1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/config.h> 26 #include <linux/slab.h> 27 #include <linux/file.h> 28 #include <linux/mman.h> 29 #include <linux/a.out.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/smp_lock.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/highmem.h> 36 #include <linux/spinlock.h> 37 #include <linux/key.h> 38 #include <linux/personality.h> 39 #include <linux/binfmts.h> 40 #include <linux/swap.h> 41 #include <linux/utsname.h> 42 #include <linux/module.h> 43 #include <linux/namei.h> 44 #include <linux/proc_fs.h> 45 #include <linux/ptrace.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/rmap.h> 50 #include <linux/acct.h> 51 #include <linux/cn_proc.h> 52 53 #include <asm/uaccess.h> 54 #include <asm/mmu_context.h> 55 56 #ifdef CONFIG_KMOD 57 #include <linux/kmod.h> 58 #endif 59 60 int core_uses_pid; 61 char core_pattern[65] = "core"; 62 int suid_dumpable = 0; 63 64 EXPORT_SYMBOL(suid_dumpable); 65 /* The maximal length of core_pattern is also specified in sysctl.c */ 66 67 static struct linux_binfmt *formats; 68 static DEFINE_RWLOCK(binfmt_lock); 69 70 int register_binfmt(struct linux_binfmt * fmt) 71 { 72 struct linux_binfmt ** tmp = &formats; 73 74 if (!fmt) 75 return -EINVAL; 76 if (fmt->next) 77 return -EBUSY; 78 write_lock(&binfmt_lock); 79 while (*tmp) { 80 if (fmt == *tmp) { 81 write_unlock(&binfmt_lock); 82 return -EBUSY; 83 } 84 tmp = &(*tmp)->next; 85 } 86 fmt->next = formats; 87 formats = fmt; 88 write_unlock(&binfmt_lock); 89 return 0; 90 } 91 92 EXPORT_SYMBOL(register_binfmt); 93 94 int unregister_binfmt(struct linux_binfmt * fmt) 95 { 96 struct linux_binfmt ** tmp = &formats; 97 98 write_lock(&binfmt_lock); 99 while (*tmp) { 100 if (fmt == *tmp) { 101 *tmp = fmt->next; 102 write_unlock(&binfmt_lock); 103 return 0; 104 } 105 tmp = &(*tmp)->next; 106 } 107 write_unlock(&binfmt_lock); 108 return -EINVAL; 109 } 110 111 EXPORT_SYMBOL(unregister_binfmt); 112 113 static inline void put_binfmt(struct linux_binfmt * fmt) 114 { 115 module_put(fmt->module); 116 } 117 118 /* 119 * Note that a shared library must be both readable and executable due to 120 * security reasons. 121 * 122 * Also note that we take the address to load from from the file itself. 123 */ 124 asmlinkage long sys_uselib(const char __user * library) 125 { 126 struct file * file; 127 struct nameidata nd; 128 int error; 129 130 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 131 if (error) 132 goto out; 133 134 error = -EINVAL; 135 if (!S_ISREG(nd.dentry->d_inode->i_mode)) 136 goto exit; 137 138 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 139 if (error) 140 goto exit; 141 142 file = nameidata_to_filp(&nd, O_RDONLY); 143 error = PTR_ERR(file); 144 if (IS_ERR(file)) 145 goto out; 146 147 error = -ENOEXEC; 148 if(file->f_op) { 149 struct linux_binfmt * fmt; 150 151 read_lock(&binfmt_lock); 152 for (fmt = formats ; fmt ; fmt = fmt->next) { 153 if (!fmt->load_shlib) 154 continue; 155 if (!try_module_get(fmt->module)) 156 continue; 157 read_unlock(&binfmt_lock); 158 error = fmt->load_shlib(file); 159 read_lock(&binfmt_lock); 160 put_binfmt(fmt); 161 if (error != -ENOEXEC) 162 break; 163 } 164 read_unlock(&binfmt_lock); 165 } 166 fput(file); 167 out: 168 return error; 169 exit: 170 release_open_intent(&nd); 171 path_release(&nd); 172 goto out; 173 } 174 175 /* 176 * count() counts the number of strings in array ARGV. 177 */ 178 static int count(char __user * __user * argv, int max) 179 { 180 int i = 0; 181 182 if (argv != NULL) { 183 for (;;) { 184 char __user * p; 185 186 if (get_user(p, argv)) 187 return -EFAULT; 188 if (!p) 189 break; 190 argv++; 191 if(++i > max) 192 return -E2BIG; 193 cond_resched(); 194 } 195 } 196 return i; 197 } 198 199 /* 200 * 'copy_strings()' copies argument/environment strings from user 201 * memory to free pages in kernel mem. These are in a format ready 202 * to be put directly into the top of new user memory. 203 */ 204 static int copy_strings(int argc, char __user * __user * argv, 205 struct linux_binprm *bprm) 206 { 207 struct page *kmapped_page = NULL; 208 char *kaddr = NULL; 209 int ret; 210 211 while (argc-- > 0) { 212 char __user *str; 213 int len; 214 unsigned long pos; 215 216 if (get_user(str, argv+argc) || 217 !