1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/mm.h> 30 #include <linux/vmacache.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/tracehook.h> 59 #include <linux/kmod.h> 60 #include <linux/fsnotify.h> 61 #include <linux/fs_struct.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/mmu_context.h> 68 #include <asm/tlb.h> 69 70 #include <trace/events/task.h> 71 #include "internal.h" 72 73 #include <trace/events/sched.h> 74 75 static int bprm_creds_from_file(struct linux_binprm *bprm); 76 77 int suid_dumpable = 0; 78 79 static LIST_HEAD(formats); 80 static DEFINE_RWLOCK(binfmt_lock); 81 82 void __register_binfmt(struct linux_binfmt * fmt, int insert) 83 { 84 BUG_ON(!fmt); 85 if (WARN_ON(!fmt->load_binary)) 86 return; 87 write_lock(&binfmt_lock); 88 insert ? list_add(&fmt->lh, &formats) : 89 list_add_tail(&fmt->lh, &formats); 90 write_unlock(&binfmt_lock); 91 } 92 93 EXPORT_SYMBOL(__register_binfmt); 94 95 void unregister_binfmt(struct linux_binfmt * fmt) 96 { 97 write_lock(&binfmt_lock); 98 list_del(&fmt->lh); 99 write_unlock(&binfmt_lock); 100 } 101 102 EXPORT_SYMBOL(unregister_binfmt); 103 104 static inline void put_binfmt(struct linux_binfmt * fmt) 105 { 106 module_put(fmt->module); 107 } 108 109 bool path_noexec(const struct path *path) 110 { 111 return (path->mnt->mnt_flags & MNT_NOEXEC) || 112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 113 } 114 115 #ifdef CONFIG_USELIB 116 /* 117 * Note that a shared library must be both readable and executable due to 118 * security reasons. 119 * 120 * Also note that we take the address to load from from the file itself. 121 */ 122 SYSCALL_DEFINE1(uselib, const char __user *, library) 123 { 124 struct linux_binfmt *fmt; 125 struct file *file; 126 struct filename *tmp = getname(library); 127 int error = PTR_ERR(tmp); 128 static const struct open_flags uselib_flags = { 129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 130 .acc_mode = MAY_READ | MAY_EXEC, 131 .intent = LOOKUP_OPEN, 132 .lookup_flags = LOOKUP_FOLLOW, 133 }; 134 135 if (IS_ERR(tmp)) 136 goto out; 137 138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 139 putname(tmp); 140 error = PTR_ERR(file); 141 if (IS_ERR(file)) 142 goto out; 143 144 /* 145 * may_open() has already checked for this, so it should be 146 * impossible to trip now. But we need to be extra cautious 147 * and check again at the very end too. 148 */ 149 error = -EACCES; 150 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 151 path_noexec(&file->f_path))) 152 goto exit; 153 154 fsnotify_open(file); 155 156 error = -ENOEXEC; 157 158 read_lock(&binfmt_lock); 159 list_for_each_entry(fmt, &formats, lh) { 160 if (!fmt->load_shlib) 161 continue; 162 if (!try_module_get(fmt->module)) 163 continue; 164 read_unlock(&binfmt_lock); 165 error = fmt->load_shlib(file); 166 read_lock(&binfmt_lock); 167 put_binfmt(fmt); 168 if (error != -ENOEXEC) 169 break; 170 } 171 read_unlock(&binfmt_lock); 172 exit: 173 fput(file); 174 out: 175 return error; 176 } 177 #endif /* #ifdef CONFIG_USELIB */ 178 179 #ifdef CONFIG_MMU 180 /* 181 * The nascent bprm->mm is not visible until exec_mmap() but it can 182 * use a lot of memory, account these pages in current->mm temporary 183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 184 * change the counter back via acct_arg_size(0). 185 */ 186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 187 { 188 struct mm_struct *mm = current->mm; 189 long diff = (long)(pages - bprm->vma_pages); 190 191 if (!mm || !diff) 192 return; 193 194 bprm->vma_pages = pages; 195 add_mm_counter(mm, MM_ANONPAGES, diff); 196 } 197 198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 199 int write) 200 { 201 struct page *page; 202 int ret; 203 unsigned int gup_flags = FOLL_FORCE; 204 205 #ifdef CONFIG_STACK_GROWSUP 206 if (write) { 207 ret = expand_downwards(bprm->vma, pos); 208 if (ret < 0) 209 return NULL; 210 } 211 #endif 212 213 if (write) 214 gup_flags |= FOLL_WRITE; 215 216 /* 217 * We are doing an exec(). 'current' is the process 218 * doing the exec and bprm->mm is the new process's mm. 219 */ 220 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 221 &page, NULL, NULL); 222 if (ret <= 0) 223 return NULL; 224 225 if (write) 226 acct_arg_size(bprm, vma_pages(bprm->vma)); 227 228 return page; 229 } 230 231 static void put_arg_page(struct page *page) 232 { 233 put_page(page); 234 } 235 236 static void free_arg_pages(struct linux_binprm *bprm) 237 { 238 } 239 240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 241 struct page *page) 242 { 243 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 244 } 245 246 static int __bprm_mm_init(struct linux_binprm *bprm) 247 { 248 int err; 249 struct vm_area_struct *vma = NULL; 250 struct mm_struct *mm = bprm->mm; 251 252 bprm->vma = vma = vm_area_alloc(mm); 253 if (!vma) 254 return -ENOMEM; 255 vma_set_anonymous(vma); 256 257 if (mmap_write_lock_killable(mm)) { 258 err = -EINTR; 259 goto err_free; 260 } 261 262 /* 263 * Place the stack at the largest stack address the architecture 264 * supports. Later, we'll move this to an appropriate place. We don't 265 * use STACK_TOP because that can depend on attributes which aren't 266 * configured yet. 267 */ 268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 269 vma->vm_end = STACK_TOP_MAX; 270 vma->vm_start = vma->vm_end - PAGE_SIZE; 271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 273 274 err = insert_vm_struct(mm, vma); 275 if (err) 276 goto err; 277 278 mm->stack_vm = mm->total_vm = 1; 279 mmap_write_unlock(mm); 280 bprm->p = vma->vm_end - sizeof(void *); 281 return 0; 282 err: 283 mmap_write_unlock(mm); 284 err_free: 285 bprm->vma = NULL; 286 vm_area_free(vma); 287 return err; 288 } 289 290 static bool valid_arg_len(struct linux_binprm *bprm, long len) 291 { 292 return len <= MAX_ARG_STRLEN; 293 } 294 295 #else 296 297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 298 { 299 } 300 301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 302 int write) 303 { 304 struct page *page; 305 306 page = bprm->page[pos / PAGE_SIZE]; 307 if (!page && write) { 308 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 309 if (!page) 310 return NULL; 311 bprm->page[pos / PAGE_SIZE] = page; 312 } 313 314 return page; 315 } 316 317 static void put_arg_page(struct page *page) 318 { 319 } 320 321 static void free_arg_page(struct linux_binprm *bprm, int i) 322 { 323 if (bprm->page[i]) { 324 __free_page(bprm->page[i]); 325 bprm->page[i] = NULL; 326 } 327 } 328 329 static void free_arg_pages(struct linux_binprm *bprm) 330 { 331 int i; 332 333 for (i = 0; i < MAX_ARG_PAGES; i++) 334 free_arg_page(bprm, i); 335 } 336 337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 338 struct page *page) 339 { 340 } 341 342 static int __bprm_mm_init(struct linux_binprm *bprm) 343 { 344 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 345 return 0; 346 } 347 348 static bool valid_arg_len(struct linux_binprm *bprm, long len) 349 { 350 return len <= bprm->p; 351 } 352 353 #endif /* CONFIG_MMU */ 354 355 /* 356 * Create a new mm_struct and populate it with a temporary stack 357 * vm_area_struct. We don't have enough context at this point to set the stack 358 * flags, permissions, and offset, so we use temporary values. We'll update 359 * them later in setup_arg_pages(). 