1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 #include <linux/user_events.h> 69 #include <linux/rseq.h> 70 #include <linux/ksm.h> 71 72 #include <linux/uaccess.h> 73 #include <asm/mmu_context.h> 74 #include <asm/tlb.h> 75 76 #include <trace/events/task.h> 77 #include "internal.h" 78 79 #include <trace/events/sched.h> 80 81 static int bprm_creds_from_file(struct linux_binprm *bprm); 82 83 int suid_dumpable = 0; 84 85 static LIST_HEAD(formats); 86 static DEFINE_RWLOCK(binfmt_lock); 87 88 void __register_binfmt(struct linux_binfmt * fmt, int insert) 89 { 90 write_lock(&binfmt_lock); 91 insert ? list_add(&fmt->lh, &formats) : 92 list_add_tail(&fmt->lh, &formats); 93 write_unlock(&binfmt_lock); 94 } 95 96 EXPORT_SYMBOL(__register_binfmt); 97 98 void unregister_binfmt(struct linux_binfmt * fmt) 99 { 100 write_lock(&binfmt_lock); 101 list_del(&fmt->lh); 102 write_unlock(&binfmt_lock); 103 } 104 105 EXPORT_SYMBOL(unregister_binfmt); 106 107 static inline void put_binfmt(struct linux_binfmt * fmt) 108 { 109 module_put(fmt->module); 110 } 111 112 bool path_noexec(const struct path *path) 113 { 114 return (path->mnt->mnt_flags & MNT_NOEXEC) || 115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 116 } 117 118 #ifdef CONFIG_USELIB 119 /* 120 * Note that a shared library must be both readable and executable due to 121 * security reasons. 122 * 123 * Also note that we take the address to load from the file itself. 124 */ 125 SYSCALL_DEFINE1(uselib, const char __user *, library) 126 { 127 struct linux_binfmt *fmt; 128 struct file *file; 129 struct filename *tmp = getname(library); 130 int error = PTR_ERR(tmp); 131 static const struct open_flags uselib_flags = { 132 .open_flag = O_LARGEFILE | O_RDONLY, 133 .acc_mode = MAY_READ | MAY_EXEC, 134 .intent = LOOKUP_OPEN, 135 .lookup_flags = LOOKUP_FOLLOW, 136 }; 137 138 if (IS_ERR(tmp)) 139 goto out; 140 141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 142 putname(tmp); 143 error = PTR_ERR(file); 144 if (IS_ERR(file)) 145 goto out; 146 147 /* 148 * Check do_open_execat() for an explanation. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 152 path_noexec(&file->f_path)) 153 goto exit; 154 155 error = -ENOEXEC; 156 157 read_lock(&binfmt_lock); 158 list_for_each_entry(fmt, &formats, lh) { 159 if (!fmt->load_shlib) 160 continue; 161 if (!try_module_get(fmt->module)) 162 continue; 163 read_unlock(&binfmt_lock); 164 error = fmt->load_shlib(file); 165 read_lock(&binfmt_lock); 166 put_binfmt(fmt); 167 if (error != -ENOEXEC) 168 break; 169 } 170 read_unlock(&binfmt_lock); 171 exit: 172 fput(file); 173 out: 174 return error; 175 } 176 #endif /* #ifdef CONFIG_USELIB */ 177 178 #ifdef CONFIG_MMU 179 /* 180 * The nascent bprm->mm is not visible until exec_mmap() but it can 181 * use a lot of memory, account these pages in current->mm temporary 182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 183 * change the counter back via acct_arg_size(0). 184 */ 185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 186 { 187 struct mm_struct *mm = current->mm; 188 long diff = (long)(pages - bprm->vma_pages); 189 190 if (!mm || !diff) 191 return; 192 193 bprm->vma_pages = pages; 194 add_mm_counter(mm, MM_ANONPAGES, diff); 195 } 196 197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 198 int write) 199 { 200 struct page *page; 201 struct vm_area_struct *vma = bprm->vma; 202 struct mm_struct *mm = bprm->mm; 203 int ret; 204 205 /* 206 * Avoid relying on expanding the stack down in GUP (which 207 * does not work for STACK_GROWSUP anyway), and just do it 208 * by hand ahead of time. 209 */ 210 if (write && pos < vma->vm_start) { 211 mmap_write_lock(mm); 212 ret = expand_downwards(vma, pos); 213 if (unlikely(ret < 0)) { 214 mmap_write_unlock(mm); 215 return NULL; 216 } 217 mmap_write_downgrade(mm); 218 } else 219 mmap_read_lock(mm); 220 221 /* 222 * We are doing an exec(). 'current' is the process 223 * doing the exec and 'mm' is the new process's mm. 224 */ 225 ret = get_user_pages_remote(mm, pos, 1, 226 write ? FOLL_WRITE : 0, 227 &page, NULL); 228 mmap_read_unlock(mm); 229 if (ret <= 0) 230 return NULL; 231 232 if (write) 233 acct_arg_size(bprm, vma_pages(vma)); 234 235 return page; 236 } 237 238 static void put_arg_page(struct page *page) 239 { 240 put_page(page); 241 } 242 243 static void free_arg_pages(struct linux_binprm *bprm) 244 { 245 } 246 247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 248 struct page *page) 249 { 250 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 251 } 252 253 static int __bprm_mm_init(struct linux_binprm *bprm) 254 { 255 int err; 256 struct vm_area_struct *vma = NULL; 257 struct mm_struct *mm = bprm->mm; 258 259 bprm->vma = vma = vm_area_alloc(mm); 260 if (!vma) 261 return -ENOMEM; 262 vma_set_anonymous(vma); 263 264 if (mmap_write_lock_killable(mm)) { 265 err = -EINTR; 266 goto err_free; 267 } 268 269 /* 270 * Need to be called with mmap write lock 271 * held, to avoid race with ksmd. 272 */ 273 err = ksm_execve(mm); 274 if (err) 275 goto err_ksm; 276 277 /* 278 * Place the stack at the largest stack address the architecture 279 * supports. Later, we'll move this to an appropriate place. We don't 280 * use STACK_TOP because that can depend on attributes which aren't 281 * configured yet. 282 */ 283 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 284 vma->vm_end = STACK_TOP_MAX; 285 vma->vm_start = vma->vm_end - PAGE_SIZE; 286 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP); 287 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 288 289 err = insert_vm_struct(mm, vma); 290 if (err) 291 goto err; 292 293 mm->stack_vm = mm->total_vm = 1; 294 mmap_write_unlock(mm); 295 bprm->p = vma->vm_end - sizeof(void *); 296 return 0; 297 err: 298 ksm_exit(mm); 299 err_ksm: 300 mmap_write_unlock(mm); 301 err_free: 302 bprm->vma = NULL; 303 vm_area_free(vma); 304 return err; 305 } 306 307 static bool valid_arg_len(struct linux_binprm *bprm, long len) 308 { 309 return len <= MAX_ARG_STRLEN; 310 } 311 312 #else 313 314 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 315 { 316 } 317 318 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 319 int write) 320 { 321 struct page *page; 322 323 page = bprm->page[pos / PAGE_SIZE]; 324 if (!page && write) { 325 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 326 if (!page) 327 return NULL; 328 bprm->page[pos / PAGE_SIZE] = page; 329 } 330 331 return page; 332 } 333 334 static void put_arg_page(struct page *page) 335 { 336 } 337 338 static void free_arg_page(struct linux_binprm *bprm, int i) 339 { 340 if (bprm->page[i]) { 341 __free_page(bprm->page[i]); 342 bprm->page[i] = NULL; 343 } 344 } 345 346 static void free_arg_pages(struct linux_binprm *bprm) 347 { 348 int i; 349 350 for (i = 0; i < MAX_ARG_PAGES; i++) 351 free_arg_page(bprm, i); 352 } 353 354 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 355 struct page *page) 356 { 357 } 358 359 static int __bprm_mm_init(struct linux_binprm *bprm) 360 { 361 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 362 return 0; 363 } 364 365 static bool valid_arg_len(struct linux_binprm *bprm, long len) 366 { 367 return len <= bprm->p; 368 } 369 370 #endif /* CONFIG_MMU */ 371 372 /* 373 * Create a new mm_struct and populate it with a temporary stack 374 * vm_area_struct. We don't have enough context at this point to set the stack 375 * flags, permissions, and offset, so we use temporary values. We'll update 376 * them later in setup_arg_pages(). 