
1499 
1500 out_unlock:
1501 	mutex_unlock(&me->signal->exec_update_mutex);
1502 out:
1503 	return retval;
1504 }
1505 EXPORT_SYMBOL(begin_new_exec);
1506 
1507 void would_dump(struct linux_binprm *bprm, struct file *file)
1508 {
1509 	struct inode *inode = file_inode(file);
1510 	if (inode_permission(inode, MAY_READ) < 0) {
1511 		struct user_namespace *old, *user_ns;
1512 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1513 
1514 		/* Ensure mm->user_ns contains the executable */
1515 		user_ns = old = bprm->mm->user_ns;
1516 		while ((user_ns != &init_user_ns) &&
1517 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1518 			user_ns = user_ns->parent;
1519 
1520 		if (old != user_ns) {
1521 			bprm->mm->user_ns = get_user_ns(user_ns);
1522 			put_user_ns(old);
1523 		}
1524 	}
1525 }
1526 EXPORT_SYMBOL(would_dump);
1527 
1528 void setup_new_exec(struct linux_binprm * bprm)
1529 {
1530 	/* Setup things that can depend upon the personality */
1531 	struct task_struct *me = current;
1532 
1533 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1534 
1535 	arch_setup_new_exec();
1536 
1537 	/* Set the new mm task size. We have to do that late because it may
1538 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1539 	 * some architectures like powerpc
1540 	 */
1541 	me->mm->task_size = TASK_SIZE;
1542 	mutex_unlock(&me->signal->exec_update_mutex);
1543 	mutex_unlock(&me->signal->cred_guard_mutex);
1544 }
1545 EXPORT_SYMBOL(setup_new_exec);
1546 
1547 /* Runs immediately before start_thread() takes over. */
1548 void finalize_exec(struct linux_binprm *bprm)
1549 {
1550 	/* Store any stack rlimit changes before starting thread. */
1551 	task_lock(current->group_leader);
1552 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1553 	task_unlock(current->group_leader);
1554 }
1555 EXPORT_SYMBOL(finalize_exec);
1556 
1557 /*
1558  * Prepare credentials and lock ->cred_guard_mutex.
1559  * setup_new_exec() commits the new creds and drops the lock.
1560  * Or, if exec fails before, free_bprm() should release ->cred and
1561  * and unlock.
1562  */
1563 static int prepare_bprm_creds(struct linux_binprm *bprm)
1564 {
1565 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1566 		return -ERESTARTNOINTR;
1567 
1568 	bprm->cred = prepare_exec_creds();
1569 	if (likely(bprm->cred))
1570 		return 0;
1571 
1572 	mutex_unlock(&current->signal->cred_guard_mutex);
1573 	return -ENOMEM;
1574 }
1575 
1576 static void free_bprm(struct linux_binprm *bprm)
1577 {
1578 	if (bprm->mm) {
1579 		acct_arg_size(bprm, 0);
1580 		mmput(bprm->mm);
1581 	}
1582 	free_arg_pages(bprm);
1583 	if (bprm->cred) {
1584 		mutex_unlock(&current->signal->cred_guard_mutex);
1585 		abort_creds(bprm->cred);
1586 	}
1587 	if (bprm->file) {
1588 		allow_write_access(bprm->file);
1589 		fput(bprm->file);
1590 	}
1591 	if (bprm->executable)
1592 		fput(bprm->executable);
1593 	/* If a binfmt changed the interp, free it. */
1594 	if (bprm->interp != bprm->filename)
1595 		kfree(bprm->interp);
1596 	kfree(bprm->fdpath);
1597 	kfree(bprm);
1598 }
1599 
1600 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1601 {
1602 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1603 	int retval = -ENOMEM;
1604 	if (!bprm)
1605 		goto out;
1606 
1607 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1608 		bprm->filename = filename->name;
1609 	} else {
1610 		if (filename->name[0] == '\0')
1611 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1612 		else
1613 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1614 						  fd, filename->name);
1615 		if (!bprm->fdpath)
1616 			goto out_free;
1617 
1618 		bprm->filename = bprm->fdpath;
1619 	}
1620 	bprm->interp = bprm->filename;
1621 
1622 	retval = bprm_mm_init(bprm);
1623 	if (retval)
1624 		goto out_free;
1625 	return bprm;
1626 
1627 out_free:
1628 	free_bprm(bprm);
1629 out:
1630 	return ERR_PTR(retval);
1631 }
1632 
1633 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1634 {
1635 	/* If a binfmt changed the interp, free it first. */
1636 	if (bprm->interp != bprm->filename)
1637 		kfree(bprm->interp);
1638 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1639 	if (!bprm->interp)
1640 		return -ENOMEM;
1641 	return 0;
1642 }
1643 EXPORT_SYMBOL(bprm_change_interp);
1644 
1645 /*
1646  * determine how safe it is to execute the proposed program
1647  * - the caller must hold ->cred_guard_mutex to protect against
1648  *   PTRACE_ATTACH or seccomp thread-sync
1649  */
1650 static void check_unsafe_exec(struct linux_binprm *bprm)
1651 {
1652 	struct task_struct *p = current, *t;
1653 	unsigned n_fs;
1654 
1655 	if (p->ptrace)
1656 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1657 
1658 	/*
1659 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1660 	 * mess up.
