xref: /linux/fs/exec.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
58 
59 #ifdef __alpha__
60 /* for /sbin/loader handling in search_binary_handler() */
61 #include <linux/a.out.h>
62 #endif
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 int suid_dumpable = 0;
67 
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69 
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72 
73 int register_binfmt(struct linux_binfmt * fmt)
74 {
75 	if (!fmt)
76 		return -EINVAL;
77 	write_lock(&binfmt_lock);
78 	list_add(&fmt->lh, &formats);
79 	write_unlock(&binfmt_lock);
80 	return 0;
81 }
82 
83 EXPORT_SYMBOL(register_binfmt);
84 
85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87 	write_lock(&binfmt_lock);
88 	list_del(&fmt->lh);
89 	write_unlock(&binfmt_lock);
90 }
91 
92 EXPORT_SYMBOL(unregister_binfmt);
93 
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96 	module_put(fmt->module);
97 }
98 
99 /*
100  * Note that a shared library must be both readable and executable due to
101  * security reasons.
102  *
103  * Also note that we take the address to load from from the file itself.
104  */
105 asmlinkage long sys_uselib(const char __user * library)
106 {
107 	struct file *file;
108 	struct nameidata nd;
109 	char *tmp = getname(library);
110 	int error = PTR_ERR(tmp);
111 
112 	if (!IS_ERR(tmp)) {
113 		error = path_lookup_open(AT_FDCWD, tmp,
114 					 LOOKUP_FOLLOW, &nd,
115 					 FMODE_READ|FMODE_EXEC);
116 		putname(tmp);
117 	}
118 	if (error)
119 		goto out;
120 
121 	error = -EINVAL;
122 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
123 		goto exit;
124 
125 	error = -EACCES;
126 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
127 		goto exit;
128 
129 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN);
130 	if (error)
131 		goto exit;
132 
133 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
134 	error = PTR_ERR(file);
135 	if (IS_ERR(file))
136 		goto out;
137 
138 	error = -ENOEXEC;
139 	if(file->f_op) {
140 		struct linux_binfmt * fmt;
141 
142 		read_lock(&binfmt_lock);
143 		list_for_each_entry(fmt, &formats, lh) {
144 			if (!fmt->load_shlib)
145 				continue;
146 			if (!try_module_get(fmt->module))
147 				continue;
148 			read_unlock(&binfmt_lock);
149 			error = fmt->load_shlib(file);
150 			read_lock(&binfmt_lock);
151 			put_binfmt(fmt);
152 			if (error != -ENOEXEC)
153 				break;
154 		}
155 		read_unlock(&binfmt_lock);
156 	}
157 	fput(file);
158 out:
159   	return error;
160 exit:
161 	release_open_intent(&nd);
162 	path_put(&nd.path);
163 	goto out;
164 }
165 
166 #ifdef CONFIG_MMU
167 
168 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
169 		int write)
170 {
171 	struct page *page;
172 	int ret;
173 
174 #ifdef CONFIG_STACK_GROWSUP
175 	if (write) {
176 		ret = expand_stack_downwards(bprm->vma, pos);
177 		if (ret < 0)
178 			return NULL;
179 	}
180 #endif
181 	ret = get_user_pages(current, bprm->mm, pos,
182 			1, write, 1, &page, NULL);
183 	if (ret <= 0)
184 		return NULL;
185 
186 	if (write) {
187 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
188 		struct rlimit *rlim;
189 
190 		/*
191 		 * We've historically supported up to 32 pages (ARG_MAX)
192 		 * of argument strings even with small stacks
193 		 */
194 		if (size <= ARG_MAX)
195 			return page;
196 
197 		/*
198 		 * Limit to 1/4-th the stack size for the argv+env strings.
199 		 * This ensures that:
200 		 *  - the remaining binfmt code will not run out of stack space,
201 		 *  - the program will have a reasonable amount of stack left
202 		 *    to work from.
203 		 */
204 		rlim = current->signal->rlim;
205 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
206 			put_page(page);
207 			return NULL;
208 		}
209 	}
210 
211 	return page;
212 }
213 
214 static void put_arg_page(struct page *page)
215 {
216 	put_page(page);
217 }
218 
219 static void free_arg_page(struct linux_binprm *bprm, int i)
220 {
221 }
222 
223 static void free_arg_pages(struct linux_binprm *bprm)
224 {
225 }
226 
227 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
228 		struct page *page)
229 {
230 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
231 }
232 
233 static int __bprm_mm_init(struct linux_binprm *bprm)
234 {
235 	int err = -ENOMEM;
236 	struct vm_area_struct *vma = NULL;
237 	struct mm_struct *mm = bprm->mm;
238 
239 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
240 	if (!vma)
241 		goto err;
242 
243 	down_write(&mm->mmap_sem);
244 	vma->vm_mm = mm;
245 
246 	/*
247 	 * Place the stack at the largest stack address the architecture
248 	 * supports. Later, we'll move this to an appropriate place. We don't
249 	 * use STACK_TOP because that can depend on attributes which aren't
250 	 * configured yet.
251 	 */
252 	vma->vm_end = STACK_TOP_MAX;
253 	vma->vm_start = vma->vm_end - PAGE_SIZE;
254 
255 	vma->vm_flags = VM_STACK_FLAGS;
256 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
257 	err = insert_vm_struct(mm, vma);
258 	if (err) {
259 		up_write(&mm->mmap_sem);
260 		goto err;
261 	}
262 
263 	mm->stack_vm = mm->total_vm = 1;
264 	up_write(&mm->mmap_sem);
265 
266 	bprm->p = vma->vm_end - sizeof(void *);
267 
268 	return 0;
269 
270 err:
271 	if (vma) {
272 		bprm->vma = NULL;
273 		kmem_cache_free(vm_area_cachep, vma);
274 	}
275 
276 	return err;
277 }
278 
279 static bool valid_arg_len(struct linux_binprm *bprm, long len)
280 {
281 	return len <= MAX_ARG_STRLEN;
282 }
283 
284 #else
285 
286 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
287 		int write)
288 {
289 	struct page *page;
290 
291 	page = bprm->page[pos / PAGE_SIZE];
292 	if (!page && write) {
293 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
294 		if (!page)
295 			return NULL;
296 		bprm->page[pos / PAGE_SIZE] = page;
297 	}
298 
299 	return page;
300 }
301 
302 static void put_arg_page(struct page *page)
303 {
304 }
305 
306 static void free_arg_page(struct linux_binprm *bprm, int i)
307 {
308 	if (bprm->page[i]) {
309 		__free_page(bprm->page[i]);
310 		bprm->page[i] = NULL;
311 	}
312 }
313 
314 static void free_arg_pages(struct linux_binprm *bprm)
315 {
316 	int i;
317 
318 	for (i = 0; i < MAX_ARG_PAGES; i++)
319 		free_arg_page(bprm, i);
320 }
321 
322 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
323 		struct page *page)
324 {
325 }
326 
327 static int __bprm_mm_init(struct linux_binprm *bprm)
328 {
329 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
330 	return 0;
331 }
332 
333 static bool valid_arg_len(struct linux_binprm *bprm, long len)
334 {
335 	return len <= bprm->p;
336 }
337 
338 #endif /* CONFIG_MMU */
339 
340 /*
341  * Create a new mm_struct and populate it with a temporary stack
342  * vm_area_struct.  We don't have enough context at this point to set the stack
343  * flags, permissions, and offset, so we use temporary values.  We'll update
344  * them later in setup_arg_pages().