377 */ 378 static int bprm_mm_init(struct linux_binprm *bprm) 379 { 380 int err; 381 struct mm_struct *mm = NULL; 382 383 bprm->mm = mm = mm_alloc(); 384 err = -ENOMEM; 385 if (!mm) 386 goto err; 387 388 /* Save current stack limit for all calculations made during exec. */ 389 task_lock(current->group_leader); 390 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 391 task_unlock(current->group_leader); 392 393 err = __bprm_mm_init(bprm); 394 if (err) 395 goto err; 396 397 return 0; 398 399 err: 400 if (mm) { 401 bprm->mm = NULL; 402 mmdrop(mm); 403 } 404 405 return err; 406 } 407 408 struct user_arg_ptr { 409 #ifdef CONFIG_COMPAT 410 bool is_compat; 411 #endif 412 union { 413 const char __user *const __user *native; 414 #ifdef CONFIG_COMPAT 415 const compat_uptr_t __user *compat; 416 #endif 417 } ptr; 418 }; 419 420 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 421 { 422 const char __user *native; 423 424 #ifdef CONFIG_COMPAT 425 if (unlikely(argv.is_compat)) { 426 compat_uptr_t compat; 427 428 if (get_user(compat, argv.ptr.compat + nr)) 429 return ERR_PTR(-EFAULT); 430 431 return compat_ptr(compat); 432 } 433 #endif 434 435 if (get_user(native, argv.ptr.native + nr)) 436 return ERR_PTR(-EFAULT); 437 438 return native; 439 } 440 441 /* 442 * count() counts the number of strings in array ARGV. 443 */ 444 static int count(struct user_arg_ptr argv, int max) 445 { 446 int i = 0; 447 448 if (argv.ptr.native != NULL) { 449 for (;;) { 450 const char __user *p = get_user_arg_ptr(argv, i); 451 452 if (!p) 453 break; 454 455 if (IS_ERR(p)) 456 return -EFAULT; 457 458 if (i >= max) 459 return -E2BIG; 460 ++i; 461 462 if (fatal_signal_pending(current)) 463 return -ERESTARTNOHAND; 464 cond_resched(); 465 } 466 } 467 return i; 468 } 469 470 static int count_strings_kernel(const char *const *argv) 471 { 472 int i; 473 474 if (!argv) 475 return 0; 476 477 for (i = 0; argv[i]; ++i) { 478 if (i >= MAX_ARG_STRINGS) 479 return -E2BIG; 480 if (fatal_signal_pending(current)) 481 return -ERESTARTNOHAND; 482 cond_resched(); 483 } 484 return i; 485 } 486 487 static inline int bprm_set_stack_limit(struct linux_binprm *bprm, 488 unsigned long limit) 489 { 490 #ifdef CONFIG_MMU 491 /* Avoid a pathological bprm->p. */ 492 if (bprm->p < limit) 493 return -E2BIG; 494 bprm->argmin = bprm->p - limit; 495 #endif 496 return 0; 497 } 498 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm) 499 { 500 #ifdef CONFIG_MMU 501 return bprm->p < bprm->argmin; 502 #else 503 return false; 504 #endif 505 } 506 507 /* 508 * Calculate bprm->argmin from: 509 * - _STK_LIM 510 * - ARG_MAX 511 * - bprm->rlim_stack.rlim_cur 512 * - bprm->argc 513 * - bprm->envc 514 * - bprm->p 515 */ 516 static int bprm_stack_limits(struct linux_binprm *bprm) 517 { 518 unsigned long limit, ptr_size; 519 520 /* 521 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 522 * (whichever is smaller) for the argv+env strings. 523 * This ensures that: 524 * - the remaining binfmt code will not run out of stack space, 525 * - the program will have a reasonable amount of stack left 526 * to work from. 527 */ 528 limit = _STK_LIM / 4 * 3; 529 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 530 /* 531 * We've historically supported up to 32 pages (ARG_MAX) 532 * of argument strings even with small stacks 533 */ 534 limit = max_t(unsigned long, limit, ARG_MAX); 535 /* Reject totally pathological counts. */ 536 if (bprm->argc < 0 || bprm->envc < 0) 537 return -E2BIG; 538 /* 539 * We must account for the size of all the argv and envp pointers to 540 * the argv and envp strings, since they will also take up space in 541 * the stack. They aren't stored until much later when we can't 542 * signal to the parent that the child has run out of stack space. 543 * Instead, calculate it here so it's possible to fail gracefully. 544 * 545 * In the case of argc = 0, make sure there is space for adding a 546 * empty string (which will bump argc to 1), to ensure confused 547 * userspace programs don't start processing from argv[1], thinking 548 * argc can never be 0, to keep them from walking envp by accident. 549 * See do_execveat_common(). 550 */ 551 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) || 552 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size)) 553 return -E2BIG; 554 if (limit <= ptr_size) 555 return -E2BIG; 556 limit -= ptr_size; 557 558 return bprm_set_stack_limit(bprm, limit); 559 } 560 561 /* 562 * 'copy_strings()' copies argument/environment strings from the old 563 * processes's memory to the new process's stack. The call to get_user_pages() 564 * ensures the destination page is created and not swapped out. 565 */ 566 static int copy_strings(int argc, struct user_arg_ptr argv, 567 struct linux_binprm *bprm) 568 { 569 struct page *kmapped_page = NULL; 570 char *kaddr = NULL; 571 unsigned long kpos = 0; 572 int ret; 573 574 while (argc-- > 0) { 575 const char __user *str; 576 int len; 577 unsigned long pos; 578 579 ret = -EFAULT; 580 str = get_user_arg_ptr(argv, argc); 581 if (IS_ERR(str)) 582 goto out; 583 584 len = strnlen_user(str, MAX_ARG_STRLEN); 585 if (!len) 586 goto out; 587 588 ret = -E2BIG; 589 if (!valid_arg_len(bprm, len)) 590 goto out; 591 592 /* We're going to work our way backwards. */ 593 pos = bprm->p; 594 str += len; 595 bprm->p -= len; 596 if (bprm_hit_stack_limit(bprm)) 597 goto out; 598 599 while (len > 0) { 600 int offset, bytes_to_copy; 601 602 if (fatal_signal_pending(current)) { 603 ret = -ERESTARTNOHAND; 604 goto out; 605 } 606 cond_resched(); 607 608 offset = pos % PAGE_SIZE; 609 if (offset == 0) 610 offset = PAGE_SIZE; 611 612 bytes_to_copy = offset; 613 if (bytes_to_copy > len) 614 bytes_to_copy = len; 615 616 offset -= bytes_to_copy; 617 pos -= bytes_to_copy; 618 str -= bytes_to_copy; 619 len -= bytes_to_copy; 620 621 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 622 struct page *page; 623 624 page = get_arg_page(bprm, pos, 1); 625 if (!page) { 626 ret = -E2BIG; 627 goto out; 628 } 629 630 if (kmapped_page) { 631 flush_dcache_page(kmapped_page); 632 kunmap_local(kaddr); 633 put_arg_page(kmapped_page); 634 } 635 kmapped_page = page; 636 kaddr = kmap_local_page(kmapped_page); 637 kpos = pos & PAGE_MASK; 638 flush_arg_page(bprm, kpos, kmapped_page); 639 } 640 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 641 ret = -EFAULT; 642 goto out; 643 } 644 } 645 } 646 ret = 0; 647 out: 648 if (kmapped_page) { 649 flush_dcache_page(kmapped_page); 650 kunmap_local(kaddr); 651 put_arg_page(kmapped_page); 652 } 653 return ret; 654 } 655 656 /* 657 * Copy and argument/environment string from the kernel to the processes stack. 