(len = strnlen_user(str, bprm->p))) { 218 ret = -EFAULT; 219 goto out; 220 } 221 222 if (bprm->p < len) { 223 ret = -E2BIG; 224 goto out; 225 } 226 227 bprm->p -= len; 228 /* XXX: add architecture specific overflow check here. */ 229 pos = bprm->p; 230 231 while (len > 0) { 232 int i, new, err; 233 int offset, bytes_to_copy; 234 struct page *page; 235 236 offset = pos % PAGE_SIZE; 237 i = pos/PAGE_SIZE; 238 page = bprm->page[i]; 239 new = 0; 240 if (!page) { 241 page = alloc_page(GFP_HIGHUSER); 242 bprm->page[i] = page; 243 if (!page) { 244 ret = -ENOMEM; 245 goto out; 246 } 247 new = 1; 248 } 249 250 if (page != kmapped_page) { 251 if (kmapped_page) 252 kunmap(kmapped_page); 253 kmapped_page = page; 254 kaddr = kmap(kmapped_page); 255 } 256 if (new && offset) 257 memset(kaddr, 0, offset); 258 bytes_to_copy = PAGE_SIZE - offset; 259 if (bytes_to_copy > len) { 260 bytes_to_copy = len; 261 if (new) 262 memset(kaddr+offset+len, 0, 263 PAGE_SIZE-offset-len); 264 } 265 err = copy_from_user(kaddr+offset, str, bytes_to_copy); 266 if (err) { 267 ret = -EFAULT; 268 goto out; 269 } 270 271 pos += bytes_to_copy; 272 str += bytes_to_copy; 273 len -= bytes_to_copy; 274 } 275 } 276 ret = 0; 277 out: 278 if (kmapped_page) 279 kunmap(kmapped_page); 280 return ret; 281 } 282 283 /* 284 * Like copy_strings, but get argv and its values from kernel memory. 285 */ 286 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 287 { 288 int r; 289 mm_segment_t oldfs = get_fs(); 290 set_fs(KERNEL_DS); 291 r = copy_strings(argc, (char __user * __user *)argv, bprm); 292 set_fs(oldfs); 293 return r; 294 } 295 296 EXPORT_SYMBOL(copy_strings_kernel); 297 298 #ifdef CONFIG_MMU 299 /* 300 * This routine is used to map in a page into an address space: needed by 301 * execve() for the initial stack and environment pages. 302 * 303 * vma->vm_mm->mmap_sem is held for writing. 304 */ 305 void install_arg_page(struct vm_area_struct *vma, 306 struct page *page, unsigned long address) 307 { 308 struct mm_struct *mm = vma->vm_mm; 309 pte_t * pte; 310 spinlock_t *ptl; 311 312 if (unlikely(anon_vma_prepare(vma))) 313 goto out; 314 315 flush_dcache_page(page); 316 pte = get_locked_pte(mm, address, &ptl); 317 if (!pte) 318 goto out; 319 if (!pte_none(*pte)) { 320 pte_unmap_unlock(pte, ptl); 321 goto out; 322 } 323 inc_mm_counter(mm, anon_rss); 324 lru_cache_add_active(page); 325 set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte( 326 page, vma->vm_page_prot)))); 327 page_add_new_anon_rmap(page, vma, address); 328 pte_unmap_unlock(pte, ptl); 329 330 /* no need for flush_tlb */ 331 return; 332 out: 333 __free_page(page); 334 force_sig(SIGKILL, current); 335 } 336 337 #define EXTRA_STACK_VM_PAGES 20 /* random */ 338 339 int setup_arg_pages(struct linux_binprm *bprm, 340 unsigned long stack_top, 341 int executable_stack) 342 { 343 unsigned long stack_base; 344 struct vm_area_struct *mpnt; 345 struct mm_struct *mm = current->mm; 346 int i, ret; 347 long arg_size; 348 349 #ifdef CONFIG_STACK_GROWSUP 350 /* Move the argument and environment strings to the bottom of the 351 * stack space. 352 */ 353 int offset, j; 354 char *to, *from; 355 356 /* Start by shifting all the pages down */ 357 i = 0; 358 for (j = 0; j < MAX_ARG_PAGES; j++) { 359 struct page *page = bprm->page[j]; 360 if (!page) 361 continue; 362 bprm->page[i++] = page; 363 } 364 365 /* Now move them within their pages */ 366 offset = bprm->p % PAGE_SIZE; 367 to = kmap(bprm->page[0]); 368 for (j = 1; j < i; j++) { 369 memmove(to, to + offset, PAGE_SIZE - offset); 370 from = kmap(bprm->page[j]); 371 memcpy(to + PAGE_SIZE - offset, from, offset); 372 kunmap(bprm->page[j - 1]); 373 to = from; 374 } 375 memmove(to, to + offset, PAGE_SIZE - offset); 376 kunmap(bprm->page[j - 1]); 377 378 /* Limit stack size to 1GB */ 379 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 380 if (stack_base > (1 << 30)) 381 stack_base = 1 << 30; 382 stack_base = PAGE_ALIGN(stack_top - stack_base); 383 384 /* Adjust bprm->p to point to the end of the strings. */ 385 bprm->p = stack_base + PAGE_SIZE * i - offset; 386 387 mm->arg_start = stack_base; 388 arg_size = i << PAGE_SHIFT; 389 390 /* zero pages that were copied above */ 391 while (i < MAX_ARG_PAGES) 392 bprm->page[i++] = NULL; 393 #else 394 stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE); 395 stack_base = PAGE_ALIGN(stack_base); 396 bprm->p += stack_base; 397 mm->arg_start = bprm->p; 398 arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start); 399 #endif 400 401 arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE; 402 403 if (bprm->loader) 404 bprm->loader += stack_base; 405 bprm->exec += stack_base; 406 407 mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 408 if (!mpnt) 409 return -ENOMEM; 410 411 memset(mpnt, 0, sizeof(*mpnt)); 412 413 down_write(&mm->mmap_sem); 414 { 415 mpnt->vm_mm = mm; 416 #ifdef CONFIG_STACK_GROWSUP 417 mpnt->vm_start = stack_base; 418 mpnt->vm_end = stack_base + arg_size; 419 #else 420 mpnt->vm_end = stack_top; 421 mpnt->vm_start = mpnt->vm_end - arg_size; 422 #endif 423 /* Adjust stack execute permissions; explicitly enable 424 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X 425 * and leave alone (arch default) otherwise. */ 426 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 427 mpnt->vm_flags = VM_STACK_FLAGS | VM_EXEC; 428 else if (executable_stack == EXSTACK_DISABLE_X) 429 mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC; 430 else 431 mpnt->vm_flags = VM_STACK_FLAGS; 432 mpnt->vm_flags |= mm->def_flags; 433 mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7]; 434 if ((ret = insert_vm_struct(mm, mpnt))) { 435 up_write(&mm->mmap_sem); 436 kmem_cache_free(vm_area_cachep, mpnt); 437 return ret; 438 } 439 mm->stack_vm = mm->total_vm = vma_pages(mpnt); 440 } 441 442 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { 443 struct page *page = bprm->page[i]; 444 if (page) { 445 bprm->page[i] = NULL; 446 install_arg_page(mpnt, page, stack_base); 447 } 448 stack_base += PAGE_SIZE; 449 } 450 up_write(&mm->mmap_sem); 451 452 return 0; 453 } 454 455 EXPORT_SYMBOL(setup_arg_pages); 456 457 #define free_arg_pages(bprm) do { } while (0) 458 459 #else 460 461 static inline void free_arg_pages(struct linux_binprm *bprm) 462 { 463 int i; 464 465 for (i = 0; i < MAX_ARG_PAGES; i++) { 466 if (bprm->page[i]) 467 __free_page(bprm->page[i]); 468 bprm->page[i] = NULL; 469 } 470 } 471 472 #endif /* CONFIG_MMU */ 473 474 struct file *open_exec(const char *name) 475 { 476 struct nameidata nd; 477 int err; 478 struct file *file; 479 480 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 481 file = ERR_PTR(err); 482 483 if (!err) { 484 struct inode *inode = nd.dentry->d_inode; 485 file = ERR_PTR(-EACCES); 486 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) && 487 S_ISREG(inode->i_mode)) { 488 int err = vfs_permission(&nd, MAY_EXEC); 489 if (!err && !(inode->i_mode & 0111)) 490 err = -EACCES; 491 file = ERR_PTR(err); 492 if (!err) { 493 file = nameidata_to_filp(&nd, O_RDONLY); 494 if (!IS_ERR(file)) { 495 err = deny_write_access(file); 496 if (err) { 497 fput(file); 498 file = ERR_PTR(err); 499 } 500 } 501 out: 502 return file; 503 } 504 } 505 release_open_intent(&nd); 506 path_release(&nd); 507 } 508 goto out; 509 } 510 511 EXPORT_SYMBOL(open_exec); 512 513 int kernel_read(struct file *file, unsigned long offset, 514 char *addr, unsigned long count) 515 { 516 mm_segment_t old_fs; 517 loff_t pos = offset; 518 int result; 519 520 old_fs = get_fs(); 521 set_fs(get_ds()); 522 /* The cast to a user pointer is valid due to the set_fs() */ 523 result = vfs_read(file, (void __user *)addr, count, &pos); 524 set_fs(old_fs); 525 return result; 526 } 527 528 EXPORT_SYMBOL(kernel_read); 529 530 static int exec_mmap(struct mm_struct *mm) 531 { 532 struct task_struct *tsk; 533 struct mm_struct * old_mm, *active_mm; 534 535 /* Notify parent that we're no longer interested in the old VM */ 536 tsk = current; 537 old_mm = current->mm; 538 mm_release(tsk, old_mm); 539 540 if (old_mm) { 541 /* 542 * Make sure that if there is a core dump in progress 543 * for the old mm, we get out and die instead of going 544 * through with the exec. We must hold mmap_sem around 545 * checking core_waiters and changing tsk->mm. The 546 * core-inducing thread will increment core_waiters for 547 * each thread whose ->mm == old_mm. 548 */ 549 down_read(&old_mm->mmap_sem); 550 if (unlikely(old_mm->core_waiters)) { 551 up_read(&old_mm->mmap_sem); 552 return -EINTR; 553 } 554 } 555 task_lock(tsk); 556 active_mm = tsk->active_mm; 557 tsk->mm = mm; 558 tsk->active_mm = mm; 559 activate_mm(active_mm, mm); 560 task_unlock(tsk); 561 arch_pick_mmap_layout(mm); 562 if (old_mm) { 563 up_read(&old_mm->mmap_sem); 564 BUG_ON(active_mm != old_mm); 565 mmput(old_mm); 566 return 0; 567 } 568 mmdrop(active_mm); 569 return 0; 570 } 571 572 /* 573 * This function makes sure the current process has its own signal table, 574 * so that flush_signal_handlers can later reset the handlers without 575 * disturbing other processes. (Other processes might share the signal 576 * table via the CLONE_SIGHAND option to clone().) 577 */ 578 static int de_thread(struct task_struct *tsk) 579 { 580 struct signal_struct *sig = tsk->signal; 581 struct sighand_struct *newsighand, *oldsighand = tsk->sighand; 582 spinlock_t *lock = &oldsighand->siglock; 583 struct task_struct *leader = NULL; 584 int count; 585 586 /* 587 * If we don't share sighandlers, then we aren't sharing anything 588 * and we can just re-use it all. 589 */ 590 if (atomic_read(&oldsighand->count) <= 1) { 591 BUG_ON(atomic_read(&sig->count) != 1); 592 exit_itimers(sig); 593 return 0; 594 } 595 596 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 597 if (!newsighand) 598 return -ENOMEM; 599 600 if (thread_group_empty(current)) 601 goto no_thread_group; 602 603 /* 604 * Kill all other threads in the thread group. 