345  */
346 int bprm_mm_init(struct linux_binprm *bprm)
347 {
348 	int err;
349 	struct mm_struct *mm = NULL;
350 
351 	bprm->mm = mm = mm_alloc();
352 	err = -ENOMEM;
353 	if (!mm)
354 		goto err;
355 
356 	err = init_new_context(current, mm);
357 	if (err)
358 		goto err;
359 
360 	err = __bprm_mm_init(bprm);
361 	if (err)
362 		goto err;
363 
364 	return 0;
365 
366 err:
367 	if (mm) {
368 		bprm->mm = NULL;
369 		mmdrop(mm);
370 	}
371 
372 	return err;
373 }
374 
375 /*
376  * count() counts the number of strings in array ARGV.
377  */
378 static int count(char __user * __user * argv, int max)
379 {
380 	int i = 0;
381 
382 	if (argv != NULL) {
383 		for (;;) {
384 			char __user * p;
385 
386 			if (get_user(p, argv))
387 				return -EFAULT;
388 			if (!p)
389 				break;
390 			argv++;
391 			if (i++ >= max)
392 				return -E2BIG;
393 			cond_resched();
394 		}
395 	}
396 	return i;
397 }
398 
399 /*
400  * 'copy_strings()' copies argument/environment strings from the old
401  * processes's memory to the new process's stack.  The call to get_user_pages()
402  * ensures the destination page is created and not swapped out.
403  */
404 static int copy_strings(int argc, char __user * __user * argv,
405 			struct linux_binprm *bprm)
406 {
407 	struct page *kmapped_page = NULL;
408 	char *kaddr = NULL;
409 	unsigned long kpos = 0;
410 	int ret;
411 
412 	while (argc-- > 0) {
413 		char __user *str;
414 		int len;
415 		unsigned long pos;
416 
417 		if (get_user(str, argv+argc) ||
418 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
419 			ret = -EFAULT;
420 			goto out;
421 		}
422 
423 		if (!valid_arg_len(bprm, len)) {
424 			ret = -E2BIG;
425 			goto out;
426 		}
427 
428 		/* We're going to work our way backwords. */
429 		pos = bprm->p;
430 		str += len;
431 		bprm->p -= len;
432 
433 		while (len > 0) {
434 			int offset, bytes_to_copy;
435 
436 			offset = pos % PAGE_SIZE;
437 			if (offset == 0)
438 				offset = PAGE_SIZE;
439 
440 			bytes_to_copy = offset;
441 			if (bytes_to_copy > len)
442 				bytes_to_copy = len;
443 
444 			offset -= bytes_to_copy;
445 			pos -= bytes_to_copy;
446 			str -= bytes_to_copy;
447 			len -= bytes_to_copy;
448 
449 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
450 				struct page *page;
451 
452 				page = get_arg_page(bprm, pos, 1);
453 				if (!page) {
454 					ret = -E2BIG;
455 					goto out;
456 				}
457 
458 				if (kmapped_page) {
459 					flush_kernel_dcache_page(kmapped_page);
460 					kunmap(kmapped_page);
461 					put_arg_page(kmapped_page);
462 				}
463 				kmapped_page = page;
464 				kaddr = kmap(kmapped_page);
465 				kpos = pos & PAGE_MASK;
466 				flush_arg_page(bprm, kpos, kmapped_page);
467 			}
468 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
469 				ret = -EFAULT;
470 				goto out;
471 			}
472 		}
473 	}
474 	ret = 0;
475 out:
476 	if (kmapped_page) {
477 		flush_kernel_dcache_page(kmapped_page);
478 		kunmap(kmapped_page);
479 		put_arg_page(kmapped_page);
480 	}
481 	return ret;
482 }
483 
484 /*
485  * Like copy_strings, but get argv and its values from kernel memory.
486  */
487 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
488 {
489 	int r;
490 	mm_segment_t oldfs = get_fs();
491 	set_fs(KERNEL_DS);
492 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
493 	set_fs(oldfs);
494 	return r;
495 }
496 EXPORT_SYMBOL(copy_strings_kernel);
497 
498 #ifdef CONFIG_MMU
499 
500 /*
501  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
502  * the binfmt code determines where the new stack should reside, we shift it to
503  * its final location.  The process proceeds as follows:
504  *
505  * 1) Use shift to calculate the new vma endpoints.
506  * 2) Extend vma to cover both the old and new ranges.  This ensures the
507  *    arguments passed to subsequent functions are consistent.
508  * 3) Move vma's page tables to the new range.
509  * 4) Free up any cleared pgd range.
510  * 5) Shrink the vma to cover only the new range.
511  */
512 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
513 {
514 	struct mm_struct *mm = vma->vm_mm;
515 	unsigned long old_start = vma->vm_start;
516 	unsigned long old_end = vma->vm_end;
517 	unsigned long length = old_end - old_start;
518 	unsigned long new_start = old_start - shift;
519 	unsigned long new_end = old_end - shift;
520 	struct mmu_gather *tlb;
521 
522 	BUG_ON(new_start > new_end);
523 
524 	/*
525 	 * ensure there are no vmas between where we want to go
526 	 * and where we are
527 	 */
528 	if (vma != find_vma(mm, new_start))
529 		return -EFAULT;
530 
531 	/*
532 	 * cover the whole range: [new_start, old_end)
533 	 */
534 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
535 
536 	/*
537 	 * move the page tables downwards, on failure we rely on
538 	 * process cleanup to remove whatever mess we made.
539 	 */
540 	if (length != move_page_tables(vma, old_start,
541 				       vma, new_start, length))
542 		return -ENOMEM;
543 
544 	lru_add_drain();
545 	tlb = tlb_gather_mmu(mm, 0);
546 	if (new_end > old_start) {
547 		/*
548 		 * when the old and new regions overlap clear from new_end.
549 		 */
550 		free_pgd_range(tlb, new_end, old_end, new_end,
551 			vma->vm_next ? vma->vm_next->vm_start : 0);
552 	} else {
553 		/*
554 		 * otherwise, clean from old_start; this is done to not touch
555 		 * the address space in [new_end, old_start) some architectures
556 		 * have constraints on va-space that make this illegal (IA64) -
557 		 * for the others its just a little faster.