360 */ 361 static int bprm_mm_init(struct linux_binprm *bprm) 362 { 363 int err; 364 struct mm_struct *mm = NULL; 365 366 bprm->mm = mm = mm_alloc(); 367 err = -ENOMEM; 368 if (!mm) 369 goto err; 370 371 /* Save current stack limit for all calculations made during exec. */ 372 task_lock(current->group_leader); 373 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 374 task_unlock(current->group_leader); 375 376 err = __bprm_mm_init(bprm); 377 if (err) 378 goto err; 379 380 return 0; 381 382 err: 383 if (mm) { 384 bprm->mm = NULL; 385 mmdrop(mm); 386 } 387 388 return err; 389 } 390 391 struct user_arg_ptr { 392 #ifdef CONFIG_COMPAT 393 bool is_compat; 394 #endif 395 union { 396 const char __user *const __user *native; 397 #ifdef CONFIG_COMPAT 398 const compat_uptr_t __user *compat; 399 #endif 400 } ptr; 401 }; 402 403 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 404 { 405 const char __user *native; 406 407 #ifdef CONFIG_COMPAT 408 if (unlikely(argv.is_compat)) { 409 compat_uptr_t compat; 410 411 if (get_user(compat, argv.ptr.compat + nr)) 412 return ERR_PTR(-EFAULT); 413 414 return compat_ptr(compat); 415 } 416 #endif 417 418 if (get_user(native, argv.ptr.native + nr)) 419 return ERR_PTR(-EFAULT); 420 421 return native; 422 } 423 424 /* 425 * count() counts the number of strings in array ARGV. 426 */ 427 static int count(struct user_arg_ptr argv, int max) 428 { 429 int i = 0; 430 431 if (argv.ptr.native != NULL) { 432 for (;;) { 433 const char __user *p = get_user_arg_ptr(argv, i); 434 435 if (!p) 436 break; 437 438 if (IS_ERR(p)) 439 return -EFAULT; 440 441 if (i >= max) 442 return -E2BIG; 443 ++i; 444 445 if (fatal_signal_pending(current)) 446 return -ERESTARTNOHAND; 447 cond_resched(); 448 } 449 } 450 return i; 451 } 452 453 static int count_strings_kernel(const char *const *argv) 454 { 455 int i; 456 457 if (!argv) 458 return 0; 459 460 for (i = 0; argv[i]; ++i) { 461 if (i >= MAX_ARG_STRINGS) 462 return -E2BIG; 463 if (fatal_signal_pending(current)) 464 return -ERESTARTNOHAND; 465 cond_resched(); 466 } 467 return i; 468 } 469 470 static int bprm_stack_limits(struct linux_binprm *bprm) 471 { 472 unsigned long limit, ptr_size; 473 474 /* 475 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 476 * (whichever is smaller) for the argv+env strings. 477 * This ensures that: 478 * - the remaining binfmt code will not run out of stack space, 479 * - the program will have a reasonable amount of stack left 480 * to work from. 481 */ 482 limit = _STK_LIM / 4 * 3; 483 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 484 /* 485 * We've historically supported up to 32 pages (ARG_MAX) 486 * of argument strings even with small stacks 487 */ 488 limit = max_t(unsigned long, limit, ARG_MAX); 489 /* 490 * We must account for the size of all the argv and envp pointers to 491 * the argv and envp strings, since they will also take up space in 492 * the stack. They aren't stored until much later when we can't 493 * signal to the parent that the child has run out of stack space. 494 * Instead, calculate it here so it's possible to fail gracefully. 495 */ 496 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 497 if (limit <= ptr_size) 498 return -E2BIG; 499 limit -= ptr_size; 500 501 bprm->argmin = bprm->p - limit; 502 return 0; 503 } 504 505 /* 506 * 'copy_strings()' copies argument/environment strings from the old 507 * processes's memory to the new process's stack. The call to get_user_pages() 508 * ensures the destination page is created and not swapped out. 509 */ 510 static int copy_strings(int argc, struct user_arg_ptr argv, 511 struct linux_binprm *bprm) 512 { 513 struct page *kmapped_page = NULL; 514 char *kaddr = NULL; 515 unsigned long kpos = 0; 516 int ret; 517 518 while (argc-- > 0) { 519 const char __user *str; 520 int len; 521 unsigned long pos; 522 523 ret = -EFAULT; 524 str = get_user_arg_ptr(argv, argc); 525 if (IS_ERR(str)) 526 goto out; 527 528 len = strnlen_user(str, MAX_ARG_STRLEN); 529 if (!len) 530 goto out; 531 532 ret = -E2BIG; 533 if (!valid_arg_len(bprm, len)) 534 goto out; 535 536 /* We're going to work our way backwords. */ 537 pos = bprm->p; 538 str += len; 539 bprm->p -= len; 540 #ifdef CONFIG_MMU 541 if (bprm->p < bprm->argmin) 542 goto out; 543 #endif 544 545 while (len > 0) { 546 int offset, bytes_to_copy; 547 548 if (fatal_signal_pending(current)) { 549 ret = -ERESTARTNOHAND; 550 goto out; 551 } 552 cond_resched(); 553 554 offset = pos % PAGE_SIZE; 555 if (offset == 0) 556 offset = PAGE_SIZE; 557 558 bytes_to_copy = offset; 559 if (bytes_to_copy > len) 560 bytes_to_copy = len; 561 562 offset -= bytes_to_copy; 563 pos -= bytes_to_copy; 564 str -= bytes_to_copy; 565 len -= bytes_to_copy; 566 567 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 568 struct page *page; 569 570 page = get_arg_page(bprm, pos, 1); 571 if (!page) { 572 ret = -E2BIG; 573 goto out; 574 } 575 576 if (kmapped_page) { 577 flush_kernel_dcache_page(kmapped_page); 578 kunmap(kmapped_page); 579 put_arg_page(kmapped_page); 580 } 581 kmapped_page = page; 582 kaddr = kmap(kmapped_page); 583 kpos = pos & PAGE_MASK; 584 flush_arg_page(bprm, kpos, kmapped_page); 585 } 586 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 587 ret = -EFAULT; 588 goto out; 589 } 590 } 591 } 592 ret = 0; 593 out: 594 if (kmapped_page) { 595 flush_kernel_dcache_page(kmapped_page); 596 kunmap(kmapped_page); 597 put_arg_page(kmapped_page); 598 } 599 return ret; 600 } 601 602 /* 603 * Copy and argument/environment string from the kernel to the processes stack. 604 */ 605 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 606 { 607 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 608 unsigned long pos = bprm->p; 609 610 if (len == 0) 611 return -EFAULT; 612 if (!valid_arg_len(bprm, len)) 613 return -E2BIG; 614 615 /* We're going to work our way backwards. */ 616 arg += len; 617 bprm->p -= len; 618 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 619 return -E2BIG; 620 621 while (len > 0) { 622 unsigned int bytes_to_copy = min_t(unsigned int, len, 623 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 624 struct page *page; 625 char *kaddr; 626 627 pos -= bytes_to_copy; 628 arg -= bytes_to_copy; 629 len -= bytes_to_copy; 630 631 page = get_arg_page(bprm, pos, 1); 632 if (!page) 633 return -E2BIG; 634 kaddr = kmap_atomic(page); 635 flush_arg_page(bprm, pos & PAGE_MASK, page); 636 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy); 637 flush_kernel_dcache_page(page); 638 kunmap_atomic(kaddr); 639 put_arg_page(page); 640 } 641 642 return 0; 643 } 644 EXPORT_SYMBOL(copy_string_kernel); 645 646 static int copy_strings_kernel(int argc, const char *const *argv, 647 struct linux_binprm *bprm) 648 { 649 while (argc-- > 0) { 650 int ret = copy_string_kernel(argv[argc], bprm); 651 if (ret < 0) 652 return ret; 653 if (fatal_signal_pending(current)) 654 return -ERESTARTNOHAND; 655 cond_resched(); 656 } 657 return 0; 658 } 659 660 #ifdef CONFIG_MMU 661 662 /* 663 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 664 * the binfmt code determines where the new stack should reside, we shift it to 665 * its final location. The process proceeds as follows: 666 * 667 * 1) Use shift to calculate the new vma endpoints. 