605 * We must hold tasklist_lock to call zap_other_threads. 606 */ 607 read_lock(&tasklist_lock); 608 spin_lock_irq(lock); 609 if (sig->flags & SIGNAL_GROUP_EXIT) { 610 /* 611 * Another group action in progress, just 612 * return so that the signal is processed. 613 */ 614 spin_unlock_irq(lock); 615 read_unlock(&tasklist_lock); 616 kmem_cache_free(sighand_cachep, newsighand); 617 return -EAGAIN; 618 } 619 620 /* 621 * child_reaper ignores SIGKILL, change it now. 622 * Reparenting needs write_lock on tasklist_lock, 623 * so it is safe to do it under read_lock. 624 */ 625 if (unlikely(current->group_leader == child_reaper)) 626 child_reaper = current; 627 628 zap_other_threads(current); 629 read_unlock(&tasklist_lock); 630 631 /* 632 * Account for the thread group leader hanging around: 633 */ 634 count = 1; 635 if (!thread_group_leader(current)) { 636 count = 2; 637 /* 638 * The SIGALRM timer survives the exec, but needs to point 639 * at us as the new group leader now. We have a race with 640 * a timer firing now getting the old leader, so we need to 641 * synchronize with any firing (by calling del_timer_sync) 642 * before we can safely let the old group leader die. 643 */ 644 sig->tsk = current; 645 spin_unlock_irq(lock); 646 if (hrtimer_cancel(&sig->real_timer)) 647 hrtimer_restart(&sig->real_timer); 648 spin_lock_irq(lock); 649 } 650 while (atomic_read(&sig->count) > count) { 651 sig->group_exit_task = current; 652 sig->notify_count = count; 653 __set_current_state(TASK_UNINTERRUPTIBLE); 654 spin_unlock_irq(lock); 655 schedule(); 656 spin_lock_irq(lock); 657 } 658 sig->group_exit_task = NULL; 659 sig->notify_count = 0; 660 spin_unlock_irq(lock); 661 662 /* 663 * At this point all other threads have exited, all we have to 664 * do is to wait for the thread group leader to become inactive, 665 * and to assume its PID: 666 */ 667 if (!thread_group_leader(current)) { 668 struct dentry *proc_dentry1, *proc_dentry2; 669 670 /* 671 * Wait for the thread group leader to be a zombie. 672 * It should already be zombie at this point, most 673 * of the time. 674 */ 675 leader = current->group_leader; 676 while (leader->exit_state != EXIT_ZOMBIE) 677 yield(); 678 679 /* 680 * The only record we have of the real-time age of a 681 * process, regardless of execs it's done, is start_time. 682 * All the past CPU time is accumulated in signal_struct 683 * from sister threads now dead. But in this non-leader 684 * exec, nothing survives from the original leader thread, 685 * whose birth marks the true age of this process now. 686 * When we take on its identity by switching to its PID, we 687 * also take its birthdate (always earlier than our own). 688 */ 689 current->start_time = leader->start_time; 690 691 spin_lock(&leader->proc_lock); 692 spin_lock(¤t->proc_lock); 693 proc_dentry1 = proc_pid_unhash(current); 694 proc_dentry2 = proc_pid_unhash(leader); 695 write_lock_irq(&tasklist_lock); 696 697 BUG_ON(leader->tgid != current->tgid); 698 BUG_ON(current->pid == current->tgid); 699 /* 700 * An exec() starts a new thread group with the 701 * TGID of the previous thread group. Rehash the 702 * two threads with a switched PID, and release 703 * the former thread group leader: 704 */ 705 706 /* Become a process group leader with the old leader's pid. 707 * Note: The old leader also uses thispid until release_task 708 * is called. Odd but simple and correct. 709 */ 710 detach_pid(current, PIDTYPE_PID); 711 current->pid = leader->pid; 712 attach_pid(current, PIDTYPE_PID, current->pid); 713 attach_pid(current, PIDTYPE_PGID, current->signal->pgrp); 714 attach_pid(current, PIDTYPE_SID, current->signal->session); 715 list_add_tail_rcu(¤t->tasks, &init_task.tasks); 716 717 current->group_leader = current; 718 leader->group_leader = current; 719 720 /* Reduce leader to a thread */ 721 detach_pid(leader, PIDTYPE_PGID); 722 detach_pid(leader, PIDTYPE_SID); 723 list_del_init(&leader->tasks); 724 725 current->exit_signal = SIGCHLD; 726 727 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 728 leader->exit_state = EXIT_DEAD; 729 730 write_unlock_irq(&tasklist_lock); 731 spin_unlock(&leader->proc_lock); 732 spin_unlock(¤t->proc_lock); 733 proc_pid_flush(proc_dentry1); 734 proc_pid_flush(proc_dentry2); 735 } 736 737 /* 738 * There may be one thread left which is just exiting, 739 * but it's safe to stop telling the group to kill themselves. 