558 		 */
559 		free_pgd_range(tlb, old_start, old_end, new_end,
560 			vma->vm_next ? vma->vm_next->vm_start : 0);
561 	}
562 	tlb_finish_mmu(tlb, new_end, old_end);
563 
564 	/*
565 	 * shrink the vma to just the new range.
566 	 */
567 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
568 
569 	return 0;
570 }
571 
572 #define EXTRA_STACK_VM_PAGES	20	/* random */
573 
574 /*
575  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
576  * the stack is optionally relocated, and some extra space is added.
577  */
578 int setup_arg_pages(struct linux_binprm *bprm,
579 		    unsigned long stack_top,
580 		    int executable_stack)
581 {
582 	unsigned long ret;
583 	unsigned long stack_shift;
584 	struct mm_struct *mm = current->mm;
585 	struct vm_area_struct *vma = bprm->vma;
586 	struct vm_area_struct *prev = NULL;
587 	unsigned long vm_flags;
588 	unsigned long stack_base;
589 
590 #ifdef CONFIG_STACK_GROWSUP
591 	/* Limit stack size to 1GB */
592 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
593 	if (stack_base > (1 << 30))
594 		stack_base = 1 << 30;
595 
596 	/* Make sure we didn't let the argument array grow too large. */
597 	if (vma->vm_end - vma->vm_start > stack_base)
598 		return -ENOMEM;
599 
600 	stack_base = PAGE_ALIGN(stack_top - stack_base);
601 
602 	stack_shift = vma->vm_start - stack_base;
603 	mm->arg_start = bprm->p - stack_shift;
604 	bprm->p = vma->vm_end - stack_shift;
605 #else
606 	stack_top = arch_align_stack(stack_top);
607 	stack_top = PAGE_ALIGN(stack_top);
608 	stack_shift = vma->vm_end - stack_top;
609 
610 	bprm->p -= stack_shift;
611 	mm->arg_start = bprm->p;
612 #endif
613 
614 	if (bprm->loader)
615 		bprm->loader -= stack_shift;
616 	bprm->exec -= stack_shift;
617 
618 	down_write(&mm->mmap_sem);
619 	vm_flags = VM_STACK_FLAGS;
620 
621 	/*
622 	 * Adjust stack execute permissions; explicitly enable for
623 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
624 	 * (arch default) otherwise.
625 	 */
626 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
627 		vm_flags |= VM_EXEC;
628 	else if (executable_stack == EXSTACK_DISABLE_X)
629 		vm_flags &= ~VM_EXEC;
630 	vm_flags |= mm->def_flags;
631 
632 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
633 			vm_flags);
634 	if (ret)
635 		goto out_unlock;
636 	BUG_ON(prev != vma);
637 
638 	/* Move stack pages down in memory. */
639 	if (stack_shift) {
640 		ret = shift_arg_pages(vma, stack_shift);
641 		if (ret) {
642 			up_write(&mm->mmap_sem);
643 			return ret;
644 		}
645 	}
646 
647 #ifdef CONFIG_STACK_GROWSUP
648 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
649 #else
650 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
651 #endif
652 	ret = expand_stack(vma, stack_base);
653 	if (ret)
654 		ret = -EFAULT;
655 
656 out_unlock:
657 	up_write(&mm->mmap_sem);
658 	return 0;
659 }
660 EXPORT_SYMBOL(setup_arg_pages);
661 
662 #endif /* CONFIG_MMU */
663 
664 struct file *open_exec(const char *name)
665 {
666 	struct nameidata nd;
667 	struct file *file;
668 	int err;
669 
670 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
671 				FMODE_READ|FMODE_EXEC);
672 	if (err)
673 		goto out;
674 
675 	err = -EACCES;
676 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
677 		goto out_path_put;
678 
679 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
680 		goto out_path_put;
681 
682 	err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN);
683 	if (err)
684 		goto out_path_put;
685 
686 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
687 	if (IS_ERR(file))
688 		return file;
689 
690 	err = deny_write_access(file);
691 	if (err) {
692 		fput(file);
693 		goto out;
694 	}
695 
696 	return file;
697 
698  out_path_put:
699 	release_open_intent(&nd);
700 	path_put(&nd.path);
701  out:
702 	return ERR_PTR(err);
703 }
704 EXPORT_SYMBOL(open_exec);
705 
706 int kernel_read(struct file *file, unsigned long offset,
707 	char *addr, unsigned long count)
708 {
709 	mm_segment_t old_fs;
710 	loff_t pos = offset;
711 	int result;
712 
713 	old_fs = get_fs();
714 	set_fs(get_ds());
715 	/* The cast to a user pointer is valid due to the set_fs() */
716 	result = vfs_read(file, (void __user *)addr, count, &pos);
717 	set_fs(old_fs);
718 	return result;
719 }
720 
721 EXPORT_SYMBOL(kernel_read);
722 
723 static int exec_mmap(struct mm_struct *mm)
724 {
725 	struct task_struct *tsk;
726 	struct mm_struct * old_mm, *active_mm;
727 
728 	/* Notify parent that we're no longer interested in the old VM */
729 	tsk = current;
730 	old_mm = current->mm;
731 	mm_release(tsk, old_mm);
732 
733 	if (old_mm) {
734 		/*
735 		 * Make sure that if there is a core dump in progress
736 		 * for the old mm, we get out and die instead of going
737 		 * through with the exec.  We must hold mmap_sem around
738 		 * checking core_state and changing tsk->mm.
739 		 */
740 		down_read(&old_mm->mmap_sem);
741 		if (unlikely(old_mm->core_state)) {
742 			up_read(&old_mm->mmap_sem);
743 			return -EINTR;
744 		}
745 	}
746 	task_lock(tsk);
747 	active_mm = tsk->active_mm;
748 	tsk->mm = mm;
749 	tsk->active_mm = mm;
750 	activate_mm(active_mm, mm);
751 	task_unlock(tsk);
752 	arch_pick_mmap_layout(mm);
753 	if (old_mm) {
754 		up_read(&old_mm->mmap_sem);
755 		BUG_ON(active_mm != old_mm);
756 		mm_update_next_owner(old_mm);
757 		mmput(old_mm);
758 		return 0;
759 	}
760 	mmdrop(active_mm);
761 	return 0;
762 }
763 
764 /*
765  * This function makes sure the current process has its own signal table,
766  * so that flush_signal_handlers can later reset the handlers without
767  * disturbing other processes.  (Other processes might share the signal
768  * table via the CLONE_SIGHAND option to clone().)
769  */
770 static int de_thread(struct task_struct *tsk)
771 {
772 	struct signal_struct *sig = tsk->signal;
773 	struct sighand_struct *oldsighand = tsk->sighand;
774 	spinlock_t *lock = &oldsighand->siglock;
775 	struct task_struct *leader = NULL;
776 	int count;
777 
778 	if (thread_group_empty(tsk))
779 		goto no_thread_group;
780 
781 	/*
782 	 * Kill all other threads in the thread group.