658 */ 659 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 660 { 661 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 662 unsigned long pos = bprm->p; 663 664 if (len == 0) 665 return -EFAULT; 666 if (!valid_arg_len(bprm, len)) 667 return -E2BIG; 668 669 /* We're going to work our way backwards. */ 670 arg += len; 671 bprm->p -= len; 672 if (bprm_hit_stack_limit(bprm)) 673 return -E2BIG; 674 675 while (len > 0) { 676 unsigned int bytes_to_copy = min_t(unsigned int, len, 677 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 678 struct page *page; 679 680 pos -= bytes_to_copy; 681 arg -= bytes_to_copy; 682 len -= bytes_to_copy; 683 684 page = get_arg_page(bprm, pos, 1); 685 if (!page) 686 return -E2BIG; 687 flush_arg_page(bprm, pos & PAGE_MASK, page); 688 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 689 put_arg_page(page); 690 } 691 692 return 0; 693 } 694 EXPORT_SYMBOL(copy_string_kernel); 695 696 static int copy_strings_kernel(int argc, const char *const *argv, 697 struct linux_binprm *bprm) 698 { 699 while (argc-- > 0) { 700 int ret = copy_string_kernel(argv[argc], bprm); 701 if (ret < 0) 702 return ret; 703 if (fatal_signal_pending(current)) 704 return -ERESTARTNOHAND; 705 cond_resched(); 706 } 707 return 0; 708 } 709 710 #ifdef CONFIG_MMU 711 712 /* 713 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 714 * the stack is optionally relocated, and some extra space is added. 715 */ 716 int setup_arg_pages(struct linux_binprm *bprm, 717 unsigned long stack_top, 718 int executable_stack) 719 { 720 unsigned long ret; 721 unsigned long stack_shift; 722 struct mm_struct *mm = current->mm; 723 struct vm_area_struct *vma = bprm->vma; 724 struct vm_area_struct *prev = NULL; 725 unsigned long vm_flags; 726 unsigned long stack_base; 727 unsigned long stack_size; 728 unsigned long stack_expand; 729 unsigned long rlim_stack; 730 struct mmu_gather tlb; 731 struct vma_iterator vmi; 732 733 #ifdef CONFIG_STACK_GROWSUP 734 /* Limit stack size */ 735 stack_base = bprm->rlim_stack.rlim_max; 736 737 stack_base = calc_max_stack_size(stack_base); 738 739 /* Add space for stack randomization. */ 740 if (current->flags & PF_RANDOMIZE) 741 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 742 743 /* Make sure we didn't let the argument array grow too large. */ 744 if (vma->vm_end - vma->vm_start > stack_base) 745 return -ENOMEM; 746 747 stack_base = PAGE_ALIGN(stack_top - stack_base); 748 749 stack_shift = vma->vm_start - stack_base; 750 mm->arg_start = bprm->p - stack_shift; 751 bprm->p = vma->vm_end - stack_shift; 752 #else 753 stack_top = arch_align_stack(stack_top); 754 stack_top = PAGE_ALIGN(stack_top); 755 756 if (unlikely(stack_top < mmap_min_addr) || 757 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 758 return -ENOMEM; 759 760 stack_shift = vma->vm_end - stack_top; 761 762 bprm->p -= stack_shift; 763 mm->arg_start = bprm->p; 764 #endif 765 766 if (bprm->loader) 767 bprm->loader -= stack_shift; 768 bprm->exec -= stack_shift; 769 770 if (mmap_write_lock_killable(mm)) 771 return -EINTR; 772 773 vm_flags = VM_STACK_FLAGS; 774 775 /* 776 * Adjust stack execute permissions; explicitly enable for 777 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 778 * (arch default) otherwise. 779 */ 780 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 781 vm_flags |= VM_EXEC; 782 else if (executable_stack == EXSTACK_DISABLE_X) 783 vm_flags &= ~VM_EXEC; 784 vm_flags |= mm->def_flags; 785 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 786 787 vma_iter_init(&vmi, mm, vma->vm_start); 788 789 tlb_gather_mmu(&tlb, mm); 790 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end, 791 vm_flags); 792 tlb_finish_mmu(&tlb); 793 794 if (ret) 795 goto out_unlock; 796 BUG_ON(prev != vma); 797 798 if (unlikely(vm_flags & VM_EXEC)) { 799 pr_warn_once("process '%pD4' started with executable stack\n", 800 bprm->file); 801 } 802 803 /* Move stack pages down in memory. */ 804 if (stack_shift) { 805 /* 806 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 807 * the binfmt code determines where the new stack should reside, we shift it to 808 * its final location. 809 */ 810 ret = relocate_vma_down(vma, stack_shift); 811 if (ret) 812 goto out_unlock; 813 } 814 815 /* mprotect_fixup is overkill to remove the temporary stack flags */ 816 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); 817 818 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 819 stack_size = vma->vm_end - vma->vm_start; 820 /* 821 * Align this down to a page boundary as expand_stack 822 * will align it up. 823 */ 824 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 825 826 stack_expand = min(rlim_stack, stack_size + stack_expand); 827 828 #ifdef CONFIG_STACK_GROWSUP 829 stack_base = vma->vm_start + stack_expand; 830 #else 831 stack_base = vma->vm_end - stack_expand; 832 #endif 833 current->mm->start_stack = bprm->p; 834 ret = expand_stack_locked(vma, stack_base); 835 if (ret) 836 ret = -EFAULT; 837 838 out_unlock: 839 mmap_write_unlock(mm); 840 return ret; 841 } 842 EXPORT_SYMBOL(setup_arg_pages); 843 844 #else 845 846 /* 847 * Transfer the program arguments and environment from the holding pages 848 * onto the stack. The provided stack pointer is adjusted accordingly. 849 */ 850 int transfer_args_to_stack(struct linux_binprm *bprm, 851 unsigned long *sp_location) 852 { 853 unsigned long index, stop, sp; 854 int ret = 0; 855 856 stop = bprm->p >> PAGE_SHIFT; 857 sp = *sp_location; 858 859 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 860 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 861 char *src = kmap_local_page(bprm->page[index]) + offset; 862 sp -= PAGE_SIZE - offset; 863 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 864 ret = -EFAULT; 865 kunmap_local(src); 866 if (ret) 867 goto out; 868 } 869 870 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE; 871 *sp_location = sp; 872 873 out: 874 return ret; 875 } 876 EXPORT_SYMBOL(transfer_args_to_stack); 877 878 #endif /* CONFIG_MMU */ 879 880 /* 881 * On success, caller must call do_close_execat() on the returned 882 * struct file to close it. 883 */ 884 static struct file *do_open_execat(int fd, struct filename *name, int flags) 885 { 886 int err; 887 struct file *file __free(fput) = NULL; 888 struct open_flags open_exec_flags = { 889 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 890 .acc_mode = MAY_EXEC, 891 .intent = LOOKUP_OPEN, 892 .lookup_flags = LOOKUP_FOLLOW, 893 }; 894 895 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 896 return ERR_PTR(-EINVAL); 897 if (flags & AT_SYMLINK_NOFOLLOW) 898 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 899 if (flags & AT_EMPTY_PATH) 900 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 901 902 file = do_filp_open(fd, name, &open_exec_flags); 903 if (IS_ERR(file)) 904 return file; 905 906 /* 907 * In the past the regular type check was here. It moved to may_open() in 908 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is 909 * an invariant that all non-regular files error out before we get here. 910 */ 911 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 912 path_noexec(&file->f_path)) 913 return ERR_PTR(-EACCES); 914 915 err = deny_write_access(file); 916 if (err) 917 return ERR_PTR(err); 918 919 return no_free_ptr(file); 920 } 921 922 /** 923 * open_exec - Open a path name for execution 924 * 925 * @name: path name to open with the intent of executing it. 926 * 927 * Returns ERR_PTR on failure or allocated struct file on success. 