740 */ 741 sig->flags = 0; 742 743 no_thread_group: 744 exit_itimers(sig); 745 if (leader) 746 release_task(leader); 747 748 BUG_ON(atomic_read(&sig->count) != 1); 749 750 if (atomic_read(&oldsighand->count) == 1) { 751 /* 752 * Now that we nuked the rest of the thread group, 753 * it turns out we are not sharing sighand any more either. 754 * So we can just keep it. 755 */ 756 kmem_cache_free(sighand_cachep, newsighand); 757 } else { 758 /* 759 * Move our state over to newsighand and switch it in. 760 */ 761 atomic_set(&newsighand->count, 1); 762 memcpy(newsighand->action, oldsighand->action, 763 sizeof(newsighand->action)); 764 765 write_lock_irq(&tasklist_lock); 766 spin_lock(&oldsighand->siglock); 767 spin_lock(&newsighand->siglock); 768 769 rcu_assign_pointer(current->sighand, newsighand); 770 recalc_sigpending(); 771 772 spin_unlock(&newsighand->siglock); 773 spin_unlock(&oldsighand->siglock); 774 write_unlock_irq(&tasklist_lock); 775 776 if (atomic_dec_and_test(&oldsighand->count)) 777 kmem_cache_free(sighand_cachep, oldsighand); 778 } 779 780 BUG_ON(!thread_group_leader(current)); 781 return 0; 782 } 783 784 /* 785 * These functions flushes out all traces of the currently running executable 786 * so that a new one can be started 787 */ 788 789 static void flush_old_files(struct files_struct * files) 790 { 791 long j = -1; 792 struct fdtable *fdt; 793 794 spin_lock(&files->file_lock); 795 for (;;) { 796 unsigned long set, i; 797 798 j++; 799 i = j * __NFDBITS; 800 fdt = files_fdtable(files); 801 if (i >= fdt->max_fds || i >= fdt->max_fdset) 802 break; 803 set = fdt->close_on_exec->fds_bits[j]; 804 if (!set) 805 continue; 806 fdt->close_on_exec->fds_bits[j] = 0; 807 spin_unlock(&files->file_lock); 808 for ( ; set ; i++,set >>= 1) { 809 if (set & 1) { 810 sys_close(i); 811 } 812 } 813 spin_lock(&files->file_lock); 814 815 } 816 spin_unlock(&files->file_lock); 817 } 818 819 void get_task_comm(char *buf, struct task_struct *tsk) 820 { 821 /* buf must be at least sizeof(tsk->comm) in size */ 822 task_lock(tsk); 823 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 824 task_unlock(tsk); 825 } 826 827 void set_task_comm(struct task_struct *tsk, char *buf) 828 { 829 task_lock(tsk); 830 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 831 task_unlock(tsk); 832 } 833 834 int flush_old_exec(struct linux_binprm * bprm) 835 { 836 char * name; 837 int i, ch, retval; 838 struct files_struct *files; 839 char tcomm[sizeof(current->comm)]; 840 841 /* 842 * Make sure we have a private signal table and that 843 * we are unassociated from the previous thread group. 844 */ 845 retval = de_thread(current); 846 if (retval) 847 goto out; 848 849 /* 850 * Make sure we have private file handles. Ask the 851 * fork helper to do the work for us and the exit 852 * helper to do the cleanup of the old one. 853 */ 854 files = current->files; /* refcounted so safe to hold */ 855 retval = unshare_files(); 856 if (retval) 857 goto out; 858 /* 859 * Release all of the old mmap stuff 860 */ 861 retval = exec_mmap(bprm->mm); 862 if (retval) 863 goto mmap_failed; 864 865 bprm->mm = NULL; /* We're using it now */ 866 867 /* This is the point of no return */ 868 steal_locks(files); 869 put_files_struct(files); 870 871 current->sas_ss_sp = current->sas_ss_size = 0; 872 873 if (current->euid == current->uid && current->egid == current->gid) 874 current->mm->dumpable = 1; 875 else 876 current->mm->dumpable = suid_dumpable; 877 878 name = bprm->filename; 879 880 /* Copies the binary name from after last slash */ 881 for (i=0; (ch = *(name++)) != '\0';) { 882 if (ch == '/') 883 i = 0; /* overwrite what we wrote */ 884 else 885 if (i < (sizeof(tcomm) - 1)) 886 tcomm[i++] = ch; 887 } 888 tcomm[i] = '\0'; 889 set_task_comm(current, tcomm); 890 891 current->flags &= ~PF_RANDOMIZE; 892 flush_thread(); 893 894 /* Set the new mm task size. We have to do that late because it may 895 * depend on TIF_32BIT which is only updated in flush_thread() on 896 * some architectures like powerpc 897 */ 898 current->mm->task_size = TASK_SIZE; 899 900 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid || 901 file_permission(bprm->file, MAY_READ) || 902 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 903 suid_keys(current); 904 current->mm->dumpable = suid_dumpable; 905 } 906 907 /* An exec changes our domain. We are no longer part of the thread 908 group */ 909 910 current->self_exec_id++; 911 912 flush_signal_handlers(current, 0); 913 flush_old_files(current->files); 914 915 return 0; 916 917 mmap_failed: 918 put_files_struct(current->files); 919 current->files = files; 920 out: 921 return retval; 922 } 923 924 EXPORT_SYMBOL(flush_old_exec); 925 926 /* 927 * Fill the binprm structure from the inode. 