668 * 2) Extend vma to cover both the old and new ranges. This ensures the 669 * arguments passed to subsequent functions are consistent. 670 * 3) Move vma's page tables to the new range. 671 * 4) Free up any cleared pgd range. 672 * 5) Shrink the vma to cover only the new range. 673 */ 674 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 675 { 676 struct mm_struct *mm = vma->vm_mm; 677 unsigned long old_start = vma->vm_start; 678 unsigned long old_end = vma->vm_end; 679 unsigned long length = old_end - old_start; 680 unsigned long new_start = old_start - shift; 681 unsigned long new_end = old_end - shift; 682 struct mmu_gather tlb; 683 684 BUG_ON(new_start > new_end); 685 686 /* 687 * ensure there are no vmas between where we want to go 688 * and where we are 689 */ 690 if (vma != find_vma(mm, new_start)) 691 return -EFAULT; 692 693 /* 694 * cover the whole range: [new_start, old_end) 695 */ 696 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 697 return -ENOMEM; 698 699 /* 700 * move the page tables downwards, on failure we rely on 701 * process cleanup to remove whatever mess we made. 702 */ 703 if (length != move_page_tables(vma, old_start, 704 vma, new_start, length, false)) 705 return -ENOMEM; 706 707 lru_add_drain(); 708 tlb_gather_mmu(&tlb, mm, old_start, old_end); 709 if (new_end > old_start) { 710 /* 711 * when the old and new regions overlap clear from new_end. 712 */ 713 free_pgd_range(&tlb, new_end, old_end, new_end, 714 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 715 } else { 716 /* 717 * otherwise, clean from old_start; this is done to not touch 718 * the address space in [new_end, old_start) some architectures 719 * have constraints on va-space that make this illegal (IA64) - 720 * for the others its just a little faster. 721 */ 722 free_pgd_range(&tlb, old_start, old_end, new_end, 723 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 724 } 725 tlb_finish_mmu(&tlb, old_start, old_end); 726 727 /* 728 * Shrink the vma to just the new range. Always succeeds. 729 */ 730 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 731 732 return 0; 733 } 734 735 /* 736 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 737 * the stack is optionally relocated, and some extra space is added. 738 */ 739 int setup_arg_pages(struct linux_binprm *bprm, 740 unsigned long stack_top, 741 int executable_stack) 742 { 743 unsigned long ret; 744 unsigned long stack_shift; 745 struct mm_struct *mm = current->mm; 746 struct vm_area_struct *vma = bprm->vma; 747 struct vm_area_struct *prev = NULL; 748 unsigned long vm_flags; 749 unsigned long stack_base; 750 unsigned long stack_size; 751 unsigned long stack_expand; 752 unsigned long rlim_stack; 753 754 #ifdef CONFIG_STACK_GROWSUP 755 /* Limit stack size */ 756 stack_base = bprm->rlim_stack.rlim_max; 757 if (stack_base > STACK_SIZE_MAX) 758 stack_base = STACK_SIZE_MAX; 759 760 /* Add space for stack randomization. */ 761 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 762 763 /* Make sure we didn't let the argument array grow too large. */ 764 if (vma->vm_end - vma->vm_start > stack_base) 765 return -ENOMEM; 766 767 stack_base = PAGE_ALIGN(stack_top - stack_base); 768 769 stack_shift = vma->vm_start - stack_base; 770 mm->arg_start = bprm->p - stack_shift; 771 bprm->p = vma->vm_end - stack_shift; 772 #else 773 stack_top = arch_align_stack(stack_top); 774 stack_top = PAGE_ALIGN(stack_top); 775 776 if (unlikely(stack_top < mmap_min_addr) || 777 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 778 return -ENOMEM; 779 780 stack_shift = vma->vm_end - stack_top; 781 782 bprm->p -= stack_shift; 783 mm->arg_start = bprm->p; 784 #endif 785 786 if (bprm->loader) 787 bprm->loader -= stack_shift; 788 bprm->exec -= stack_shift; 789 790 if (mmap_write_lock_killable(mm)) 791 return -EINTR; 792 793 vm_flags = VM_STACK_FLAGS; 794 795 /* 796 * Adjust stack execute permissions; explicitly enable for 797 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 798 * (arch default) otherwise. 799 */ 800 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 801 vm_flags |= VM_EXEC; 802 else if (executable_stack == EXSTACK_DISABLE_X) 803 vm_flags &= ~VM_EXEC; 804 vm_flags |= mm->def_flags; 805 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 806 807 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 808 vm_flags); 809 if (ret) 810 goto out_unlock; 811 BUG_ON(prev != vma); 812 813 if (unlikely(vm_flags & VM_EXEC)) { 814 pr_warn_once("process '%pD4' started with executable stack\n", 815 bprm->file); 816 } 817 818 /* Move stack pages down in memory. */ 819 if (stack_shift) { 820 ret = shift_arg_pages(vma, stack_shift); 821 if (ret) 822 goto out_unlock; 823 } 824 825 /* mprotect_fixup is overkill to remove the temporary stack flags */ 826 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 827 828 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 829 stack_size = vma->vm_end - vma->vm_start; 830 /* 831 * Align this down to a page boundary as expand_stack 832 * will align it up. 833 */ 834 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 835 #ifdef CONFIG_STACK_GROWSUP 836 if (stack_size + stack_expand > rlim_stack) 837 stack_base = vma->vm_start + rlim_stack; 838 else 839 stack_base = vma->vm_end + stack_expand; 840 #else 841 if (stack_size + stack_expand > rlim_stack) 842 stack_base = vma->vm_end - rlim_stack; 843 else 844 stack_base = vma->vm_start - stack_expand; 845 #endif 846 current->mm->start_stack = bprm->p; 847 ret = expand_stack(vma, stack_base); 848 if (ret) 849 ret = -EFAULT; 850 851 out_unlock: 852 mmap_write_unlock(mm); 853 return ret; 854 } 855 EXPORT_SYMBOL(setup_arg_pages); 856 857 #else 858 859 /* 860 * Transfer the program arguments and environment from the holding pages 861 * onto the stack. The provided stack pointer is adjusted accordingly. 