928 * 929 * As this is a wrapper for the internal do_open_execat(), callers 930 * must call allow_write_access() before fput() on release. Also see 931 * do_close_execat(). 932 */ 933 struct file *open_exec(const char *name) 934 { 935 struct filename *filename = getname_kernel(name); 936 struct file *f = ERR_CAST(filename); 937 938 if (!IS_ERR(filename)) { 939 f = do_open_execat(AT_FDCWD, filename, 0); 940 putname(filename); 941 } 942 return f; 943 } 944 EXPORT_SYMBOL(open_exec); 945 946 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 947 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 948 { 949 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 950 if (res > 0) 951 flush_icache_user_range(addr, addr + len); 952 return res; 953 } 954 EXPORT_SYMBOL(read_code); 955 #endif 956 957 /* 958 * Maps the mm_struct mm into the current task struct. 959 * On success, this function returns with exec_update_lock 960 * held for writing. 961 */ 962 static int exec_mmap(struct mm_struct *mm) 963 { 964 struct task_struct *tsk; 965 struct mm_struct *old_mm, *active_mm; 966 int ret; 967 968 /* Notify parent that we're no longer interested in the old VM */ 969 tsk = current; 970 old_mm = current->mm; 971 exec_mm_release(tsk, old_mm); 972 973 ret = down_write_killable(&tsk->signal->exec_update_lock); 974 if (ret) 975 return ret; 976 977 if (old_mm) { 978 /* 979 * If there is a pending fatal signal perhaps a signal 980 * whose default action is to create a coredump get 981 * out and die instead of going through with the exec. 982 */ 983 ret = mmap_read_lock_killable(old_mm); 984 if (ret) { 985 up_write(&tsk->signal->exec_update_lock); 986 return ret; 987 } 988 } 989 990 task_lock(tsk); 991 membarrier_exec_mmap(mm); 992 993 local_irq_disable(); 994 active_mm = tsk->active_mm; 995 tsk->active_mm = mm; 996 tsk->mm = mm; 997 mm_init_cid(mm, tsk); 998 /* 999 * This prevents preemption while active_mm is being loaded and 1000 * it and mm are being updated, which could cause problems for 1001 * lazy tlb mm refcounting when these are updated by context 1002 * switches. Not all architectures can handle irqs off over 1003 * activate_mm yet. 1004 */ 1005 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1006 local_irq_enable(); 1007 activate_mm(active_mm, mm); 1008 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1009 local_irq_enable(); 1010 lru_gen_add_mm(mm); 1011 task_unlock(tsk); 1012 lru_gen_use_mm(mm); 1013 if (old_mm) { 1014 mmap_read_unlock(old_mm); 1015 BUG_ON(active_mm != old_mm); 1016 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1017 mm_update_next_owner(old_mm); 1018 mmput(old_mm); 1019 return 0; 1020 } 1021 mmdrop_lazy_tlb(active_mm); 1022 return 0; 1023 } 1024 1025 static int de_thread(struct task_struct *tsk) 1026 { 1027 struct signal_struct *sig = tsk->signal; 1028 struct sighand_struct *oldsighand = tsk->sighand; 1029 spinlock_t *lock = &oldsighand->siglock; 1030 1031 if (thread_group_empty(tsk)) 1032 goto no_thread_group; 1033 1034 /* 1035 * Kill all other threads in the thread group. 1036 */ 1037 spin_lock_irq(lock); 1038 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1039 /* 1040 * Another group action in progress, just 1041 * return so that the signal is processed. 1042 */ 1043 spin_unlock_irq(lock); 1044 return -EAGAIN; 1045 } 1046 1047 sig->group_exec_task = tsk; 1048 sig->notify_count = zap_other_threads(tsk); 1049 if (!thread_group_leader(tsk)) 1050 sig->notify_count--; 1051 1052 while (sig->notify_count) { 1053 __set_current_state(TASK_KILLABLE); 1054 spin_unlock_irq(lock); 1055 schedule(); 1056 if (__fatal_signal_pending(tsk)) 1057 goto killed; 1058 spin_lock_irq(lock); 1059 } 1060 spin_unlock_irq(lock); 1061 1062 /* 1063 * At this point all other threads have exited, all we have to 1064 * do is to wait for the thread group leader to become inactive, 1065 * and to assume its PID: 1066 */ 1067 if (!thread_group_leader(tsk)) { 1068 struct task_struct *leader = tsk->group_leader; 1069 1070 for (;;) { 1071 cgroup_threadgroup_change_begin(tsk); 1072 write_lock_irq(&tasklist_lock); 1073 /* 1074 * Do this under tasklist_lock to ensure that 1075 * exit_notify() can't miss ->group_exec_task 1076 */ 1077 sig->notify_count = -1; 1078 if (likely(leader->exit_state)) 1079 break; 1080 __set_current_state(TASK_KILLABLE); 1081 write_unlock_irq(&tasklist_lock); 1082 cgroup_threadgroup_change_end(tsk); 1083 schedule(); 1084 if (__fatal_signal_pending(tsk)) 1085 goto killed; 1086 } 1087 1088 /* 1089 * The only record we have of the real-time age of a 1090 * process, regardless of execs it's done, is start_time. 1091 * All the past CPU time is accumulated in signal_struct 1092 * from sister threads now dead. But in this non-leader 1093 * exec, nothing survives from the original leader thread, 1094 * whose birth marks the true age of this process now. 1095 * When we take on its identity by switching to its PID, we 1096 * also take its birthdate (always earlier than our own). 1097 */ 1098 tsk->start_time = leader->start_time; 1099 tsk->start_boottime = leader->start_boottime; 1100 1101 BUG_ON(!same_thread_group(leader, tsk)); 1102 /* 1103 * An exec() starts a new thread group with the 1104 * TGID of the previous thread group. Rehash the 1105 * two threads with a switched PID, and release 1106 * the former thread group leader: 1107 */ 1108 1109 /* Become a process group leader with the old leader's pid. 1110 * The old leader becomes a thread of the this thread group. 1111 */ 1112 exchange_tids(tsk, leader); 1113 transfer_pid(leader, tsk, PIDTYPE_TGID); 1114 transfer_pid(leader, tsk, PIDTYPE_PGID); 1115 transfer_pid(leader, tsk, PIDTYPE_SID); 1116 1117 list_replace_rcu(&leader->tasks, &tsk->tasks); 1118 list_replace_init(&leader->sibling, &tsk->sibling); 1119 1120 tsk->group_leader = tsk; 1121 leader->group_leader = tsk; 1122 1123 tsk->exit_signal = SIGCHLD; 1124 leader->exit_signal = -1; 1125 1126 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1127 leader->exit_state = EXIT_DEAD; 1128 /* 1129 * We are going to release_task()->ptrace_unlink() silently, 1130 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1131 * the tracer won't block again waiting for this thread. 1132 */ 1133 if (unlikely(leader->ptrace)) 1134 __wake_up_parent(leader, leader->parent); 1135 write_unlock_irq(&tasklist_lock); 1136 cgroup_threadgroup_change_end(tsk); 1137 1138 release_task(leader); 1139 } 1140 1141 sig->group_exec_task = NULL; 1142 sig->notify_count = 0; 1143 1144 no_thread_group: 1145 /* we have changed execution domain */ 1146 tsk->exit_signal = SIGCHLD; 1147 1148 BUG_ON(!thread_group_leader(tsk)); 1149 return 0; 1150 1151 killed: 1152 /* protects against exit_notify() and __exit_signal() */ 1153 read_lock(&tasklist_lock); 1154 sig->group_exec_task = NULL; 1155 sig->notify_count = 0; 1156 read_unlock(&tasklist_lock); 1157 return -EAGAIN; 1158 } 1159 1160 1161 /* 1162 * This function makes sure the current process has its own signal table, 1163 * so that flush_signal_handlers can later reset the handlers without 1164 * disturbing other processes. (Other processes might share the signal 1165 * table via the CLONE_SIGHAND option to clone().) 