783 	 */
784 	spin_lock_irq(lock);
785 	if (signal_group_exit(sig)) {
786 		/*
787 		 * Another group action in progress, just
788 		 * return so that the signal is processed.
789 		 */
790 		spin_unlock_irq(lock);
791 		return -EAGAIN;
792 	}
793 	sig->group_exit_task = tsk;
794 	zap_other_threads(tsk);
795 
796 	/* Account for the thread group leader hanging around: */
797 	count = thread_group_leader(tsk) ? 1 : 2;
798 	sig->notify_count = count;
799 	while (atomic_read(&sig->count) > count) {
800 		__set_current_state(TASK_UNINTERRUPTIBLE);
801 		spin_unlock_irq(lock);
802 		schedule();
803 		spin_lock_irq(lock);
804 	}
805 	spin_unlock_irq(lock);
806 
807 	/*
808 	 * At this point all other threads have exited, all we have to
809 	 * do is to wait for the thread group leader to become inactive,
810 	 * and to assume its PID:
811 	 */
812 	if (!thread_group_leader(tsk)) {
813 		leader = tsk->group_leader;
814 
815 		sig->notify_count = -1;	/* for exit_notify() */
816 		for (;;) {
817 			write_lock_irq(&tasklist_lock);
818 			if (likely(leader->exit_state))
819 				break;
820 			__set_current_state(TASK_UNINTERRUPTIBLE);
821 			write_unlock_irq(&tasklist_lock);
822 			schedule();
823 		}
824 
825 		/*
826 		 * The only record we have of the real-time age of a
827 		 * process, regardless of execs it's done, is start_time.
828 		 * All the past CPU time is accumulated in signal_struct
829 		 * from sister threads now dead.  But in this non-leader
830 		 * exec, nothing survives from the original leader thread,
831 		 * whose birth marks the true age of this process now.
832 		 * When we take on its identity by switching to its PID, we
833 		 * also take its birthdate (always earlier than our own).
834 		 */
835 		tsk->start_time = leader->start_time;
836 
837 		BUG_ON(!same_thread_group(leader, tsk));
838 		BUG_ON(has_group_leader_pid(tsk));
839 		/*
840 		 * An exec() starts a new thread group with the
841 		 * TGID of the previous thread group. Rehash the
842 		 * two threads with a switched PID, and release
843 		 * the former thread group leader:
844 		 */
845 
846 		/* Become a process group leader with the old leader's pid.
847 		 * The old leader becomes a thread of the this thread group.
848 		 * Note: The old leader also uses this pid until release_task
849 		 *       is called.  Odd but simple and correct.
850 		 */
851 		detach_pid(tsk, PIDTYPE_PID);
852 		tsk->pid = leader->pid;
853 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
854 		transfer_pid(leader, tsk, PIDTYPE_PGID);
855 		transfer_pid(leader, tsk, PIDTYPE_SID);
856 		list_replace_rcu(&leader->tasks, &tsk->tasks);
857 
858 		tsk->group_leader = tsk;
859 		leader->group_leader = tsk;
860 
861 		tsk->exit_signal = SIGCHLD;
862 
863 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
864 		leader->exit_state = EXIT_DEAD;
865 
866 		write_unlock_irq(&tasklist_lock);
867 	}
868 
869 	sig->group_exit_task = NULL;
870 	sig->notify_count = 0;
871 
872 no_thread_group:
873 	exit_itimers(sig);
874 	flush_itimer_signals();
875 	if (leader)
876 		release_task(leader);
877 
878 	if (atomic_read(&oldsighand->count) != 1) {
879 		struct sighand_struct *newsighand;
880 		/*
881 		 * This ->sighand is shared with the CLONE_SIGHAND
882 		 * but not CLONE_THREAD task, switch to the new one.
883 		 */
884 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
885 		if (!newsighand)
886 			return -ENOMEM;
887 
888 		atomic_set(&newsighand->count, 1);
889 		memcpy(newsighand->action, oldsighand->action,
890 		       sizeof(newsighand->action));
891 
892 		write_lock_irq(&tasklist_lock);
893 		spin_lock(&oldsighand->siglock);
894 		rcu_assign_pointer(tsk->sighand, newsighand);
895 		spin_unlock(&oldsighand->siglock);
896 		write_unlock_irq(&tasklist_lock);
897 
898 		__cleanup_sighand(oldsighand);
899 	}
900 
901 	BUG_ON(!thread_group_leader(tsk));
902 	return 0;
903 }
904 
905 /*
906  * These functions flushes out all traces of the currently running executable
907  * so that a new one can be started
908  */
909 static void flush_old_files(struct files_struct * files)
910 {
911 	long j = -1;
912 	struct fdtable *fdt;
913 
914 	spin_lock(&files->file_lock);
915 	for (;;) {
916 		unsigned long set, i;
917 
918 		j++;
919 		i = j * __NFDBITS;
920 		fdt = files_fdtable(files);
921 		if (i >= fdt->max_fds)
922 			break;
923 		set = fdt->close_on_exec->fds_bits[j];
924 		if (!set)
925 			continue;
926 		fdt->close_on_exec->fds_bits[j] = 0;
927 		spin_unlock(&files->file_lock);
928 		for ( ; set ; i++,set >>= 1) {
929 			if (set & 1) {
930 				sys_close(i);
931 			}
932 		}
933 		spin_lock(&files->file_lock);
934 
935 	}
936 	spin_unlock(&files->file_lock);
937 }
938 
939 char *get_task_comm(char *buf, struct task_struct *tsk)
940 {
941 	/* buf must be at least sizeof(tsk->comm) in size */
942 	task_lock(tsk);
943 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
944 	task_unlock(tsk);
945 	return buf;
946 }
947 
948 void set_task_comm(struct task_struct *tsk, char *buf)
949 {
950 	task_lock(tsk);
951 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
952 	task_unlock(tsk);
953 }
954 
955 int flush_old_exec(struct linux_binprm * bprm)
956 {
957 	char * name;
958 	int i, ch, retval;
959 	char tcomm[sizeof(current->comm)];
960 
961 	/*
962 	 * Make sure we have a private signal table and that
963 	 * we are unassociated from the previous thread group.