862 */ 863 int transfer_args_to_stack(struct linux_binprm *bprm, 864 unsigned long *sp_location) 865 { 866 unsigned long index, stop, sp; 867 int ret = 0; 868 869 stop = bprm->p >> PAGE_SHIFT; 870 sp = *sp_location; 871 872 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 873 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 874 char *src = kmap(bprm->page[index]) + offset; 875 sp -= PAGE_SIZE - offset; 876 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 877 ret = -EFAULT; 878 kunmap(bprm->page[index]); 879 if (ret) 880 goto out; 881 } 882 883 *sp_location = sp; 884 885 out: 886 return ret; 887 } 888 EXPORT_SYMBOL(transfer_args_to_stack); 889 890 #endif /* CONFIG_MMU */ 891 892 static struct file *do_open_execat(int fd, struct filename *name, int flags) 893 { 894 struct file *file; 895 int err; 896 struct open_flags open_exec_flags = { 897 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 898 .acc_mode = MAY_EXEC, 899 .intent = LOOKUP_OPEN, 900 .lookup_flags = LOOKUP_FOLLOW, 901 }; 902 903 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 904 return ERR_PTR(-EINVAL); 905 if (flags & AT_SYMLINK_NOFOLLOW) 906 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 907 if (flags & AT_EMPTY_PATH) 908 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 909 910 file = do_filp_open(fd, name, &open_exec_flags); 911 if (IS_ERR(file)) 912 goto out; 913 914 /* 915 * may_open() has already checked for this, so it should be 916 * impossible to trip now. But we need to be extra cautious 917 * and check again at the very end too. 918 */ 919 err = -EACCES; 920 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 921 path_noexec(&file->f_path))) 922 goto exit; 923 924 err = deny_write_access(file); 925 if (err) 926 goto exit; 927 928 if (name->name[0] != '\0') 929 fsnotify_open(file); 930 931 out: 932 return file; 933 934 exit: 935 fput(file); 936 return ERR_PTR(err); 937 } 938 939 struct file *open_exec(const char *name) 940 { 941 struct filename *filename = getname_kernel(name); 942 struct file *f = ERR_CAST(filename); 943 944 if (!IS_ERR(filename)) { 945 f = do_open_execat(AT_FDCWD, filename, 0); 946 putname(filename); 947 } 948 return f; 949 } 950 EXPORT_SYMBOL(open_exec); 951 952 int kernel_read_file(struct file *file, void **buf, loff_t *size, 953 loff_t max_size, enum kernel_read_file_id id) 954 { 955 loff_t i_size, pos; 956 ssize_t bytes = 0; 957 int ret; 958 959 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 960 return -EINVAL; 961 962 ret = deny_write_access(file); 963 if (ret) 964 return ret; 965 966 ret = security_kernel_read_file(file, id); 967 if (ret) 968 goto out; 969 970 i_size = i_size_read(file_inode(file)); 971 if (i_size <= 0) { 972 ret = -EINVAL; 973 goto out; 974 } 975 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) { 976 ret = -EFBIG; 977 goto out; 978 } 979 980 if (id != READING_FIRMWARE_PREALLOC_BUFFER) 981 *buf = vmalloc(i_size); 982 if (!*buf) { 983 ret = -ENOMEM; 984 goto out; 985 } 986 987 pos = 0; 988 while (pos < i_size) { 989 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos); 990 if (bytes < 0) { 991 ret = bytes; 992 goto out_free; 993 } 994 995 if (bytes == 0) 996 break; 997 } 998 999 if (pos != i_size) { 1000 ret = -EIO; 1001 goto out_free; 1002 } 1003 1004 ret = security_kernel_post_read_file(file, *buf, i_size, id); 1005 if (!ret) 1006 *size = pos; 1007 1008 out_free: 1009 if (ret < 0) { 1010 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { 1011 vfree(*buf); 1012 *buf = NULL; 1013 } 1014 } 1015 1016 out: 1017 allow_write_access(file); 1018 return ret; 1019 } 1020 EXPORT_SYMBOL_GPL(kernel_read_file); 1021 1022 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size, 1023 loff_t max_size, enum kernel_read_file_id id) 1024 { 1025 struct file *file; 1026 int ret; 1027 1028 if (!path || !*path) 1029 return -EINVAL; 1030 1031 file = filp_open(path, O_RDONLY, 0); 1032 if (IS_ERR(file)) 1033 return PTR_ERR(file); 1034 1035 ret = kernel_read_file(file, buf, size, max_size, id); 1036 fput(file); 1037 return ret; 1038 } 1039 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 1040 1041 int kernel_read_file_from_path_initns(const char *path, void **buf, 1042 loff_t *size, loff_t max_size, 1043 enum kernel_read_file_id id) 1044 { 1045 struct file *file; 1046 struct path root; 1047 int ret; 1048 1049 if (!path || !*path) 1050 return -EINVAL; 1051 1052 task_lock(&init_task); 1053 get_fs_root(init_task.fs, &root); 1054 task_unlock(&init_task); 1055 1056 file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0); 1057 path_put(&root); 1058 if (IS_ERR(file)) 1059 return PTR_ERR(file); 1060 1061 ret = kernel_read_file(file, buf, size, max_size, id); 1062 fput(file); 1063 return ret; 1064 } 1065 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns); 1066 1067 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 1068 enum kernel_read_file_id id) 1069 { 1070 struct fd f = fdget(fd); 1071 int ret = -EBADF; 1072 1073 if (!f.file) 1074 goto out; 1075 1076 ret = kernel_read_file(f.file, buf, size, max_size, id); 1077 out: 1078 fdput(f); 1079 return ret; 1080 } 1081 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 1082 1083 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ 1084 defined(CONFIG_BINFMT_ELF_FDPIC) 1085 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 1086 { 1087 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 1088 if (res > 0) 1089 flush_icache_user_range(addr, addr + len); 1090 return res; 1091 } 1092 EXPORT_SYMBOL(read_code); 1093 #endif 1094 1095 /* 1096 * Maps the mm_struct mm into the current task struct. 1097 * On success, this function returns with the mutex 1098 * exec_update_mutex locked. 1099 */ 1100 static int exec_mmap(struct mm_struct *mm) 1101 { 1102 struct task_struct *tsk; 1103 struct mm_struct *old_mm, *active_mm; 1104 int ret; 1105 1106 /* Notify parent that we're no longer interested in the old VM */ 1107 tsk = current; 1108 old_mm = current->mm; 1109 exec_mm_release(tsk, old_mm); 1110 if (old_mm) 1111 sync_mm_rss(old_mm); 1112 1113 ret = mutex_lock_killable(&tsk->signal->exec_update_mutex); 1114 if (ret) 1115 return ret; 1116 1117 if (old_mm) { 1118 /* 1119 * Make sure that if there is a core dump in progress 1120 * for the old mm, we get out and die instead of going 1121 * through with the exec. We must hold mmap_lock around 1122 * checking core_state and changing tsk->mm. 1123 */ 1124 mmap_read_lock(old_mm); 1125 if (unlikely(old_mm->core_state)) { 1126 mmap_read_unlock(old_mm); 1127 mutex_unlock(&tsk->signal->exec_update_mutex); 1128 return -EINTR; 1129 } 1130 } 1131 1132 task_lock(tsk); 1133 active_mm = tsk->active_mm; 1134 membarrier_exec_mmap(mm); 1135 tsk->mm = mm; 1136 tsk->active_mm = mm; 1137 activate_mm(active_mm, mm); 1138 tsk->mm->vmacache_seqnum = 0; 1139 vmacache_flush(tsk); 1140 task_unlock(tsk); 1141 if (old_mm) { 1142 mmap_read_unlock(old_mm); 1143 BUG_ON(active_mm != old_mm); 1144 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1145 mm_update_next_owner(old_mm); 1146 mmput(old_mm); 1147 return 0; 1148 } 1149 mmdrop(active_mm); 1150 return 0; 1151 } 1152 1153 static int de_thread(struct task_struct *tsk) 1154 { 1155 struct signal_struct *sig = tsk->signal; 1156 struct sighand_struct *oldsighand = tsk->sighand; 1157 spinlock_t *lock = &oldsighand->siglock; 1158 1159 if (thread_group_empty(tsk)) 1160 goto no_thread_group; 1161 1162 /* 1163 * Kill all other threads in the thread group. 1164 */ 1165 spin_lock_irq(lock); 1166 if (signal_group_exit(sig)) { 1167 /* 1168 * Another group action in progress, just 1169 * return so that the signal is processed. 