1661 	 */
1662 	if (task_no_new_privs(current))
1663 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1664 
1665 	t = p;
1666 	n_fs = 1;
1667 	spin_lock(&p->fs->lock);
1668 	rcu_read_lock();
1669 	while_each_thread(p, t) {
1670 		if (t->fs == p->fs)
1671 			n_fs++;
1672 	}
1673 	rcu_read_unlock();
1674 
1675 	if (p->fs->users > n_fs)
1676 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1677 	else
1678 		p->fs->in_exec = 1;
1679 	spin_unlock(&p->fs->lock);
1680 }
1681 
1682 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1683 {
1684 	/* Handle suid and sgid on files */
1685 	struct inode *inode;
1686 	unsigned int mode;
1687 	kuid_t uid;
1688 	kgid_t gid;
1689 
1690 	if (!mnt_may_suid(file->f_path.mnt))
1691 		return;
1692 
1693 	if (task_no_new_privs(current))
1694 		return;
1695 
1696 	inode = file->f_path.dentry->d_inode;
1697 	mode = READ_ONCE(inode->i_mode);
1698 	if (!(mode & (S_ISUID|S_ISGID)))
1699 		return;
1700 
1701 	/* Be careful if suid/sgid is set */
1702 	inode_lock(inode);
1703 
1704 	/* reload atomically mode/uid/gid now that lock held */
1705 	mode = inode->i_mode;
1706 	uid = inode->i_uid;
1707 	gid = inode->i_gid;
1708 	inode_unlock(inode);
1709 
1710 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1711 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1712 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1713 		return;
1714 
1715 	if (mode & S_ISUID) {
1716 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1717 		bprm->cred->euid = uid;
1718 	}
1719 
1720 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1721 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1722 		bprm->cred->egid = gid;
1723 	}
1724 }
1725 
1726 /*
1727  * Compute brpm->cred based upon the final binary.
1728  */
1729 static int bprm_creds_from_file(struct linux_binprm *bprm)
1730 {
1731 	/* Compute creds based on which file? */
1732 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1733 
1734 	bprm_fill_uid(bprm, file);
1735 	return security_bprm_creds_from_file(bprm, file);
1736 }
1737 
1738 /*
1739  * Fill the binprm structure from the inode.
1740  * Read the first BINPRM_BUF_SIZE bytes
1741  *
1742  * This may be called multiple times for binary chains (scripts for example).
1743  */
1744 static int prepare_binprm(struct linux_binprm *bprm)
1745 {
1746 	loff_t pos = 0;
1747 
1748 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1749 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1750 }
1751 
1752 /*
1753  * Arguments are '\0' separated strings found at the location bprm->p
1754  * points to; chop off the first by relocating brpm->p to right after
1755  * the first '\0' encountered.