1166 */ 1167 static int unshare_sighand(struct task_struct *me) 1168 { 1169 struct sighand_struct *oldsighand = me->sighand; 1170 1171 if (refcount_read(&oldsighand->count) != 1) { 1172 struct sighand_struct *newsighand; 1173 /* 1174 * This ->sighand is shared with the CLONE_SIGHAND 1175 * but not CLONE_THREAD task, switch to the new one. 1176 */ 1177 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1178 if (!newsighand) 1179 return -ENOMEM; 1180 1181 refcount_set(&newsighand->count, 1); 1182 1183 write_lock_irq(&tasklist_lock); 1184 spin_lock(&oldsighand->siglock); 1185 memcpy(newsighand->action, oldsighand->action, 1186 sizeof(newsighand->action)); 1187 rcu_assign_pointer(me->sighand, newsighand); 1188 spin_unlock(&oldsighand->siglock); 1189 write_unlock_irq(&tasklist_lock); 1190 1191 __cleanup_sighand(oldsighand); 1192 } 1193 return 0; 1194 } 1195 1196 /* 1197 * These functions flushes out all traces of the currently running executable 1198 * so that a new one can be started 1199 */ 1200 1201 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1202 { 1203 task_lock(tsk); 1204 trace_task_rename(tsk, buf); 1205 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1206 task_unlock(tsk); 1207 perf_event_comm(tsk, exec); 1208 } 1209 1210 /* 1211 * Calling this is the point of no return. None of the failures will be 1212 * seen by userspace since either the process is already taking a fatal 1213 * signal (via de_thread() or coredump), or will have SEGV raised 1214 * (after exec_mmap()) by search_binary_handler (see below). 1215 */ 1216 int begin_new_exec(struct linux_binprm * bprm) 1217 { 1218 struct task_struct *me = current; 1219 int retval; 1220 1221 /* Once we are committed compute the creds */ 1222 retval = bprm_creds_from_file(bprm); 1223 if (retval) 1224 return retval; 1225 1226 /* 1227 * This tracepoint marks the point before flushing the old exec where 1228 * the current task is still unchanged, but errors are fatal (point of 1229 * no return). The later "sched_process_exec" tracepoint is called after 1230 * the current task has successfully switched to the new exec. 1231 */ 1232 trace_sched_prepare_exec(current, bprm); 1233 1234 /* 1235 * Ensure all future errors are fatal. 1236 */ 1237 bprm->point_of_no_return = true; 1238 1239 /* 1240 * Make this the only thread in the thread group. 1241 */ 1242 retval = de_thread(me); 1243 if (retval) 1244 goto out; 1245 1246 /* 1247 * Cancel any io_uring activity across execve 1248 */ 1249 io_uring_task_cancel(); 1250 1251 /* Ensure the files table is not shared. */ 1252 retval = unshare_files(); 1253 if (retval) 1254 goto out; 1255 1256 /* 1257 * Must be called _before_ exec_mmap() as bprm->mm is 1258 * not visible until then. Doing it here also ensures 1259 * we don't race against replace_mm_exe_file(). 1260 */ 1261 retval = set_mm_exe_file(bprm->mm, bprm->file); 1262 if (retval) 1263 goto out; 1264 1265 /* If the binary is not readable then enforce mm->dumpable=0 */ 1266 would_dump(bprm, bprm->file); 1267 if (bprm->have_execfd) 1268 would_dump(bprm, bprm->executable); 1269 1270 /* 1271 * Release all of the old mmap stuff 1272 */ 1273 acct_arg_size(bprm, 0); 1274 retval = exec_mmap(bprm->mm); 1275 if (retval) 1276 goto out; 1277 1278 bprm->mm = NULL; 1279 1280 retval = exec_task_namespaces(); 1281 if (retval) 1282 goto out_unlock; 1283 1284 #ifdef CONFIG_POSIX_TIMERS 1285 spin_lock_irq(&me->sighand->siglock); 1286 posix_cpu_timers_exit(me); 1287 spin_unlock_irq(&me->sighand->siglock); 1288 exit_itimers(me); 1289 flush_itimer_signals(); 1290 #endif 1291 1292 /* 1293 * Make the signal table private. 1294 */ 1295 retval = unshare_sighand(me); 1296 if (retval) 1297 goto out_unlock; 1298 1299 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1300 PF_NOFREEZE | PF_NO_SETAFFINITY); 1301 flush_thread(); 1302 me->personality &= ~bprm->per_clear; 1303 1304 clear_syscall_work_syscall_user_dispatch(me); 1305 1306 /* 1307 * We have to apply CLOEXEC before we change whether the process is 1308 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1309 * trying to access the should-be-closed file descriptors of a process 1310 * undergoing exec(2). 1311 */ 1312 do_close_on_exec(me->files); 1313 1314 if (bprm->secureexec) { 1315 /* Make sure parent cannot signal privileged process. */ 1316 me->pdeath_signal = 0; 1317 1318 /* 1319 * For secureexec, reset the stack limit to sane default to 1320 * avoid bad behavior from the prior rlimits. This has to 1321 * happen before arch_pick_mmap_layout(), which examines 1322 * RLIMIT_STACK, but after the point of no return to avoid 1323 * needing to clean up the change on failure. 1324 */ 1325 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1326 bprm->rlim_stack.rlim_cur = _STK_LIM; 1327 } 1328 1329 me->sas_ss_sp = me->sas_ss_size = 0; 1330 1331 /* 1332 * Figure out dumpability. Note that this checking only of current 1333 * is wrong, but userspace depends on it. This should be testing 1334 * bprm->secureexec instead. 1335 */ 1336 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1337 !(uid_eq(current_euid(), current_uid()) && 1338 gid_eq(current_egid(), current_gid()))) 1339 set_dumpable(current->mm, suid_dumpable); 1340 else 1341 set_dumpable(current->mm, SUID_DUMP_USER); 1342 1343 perf_event_exec(); 1344 __set_task_comm(me, kbasename(bprm->filename), true); 1345 1346 /* An exec changes our domain. We are no longer part of the thread 1347 group */ 1348 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1349 flush_signal_handlers(me, 0); 1350 1351 retval = set_cred_ucounts(bprm->cred); 1352 if (retval < 0) 1353 goto out_unlock; 1354 1355 /* 1356 * install the new credentials for this executable 1357 */ 1358 security_bprm_committing_creds(bprm); 1359 1360 commit_creds(bprm->cred); 1361 bprm->cred = NULL; 1362 1363 /* 1364 * Disable monitoring for regular users 1365 * when executing setuid binaries. Must 1366 * wait until new credentials are committed 1367 * by commit_creds() above 1368 */ 1369 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1370 perf_event_exit_task(me); 1371 /* 1372 * cred_guard_mutex must be held at least to this point to prevent 1373 * ptrace_attach() from altering our determination of the task's 1374 * credentials; any time after this it may be unlocked. 