1170 */ 1171 spin_unlock_irq(lock); 1172 return -EAGAIN; 1173 } 1174 1175 sig->group_exit_task = tsk; 1176 sig->notify_count = zap_other_threads(tsk); 1177 if (!thread_group_leader(tsk)) 1178 sig->notify_count--; 1179 1180 while (sig->notify_count) { 1181 __set_current_state(TASK_KILLABLE); 1182 spin_unlock_irq(lock); 1183 schedule(); 1184 if (__fatal_signal_pending(tsk)) 1185 goto killed; 1186 spin_lock_irq(lock); 1187 } 1188 spin_unlock_irq(lock); 1189 1190 /* 1191 * At this point all other threads have exited, all we have to 1192 * do is to wait for the thread group leader to become inactive, 1193 * and to assume its PID: 1194 */ 1195 if (!thread_group_leader(tsk)) { 1196 struct task_struct *leader = tsk->group_leader; 1197 1198 for (;;) { 1199 cgroup_threadgroup_change_begin(tsk); 1200 write_lock_irq(&tasklist_lock); 1201 /* 1202 * Do this under tasklist_lock to ensure that 1203 * exit_notify() can't miss ->group_exit_task 1204 */ 1205 sig->notify_count = -1; 1206 if (likely(leader->exit_state)) 1207 break; 1208 __set_current_state(TASK_KILLABLE); 1209 write_unlock_irq(&tasklist_lock); 1210 cgroup_threadgroup_change_end(tsk); 1211 schedule(); 1212 if (__fatal_signal_pending(tsk)) 1213 goto killed; 1214 } 1215 1216 /* 1217 * The only record we have of the real-time age of a 1218 * process, regardless of execs it's done, is start_time. 1219 * All the past CPU time is accumulated in signal_struct 1220 * from sister threads now dead. But in this non-leader 1221 * exec, nothing survives from the original leader thread, 1222 * whose birth marks the true age of this process now. 1223 * When we take on its identity by switching to its PID, we 1224 * also take its birthdate (always earlier than our own). 1225 */ 1226 tsk->start_time = leader->start_time; 1227 tsk->start_boottime = leader->start_boottime; 1228 1229 BUG_ON(!same_thread_group(leader, tsk)); 1230 /* 1231 * An exec() starts a new thread group with the 1232 * TGID of the previous thread group. Rehash the 1233 * two threads with a switched PID, and release 1234 * the former thread group leader: 1235 */ 1236 1237 /* Become a process group leader with the old leader's pid. 1238 * The old leader becomes a thread of the this thread group. 1239 */ 1240 exchange_tids(tsk, leader); 1241 transfer_pid(leader, tsk, PIDTYPE_TGID); 1242 transfer_pid(leader, tsk, PIDTYPE_PGID); 1243 transfer_pid(leader, tsk, PIDTYPE_SID); 1244 1245 list_replace_rcu(&leader->tasks, &tsk->tasks); 1246 list_replace_init(&leader->sibling, &tsk->sibling); 1247 1248 tsk->group_leader = tsk; 1249 leader->group_leader = tsk; 1250 1251 tsk->exit_signal = SIGCHLD; 1252 leader->exit_signal = -1; 1253 1254 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1255 leader->exit_state = EXIT_DEAD; 1256 1257 /* 1258 * We are going to release_task()->ptrace_unlink() silently, 1259 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1260 * the tracer wont't block again waiting for this thread. 1261 */ 1262 if (unlikely(leader->ptrace)) 1263 __wake_up_parent(leader, leader->parent); 1264 write_unlock_irq(&tasklist_lock); 1265 cgroup_threadgroup_change_end(tsk); 1266 1267 release_task(leader); 1268 } 1269 1270 sig->group_exit_task = NULL; 1271 sig->notify_count = 0; 1272 1273 no_thread_group: 1274 /* we have changed execution domain */ 1275 tsk->exit_signal = SIGCHLD; 1276 1277 BUG_ON(!thread_group_leader(tsk)); 1278 return 0; 1279 1280 killed: 1281 /* protects against exit_notify() and __exit_signal() */ 1282 read_lock(&tasklist_lock); 1283 sig->group_exit_task = NULL; 1284 sig->notify_count = 0; 1285 read_unlock(&tasklist_lock); 1286 return -EAGAIN; 1287 } 1288 1289 1290 /* 1291 * This function makes sure the current process has its own signal table, 1292 * so that flush_signal_handlers can later reset the handlers without 1293 * disturbing other processes. (Other processes might share the signal 1294 * table via the CLONE_SIGHAND option to clone().) 1295 */ 1296 static int unshare_sighand(struct task_struct *me) 1297 { 1298 struct sighand_struct *oldsighand = me->sighand; 1299 1300 if (refcount_read(&oldsighand->count) != 1) { 1301 struct sighand_struct *newsighand; 1302 /* 1303 * This ->sighand is shared with the CLONE_SIGHAND 1304 * but not CLONE_THREAD task, switch to the new one. 1305 */ 1306 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1307 if (!newsighand) 1308 return -ENOMEM; 1309 1310 refcount_set(&newsighand->count, 1); 1311 memcpy(newsighand->action, oldsighand->action, 1312 sizeof(newsighand->action)); 1313 1314 write_lock_irq(&tasklist_lock); 1315 spin_lock(&oldsighand->siglock); 1316 rcu_assign_pointer(me->sighand, newsighand); 1317 spin_unlock(&oldsighand->siglock); 1318 write_unlock_irq(&tasklist_lock); 1319 1320 __cleanup_sighand(oldsighand); 1321 } 1322 return 0; 1323 } 1324 1325 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1326 { 1327 task_lock(tsk); 1328 strncpy(buf, tsk->comm, buf_size); 1329 task_unlock(tsk); 1330 return buf; 1331 } 1332 EXPORT_SYMBOL_GPL(__get_task_comm); 1333 1334 /* 1335 * These functions flushes out all traces of the currently running executable 1336 * so that a new one can be started 1337 */ 1338 1339 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1340 { 1341 task_lock(tsk); 1342 trace_task_rename(tsk, buf); 1343 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1344 task_unlock(tsk); 1345 perf_event_comm(tsk, exec); 1346 } 1347 1348 /* 1349 * Calling this is the point of no return. None of the failures will be 1350 * seen by userspace since either the process is already taking a fatal 1351 * signal (via de_thread() or coredump), or will have SEGV raised 1352 * (after exec_mmap()) by search_binary_handler (see below). 1353 */ 1354 int begin_new_exec(struct linux_binprm * bprm) 1355 { 1356 struct task_struct *me = current; 1357 int retval; 1358 1359 /* Once we are committed compute the creds */ 1360 retval = bprm_creds_from_file(bprm); 1361 if (retval) 1362 return retval; 1363 1364 /* 1365 * Ensure all future errors are fatal. 1366 */ 1367 bprm->point_of_no_return = true; 1368 1369 /* 1370 * Make this the only thread in the thread group. 1371 */ 1372 retval = de_thread(me); 1373 if (retval) 1374 goto out; 1375 1376 /* 1377 * Must be called _before_ exec_mmap() as bprm->mm is 1378 * not visibile until then. This also enables the update 1379 * to be lockless. 1380 */ 1381 set_mm_exe_file(bprm->mm, bprm->file); 1382 1383 /* If the binary is not readable then enforce mm->dumpable=0 */ 1384 would_dump(bprm, bprm->file); 1385 if (bprm->have_execfd) 1386 would_dump(bprm, bprm->executable); 1387 1388 /* 1389 * Release all of the old mmap stuff 1390 */ 1391 acct_arg_size(bprm, 0); 1392 retval = exec_mmap(bprm->mm); 1393 if (retval) 1394 goto out; 1395 1396 bprm->mm = NULL; 1397 1398 #ifdef CONFIG_POSIX_TIMERS 1399 exit_itimers(me->signal); 1400 flush_itimer_signals(); 1401 #endif 1402 1403 /* 1404 * Make the signal table private. 1405 */ 1406 retval = unshare_sighand(me); 1407 if (retval) 1408 goto out_unlock; 1409 1410 /* 1411 * Ensure that the uaccess routines can actually operate on userspace 1412 * pointers: 1413 */ 1414 force_uaccess_begin(); 1415 1416 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1417 PF_NOFREEZE | PF_NO_SETAFFINITY); 1418 flush_thread(); 1419 me->personality &= ~bprm->per_clear; 1420 1421 /* 1422 * We have to apply CLOEXEC before we change whether the process is 1423 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1424 * trying to access the should-be-closed file descriptors of a process 1425 * undergoing exec(2). 