1756  */
1757 int remove_arg_zero(struct linux_binprm *bprm)
1758 {
1759 	int ret = 0;
1760 	unsigned long offset;
1761 	char *kaddr;
1762 	struct page *page;
1763 
1764 	if (!bprm->argc)
1765 		return 0;
1766 
1767 	do {
1768 		offset = bprm->p & ~PAGE_MASK;
1769 		page = get_arg_page(bprm, bprm->p, 0);
1770 		if (!page) {
1771 			ret = -EFAULT;
1772 			goto out;
1773 		}
1774 		kaddr = kmap_atomic(page);
1775 
1776 		for (; offset < PAGE_SIZE && kaddr[offset];
1777 				offset++, bprm->p++)
1778 			;
1779 
1780 		kunmap_atomic(kaddr);
1781 		put_arg_page(page);
1782 	} while (offset == PAGE_SIZE);
1783 
1784 	bprm->p++;
1785 	bprm->argc--;
1786 	ret = 0;
1787 
1788 out:
1789 	return ret;
1790 }
1791 EXPORT_SYMBOL(remove_arg_zero);
1792 
1793 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1794 /*
1795  * cycle the list of binary formats handler, until one recognizes the image
1796  */
1797 static int search_binary_handler(struct linux_binprm *bprm)
1798 {
1799 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1800 	struct linux_binfmt *fmt;
1801 	int retval;
1802 
1803 	retval = prepare_binprm(bprm);
1804 	if (retval < 0)
1805 		return retval;
1806 
1807 	retval = security_bprm_check(bprm);
1808 	if (retval)
1809 		return retval;
1810 
1811 	retval = -ENOENT;
1812  retry:
1813 	read_lock(&binfmt_lock);
1814 	list_for_each_entry(fmt, &formats, lh) {
1815 		if (!try_module_get(fmt->module))
1816 			continue;
1817 		read_unlock(&binfmt_lock);
1818 
1819 		retval = fmt->load_binary(bprm);
1820 
1821 		read_lock(&binfmt_lock);
1822 		put_binfmt(fmt);
1823 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1824 			read_unlock(&binfmt_lock);
1825 			return retval;
1826 		}
1827 	}
1828 	read_unlock(&binfmt_lock);
1829 
1830 	if (need_retry) {
1831 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1832 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1833 			return retval;
1834 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1835 			return retval;
1836 		need_retry = false;
1837 		goto retry;
1838 	}
1839 
1840 	return retval;
1841 }
1842 
1843 static int exec_binprm(struct linux_binprm *bprm)
1844 {
1845 	pid_t old_pid, old_vpid;
1846 	int ret, depth;
1847 
1848 	/* Need to fetch pid before load_binary changes it */
1849 	old_pid = current->pid;
1850 	rcu_read_lock();
1851 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1852 	rcu_read_unlock();
1853 
1854 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1855 	for (depth = 0;; depth++) {
1856 		struct file *exec;
1857 		if (depth > 5)
1858 			return -ELOOP;
1859 
1860 		ret = search_binary_handler(bprm);
1861 		if (ret < 0)
1862 			return ret;
1863 		if (!bprm->interpreter)
1864 			break;
1865 
1866 		exec = bprm->file;
1867 		bprm->file = bprm->interpreter;
1868 		bprm->interpreter = NULL;
1869 
1870 		allow_write_access(exec);
1871 		if (unlikely(bprm->have_execfd)) {
1872 			if (bprm->executable) {
1873 				fput(exec);
1874 				return -ENOEXEC;
1875 			}
1876 			bprm->executable = exec;
1877 		} else
1878 			fput(exec);
1879 	}
1880 
1881 	audit_bprm(bprm);
1882 	trace_sched_process_exec(current, old_pid, bprm);
1883 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1884 	proc_exec_connector(current);
1885 	return 0;
1886 }
1887 
1888 /*
1889  * sys_execve() executes a new program.
1890  */
1891 static int bprm_execve(struct linux_binprm *bprm,
1892 		       int fd, struct filename *filename, int flags)
1893 {
1894 	struct file *file;
1895 	struct files_struct *displaced;
1896 	int retval;
1897 
1898 	retval = unshare_files(&displaced);
1899 	if (retval)
1900 		return retval;
1901 
1902 	retval = prepare_bprm_creds(bprm);
1903 	if (retval)
1904 		goto out_files;
1905 
1906 	check_unsafe_exec(bprm);
1907 	current->in_execve = 1;
1908 
1909 	file = do_open_execat(fd, filename, flags);
1910 	retval = PTR_ERR(file);
1911 	if (IS_ERR(file))
1912 		goto out_unmark;
1913 
1914 	sched_exec();
1915 
1916 	bprm->file = file;
1917 	/*
1918 	 * Record that a name derived from an O_CLOEXEC fd will be
1919 	 * inaccessible after exec. Relies on having exclusive access to
1920 	 * current->files (due to unshare_files above).