1375 */ 1376 security_bprm_committed_creds(bprm); 1377 1378 /* Pass the opened binary to the interpreter. */ 1379 if (bprm->have_execfd) { 1380 retval = get_unused_fd_flags(0); 1381 if (retval < 0) 1382 goto out_unlock; 1383 fd_install(retval, bprm->executable); 1384 bprm->executable = NULL; 1385 bprm->execfd = retval; 1386 } 1387 return 0; 1388 1389 out_unlock: 1390 up_write(&me->signal->exec_update_lock); 1391 if (!bprm->cred) 1392 mutex_unlock(&me->signal->cred_guard_mutex); 1393 1394 out: 1395 return retval; 1396 } 1397 EXPORT_SYMBOL(begin_new_exec); 1398 1399 void would_dump(struct linux_binprm *bprm, struct file *file) 1400 { 1401 struct inode *inode = file_inode(file); 1402 struct mnt_idmap *idmap = file_mnt_idmap(file); 1403 if (inode_permission(idmap, inode, MAY_READ) < 0) { 1404 struct user_namespace *old, *user_ns; 1405 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1406 1407 /* Ensure mm->user_ns contains the executable */ 1408 user_ns = old = bprm->mm->user_ns; 1409 while ((user_ns != &init_user_ns) && 1410 !privileged_wrt_inode_uidgid(user_ns, idmap, inode)) 1411 user_ns = user_ns->parent; 1412 1413 if (old != user_ns) { 1414 bprm->mm->user_ns = get_user_ns(user_ns); 1415 put_user_ns(old); 1416 } 1417 } 1418 } 1419 EXPORT_SYMBOL(would_dump); 1420 1421 void setup_new_exec(struct linux_binprm * bprm) 1422 { 1423 /* Setup things that can depend upon the personality */ 1424 struct task_struct *me = current; 1425 1426 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1427 1428 arch_setup_new_exec(); 1429 1430 /* Set the new mm task size. We have to do that late because it may 1431 * depend on TIF_32BIT which is only updated in flush_thread() on 1432 * some architectures like powerpc 1433 */ 1434 me->mm->task_size = TASK_SIZE; 1435 up_write(&me->signal->exec_update_lock); 1436 mutex_unlock(&me->signal->cred_guard_mutex); 1437 } 1438 EXPORT_SYMBOL(setup_new_exec); 1439 1440 /* Runs immediately before start_thread() takes over. */ 1441 void finalize_exec(struct linux_binprm *bprm) 1442 { 1443 /* Store any stack rlimit changes before starting thread. */ 1444 task_lock(current->group_leader); 1445 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1446 task_unlock(current->group_leader); 1447 } 1448 EXPORT_SYMBOL(finalize_exec); 1449 1450 /* 1451 * Prepare credentials and lock ->cred_guard_mutex. 1452 * setup_new_exec() commits the new creds and drops the lock. 1453 * Or, if exec fails before, free_bprm() should release ->cred 1454 * and unlock. 1455 */ 1456 static int prepare_bprm_creds(struct linux_binprm *bprm) 1457 { 1458 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1459 return -ERESTARTNOINTR; 1460 1461 bprm->cred = prepare_exec_creds(); 1462 if (likely(bprm->cred)) 1463 return 0; 1464 1465 mutex_unlock(¤t->signal->cred_guard_mutex); 1466 return -ENOMEM; 1467 } 1468 1469 /* Matches do_open_execat() */ 1470 static void do_close_execat(struct file *file) 1471 { 1472 if (!file) 1473 return; 1474 allow_write_access(file); 1475 fput(file); 1476 } 1477 1478 static void free_bprm(struct linux_binprm *bprm) 1479 { 1480 if (bprm->mm) { 1481 acct_arg_size(bprm, 0); 1482 mmput(bprm->mm); 1483 } 1484 free_arg_pages(bprm); 1485 if (bprm->cred) { 1486 mutex_unlock(¤t->signal->cred_guard_mutex); 1487 abort_creds(bprm->cred); 1488 } 1489 do_close_execat(bprm->file); 1490 if (bprm->executable) 1491 fput(bprm->executable); 1492 /* If a binfmt changed the interp, free it. */ 1493 if (bprm->interp != bprm->filename) 1494 kfree(bprm->interp); 1495 kfree(bprm->fdpath); 1496 kfree(bprm); 1497 } 1498 1499 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags) 1500 { 1501 struct linux_binprm *bprm; 1502 struct file *file; 1503 int retval = -ENOMEM; 1504 1505 file = do_open_execat(fd, filename, flags); 1506 if (IS_ERR(file)) 1507 return ERR_CAST(file); 1508 1509 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1510 if (!bprm) { 1511 do_close_execat(file); 1512 return ERR_PTR(-ENOMEM); 1513 } 1514 1515 bprm->file = file; 1516 1517 if (fd == AT_FDCWD || filename->name[0] == '/') { 1518 bprm->filename = filename->name; 1519 } else { 1520 if (filename->name[0] == '\0') 1521 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1522 else 1523 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1524 fd, filename->name); 1525 if (!bprm->fdpath) 1526 goto out_free; 1527 1528 /* 1529 * Record that a name derived from an O_CLOEXEC fd will be 1530 * inaccessible after exec. This allows the code in exec to 1531 * choose to fail when the executable is not mmaped into the 1532 * interpreter and an open file descriptor is not passed to 1533 * the interpreter. This makes for a better user experience 1534 * than having the interpreter start and then immediately fail 1535 * when it finds the executable is inaccessible. 1536 */ 1537 if (get_close_on_exec(fd)) 1538 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1539 1540 bprm->filename = bprm->fdpath; 1541 } 1542 bprm->interp = bprm->filename; 1543 1544 retval = bprm_mm_init(bprm); 1545 if (!retval) 1546 return bprm; 1547 1548 out_free: 1549 free_bprm(bprm); 1550 return ERR_PTR(retval); 1551 } 1552 1553 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1554 { 1555 /* If a binfmt changed the interp, free it first. */ 1556 if (bprm->interp != bprm->filename) 1557 kfree(bprm->interp); 1558 bprm->interp = kstrdup(interp, GFP_KERNEL); 1559 if (!bprm->interp) 1560 return -ENOMEM; 1561 return 0; 1562 } 1563 EXPORT_SYMBOL(bprm_change_interp); 1564 1565 /* 1566 * determine how safe it is to execute the proposed program 1567 * - the caller must hold ->cred_guard_mutex to protect against 1568 * PTRACE_ATTACH or seccomp thread-sync 1569 */ 1570 static void check_unsafe_exec(struct linux_binprm *bprm) 1571 { 1572 struct task_struct *p = current, *t; 1573 unsigned n_fs; 1574 1575 if (p->ptrace) 1576 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1577 1578 /* 1579 * This isn't strictly necessary, but it makes it harder for LSMs to 1580 * mess up. 1581 */ 1582 if (task_no_new_privs(current)) 1583 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1584 1585 /* 1586 * If another task is sharing our fs, we cannot safely 1587 * suid exec because the differently privileged task 1588 * will be able to manipulate the current directory, etc. 1589 * It would be nice to force an unshare instead... 1590 */ 1591 n_fs = 1; 1592 spin_lock(&p->fs->lock); 1593 rcu_read_lock(); 1594 for_other_threads(p, t) { 1595 if (t->fs == p->fs) 1596 n_fs++; 1597 } 1598 rcu_read_unlock(); 1599 1600 /* "users" and "in_exec" locked for copy_fs() */ 1601 if (p->fs->users > n_fs) 1602 bprm->unsafe |= LSM_UNSAFE_SHARE; 1603 else 1604 p->fs->in_exec = 1; 1605 spin_unlock(&p->fs->lock); 1606 } 1607 1608 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1609 { 1610 /* Handle suid and sgid on files */ 1611 struct mnt_idmap *idmap; 1612 struct inode *inode = file_inode(file); 1613 unsigned int mode; 1614 vfsuid_t vfsuid; 1615 vfsgid_t vfsgid; 1616 int err; 1617 1618 if (!mnt_may_suid(file->f_path.mnt)) 1619 return; 1620 1621 if (task_no_new_privs(current)) 1622 return; 1623 1624 mode = READ_ONCE(inode->i_mode); 1625 if (!