964 	 */
965 	retval = de_thread(current);
966 	if (retval)
967 		goto out;
968 
969 	set_mm_exe_file(bprm->mm, bprm->file);
970 
971 	/*
972 	 * Release all of the old mmap stuff
973 	 */
974 	retval = exec_mmap(bprm->mm);
975 	if (retval)
976 		goto out;
977 
978 	bprm->mm = NULL;		/* We're using it now */
979 
980 	/* This is the point of no return */
981 	current->sas_ss_sp = current->sas_ss_size = 0;
982 
983 	if (current->euid == current->uid && current->egid == current->gid)
984 		set_dumpable(current->mm, 1);
985 	else
986 		set_dumpable(current->mm, suid_dumpable);
987 
988 	name = bprm->filename;
989 
990 	/* Copies the binary name from after last slash */
991 	for (i=0; (ch = *(name++)) != '\0';) {
992 		if (ch == '/')
993 			i = 0; /* overwrite what we wrote */
994 		else
995 			if (i < (sizeof(tcomm) - 1))
996 				tcomm[i++] = ch;
997 	}
998 	tcomm[i] = '\0';
999 	set_task_comm(current, tcomm);
1000 
1001 	current->flags &= ~PF_RANDOMIZE;
1002 	flush_thread();
1003 
1004 	/* Set the new mm task size. We have to do that late because it may
1005 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1006 	 * some architectures like powerpc
1007 	 */
1008 	current->mm->task_size = TASK_SIZE;
1009 
1010 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1011 		suid_keys(current);
1012 		set_dumpable(current->mm, suid_dumpable);
1013 		current->pdeath_signal = 0;
1014 	} else if (file_permission(bprm->file, MAY_READ) ||
1015 			(bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1016 		suid_keys(current);
1017 		set_dumpable(current->mm, suid_dumpable);
1018 	}
1019 
1020 	/* An exec changes our domain. We are no longer part of the thread
1021 	   group */
1022 
1023 	current->self_exec_id++;
1024 
1025 	flush_signal_handlers(current, 0);
1026 	flush_old_files(current->files);
1027 
1028 	return 0;
1029 
1030 out:
1031 	return retval;
1032 }
1033 
1034 EXPORT_SYMBOL(flush_old_exec);
1035 
1036 /*
1037  * Fill the binprm structure from the inode.
1038  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1039  */
1040 int prepare_binprm(struct linux_binprm *bprm)
1041 {
1042 	int mode;
1043 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1044 	int retval;
1045 
1046 	mode = inode->i_mode;
1047 	if (bprm->file->f_op == NULL)
1048 		return -EACCES;
1049 
1050 	bprm->e_uid = current->euid;
1051 	bprm->e_gid = current->egid;
1052 
1053 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1054 		/* Set-uid? */
1055 		if (mode & S_ISUID) {
1056 			current->personality &= ~PER_CLEAR_ON_SETID;
1057 			bprm->e_uid = inode->i_uid;
1058 		}
1059 
1060 		/* Set-gid? */
1061 		/*
1062 		 * If setgid is set but no group execute bit then this
1063 		 * is a candidate for mandatory locking, not a setgid
1064 		 * executable.
1065 		 */
1066 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1067 			current->personality &= ~PER_CLEAR_ON_SETID;
1068 			bprm->e_gid = inode->i_gid;
1069 		}
1070 	}
1071 
1072 	/* fill in binprm security blob */
1073 	retval = security_bprm_set(bprm);
1074 	if (retval)
1075 		return retval;
1076 
1077 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
1078 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1079 }
1080 
1081 EXPORT_SYMBOL(prepare_binprm);
1082 
1083 static int unsafe_exec(struct task_struct *p)
1084 {
1085 	int unsafe = tracehook_unsafe_exec(p);
1086 
1087 	if (atomic_read(&p->fs->count) > 1 ||
1088 	    atomic_read(&p->files->count) > 1 ||
1089 	    atomic_read(&p->sighand->count) > 1)
1090 		unsafe |= LSM_UNSAFE_SHARE;
1091 
1092 	return unsafe;
1093 }
1094 
1095 void compute_creds(struct linux_binprm *bprm)
1096 {
1097 	int unsafe;
1098 
1099 	if (bprm->e_uid != current->uid) {
1100 		suid_keys(current);
1101 		current->pdeath_signal = 0;
1102 	}
1103 	exec_keys(current);
1104 
1105 	task_lock(current);
1106 	unsafe = unsafe_exec(current);
1107 	security_bprm_apply_creds(bprm, unsafe);
1108 	task_unlock(current);
1109 	security_bprm_post_apply_creds(bprm);
1110 }
1111 EXPORT_SYMBOL(compute_creds);
1112 
1113 /*
1114  * Arguments are '\0' separated strings found at the location bprm->p
1115  * points to; chop off the first by relocating brpm->p to right after
1116  * the first '\0' encountered.
1117  */
1118 int remove_arg_zero(struct linux_binprm *bprm)
1119 {
1120 	int ret = 0;
1121 	unsigned long offset;
1122 	char *kaddr;
1123 	struct page *page;
1124 
1125 	if (!bprm->argc)
1126 		return 0;
1127 
1128 	do {
1129 		offset = bprm->p & ~PAGE_MASK;
1130 		page = get_arg_page(bprm, bprm->p, 0);
1131 		if (!page) {
1132 			ret = -EFAULT;
1133 			goto out;
1134 		}
1135 		kaddr = kmap_atomic(page, KM_USER0);
1136 
1137 		for (; offset < PAGE_SIZE && kaddr[offset];
1138 				offset++, bprm->p++)
1139 			;
1140 
1141 		kunmap_atomic(kaddr, KM_USER0);
1142 		put_arg_page(page);
1143 
1144 		if (offset == PAGE_SIZE)
1145 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1146 	} while (offset == PAGE_SIZE);
1147 
1148 	bprm->p++;
1149 	bprm->argc--;
1150 	ret = 0;
1151 
1152 out:
1153 	return ret;
1154 }
1155 EXPORT_SYMBOL(remove_arg_zero);
1156 
1157 /*
1158  * cycle the list of binary formats handler, until one recognizes the image
1159  */
1160 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1161 {
1162 	int try,retval;
1163 	struct linux_binfmt *fmt;
1164 #ifdef __alpha__
1165 	/* handle /sbin/loader.. */
1166 	{
1167 	    struct exec * eh = (struct exec *) bprm->buf;
1168 
1169 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1170 		(eh->fh.f_flags & 0x3000) == 0x3000)
1171 	    {
1172 		struct file * file;
1173 		unsigned long loader;
1174 
1175 		allow_write_access(bprm->file);
1176 		fput(bprm->file);
1177 		bprm->file = NULL;
1178 
1179 		loader = bprm->vma->vm_end - sizeof(void *);
1180 
1181 		file = open_exec("/sbin/loader");
1182 		retval = PTR_ERR(file);
1183 		if (IS_ERR(file))
1184 			return retval;
1185 
1186 		/* Remember if the application is TASO.  */
1187 		bprm->taso = eh->ah.entry < 0x100000000UL;
1188 
1189 		bprm->file = file;
1190 		bprm->loader = loader;
1191 		retval = prepare_binprm(bprm);
1192 		if (retval<0)
1193 			return retval;
1194 		/* should call search_binary_handler recursively here,
1195 		   but it does not matter */
1196 	    }
1197 	}
1198 #endif
1199 	retval = security_bprm_check(bprm);
1200 	if (retval)
1201 		return retval;
1202 
1203 	/* kernel module loader fixup */
1204 	/* so we don't try to load run modprobe in kernel space. */
1205 	set_fs(USER_DS);
1206 
1207 	retval = audit_bprm(bprm);
1208 	if (retval)
1209 		return retval;
1210 
1211 	retval = -ENOENT;
1212 	for (try=0; try<2; try++) {
1213 		read_lock(&binfmt_lock);
1214 		list_for_each_entry(fmt, &formats, lh) {
1215 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1216 			if (!fn)
1217 				continue;
1218 			if (!try_module_get(fmt->module))
1219 				continue;
1220 			read_unlock(&binfmt_lock);
1221 			retval = fn(bprm, regs);
1222 			if (retval >= 0) {
1223 				tracehook_report_exec(fmt, bprm, regs);
1224 				put_binfmt(fmt);
1225 				allow_write_access(bprm->file);
1226 				if (bprm->file)
1227 					fput(bprm->file);
1228 				bprm->file = NULL;
1229 				current->did_exec = 1;
1230 				proc_exec_connector(current);
1231 				return retval;
1232 			}
1233 			read_lock(&binfmt_lock);
1234 			put_binfmt(fmt);
1235 			if (retval != -ENOEXEC || bprm->mm == NULL)
1236 				break;
1237 			if (!bprm->file) {
1238 				read_unlock(&binfmt_lock);
1239 				return retval;
1240 			}
1241 		}
1242 		read_unlock(&binfmt_lock);
1243 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1244 			break;
1245 #ifdef CONFIG_MODULES
1246 		} else {
1247 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1248 			if (printable(bprm->buf[0]) &&
1249 			    printable(bprm->buf[1]) &&
1250 			    printable(bprm->buf[2]) &&
1251 			    printable(bprm->buf[3]))
1252 				break; /* -ENOEXEC */
1253 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1254 #endif
1255 		}
1256 	}
1257 	return retval;
1258 }
1259 
1260 EXPORT_SYMBOL(search_binary_handler);
1261 
1262 void free_bprm(struct linux_binprm *bprm)
1263 {
1264 	free_arg_pages(bprm);
1265 	kfree(bprm);
1266 }
1267 
1268 /*
1269  * sys_execve() executes a new program.