928 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 929 */ 930 int prepare_binprm(struct linux_binprm *bprm) 931 { 932 int mode; 933 struct inode * inode = bprm->file->f_dentry->d_inode; 934 int retval; 935 936 mode = inode->i_mode; 937 /* 938 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE, 939 * generic_permission lets a non-executable through 940 */ 941 if (!(mode & 0111)) /* with at least _one_ execute bit set */ 942 return -EACCES; 943 if (bprm->file->f_op == NULL) 944 return -EACCES; 945 946 bprm->e_uid = current->euid; 947 bprm->e_gid = current->egid; 948 949 if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) { 950 /* Set-uid? */ 951 if (mode & S_ISUID) { 952 current->personality &= ~PER_CLEAR_ON_SETID; 953 bprm->e_uid = inode->i_uid; 954 } 955 956 /* Set-gid? */ 957 /* 958 * If setgid is set but no group execute bit then this 959 * is a candidate for mandatory locking, not a setgid 960 * executable. 961 */ 962 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 963 current->personality &= ~PER_CLEAR_ON_SETID; 964 bprm->e_gid = inode->i_gid; 965 } 966 } 967 968 /* fill in binprm security blob */ 969 retval = security_bprm_set(bprm); 970 if (retval) 971 return retval; 972 973 memset(bprm->buf,0,BINPRM_BUF_SIZE); 974 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 975 } 976 977 EXPORT_SYMBOL(prepare_binprm); 978 979 static int unsafe_exec(struct task_struct *p) 980 { 981 int unsafe = 0; 982 if (p->ptrace & PT_PTRACED) { 983 if (p->ptrace & PT_PTRACE_CAP) 984 unsafe |= LSM_UNSAFE_PTRACE_CAP; 985 else 986 unsafe |= LSM_UNSAFE_PTRACE; 987 } 988 if (atomic_read(&p->fs->count) > 1 || 989 atomic_read(&p->files->count) > 1 || 990 atomic_read(&p->sighand->count) > 1) 991 unsafe |= LSM_UNSAFE_SHARE; 992 993 return unsafe; 994 } 995 996 void compute_creds(struct linux_binprm *bprm) 997 { 998 int unsafe; 999 1000 if (bprm->e_uid != current->uid) 1001 suid_keys(current); 1002 exec_keys(current); 1003 1004 task_lock(current); 1005 unsafe = unsafe_exec(current); 1006 security_bprm_apply_creds(bprm, unsafe); 1007 task_unlock(current); 1008 security_bprm_post_apply_creds(bprm); 1009 } 1010 1011 EXPORT_SYMBOL(compute_creds); 1012 1013 void remove_arg_zero(struct linux_binprm *bprm) 1014 { 1015 if (bprm->argc) { 1016 unsigned long offset; 1017 char * kaddr; 1018 struct page *page; 1019 1020 offset = bprm->p % PAGE_SIZE; 1021 goto inside; 1022 1023 while (bprm->p++, *(kaddr+offset++)) { 1024 if (offset != PAGE_SIZE) 1025 continue; 1026 offset = 0; 1027 kunmap_atomic(kaddr, KM_USER0); 1028 inside: 1029 page = bprm->page[bprm->p/PAGE_SIZE]; 1030 kaddr = kmap_atomic(page, KM_USER0); 1031 } 1032 kunmap_atomic(kaddr, KM_USER0); 1033 bprm->argc--; 1034 } 1035 } 1036 1037 EXPORT_SYMBOL(remove_arg_zero); 1038 1039 /* 1040 * cycle the list of binary formats handler, until one recognizes the image 1041 */ 1042 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1043 { 1044 int try,retval; 1045 struct linux_binfmt *fmt; 1046 #ifdef __alpha__ 1047 /* handle /sbin/loader.. */ 1048 { 1049 struct exec * eh = (struct exec *) bprm->buf; 1050 1051 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1052 (eh->fh.f_flags & 0x3000) == 0x3000) 1053 { 1054 struct file * file; 1055 unsigned long loader; 1056 1057 allow_write_access(bprm->file); 1058 fput(bprm->file); 1059 bprm->file = NULL; 1060 1061 loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); 1062 1063 file = open_exec("/sbin/loader"); 1064 retval = PTR_ERR(file); 1065 if (IS_ERR(file)) 1066 return retval; 1067 1068 /* Remember if the application is TASO. */ 1069 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1070 1071 bprm->file = file; 1072 bprm->loader = loader; 1073 retval = prepare_binprm(bprm); 1074 if (retval<0) 1075 return retval; 1076 /* should call search_binary_handler recursively here, 1077 but it does not matter */ 1078 } 1079 } 1080 #endif 1081 retval = security_bprm_check(bprm); 1082 if (retval) 1083 return retval; 1084 1085 /* kernel module loader fixup */ 1086 /* so we don't try to load run modprobe in kernel space. */ 1087 set_fs(USER_DS); 1088 retval = -ENOENT; 1089 for (try=0; try<2; try++) { 1090 read_lock(&binfmt_lock); 1091 for (fmt = formats ; fmt ; fmt = fmt->next) { 1092 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1093 if (!fn) 1094 continue; 1095 if (!try_module_get(fmt->module)) 1096 continue; 1097 read_unlock(&binfmt_lock); 1098 retval = fn(bprm, regs); 1099 if (retval >= 0) { 1100 put_binfmt(fmt); 1101 allow_write_access(bprm->file); 1102 if (bprm->file) 1103 