1921 	 */
1922 	if (bprm->fdpath &&
1923 	    close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1924 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1925 
1926 	/* Set the unchanging part of bprm->cred */
1927 	retval = security_bprm_creds_for_exec(bprm);
1928 	if (retval)
1929 		goto out;
1930 
1931 	retval = exec_binprm(bprm);
1932 	if (retval < 0)
1933 		goto out;
1934 
1935 	/* execve succeeded */
1936 	current->fs->in_exec = 0;
1937 	current->in_execve = 0;
1938 	rseq_execve(current);
1939 	acct_update_integrals(current);
1940 	task_numa_free(current, false);
1941 	if (displaced)
1942 		put_files_struct(displaced);
1943 	return retval;
1944 
1945 out:
1946 	/*
1947 	 * If past the point of no return ensure the the code never
1948 	 * returns to the userspace process.  Use an existing fatal
1949 	 * signal if present otherwise terminate the process with
1950 	 * SIGSEGV.
1951 	 */
1952 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1953 		force_sigsegv(SIGSEGV);
1954 
1955 out_unmark:
1956 	current->fs->in_exec = 0;
1957 	current->in_execve = 0;
1958 
1959 out_files:
1960 	if (displaced)
1961 		reset_files_struct(displaced);
1962 
1963 	return retval;
1964 }
1965 
1966 static int do_execveat_common(int fd, struct filename *filename,
1967 			      struct user_arg_ptr argv,
1968 			      struct user_arg_ptr envp,
1969 			      int flags)
1970 {
1971 	struct linux_binprm *bprm;
1972 	int retval;
1973 
1974 	if (IS_ERR(filename))
1975 		return PTR_ERR(filename);
1976 
1977 	/*
1978 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1979 	 * set*uid() to execve() because too many poorly written programs
1980 	 * don't check setuid() return code.  Here we additionally recheck
1981 	 * whether NPROC limit is still exceeded.
1982 	 */
1983 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1984 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1985 		retval = -EAGAIN;
1986 		goto out_ret;
1987 	}
1988 
1989 	/* We're below the limit (still or again), so we don't want to make
1990 	 * further execve() calls fail. */
1991 	current->flags &= ~PF_NPROC_EXCEEDED;
1992 
1993 	bprm = alloc_bprm(fd, filename);
1994 	if (IS_ERR(bprm)) {
1995 		retval = PTR_ERR(bprm);
1996 		goto out_ret;
1997 	}
1998 
1999 	retval = count(argv, MAX_ARG_STRINGS);
2000 	if (retval < 0)
2001 		goto out_free;
2002 	bprm->argc = retval;
2003 
2004 	retval = count(envp, MAX_ARG_STRINGS);
2005 	if (retval < 0)
2006 		goto out_free;
2007 	bprm->envc = retval;
2008 
2009 	retval = bprm_stack_limits(bprm);
2010 	if (retval < 0)
2011 		goto out_free;
2012 
2013 	retval = copy_string_kernel(bprm->filename, bprm);
2014 	if (retval < 0)
2015 		goto out_free;
2016 	bprm->exec = bprm->p;
2017 
2018 	retval = copy_strings(bprm->envc, envp, bprm);
2019 	if (retval < 0)
2020 		goto out_free;
2021 
2022 	retval = copy_strings(bprm->argc, argv, bprm);
2023 	if (retval < 0)
2024 		goto out_free;
2025 
2026 	retval = bprm_execve(bprm, fd, filename, flags);
2027 out_free:
2028 	free_bprm(bprm);
2029 
2030 out_ret:
2031 	putname(filename);
2032 	return retval;
2033 }
2034 
2035 int kernel_execve(const char *kernel_filename,
2036 		  const char *const *argv, const char *const *envp)
2037 {
2038 	struct filename *filename;
2039 	struct linux_binprm *bprm;
2040 	int fd = AT_FDCWD;
2041 	int retval;
2042 
2043 	filename = getname_kernel(kernel_filename);
2044 	if (IS_ERR(filename))
2045 		return PTR_ERR(filename);
2046 
2047 	bprm = alloc_bprm(fd, filename);
2048 	if (IS_ERR(bprm)) {
2049 		retval = PTR_ERR(bprm);
2050 		goto out_ret;
2051 	}
2052 
2053 	retval = count_strings_kernel(argv);
2054 	if (retval < 0)
2055 		goto out_free;
2056 	bprm->argc = retval;
2057 
2058 	retval = count_strings_kernel(envp);
2059 	if (retval < 0)
2060 		goto out_free;
2061 	bprm->envc = retval;
2062 
2063 	retval = bprm_stack_limits(bprm);
2064 	if (retval < 0)
2065 		goto out_free;
2066 
2067 	retval = copy_string_kernel(bprm->filename, bprm);
2068 	if (retval < 0)