1426 */ 1427 do_close_on_exec(me->files); 1428 1429 if (bprm->secureexec) { 1430 /* Make sure parent cannot signal privileged process. */ 1431 me->pdeath_signal = 0; 1432 1433 /* 1434 * For secureexec, reset the stack limit to sane default to 1435 * avoid bad behavior from the prior rlimits. This has to 1436 * happen before arch_pick_mmap_layout(), which examines 1437 * RLIMIT_STACK, but after the point of no return to avoid 1438 * needing to clean up the change on failure. 1439 */ 1440 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1441 bprm->rlim_stack.rlim_cur = _STK_LIM; 1442 } 1443 1444 me->sas_ss_sp = me->sas_ss_size = 0; 1445 1446 /* 1447 * Figure out dumpability. Note that this checking only of current 1448 * is wrong, but userspace depends on it. This should be testing 1449 * bprm->secureexec instead. 1450 */ 1451 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1452 !(uid_eq(current_euid(), current_uid()) && 1453 gid_eq(current_egid(), current_gid()))) 1454 set_dumpable(current->mm, suid_dumpable); 1455 else 1456 set_dumpable(current->mm, SUID_DUMP_USER); 1457 1458 perf_event_exec(); 1459 __set_task_comm(me, kbasename(bprm->filename), true); 1460 1461 /* An exec changes our domain. We are no longer part of the thread 1462 group */ 1463 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1464 flush_signal_handlers(me, 0); 1465 1466 /* 1467 * install the new credentials for this executable 1468 */ 1469 security_bprm_committing_creds(bprm); 1470 1471 commit_creds(bprm->cred); 1472 bprm->cred = NULL; 1473 1474 /* 1475 * Disable monitoring for regular users 1476 * when executing setuid binaries. Must 1477 * wait until new credentials are committed 1478 * by commit_creds() above 1479 */ 1480 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1481 perf_event_exit_task(me); 1482 /* 1483 * cred_guard_mutex must be held at least to this point to prevent 1484 * ptrace_attach() from altering our determination of the task's 1485 * credentials; any time after this it may be unlocked. 1486 */ 1487 security_bprm_committed_creds(bprm); 1488 1489 /* Pass the opened binary to the interpreter. */ 1490 if (bprm->have_execfd) { 1491 retval = get_unused_fd_flags(0); 1492 if (retval < 0) 1493 goto out_unlock; 1494 fd_install(retval, bprm->executable); 1495 bprm->executable = NULL; 1496 bprm->execfd = retval; 1497 } 1498 return 0; 1499 1500 out_unlock: 1501 mutex_unlock(&me->signal->exec_update_mutex); 1502 out: 1503 return retval; 1504 } 1505 EXPORT_SYMBOL(begin_new_exec); 1506 1507 void would_dump(struct linux_binprm *bprm, struct file *file) 1508 { 1509 struct inode *inode = file_inode(file); 1510 if (inode_permission(inode, MAY_READ) < 0) { 1511 struct user_namespace *old, *user_ns; 1512 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1513 1514 /* Ensure mm->user_ns contains the executable */ 1515 user_ns = old = bprm->mm->user_ns; 1516 while ((user_ns != &init_user_ns) && 1517 !privileged_wrt_inode_uidgid(user_ns, inode)) 1518 user_ns = user_ns->parent; 1519 1520 if (old != user_ns) { 1521 bprm->mm->user_ns = get_user_ns(user_ns); 1522 put_user_ns(old); 1523 } 1524 } 1525 } 1526 EXPORT_SYMBOL(would_dump); 1527 1528 void setup_new_exec(struct linux_binprm * bprm) 1529 { 1530 /* Setup things that can depend upon the personality */ 1531 struct task_struct *me = current; 1532 1533 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1534 1535 arch_setup_new_exec(); 1536 1537 /* Set the new mm task size. We have to do that late because it may 1538 * depend on TIF_32BIT which is only updated in flush_thread() on 1539 * some architectures like powerpc 1540 */ 1541 me->mm->task_size = TASK_SIZE; 1542 mutex_unlock(&me->signal->exec_update_mutex); 1543 mutex_unlock(&me->signal->cred_guard_mutex); 1544 } 1545 EXPORT_SYMBOL(setup_new_exec); 1546 1547 /* Runs immediately before start_thread() takes over. */ 1548 void finalize_exec(struct linux_binprm *bprm) 1549 { 1550 /* Store any stack rlimit changes before starting thread. */ 1551 task_lock(current->group_leader); 1552 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1553 task_unlock(current->group_leader); 1554 } 1555 EXPORT_SYMBOL(finalize_exec); 1556 1557 /* 1558 * Prepare credentials and lock ->cred_guard_mutex. 1559 * setup_new_exec() commits the new creds and drops the lock. 1560 * Or, if exec fails before, free_bprm() should release ->cred and 1561 * and unlock. 1562 */ 1563 static int prepare_bprm_creds(struct linux_binprm *bprm) 1564 { 1565 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1566 return -ERESTARTNOINTR; 1567 1568 bprm->cred = prepare_exec_creds(); 1569 if (likely(bprm->cred)) 1570 return 0; 1571 1572 mutex_unlock(¤t->signal->cred_guard_mutex); 1573 return -ENOMEM; 1574 } 1575 1576 static void free_bprm(struct linux_binprm *bprm) 1577 { 1578 if (bprm->mm) { 1579 acct_arg_size(bprm, 0); 1580 mmput(bprm->mm); 1581 } 1582 free_arg_pages(bprm); 1583 if (bprm->cred) { 1584 mutex_unlock(¤t->signal->cred_guard_mutex); 1585 abort_creds(bprm->cred); 1586 } 1587 if (bprm->file) { 1588 allow_write_access(bprm->file); 1589 fput(bprm->file); 1590 } 1591 if (bprm->executable) 1592 fput(bprm->executable); 1593 /* If a binfmt changed the interp, free it. */ 1594 if (bprm->interp != bprm->filename) 1595 kfree(bprm->interp); 1596 kfree(bprm->fdpath); 1597 kfree(bprm); 1598 } 1599 1600 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1601 { 1602 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1603 int retval = -ENOMEM; 1604 if (!bprm) 1605 goto out; 1606 1607 if (fd == AT_FDCWD || filename->name[0] == '/') { 1608 bprm->filename = filename->name; 1609 } else { 1610 if (filename->name[0] == '\0') 1611 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1612 else 1613 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1614 fd, filename->name); 1615 if (!bprm->fdpath) 1616 goto out_free; 1617 1618 bprm->filename = bprm->fdpath; 1619 } 1620 bprm->interp = bprm->filename; 1621 1622 retval = bprm_mm_init(bprm); 1623 if (retval) 1624 goto out_free; 1625 return bprm; 1626 1627 out_free: 1628 free_bprm(bprm); 1629 out: 1630 return ERR_PTR(retval); 1631 } 1632 1633 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1634 { 1635 /* If a binfmt changed the interp, free it first. */ 1636 if (bprm->interp != bprm->filename) 1637 kfree(bprm->interp); 1638 bprm->interp = kstrdup(interp, GFP_KERNEL); 1639 if (!bprm->interp) 1640 return -ENOMEM; 1641 return 0; 1642 } 1643 EXPORT_SYMBOL(bprm_change_interp); 1644 1645 /* 1646 * determine how safe it is to execute the proposed program 1647 * - the caller must hold ->cred_guard_mutex to protect against 1648 * PTRACE_ATTACH or seccomp thread-sync 1649 */ 1650 static void check_unsafe_exec(struct linux_binprm *bprm) 1651 { 1652 struct task_struct *p = current, *t; 1653 unsigned n_fs; 1654 1655 if (p->ptrace) 1656 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1657 1658 /* 1659 * This isn't strictly necessary, but it makes it harder for LSMs to 1660 * mess up. 1661 */ 1662 if (task_no_new_privs(current)) 1663 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1664 1665 t = p; 1666 n_fs = 1; 1667 spin_lock(&p->fs->lock); 1668 rcu_read_lock(); 1669 while_each_thread(p, t) { 1670 if (t->fs == p->fs) 1671 n_fs++; 1672 } 1673 rcu_read_unlock(); 1674 1675 if (p->fs->users > n_fs) 1676 bprm->unsafe |= LSM_UNSAFE_SHARE; 1677 else 1678 p->fs->in_exec = 1; 1679 spin_unlock(&p->fs->lock); 1680 } 1681 1682 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1683 { 1684 /* Handle suid and sgid on files */ 1685 struct inode *inode; 1686 unsigned int mode; 1687 kuid_t uid; 1688 kgid_t gid; 1689 1690 if (!mnt_may_suid(file->f_path.mnt)) 1691 return; 1692 1693 if (task_no_new_privs(current)) 1694 return; 1695 1696 inode = file->f_path.dentry->d_inode; 1697 mode = READ_ONCE(inode->i_mode); 1698 if (!