fput(bprm->file); 1104 bprm->file = NULL; 1105 current->did_exec = 1; 1106 proc_exec_connector(current); 1107 return retval; 1108 } 1109 read_lock(&binfmt_lock); 1110 put_binfmt(fmt); 1111 if (retval != -ENOEXEC || bprm->mm == NULL) 1112 break; 1113 if (!bprm->file) { 1114 read_unlock(&binfmt_lock); 1115 return retval; 1116 } 1117 } 1118 read_unlock(&binfmt_lock); 1119 if (retval != -ENOEXEC || bprm->mm == NULL) { 1120 break; 1121 #ifdef CONFIG_KMOD 1122 }else{ 1123 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1124 if (printable(bprm->buf[0]) && 1125 printable(bprm->buf[1]) && 1126 printable(bprm->buf[2]) && 1127 printable(bprm->buf[3])) 1128 break; /* -ENOEXEC */ 1129 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1130 #endif 1131 } 1132 } 1133 return retval; 1134 } 1135 1136 EXPORT_SYMBOL(search_binary_handler); 1137 1138 /* 1139 * sys_execve() executes a new program. 1140 */ 1141 int do_execve(char * filename, 1142 char __user *__user *argv, 1143 char __user *__user *envp, 1144 struct pt_regs * regs) 1145 { 1146 struct linux_binprm *bprm; 1147 struct file *file; 1148 int retval; 1149 int i; 1150 1151 retval = -ENOMEM; 1152 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1153 if (!bprm) 1154 goto out_ret; 1155 1156 file = open_exec(filename); 1157 retval = PTR_ERR(file); 1158 if (IS_ERR(file)) 1159 goto out_kfree; 1160 1161 sched_exec(); 1162 1163 bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); 1164 1165 bprm->file = file; 1166 bprm->filename = filename; 1167 bprm->interp = filename; 1168 bprm->mm = mm_alloc(); 1169 retval = -ENOMEM; 1170 if (!bprm->mm) 1171 goto out_file; 1172 1173 retval = init_new_context(current, bprm->mm); 1174 if (retval < 0) 1175 goto out_mm; 1176 1177 bprm->argc = count(argv, bprm->p / sizeof(void *)); 1178 if ((retval = bprm->argc) < 0) 1179 goto out_mm; 1180 1181 bprm->envc = count(envp, bprm->p / sizeof(void *)); 1182 if ((retval = bprm->envc) < 0) 1183 goto out_mm; 1184 1185 retval = security_bprm_alloc(bprm); 1186 if (retval) 1187 goto out; 1188 1189 retval = prepare_binprm(bprm); 1190 if (retval < 0) 1191 goto out; 1192 1193 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1194 if (retval < 0) 1195 goto out; 1196 1197 bprm->exec = bprm->p; 1198 retval = copy_strings(bprm->envc, envp, bprm); 1199 if (retval < 0) 1200 goto out; 1201 1202 retval = copy_strings(bprm->argc, argv, bprm); 1203 if (retval < 0) 1204 goto out; 1205 1206 retval = search_binary_handler(bprm,regs); 1207 if (retval >= 0) { 1208 free_arg_pages(bprm); 1209 1210 /* execve success */ 1211 security_bprm_free(bprm); 1212 acct_update_integrals(current); 1213 kfree(bprm); 1214 return retval; 1215 } 1216 1217 out: 1218 /* Something went wrong, return the inode and free the argument pages*/ 1219 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { 1220 struct page * page = bprm->page[i]; 1221 if (page) 1222 __free_page(page); 1223 } 1224 1225 if (bprm->security) 1226 security_bprm_free(bprm); 1227 1228 out_mm: 1229 if (bprm->mm) 1230 mmdrop(bprm->mm); 1231 1232 out_file: 1233 if (bprm->file) { 1234 allow_write_access(bprm->file); 1235 fput(bprm->file); 1236 } 1237 1238 out_kfree: 1239 kfree(bprm); 1240 1241 out_ret: 1242 return retval; 1243 } 1244 1245 int set_binfmt(struct linux_binfmt *new) 1246 { 1247 struct linux_binfmt *old = current->binfmt; 1248 1249 if (new) { 1250 if (!try_module_get(new->module)) 1251 return -1; 1252 } 1253 current->binfmt = new; 1254 if (old) 1255 module_put(old->module); 1256 return 0; 1257 } 1258 1259 EXPORT_SYMBOL(set_binfmt); 1260 1261 #define CORENAME_MAX_SIZE 64 1262 1263 /* format_corename will inspect the pattern parameter, and output a 1264 * name into corename, which must have space for at least 1265 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1266 */ 1267 static void format_corename(char *corename, const char *pattern, long signr) 1268 { 1269 const char *pat_ptr = pattern; 1270 char *out_ptr = corename; 1271 char *const out_end = corename + CORENAME_MAX_SIZE; 1272 int rc; 1273 int pid_in_pattern = 0; 1274 1275 /* Repeat as long as we have more pattern to process and more output 1276 space */ 1277 while (*pat_ptr) { 1278 if (*pat_ptr != '%') { 1279 if (out_ptr == out_end) 1280 goto out; 1281 *out_ptr++ = *pat_ptr++; 1282 } else { 1283 switch (*++pat_ptr) { 1284 case 0: 1285 goto out; 1286 /* Double percent, output one percent */ 1287 case '%': 1288 if (out_ptr == out_end) 1289 goto out; 1290 *out_ptr++ = '%'; 1291 break; 1292 /* pid */ 1293 case 'p': 1294 pid_in_pattern = 1; 1295 rc = snprintf(out_ptr, out_end - out_ptr, 1296 "%d", current->tgid); 1297 if (rc > out_end - out_ptr) 1298 goto