1270  */
1271 int do_execve(char * filename,
1272 	char __user *__user *argv,
1273 	char __user *__user *envp,
1274 	struct pt_regs * regs)
1275 {
1276 	struct linux_binprm *bprm;
1277 	struct file *file;
1278 	struct files_struct *displaced;
1279 	int retval;
1280 
1281 	retval = unshare_files(&displaced);
1282 	if (retval)
1283 		goto out_ret;
1284 
1285 	retval = -ENOMEM;
1286 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1287 	if (!bprm)
1288 		goto out_files;
1289 
1290 	file = open_exec(filename);
1291 	retval = PTR_ERR(file);
1292 	if (IS_ERR(file))
1293 		goto out_kfree;
1294 
1295 	sched_exec();
1296 
1297 	bprm->file = file;
1298 	bprm->filename = filename;
1299 	bprm->interp = filename;
1300 
1301 	retval = bprm_mm_init(bprm);
1302 	if (retval)
1303 		goto out_file;
1304 
1305 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1306 	if ((retval = bprm->argc) < 0)
1307 		goto out_mm;
1308 
1309 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1310 	if ((retval = bprm->envc) < 0)
1311 		goto out_mm;
1312 
1313 	retval = security_bprm_alloc(bprm);
1314 	if (retval)
1315 		goto out;
1316 
1317 	retval = prepare_binprm(bprm);
1318 	if (retval < 0)
1319 		goto out;
1320 
1321 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1322 	if (retval < 0)
1323 		goto out;
1324 
1325 	bprm->exec = bprm->p;
1326 	retval = copy_strings(bprm->envc, envp, bprm);
1327 	if (retval < 0)
1328 		goto out;
1329 
1330 	retval = copy_strings(bprm->argc, argv, bprm);
1331 	if (retval < 0)
1332 		goto out;
1333 
1334 	current->flags &= ~PF_KTHREAD;
1335 	retval = search_binary_handler(bprm,regs);
1336 	if (retval >= 0) {
1337 		/* execve success */
1338 		security_bprm_free(bprm);
1339 		acct_update_integrals(current);
1340 		free_bprm(bprm);
1341 		if (displaced)
1342 			put_files_struct(displaced);
1343 		return retval;
1344 	}
1345 
1346 out:
1347 	if (bprm->security)
1348 		security_bprm_free(bprm);
1349 
1350 out_mm:
1351 	if (bprm->mm)
1352 		mmput (bprm->mm);
1353 
1354 out_file:
1355 	if (bprm->file) {
1356 		allow_write_access(bprm->file);
1357 		fput(bprm->file);
1358 	}
1359 out_kfree:
1360 	free_bprm(bprm);
1361 
1362 out_files:
1363 	if (displaced)
1364 		reset_files_struct(displaced);
1365 out_ret:
1366 	return retval;
1367 }
1368 
1369 int set_binfmt(struct linux_binfmt *new)
1370 {
1371 	struct linux_binfmt *old = current->binfmt;
1372 
1373 	if (new) {
1374 		if (!try_module_get(new->module))
1375 			return -1;
1376 	}
1377 	current->binfmt = new;
1378 	if (old)
1379 		module_put(old->module);
1380 	return 0;
1381 }
1382 
1383 EXPORT_SYMBOL(set_binfmt);
1384 
1385 /* format_corename will inspect the pattern parameter, and output a
1386  * name into corename, which must have space for at least
1387  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1388  */
1389 static int format_corename(char *corename, long signr)
1390 {
1391 	const char *pat_ptr = core_pattern;
1392 	int ispipe = (*pat_ptr == '|');
1393 	char *out_ptr = corename;
1394 	char *const out_end = corename + CORENAME_MAX_SIZE;
1395 	int rc;
1396 	int pid_in_pattern = 0;
1397 
1398 	/* Repeat as long as we have more pattern to process and more output
1399 	   space */
1400 	while (*pat_ptr) {
1401 		if (*pat_ptr != '%') {
1402 			if (out_ptr == out_end)
1403 				goto out;
1404 			*out_ptr++ = *pat_ptr++;
1405 		} else {
1406 			switch (*++pat_ptr) {
1407 			case 0:
1408 				goto out;
1409 			/* Double percent, output one percent */
1410 			case '%':
1411 				if (out_ptr == out_end)
1412 					goto out;
1413 				*out_ptr++ = '%';
1414 				break;
1415 			/* pid */
1416 			case 'p':
1417 				pid_in_pattern = 1;
1418 				rc = snprintf(out_ptr, out_end - out_ptr,
1419 					      "%d", task_tgid_vnr(current));
1420 				if (rc > out_end - out_ptr)
1421 					goto out;
1422 				out_ptr += rc;
1423 				break;
1424 			/* uid */
1425 			case 'u':
1426 				rc = snprintf(out_ptr, out_end - out_ptr,
1427 					      "%d", current->uid);
1428 				if (rc > out_end - out_ptr)
1429 					goto out;
1430 				out_ptr += rc;
1431 				break;
1432 			/* gid */
1433 			case 'g':
1434 				rc = snprintf(out_ptr, out_end - out_ptr,
1435 					      "%d", current->gid);
1436 				if (rc > out_end - out_ptr)
1437 					goto out;
1438 				out_ptr += rc;
1439 				break;
1440 			/* signal that caused the coredump */
1441 			case 's':
1442 				rc = snprintf(out_ptr, out_end - out_ptr,
1443 					      "%ld", signr);
1444 				if (rc > out_end - out_ptr)
1445 					goto out;
1446 				out_ptr += rc;
1447 				break;
1448 			/* UNIX time of coredump */
1449 			case 't': {
1450 				struct timeval tv;
1451 				do_gettimeofday(&tv);
1452 				rc = snprintf(out_ptr, out_end - out_ptr,
1453 					      "%lu", tv.tv_sec);
1454 				if (rc > out_end - out_ptr)
1455 					goto out;
1456 				out_ptr += rc;
1457 				break;
1458 			}
1459 			/* hostname */
1460 			case 'h':
1461 				down_read(&uts_sem);
1462 				rc = snprintf(out_ptr, out_end - out_ptr,
1463 					      "%s", utsname()->nodename);
1464 				up_read(&uts_sem);
1465 				if (rc > out_end - out_ptr)
1466 					goto out;
1467 				out_ptr += rc;
1468 				break;
1469 			/* executable */
1470 			case 'e':
1471 				rc = snprintf(out_ptr, out_end - out_ptr,