(mode & (S_ISUID|S_ISGID))) 1626 return; 1627 1628 idmap = file_mnt_idmap(file); 1629 1630 /* Be careful if suid/sgid is set */ 1631 inode_lock(inode); 1632 1633 /* Atomically reload and check mode/uid/gid now that lock held. */ 1634 mode = inode->i_mode; 1635 vfsuid = i_uid_into_vfsuid(idmap, inode); 1636 vfsgid = i_gid_into_vfsgid(idmap, inode); 1637 err = inode_permission(idmap, inode, MAY_EXEC); 1638 inode_unlock(inode); 1639 1640 /* Did the exec bit vanish out from under us? Give up. */ 1641 if (err) 1642 return; 1643 1644 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1645 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1646 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1647 return; 1648 1649 if (mode & S_ISUID) { 1650 bprm->per_clear |= PER_CLEAR_ON_SETID; 1651 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1652 } 1653 1654 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1655 bprm->per_clear |= PER_CLEAR_ON_SETID; 1656 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1657 } 1658 } 1659 1660 /* 1661 * Compute brpm->cred based upon the final binary. 1662 */ 1663 static int bprm_creds_from_file(struct linux_binprm *bprm) 1664 { 1665 /* Compute creds based on which file? */ 1666 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1667 1668 bprm_fill_uid(bprm, file); 1669 return security_bprm_creds_from_file(bprm, file); 1670 } 1671 1672 /* 1673 * Fill the binprm structure from the inode. 1674 * Read the first BINPRM_BUF_SIZE bytes 1675 * 1676 * This may be called multiple times for binary chains (scripts for example). 1677 */ 1678 static int prepare_binprm(struct linux_binprm *bprm) 1679 { 1680 loff_t pos = 0; 1681 1682 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1683 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1684 } 1685 1686 /* 1687 * Arguments are '\0' separated strings found at the location bprm->p 1688 * points to; chop off the first by relocating brpm->p to right after 1689 * the first '\0' encountered. 1690 */ 1691 int remove_arg_zero(struct linux_binprm *bprm) 1692 { 1693 unsigned long offset; 1694 char *kaddr; 1695 struct page *page; 1696 1697 if (!bprm->argc) 1698 return 0; 1699 1700 do { 1701 offset = bprm->p & ~PAGE_MASK; 1702 page = get_arg_page(bprm, bprm->p, 0); 1703 if (!page) 1704 return -EFAULT; 1705 kaddr = kmap_local_page(page); 1706 1707 for (; offset < PAGE_SIZE && kaddr[offset]; 1708 offset++, bprm->p++) 1709 ; 1710 1711 kunmap_local(kaddr); 1712 put_arg_page(page); 1713 } while (offset == PAGE_SIZE); 1714 1715 bprm->p++; 1716 bprm->argc--; 1717 1718 return 0; 1719 } 1720 EXPORT_SYMBOL(remove_arg_zero); 1721 1722 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1723 /* 1724 * cycle the list of binary formats handler, until one recognizes the image 1725 */ 1726 static int search_binary_handler(struct linux_binprm *bprm) 1727 { 1728 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1729 struct linux_binfmt *fmt; 1730 int retval; 1731 1732 retval = prepare_binprm(bprm); 1733 if (retval < 0) 1734 return retval; 1735 1736 retval = security_bprm_check(bprm); 1737 if (retval) 1738 return retval; 1739 1740 retval = -ENOENT; 1741 retry: 1742 read_lock(&binfmt_lock); 1743 list_for_each_entry(fmt, &formats, lh) { 1744 if (!try_module_get(fmt->module)) 1745 continue; 1746 read_unlock(&binfmt_lock); 1747 1748 retval = fmt->load_binary(bprm); 1749 1750 read_lock(&binfmt_lock); 1751 put_binfmt(fmt); 1752 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1753 read_unlock(&binfmt_lock); 1754 return retval; 1755 } 1756 } 1757 read_unlock(&binfmt_lock); 1758 1759 if (need_retry) { 1760 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1761 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1762 return retval; 1763 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1764 return retval; 1765 need_retry = false; 1766 goto retry; 1767 } 1768 1769 return retval; 1770 } 1771 1772 /* binfmt handlers will call back into begin_new_exec() on success. */ 1773 static int exec_binprm(struct linux_binprm *bprm) 1774 { 1775 pid_t old_pid, old_vpid; 1776 int ret, depth; 1777 1778 /* Need to fetch pid before load_binary changes it */ 1779 old_pid = current->pid; 1780 rcu_read_lock(); 1781 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1782 rcu_read_unlock(); 1783 1784 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1785 for (depth = 0;; depth++) { 1786 struct file *exec; 1787 if (depth > 5) 1788 return -ELOOP; 1789 1790 ret = search_binary_handler(bprm); 1791 if (ret < 0) 1792 return ret; 1793 if (!bprm->interpreter) 1794 break; 1795 1796 exec = bprm->file; 1797 bprm->file = bprm->interpreter; 1798 bprm->interpreter = NULL; 1799 1800 allow_write_access(exec); 1801 if (unlikely(bprm->have_execfd)) { 1802 if (bprm->executable) { 1803 fput(exec); 1804 return -ENOEXEC; 1805 } 1806 bprm->executable = exec; 1807 } else 1808 fput(exec); 1809 } 1810 1811 audit_bprm(bprm); 1812 trace_sched_process_exec(current, old_pid, bprm); 1813 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1814 proc_exec_connector(current); 1815 return 0; 1816 } 1817 1818 static int bprm_execve(struct linux_binprm *bprm) 1819 { 1820 int retval; 1821 1822 retval = prepare_bprm_creds(bprm); 1823 if (retval) 1824 return retval; 1825 1826 /* 1827 * Check for unsafe execution states before exec_binprm(), which 1828 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1829 * where setuid-ness is evaluated. 1830 */ 1831 check_unsafe_exec(bprm); 1832 current->in_execve = 1; 1833 sched_mm_cid_before_execve(current); 1834 1835 sched_exec(); 1836 1837 /* Set the unchanging part of bprm->cred */ 1838 retval = security_bprm_creds_for_exec(bprm); 1839 if (retval) 1840 goto out; 1841 1842 retval = exec_binprm(bprm); 1843 if (retval < 0) 1844 goto out; 1845 1846 sched_mm_cid_after_execve(current); 1847 /* execve succeeded */ 1848 current->fs->in_exec = 0; 1849 current->in_execve = 0; 1850 rseq_execve(current); 1851 user_events_execve(current); 1852 acct_update_integrals(current); 1853 task_numa_free(current, false); 1854 return retval; 1855 1856 out: 1857 /* 1858 * If past the point of no return ensure the code never 1859 * returns to the userspace process. Use an existing fatal 1860 * signal if present otherwise terminate the process with 1861 * SIGSEGV. 1862 */ 1863 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1864 force_fatal_sig(SIGSEGV); 1865 1866 sched_mm_cid_after_execve(current); 1867 current->fs->in_exec = 0; 1868 current->in_execve = 0; 1869 1870 return retval; 1871 } 1872 1873 static int do_execveat_common(int fd, struct filename *filename, 1874 struct user_arg_ptr argv, 1875 struct user_arg_ptr envp, 1876 int flags) 1877 { 1878 struct linux_binprm *bprm; 1879 int retval; 1880 1881 if (IS_ERR(filename)) 1882 return PTR_ERR(filename); 1883 1884 /* 1885 * We move the actual failure in case of RLIMIT_NPROC excess from 1886 * set*uid() to execve() because too many poorly written programs 1887 * don't check setuid() return code. Here we additionally recheck 1888 * whether NPROC limit is still exceeded. 