(mode & (S_ISUID|S_ISGID))) 1699 return; 1700 1701 /* Be careful if suid/sgid is set */ 1702 inode_lock(inode); 1703 1704 /* reload atomically mode/uid/gid now that lock held */ 1705 mode = inode->i_mode; 1706 uid = inode->i_uid; 1707 gid = inode->i_gid; 1708 inode_unlock(inode); 1709 1710 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1711 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1712 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1713 return; 1714 1715 if (mode & S_ISUID) { 1716 bprm->per_clear |= PER_CLEAR_ON_SETID; 1717 bprm->cred->euid = uid; 1718 } 1719 1720 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1721 bprm->per_clear |= PER_CLEAR_ON_SETID; 1722 bprm->cred->egid = gid; 1723 } 1724 } 1725 1726 /* 1727 * Compute brpm->cred based upon the final binary. 1728 */ 1729 static int bprm_creds_from_file(struct linux_binprm *bprm) 1730 { 1731 /* Compute creds based on which file? */ 1732 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1733 1734 bprm_fill_uid(bprm, file); 1735 return security_bprm_creds_from_file(bprm, file); 1736 } 1737 1738 /* 1739 * Fill the binprm structure from the inode. 1740 * Read the first BINPRM_BUF_SIZE bytes 1741 * 1742 * This may be called multiple times for binary chains (scripts for example). 1743 */ 1744 static int prepare_binprm(struct linux_binprm *bprm) 1745 { 1746 loff_t pos = 0; 1747 1748 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1749 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1750 } 1751 1752 /* 1753 * Arguments are '\0' separated strings found at the location bprm->p 1754 * points to; chop off the first by relocating brpm->p to right after 1755 * the first '\0' encountered. 1756 */ 1757 int remove_arg_zero(struct linux_binprm *bprm) 1758 { 1759 int ret = 0; 1760 unsigned long offset; 1761 char *kaddr; 1762 struct page *page; 1763 1764 if (!bprm->argc) 1765 return 0; 1766 1767 do { 1768 offset = bprm->p & ~PAGE_MASK; 1769 page = get_arg_page(bprm, bprm->p, 0); 1770 if (!page) { 1771 ret = -EFAULT; 1772 goto out; 1773 } 1774 kaddr = kmap_atomic(page); 1775 1776 for (; offset < PAGE_SIZE && kaddr[offset]; 1777 offset++, bprm->p++) 1778 ; 1779 1780 kunmap_atomic(kaddr); 1781 put_arg_page(page); 1782 } while (offset == PAGE_SIZE); 1783 1784 bprm->p++; 1785 bprm->argc--; 1786 ret = 0; 1787 1788 out: 1789 return ret; 1790 } 1791 EXPORT_SYMBOL(remove_arg_zero); 1792 1793 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1794 /* 1795 * cycle the list of binary formats handler, until one recognizes the image 1796 */ 1797 static int search_binary_handler(struct linux_binprm *bprm) 1798 { 1799 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1800 struct linux_binfmt *fmt; 1801 int retval; 1802 1803 retval = prepare_binprm(bprm); 1804 if (retval < 0) 1805 return retval; 1806 1807 retval = security_bprm_check(bprm); 1808 if (retval) 1809 return retval; 1810 1811 retval = -ENOENT; 1812 retry: 1813 read_lock(&binfmt_lock); 1814 list_for_each_entry(fmt, &formats, lh) { 1815 if (!try_module_get(fmt->module)) 1816 continue; 1817 read_unlock(&binfmt_lock); 1818 1819 retval = fmt->load_binary(bprm); 1820 1821 read_lock(&binfmt_lock); 1822 put_binfmt(fmt); 1823 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1824 read_unlock(&binfmt_lock); 1825 return retval; 1826 } 1827 } 1828 read_unlock(&binfmt_lock); 1829 1830 if (need_retry) { 1831 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1832 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1833 return retval; 1834 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1835 return retval; 1836 need_retry = false; 1837 goto retry; 1838 } 1839 1840 return retval; 1841 } 1842 1843 static int exec_binprm(struct linux_binprm *bprm) 1844 { 1845 pid_t old_pid, old_vpid; 1846 int ret, depth; 1847 1848 /* Need to fetch pid before load_binary changes it */ 1849 old_pid = current->pid; 1850 rcu_read_lock(); 1851 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1852 rcu_read_unlock(); 1853 1854 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1855 for (depth = 0;; depth++) { 1856 struct file *exec; 1857 if (depth > 5) 1858 return -ELOOP; 1859 1860 ret = search_binary_handler(bprm); 1861 if (ret < 0) 1862 return ret; 1863 if (!bprm->interpreter) 1864 break; 1865 1866 exec = bprm->file; 1867 bprm->file = bprm->interpreter; 1868 bprm->interpreter = NULL; 1869 1870 allow_write_access(exec); 1871 if (unlikely(bprm->have_execfd)) { 1872 if (bprm->executable) { 1873 fput(exec); 1874 return -ENOEXEC; 1875 } 1876 bprm->executable = exec; 1877 } else 1878 fput(exec); 1879 } 1880 1881 audit_bprm(bprm); 1882 trace_sched_process_exec(current, old_pid, bprm); 1883 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1884 proc_exec_connector(current); 1885 return 0; 1886 } 1887 1888 /* 1889 * sys_execve() executes a new program. 1890 */ 1891 static int bprm_execve(struct linux_binprm *bprm, 1892 int fd, struct filename *filename, int flags) 1893 { 1894 struct file *file; 1895 struct files_struct *displaced; 1896 int retval; 1897 1898 retval = unshare_files(&displaced); 1899 if (retval) 1900 return retval; 1901 1902 retval = prepare_bprm_creds(bprm); 1903 if (retval) 1904 goto out_files; 1905 1906 check_unsafe_exec(bprm); 1907 current->in_execve = 1; 1908 1909 file = do_open_execat(fd, filename, flags); 1910 retval = PTR_ERR(file); 1911 if (IS_ERR(file)) 1912 goto out_unmark; 1913 1914 sched_exec(); 1915 1916 bprm->file = file; 1917 /* 1918 * Record that a name derived from an O_CLOEXEC fd will be 1919 * inaccessible after exec. Relies on having exclusive access to 1920 * current->files (due to unshare_files above). 1921 */ 1922 if (bprm->fdpath && 1923 close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1924 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1925 1926 /* Set the unchanging part of bprm->cred */ 1927 retval = security_bprm_creds_for_exec(bprm); 1928 if (retval) 1929 goto out; 1930 1931 retval = exec_binprm(bprm); 1932 if (retval < 0) 1933 goto out; 1934 1935 /* execve succeeded */ 1936 current->fs->in_exec = 0; 1937 current->in_execve = 0; 1938 rseq_execve(current); 1939 acct_update_integrals(current); 1940 task_numa_free(current, false); 1941 if (displaced) 1942 put_files_struct(displaced); 1943 return retval; 1944 1945 out: 1946 /* 1947 * If past the point of no return ensure the the code never 1948 * returns to the userspace process. Use an existing fatal 1949 * signal if present otherwise terminate the process with 1950 * SIGSEGV. 