1472 					      "%s", current->comm);
1473 				if (rc > out_end - out_ptr)
1474 					goto out;
1475 				out_ptr += rc;
1476 				break;
1477 			/* core limit size */
1478 			case 'c':
1479 				rc = snprintf(out_ptr, out_end - out_ptr,
1480 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1481 				if (rc > out_end - out_ptr)
1482 					goto out;
1483 				out_ptr += rc;
1484 				break;
1485 			default:
1486 				break;
1487 			}
1488 			++pat_ptr;
1489 		}
1490 	}
1491 	/* Backward compatibility with core_uses_pid:
1492 	 *
1493 	 * If core_pattern does not include a %p (as is the default)
1494 	 * and core_uses_pid is set, then .%pid will be appended to
1495 	 * the filename. Do not do this for piped commands. */
1496 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1497 		rc = snprintf(out_ptr, out_end - out_ptr,
1498 			      ".%d", task_tgid_vnr(current));
1499 		if (rc > out_end - out_ptr)
1500 			goto out;
1501 		out_ptr += rc;
1502 	}
1503 out:
1504 	*out_ptr = 0;
1505 	return ispipe;
1506 }
1507 
1508 static int zap_process(struct task_struct *start)
1509 {
1510 	struct task_struct *t;
1511 	int nr = 0;
1512 
1513 	start->signal->flags = SIGNAL_GROUP_EXIT;
1514 	start->signal->group_stop_count = 0;
1515 
1516 	t = start;
1517 	do {
1518 		if (t != current && t->mm) {
1519 			sigaddset(&t->pending.signal, SIGKILL);
1520 			signal_wake_up(t, 1);
1521 			nr++;
1522 		}
1523 	} while_each_thread(start, t);
1524 
1525 	return nr;
1526 }
1527 
1528 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1529 				struct core_state *core_state, int exit_code)
1530 {
1531 	struct task_struct *g, *p;
1532 	unsigned long flags;
1533 	int nr = -EAGAIN;
1534 
1535 	spin_lock_irq(&tsk->sighand->siglock);
1536 	if (!signal_group_exit(tsk->signal)) {
1537 		mm->core_state = core_state;
1538 		tsk->signal->group_exit_code = exit_code;
1539 		nr = zap_process(tsk);
1540 	}
1541 	spin_unlock_irq(&tsk->sighand->siglock);
1542 	if (unlikely(nr < 0))
1543 		return nr;
1544 
1545 	if (atomic_read(&mm->mm_users) == nr + 1)
1546 		goto done;
1547 	/*
1548 	 * We should find and kill all tasks which use this mm, and we should
1549 	 * count them correctly into ->nr_threads. We don't take tasklist
1550 	 * lock, but this is safe wrt:
1551 	 *
1552 	 * fork:
1553 	 *	None of sub-threads can fork after zap_process(leader). All
1554 	 *	processes which were created before this point should be
1555 	 *	visible to zap_threads() because copy_process() adds the new
1556 	 *	process to the tail of init_task.tasks list, and lock/unlock
1557 	 *	of ->siglock provides a memory barrier.
1558 	 *
1559 	 * do_exit:
1560 	 *	The caller holds mm->mmap_sem. This means that the task which
1561 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1562 	 *	its ->mm.
1563 	 *
1564 	 * de_thread:
1565 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1566 	 *	we must see either old or new leader, this does not matter.
1567 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1568 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1569 	 *	it can't fail.
1570 	 *
1571 	 *	Note also that "g" can be the old leader with ->mm == NULL
1572 	 *	and already unhashed and thus removed from ->thread_group.
1573 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1574 	 *	clear the ->next pointer, we will find the new leader via
1575 	 *	next_thread().
1576 	 */
1577 	rcu_read_lock();
1578 	for_each_process(g) {
1579 		if (g == tsk->group_leader)
1580 			continue;
1581 		if (g->flags & PF_KTHREAD)
1582 			continue;
1583 		p = g;
1584 		do {
1585 			if (p->mm) {
1586 				if (unlikely(p->mm == mm)) {
1587 					lock_task_sighand(p, &flags);
1588 					nr += zap_process(p);
1589 					unlock_task_sighand(p, &flags);
1590 				}
1591 				break;
1592 			}
1593 		} while_each_thread(g, p);
1594 	}
1595 	rcu_read_unlock();
1596 done:
1597 	atomic_set(&core_state->nr_threads, nr);
1598 	return nr;
1599 }
1600 
1601 static int coredump_wait(int exit_code, struct core_state *core_state)
1602 {
1603 	struct task_struct *tsk = current;
1604 	struct mm_struct *mm = tsk->mm;
1605 	struct completion *vfork_done;
1606 	int core_waiters;
1607 
1608 	init_completion(&core_state->startup);
1609 	core_state->dumper.task = tsk;
1610 	core_state->dumper.next = NULL;
1611 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1612 	up_write(&mm->mmap_sem);
1613 
1614 	if (unlikely(core_waiters < 0))
1615 		goto fail;
1616 
1617 	/*
1618 	 * Make sure nobody is waiting for us to release the VM,
1619 	 * otherwise we can deadlock when we wait on each other
1620 	 */
1621 	vfork_done = tsk->vfork_done;
1622 	if (vfork_done) {
1623 		tsk->vfork_done = NULL;
1624 		complete(vfork_done);
1625 	}
1626 
1627 	if (core_waiters)
1628 		wait_for_completion(&core_state->startup);
1629 fail:
1630 	return core_waiters;
1631 }
1632 
1633 static void coredump_finish(struct mm_struct *mm)
1634 {
1635 	struct core_thread *curr, *next;
1636 	struct task_struct *task;
1637 
1638 	next = mm->core_state->dumper.next;
1639 	while ((curr = next) != NULL) {
1640 		next = curr->next;
1641 		task = curr->task;
1642 		/*
1643 		 * see exit_mm(), curr->task must not see
1644 		 * ->task == NULL before we read ->next.