1889 */ 1890 if ((current->flags & PF_NPROC_EXCEEDED) && 1891 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1892 retval = -EAGAIN; 1893 goto out_ret; 1894 } 1895 1896 /* We're below the limit (still or again), so we don't want to make 1897 * further execve() calls fail. */ 1898 current->flags &= ~PF_NPROC_EXCEEDED; 1899 1900 bprm = alloc_bprm(fd, filename, flags); 1901 if (IS_ERR(bprm)) { 1902 retval = PTR_ERR(bprm); 1903 goto out_ret; 1904 } 1905 1906 retval = count(argv, MAX_ARG_STRINGS); 1907 if (retval == 0) 1908 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1909 current->comm, bprm->filename); 1910 if (retval < 0) 1911 goto out_free; 1912 bprm->argc = retval; 1913 1914 retval = count(envp, MAX_ARG_STRINGS); 1915 if (retval < 0) 1916 goto out_free; 1917 bprm->envc = retval; 1918 1919 retval = bprm_stack_limits(bprm); 1920 if (retval < 0) 1921 goto out_free; 1922 1923 retval = copy_string_kernel(bprm->filename, bprm); 1924 if (retval < 0) 1925 goto out_free; 1926 bprm->exec = bprm->p; 1927 1928 retval = copy_strings(bprm->envc, envp, bprm); 1929 if (retval < 0) 1930 goto out_free; 1931 1932 retval = copy_strings(bprm->argc, argv, bprm); 1933 if (retval < 0) 1934 goto out_free; 1935 1936 /* 1937 * When argv is empty, add an empty string ("") as argv[0] to 1938 * ensure confused userspace programs that start processing 1939 * from argv[1] won't end up walking envp. See also 1940 * bprm_stack_limits(). 1941 */ 1942 if (bprm->argc == 0) { 1943 retval = copy_string_kernel("", bprm); 1944 if (retval < 0) 1945 goto out_free; 1946 bprm->argc = 1; 1947 } 1948 1949 retval = bprm_execve(bprm); 1950 out_free: 1951 free_bprm(bprm); 1952 1953 out_ret: 1954 putname(filename); 1955 return retval; 1956 } 1957 1958 int kernel_execve(const char *kernel_filename, 1959 const char *const *argv, const char *const *envp) 1960 { 1961 struct filename *filename; 1962 struct linux_binprm *bprm; 1963 int fd = AT_FDCWD; 1964 int retval; 1965 1966 /* It is non-sense for kernel threads to call execve */ 1967 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1968 return -EINVAL; 1969 1970 filename = getname_kernel(kernel_filename); 1971 if (IS_ERR(filename)) 1972 return PTR_ERR(filename); 1973 1974 bprm = alloc_bprm(fd, filename, 0); 1975 if (IS_ERR(bprm)) { 1976 retval = PTR_ERR(bprm); 1977 goto out_ret; 1978 } 1979 1980 retval = count_strings_kernel(argv); 1981 if (WARN_ON_ONCE(retval == 0)) 1982 retval = -EINVAL; 1983 if (retval < 0) 1984 goto out_free; 1985 bprm->argc = retval; 1986 1987 retval = count_strings_kernel(envp); 1988 if (retval < 0) 1989 goto out_free; 1990 bprm->envc = retval; 1991 1992 retval = bprm_stack_limits(bprm); 1993 if (retval < 0) 1994 goto out_free; 1995 1996 retval = copy_string_kernel(bprm->filename, bprm); 1997 if (retval < 0) 1998 goto out_free; 1999 bprm->exec = bprm->p; 2000 2001 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2002 if (retval < 0) 2003 goto out_free; 2004 2005 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2006 if (retval < 0) 2007 goto out_free; 2008 2009 retval = bprm_execve(bprm); 2010 out_free: 2011 free_bprm(bprm); 2012 out_ret: 2013 putname(filename); 2014 return retval; 2015 } 2016 2017 static int do_execve(struct filename *filename, 2018 const char __user *const __user *__argv, 2019 const char __user *const __user *__envp) 2020 { 2021 struct user_arg_ptr argv = { .ptr.native = __argv }; 2022 struct user_arg_ptr envp = { .ptr.native = __envp }; 2023 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2024 } 2025 2026 static int do_execveat(int fd, struct filename *filename, 2027 const char __user *const __user *__argv, 2028 const char __user *const __user *__envp, 2029 int flags) 2030 { 2031 struct user_arg_ptr argv = { .ptr.native = __argv }; 2032 struct user_arg_ptr envp = { .ptr.native = __envp }; 2033 2034 return do_execveat_common(fd, filename, argv, envp, flags); 2035 } 2036 2037 #ifdef CONFIG_COMPAT 2038 static int compat_do_execve(struct filename *filename, 2039 const compat_uptr_t __user *__argv, 2040 const compat_uptr_t __user *__envp) 2041 { 2042 struct user_arg_ptr argv = { 2043 .is_compat = true, 2044 .ptr.compat = __argv, 2045 }; 2046 struct user_arg_ptr envp = { 2047 .is_compat = true, 2048 .ptr.compat = __envp, 2049 }; 2050 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2051 } 2052 2053 static int compat_do_execveat(int fd, struct filename *filename, 2054 const compat_uptr_t __user *__argv, 2055 const compat_uptr_t __user *__envp, 2056 int flags) 2057 { 2058 struct user_arg_ptr argv = { 2059 .is_compat = true, 2060 .ptr.compat = __argv, 2061 }; 2062 struct user_arg_ptr envp = { 2063 .is_compat = true, 2064 .ptr.compat = __envp, 2065 }; 2066 return do_execveat_common(fd, filename, argv, envp, flags); 2067 } 2068 #endif 2069 2070 void set_binfmt(struct linux_binfmt *new) 2071 { 2072 struct mm_struct *mm = current->mm; 2073 2074 if (mm->binfmt) 2075 module_put(mm->binfmt->module); 2076 2077 mm->binfmt = new; 2078 if (new) 2079 __module_get(new->module); 2080 } 2081 EXPORT_SYMBOL(set_binfmt); 2082 2083 /* 2084 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2085 */ 2086 void set_dumpable(struct mm_struct *mm, int value) 2087 { 2088 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2089 return; 2090 2091 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2092 } 2093 2094 SYSCALL_DEFINE3(execve, 2095 const char __user *, filename, 2096 const char __user *const __user *, argv, 2097 const char __user *const __user *, envp) 2098 { 2099 return do_execve(getname(filename), argv, envp); 2100 } 2101 2102 SYSCALL_DEFINE5(execveat, 2103 int, fd, const char __user *, filename, 2104 const char __user *const __user *, argv, 2105 const char __user *const __user *, envp, 2106 int, flags) 2107 { 2108 return do_execveat(fd, 2109 getname_uflags(filename, flags), 2110 argv, envp, flags); 2111 } 2112 2113 #ifdef CONFIG_COMPAT 2114 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2115 const compat_uptr_t __user *, argv, 2116 const compat_uptr_t __user *, envp) 2117 { 2118 return compat_do_execve(getname(filename), argv, envp); 2119 } 2120 2121 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2122 const char __user *, filename, 2123 const compat_uptr_t __user *, argv, 2124 const compat_uptr_t __user *, envp, 2125 int, flags) 2126 { 2127 return compat_do_execveat(fd, 2128 getname_uflags(filename, flags), 2129 argv, envp, flags); 2130 } 2131 #endif 2132 2133 #ifdef CONFIG_SYSCTL 2134 2135 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write, 2136 void *buffer, size_t *lenp, loff_t *ppos) 2137 { 2138 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2139 2140 if (!error) 2141 validate_coredump_safety(); 2142 return error; 2143 } 2144 2145 static struct ctl_table fs_exec_sysctls[] = { 2146 { 2147 .procname = "suid_dumpable", 2148 .data = &suid_dumpable, 2149 .maxlen = sizeof(int), 2150 .mode = 0644, 2151 .proc_handler = proc_dointvec_minmax_coredump, 2152 .extra1 = SYSCTL_ZERO, 2153 .extra2 = SYSCTL_TWO, 2154 }, 2155 }; 2156 2157 static int __init init_fs_exec_sysctls(void) 2158 { 2159 register_sysctl_init("fs", fs_exec_sysctls); 2160 return 0; 2161 } 2162 2163 fs_initcall(init_fs_exec_sysctls); 2164 #endif /* CONFIG_SYSCTL */ 2165 2166 #ifdef CONFIG_EXEC_KUNIT_TEST 2167 #include "tests/exec_kunit.c" 2168 #endif 2169