2069 		goto out_free;
2070 	bprm->exec = bprm->p;
2071 
2072 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2073 	if (retval < 0)
2074 		goto out_free;
2075 
2076 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2077 	if (retval < 0)
2078 		goto out_free;
2079 
2080 	retval = bprm_execve(bprm, fd, filename, 0);
2081 out_free:
2082 	free_bprm(bprm);
2083 out_ret:
2084 	putname(filename);
2085 	return retval;
2086 }
2087 
2088 static int do_execve(struct filename *filename,
2089 	const char __user *const __user *__argv,
2090 	const char __user *const __user *__envp)
2091 {
2092 	struct user_arg_ptr argv = { .ptr.native = __argv };
2093 	struct user_arg_ptr envp = { .ptr.native = __envp };
2094 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2095 }
2096 
2097 static int do_execveat(int fd, struct filename *filename,
2098 		const char __user *const __user *__argv,
2099 		const char __user *const __user *__envp,
2100 		int flags)
2101 {
2102 	struct user_arg_ptr argv = { .ptr.native = __argv };
2103 	struct user_arg_ptr envp = { .ptr.native = __envp };
2104 
2105 	return do_execveat_common(fd, filename, argv, envp, flags);
2106 }
2107 
2108 #ifdef CONFIG_COMPAT
2109 static int compat_do_execve(struct filename *filename,
2110 	const compat_uptr_t __user *__argv,
2111 	const compat_uptr_t __user *__envp)
2112 {
2113 	struct user_arg_ptr argv = {
2114 		.is_compat = true,
2115 		.ptr.compat = __argv,
2116 	};
2117 	struct user_arg_ptr envp = {
2118 		.is_compat = true,
2119 		.ptr.compat = __envp,
2120 	};
2121 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2122 }
2123 
2124 static int compat_do_execveat(int fd, struct filename *filename,
2125 			      const compat_uptr_t __user *__argv,
2126 			      const compat_uptr_t __user *__envp,
2127 			      int flags)
2128 {
2129 	struct user_arg_ptr argv = {
2130 		.is_compat = true,
2131 		.ptr.compat = __argv,
2132 	};
2133 	struct user_arg_ptr envp = {
2134 		.is_compat = true,
2135 		.ptr.compat = __envp,
2136 	};
2137 	return do_execveat_common(fd, filename, argv, envp, flags);
2138 }
2139 #endif
2140 
2141 void set_binfmt(struct linux_binfmt *new)
2142 {
2143 	struct mm_struct *mm = current->mm;
2144 
2145 	if (mm->binfmt)
2146 		module_put(mm->binfmt->module);
2147 
2148 	mm->binfmt = new;
2149 	if (new)
2150 		__module_get(new->module);
2151 }
2152 EXPORT_SYMBOL(set_binfmt);
2153 
2154 /*
2155  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2156  */
2157 void set_dumpable(struct mm_struct *mm, int value)
2158 {
2159 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2160 		return;
2161 
2162 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2163 }
2164 
2165 SYSCALL_DEFINE3(execve,
2166 		const char __user *, filename,
2167 		const char __user *const __user *, argv,
2168 		const char __user *const __user *, envp)
2169 {
2170 	return do_execve(getname(filename), argv, envp);
2171 }
2172 
2173 SYSCALL_DEFINE5(execveat,
2174 		int, fd, const char __user *, filename,
2175 		const char __user *const __user *, argv,
2176 		const char __user *const __user *, envp,
2177 		int, flags)
2178 {
2179 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2180 
2181 	return do_execveat(fd,
2182 			   getname_flags(filename, lookup_flags, NULL),
2183 			   argv, envp, flags);
2184 }
2185 
2186 #ifdef CONFIG_COMPAT
2187 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2188 	const compat_uptr_t __user *, argv,
2189 	const compat_uptr_t __user *, envp)
2190 {
2191 	return compat_do_execve(getname(filename), argv, envp);
2192 }
2193 
2194 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2195 		       const char __user *, filename,
2196 		       const compat_uptr_t __user *, argv,
2197 		       const compat_uptr_t __user *, envp,
2198 		       int,  flags)
2199 {
2200 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2201 
2202 	return compat_do_execveat(fd,
2203 				  getname_flags(filename, lookup_flags, NULL),
2204 				  argv, envp, flags);
2205 }
2206 #endif
2207