1645 		 */
1646 		smp_mb();
1647 		curr->task = NULL;
1648 		wake_up_process(task);
1649 	}
1650 
1651 	mm->core_state = NULL;
1652 }
1653 
1654 /*
1655  * set_dumpable converts traditional three-value dumpable to two flags and
1656  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1657  * these bits are not changed atomically.  So get_dumpable can observe the
1658  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1659  * return either old dumpable or new one by paying attention to the order of
1660  * modifying the bits.
1661  *
1662  * dumpable |   mm->flags (binary)
1663  * old  new | initial interim  final
1664  * ---------+-----------------------
1665  *  0    1  |   00      01      01
1666  *  0    2  |   00      10(*)   11
1667  *  1    0  |   01      00      00
1668  *  1    2  |   01      11      11
1669  *  2    0  |   11      10(*)   00
1670  *  2    1  |   11      11      01
1671  *
1672  * (*) get_dumpable regards interim value of 10 as 11.
1673  */
1674 void set_dumpable(struct mm_struct *mm, int value)
1675 {
1676 	switch (value) {
1677 	case 0:
1678 		clear_bit(MMF_DUMPABLE, &mm->flags);
1679 		smp_wmb();
1680 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1681 		break;
1682 	case 1:
1683 		set_bit(MMF_DUMPABLE, &mm->flags);
1684 		smp_wmb();
1685 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1686 		break;
1687 	case 2:
1688 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1689 		smp_wmb();
1690 		set_bit(MMF_DUMPABLE, &mm->flags);
1691 		break;
1692 	}
1693 }
1694 
1695 int get_dumpable(struct mm_struct *mm)
1696 {
1697 	int ret;
1698 
1699 	ret = mm->flags & 0x3;
1700 	return (ret >= 2) ? 2 : ret;
1701 }
1702 
1703 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1704 {
1705 	struct core_state core_state;
1706 	char corename[CORENAME_MAX_SIZE + 1];
1707 	struct mm_struct *mm = current->mm;
1708 	struct linux_binfmt * binfmt;
1709 	struct inode * inode;
1710 	struct file * file;
1711 	int retval = 0;
1712 	int fsuid = current->fsuid;
1713 	int flag = 0;
1714 	int ispipe = 0;
1715 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1716 	char **helper_argv = NULL;
1717 	int helper_argc = 0;
1718 	char *delimit;
1719 
1720 	audit_core_dumps(signr);
1721 
1722 	binfmt = current->binfmt;
1723 	if (!binfmt || !binfmt->core_dump)
1724 		goto fail;
1725 	down_write(&mm->mmap_sem);
1726 	/*
1727 	 * If another thread got here first, or we are not dumpable, bail out.
1728 	 */
1729 	if (mm->core_state || !get_dumpable(mm)) {
1730 		up_write(&mm->mmap_sem);
1731 		goto fail;
1732 	}
1733 
1734 	/*
1735 	 *	We cannot trust fsuid as being the "true" uid of the
1736 	 *	process nor do we know its entire history. We only know it
1737 	 *	was tainted so we dump it as root in mode 2.
1738 	 */
1739 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1740 		flag = O_EXCL;		/* Stop rewrite attacks */
1741 		current->fsuid = 0;	/* Dump root private */
1742 	}
1743 
1744 	retval = coredump_wait(exit_code, &core_state);
1745 	if (retval < 0)
1746 		goto fail;
1747 
1748 	/*
1749 	 * Clear any false indication of pending signals that might
1750 	 * be seen by the filesystem code called to write the core file.
1751 	 */
1752 	clear_thread_flag(TIF_SIGPENDING);
1753 
1754 	/*
1755 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1756 	 * uses lock_kernel()
1757 	 */
1758  	lock_kernel();
1759 	ispipe = format_corename(corename, signr);
1760 	unlock_kernel();
1761 	/*
1762 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1763 	 * to a pipe.  Since we're not writing directly to the filesystem
1764 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1765 	 * created unless the pipe reader choses to write out the core file
1766 	 * at which point file size limits and permissions will be imposed
1767 	 * as it does with any other process
1768 	 */
1769 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1770 		goto fail_unlock;
1771 
1772  	if (ispipe) {
1773 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1774 		/* Terminate the string before the first option */
1775 		delimit = strchr(corename, ' ');
1776 		if (delimit)
1777 			*delimit = '\0';
1778 		delimit = strrchr(helper_argv[0], '/');
1779 		if (delimit)
1780 			delimit++;
1781 		else
1782 			delimit = helper_argv[0];
1783 		if (!strcmp(delimit, current->comm)) {
1784 			printk(KERN_NOTICE "Recursive core dump detected, "
1785 					"aborting\n");
1786 			goto fail_unlock;
1787 		}
1788 
1789 		core_limit = RLIM_INFINITY;
1790 
1791 		/* SIGPIPE can happen, but it's just never processed */
1792  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1793 				&file)) {
1794  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1795 			       corename);
1796  			goto fail_unlock;
1797  		}
1798  	} else
1799  		file = filp_open(corename,
1800 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1801 				 0600);
1802 	if (IS_ERR(file))
1803 		goto fail_unlock;
1804 	inode = file->f_path.dentry->d_inode;
1805 	if (inode->i_nlink > 1)
1806 		goto close_fail;	/* multiple links - don't dump */
1807 	if (!ispipe && d_unhashed(file->f_path.dentry))
1808 		goto close_fail;
1809 
1810 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1811 	   but keep the previous behaviour for now. */
1812 	if (!ispipe && !S_ISREG(inode->i_mode))
1813 		goto close_fail;
1814 	/*
1815 	 * Dont allow local users get cute and trick others to coredump
1816 	 * into their pre-created files:
1817 	 */
1818 	if (inode->i_uid != current->fsuid)
1819 		goto close_fail;
1820 	if (!file->f_op)
1821 		goto close_fail;
1822 	if (!file->f_op->write)
1823 		goto close_fail;
1824 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1825 		goto close_fail;
1826 
1827 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1828 
1829 	if (retval)
1830 		current->signal->group_exit_code |= 0x80;
1831 close_fail:
1832 	filp_close(file, NULL);
1833 fail_unlock:
1834 	if (helper_argv)
1835 		argv_free(helper_argv);
1836 
1837 	current->fsuid = fsuid;
1838 	coredump_finish(mm);
1839 fail:
1840 	return retval;
1841 }
1842