1951 */ 1952 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1953 force_sigsegv(SIGSEGV); 1954 1955 out_unmark: 1956 current->fs->in_exec = 0; 1957 current->in_execve = 0; 1958 1959 out_files: 1960 if (displaced) 1961 reset_files_struct(displaced); 1962 1963 return retval; 1964 } 1965 1966 static int do_execveat_common(int fd, struct filename *filename, 1967 struct user_arg_ptr argv, 1968 struct user_arg_ptr envp, 1969 int flags) 1970 { 1971 struct linux_binprm *bprm; 1972 int retval; 1973 1974 if (IS_ERR(filename)) 1975 return PTR_ERR(filename); 1976 1977 /* 1978 * We move the actual failure in case of RLIMIT_NPROC excess from 1979 * set*uid() to execve() because too many poorly written programs 1980 * don't check setuid() return code. Here we additionally recheck 1981 * whether NPROC limit is still exceeded. 1982 */ 1983 if ((current->flags & PF_NPROC_EXCEEDED) && 1984 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1985 retval = -EAGAIN; 1986 goto out_ret; 1987 } 1988 1989 /* We're below the limit (still or again), so we don't want to make 1990 * further execve() calls fail. */ 1991 current->flags &= ~PF_NPROC_EXCEEDED; 1992 1993 bprm = alloc_bprm(fd, filename); 1994 if (IS_ERR(bprm)) { 1995 retval = PTR_ERR(bprm); 1996 goto out_ret; 1997 } 1998 1999 retval = count(argv, MAX_ARG_STRINGS); 2000 if (retval < 0) 2001 goto out_free; 2002 bprm->argc = retval; 2003 2004 retval = count(envp, MAX_ARG_STRINGS); 2005 if (retval < 0) 2006 goto out_free; 2007 bprm->envc = retval; 2008 2009 retval = bprm_stack_limits(bprm); 2010 if (retval < 0) 2011 goto out_free; 2012 2013 retval = copy_string_kernel(bprm->filename, bprm); 2014 if (retval < 0) 2015 goto out_free; 2016 bprm->exec = bprm->p; 2017 2018 retval = copy_strings(bprm->envc, envp, bprm); 2019 if (retval < 0) 2020 goto out_free; 2021 2022 retval = copy_strings(bprm->argc, argv, bprm); 2023 if (retval < 0) 2024 goto out_free; 2025 2026 retval = bprm_execve(bprm, fd, filename, flags); 2027 out_free: 2028 free_bprm(bprm); 2029 2030 out_ret: 2031 putname(filename); 2032 return retval; 2033 } 2034 2035 int kernel_execve(const char *kernel_filename, 2036 const char *const *argv, const char *const *envp) 2037 { 2038 struct filename *filename; 2039 struct linux_binprm *bprm; 2040 int fd = AT_FDCWD; 2041 int retval; 2042 2043 filename = getname_kernel(kernel_filename); 2044 if (IS_ERR(filename)) 2045 return PTR_ERR(filename); 2046 2047 bprm = alloc_bprm(fd, filename); 2048 if (IS_ERR(bprm)) { 2049 retval = PTR_ERR(bprm); 2050 goto out_ret; 2051 } 2052 2053 retval = count_strings_kernel(argv); 2054 if (retval < 0) 2055 goto out_free; 2056 bprm->argc = retval; 2057 2058 retval = count_strings_kernel(envp); 2059 if (retval < 0) 2060 goto out_free; 2061 bprm->envc = retval; 2062 2063 retval = bprm_stack_limits(bprm); 2064 if (retval < 0) 2065 goto out_free; 2066 2067 retval = copy_string_kernel(bprm->filename, bprm); 2068 if (retval < 0) 2069 goto out_free; 2070 bprm->exec = bprm->p; 2071 2072 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2073 if (retval < 0) 2074 goto out_free; 2075 2076 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2077 if (retval < 0) 2078 goto out_free; 2079 2080 retval = bprm_execve(bprm, fd, filename, 0); 2081 out_free: 2082 free_bprm(bprm); 2083 out_ret: 2084 putname(filename); 2085 return retval; 2086 } 2087 2088 static int do_execve(struct filename *filename, 2089 const char __user *const __user *__argv, 2090 const char __user *const __user *__envp) 2091 { 2092 struct user_arg_ptr argv = { .ptr.native = __argv }; 2093 struct user_arg_ptr envp = { .ptr.native = __envp }; 2094 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2095 } 2096 2097 static int do_execveat(int fd, struct filename *filename, 2098 const char __user *const __user *__argv, 2099 const char __user *const __user *__envp, 2100 int flags) 2101 { 2102 struct user_arg_ptr argv = { .ptr.native = __argv }; 2103 struct user_arg_ptr envp = { .ptr.native = __envp }; 2104 2105 return do_execveat_common(fd, filename, argv, envp, flags); 2106 } 2107 2108 #ifdef CONFIG_COMPAT 2109 static int compat_do_execve(struct filename *filename, 2110 const compat_uptr_t __user *__argv, 2111 const compat_uptr_t __user *__envp) 2112 { 2113 struct user_arg_ptr argv = { 2114 .is_compat = true, 2115 .ptr.compat = __argv, 2116 }; 2117 struct user_arg_ptr envp = { 2118 .is_compat = true, 2119 .ptr.compat = __envp, 2120 }; 2121 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2122 } 2123 2124 static int compat_do_execveat(int fd, struct filename *filename, 2125 const compat_uptr_t __user *__argv, 2126 const compat_uptr_t __user *__envp, 2127 int flags) 2128 { 2129 struct user_arg_ptr argv = { 2130 .is_compat = true, 2131 .ptr.compat = __argv, 2132 }; 2133 struct user_arg_ptr envp = { 2134 .is_compat = true, 2135 .ptr.compat = __envp, 2136 }; 2137 return do_execveat_common(fd, filename, argv, envp, flags); 2138 } 2139 #endif 2140 2141 void set_binfmt(struct linux_binfmt *new) 2142 { 2143 struct mm_struct *mm = current->mm; 2144 2145 if (mm->binfmt) 2146 module_put(mm->binfmt->module); 2147 2148 mm->binfmt = new; 2149 if (new) 2150 __module_get(new->module); 2151 } 2152 EXPORT_SYMBOL(set_binfmt); 2153 2154 /* 2155 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2156 */ 2157 void set_dumpable(struct mm_struct *mm, int value) 2158 { 2159 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2160 return; 2161 2162 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2163 } 2164 2165 SYSCALL_DEFINE3(execve, 2166 const char __user *, filename, 2167 const char __user *const __user *, argv, 2168 const char __user *const __user *, envp) 2169 { 2170 return do_execve(getname(filename), argv, envp); 2171 } 2172 2173 SYSCALL_DEFINE5(execveat, 2174 int, fd, const char __user *, filename, 2175 const char __user *const __user *, argv, 2176 const char __user *const __user *, envp, 2177 int, flags) 2178 { 2179 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2180 2181 return do_execveat(fd, 2182 getname_flags(filename, lookup_flags, NULL), 2183 argv, envp, flags); 2184 } 2185 2186 #ifdef CONFIG_COMPAT 2187 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2188 const compat_uptr_t __user *, argv, 2189 const compat_uptr_t __user *, envp) 2190 { 2191 return compat_do_execve(getname(filename), argv, envp); 2192 } 2193 2194 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2195 const char __user *, filename, 2196 const compat_uptr_t __user *, argv, 2197 const compat_uptr_t __user *, envp, 2198 int, flags) 2199 { 2200 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2201 2202 return compat_do_execveat(fd, 2203 getname_flags(filename, lookup_flags, NULL), 2204 argv, envp, flags); 2205 } 2206 #endif 2207