out; 1299 out_ptr += rc; 1300 break; 1301 /* uid */ 1302 case 'u': 1303 rc = snprintf(out_ptr, out_end - out_ptr, 1304 "%d", current->uid); 1305 if (rc > out_end - out_ptr) 1306 goto out; 1307 out_ptr += rc; 1308 break; 1309 /* gid */ 1310 case 'g': 1311 rc = snprintf(out_ptr, out_end - out_ptr, 1312 "%d", current->gid); 1313 if (rc > out_end - out_ptr) 1314 goto out; 1315 out_ptr += rc; 1316 break; 1317 /* signal that caused the coredump */ 1318 case 's': 1319 rc = snprintf(out_ptr, out_end - out_ptr, 1320 "%ld", signr); 1321 if (rc > out_end - out_ptr) 1322 goto out; 1323 out_ptr += rc; 1324 break; 1325 /* UNIX time of coredump */ 1326 case 't': { 1327 struct timeval tv; 1328 do_gettimeofday(&tv); 1329 rc = snprintf(out_ptr, out_end - out_ptr, 1330 "%lu", tv.tv_sec); 1331 if (rc > out_end - out_ptr) 1332 goto out; 1333 out_ptr += rc; 1334 break; 1335 } 1336 /* hostname */ 1337 case 'h': 1338 down_read(&uts_sem); 1339 rc = snprintf(out_ptr, out_end - out_ptr, 1340 "%s", system_utsname.nodename); 1341 up_read(&uts_sem); 1342 if (rc > out_end - out_ptr) 1343 goto out; 1344 out_ptr += rc; 1345 break; 1346 /* executable */ 1347 case 'e': 1348 rc = snprintf(out_ptr, out_end - out_ptr, 1349 "%s", current->comm); 1350 if (rc > out_end - out_ptr) 1351 goto out; 1352 out_ptr += rc; 1353 break; 1354 default: 1355 break; 1356 } 1357 ++pat_ptr; 1358 } 1359 } 1360 /* Backward compatibility with core_uses_pid: 1361 * 1362 * If core_pattern does not include a %p (as is the default) 1363 * and core_uses_pid is set, then .%pid will be appended to 1364 * the filename */ 1365 if (!pid_in_pattern 1366 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1367 rc = snprintf(out_ptr, out_end - out_ptr, 1368 ".%d", current->tgid); 1369 if (rc > out_end - out_ptr) 1370 goto out; 1371 out_ptr += rc; 1372 } 1373 out: 1374 *out_ptr = 0; 1375 } 1376 1377 static void zap_threads (struct mm_struct *mm) 1378 { 1379 struct task_struct *g, *p; 1380 struct task_struct *tsk = current; 1381 struct completion *vfork_done = tsk->vfork_done; 1382 int traced = 0; 1383 1384 /* 1385 * Make sure nobody is waiting for us to release the VM, 1386 * otherwise we can deadlock when we wait on each other 1387 */ 1388 if (vfork_done) { 1389 tsk->vfork_done = NULL; 1390 complete(vfork_done); 1391 } 1392 1393 read_lock(&tasklist_lock); 1394 do_each_thread(g,p) 1395 if (mm == p->mm && p != tsk) { 1396 force_sig_specific(SIGKILL, p); 1397 mm->core_waiters++; 1398 if (unlikely(p->ptrace) && 1399 unlikely(p->parent->mm == mm)) 1400 traced = 1; 1401 } 1402 while_each_thread(g,p); 1403 1404 read_unlock(&tasklist_lock); 1405 1406 if (unlikely(traced)) { 1407 /* 1408 * We are zapping a thread and the thread it ptraces. 1409 * If the tracee went into a ptrace stop for exit tracing, 1410 * we could deadlock since the tracer is waiting for this 1411 * coredump to finish. Detach them so they can both die. 1412 */ 1413 write_lock_irq(&tasklist_lock); 1414 do_each_thread(g,p) { 1415 if (mm == p->mm && p != tsk && 1416 p->ptrace && p->parent->mm == mm) { 1417 __ptrace_detach(p, 0); 1418 } 1419 } while_each_thread(g,p); 1420 write_unlock_irq(&tasklist_lock); 1421 } 1422 } 1423 1424 static void coredump_wait(struct mm_struct *mm) 1425 { 1426 DECLARE_COMPLETION(startup_done); 1427 int core_waiters; 1428 1429 mm->core_startup_done = &startup_done; 1430 1431 zap_threads(mm); 1432 core_waiters = mm->core_waiters; 1433 up_write(&mm->mmap_sem); 1434 1435 if (core_waiters) 1436 wait_for_completion(&startup_done); 1437 BUG_ON(mm->core_waiters); 1438 } 1439 1440 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1441 { 1442 char corename[CORENAME_MAX_SIZE + 1]; 1443 struct mm_struct *mm = current->mm; 1444 struct linux_binfmt * binfmt; 1445 struct inode * inode; 1446 struct file * file; 1447 int retval = 0; 1448 int fsuid = current->fsuid; 1449 int flag = 0; 1450 1451 binfmt = current->binfmt; 1452 if (!binfmt || !binfmt->core_dump) 1453 goto fail; 1454 down_write(&mm->mmap_sem); 1455 if (!mm->dumpable) { 1456 up_write(&mm->mmap_sem); 1457 goto fail; 1458 } 1459 1460 /* 1461 * We cannot trust fsuid as being the "true" uid of the 1462 * process nor do we know its entire history. We only know it 1463 * was tainted so we dump it as root in mode 2. 1464 */ 1465 if (mm->dumpable == 2) { /* Setuid core dump mode */ 1466 flag = O_EXCL; /* Stop rewrite attacks */ 1467 current->fsuid = 0; /* Dump root private */ 1468 } 1469 mm->dumpable = 0; 1470 1471 retval = -EAGAIN; 1472 spin_lock_irq(¤t->sighand->siglock); 1473 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 1474 current->signal->flags = SIGNAL_GROUP_EXIT; 1475 current->signal->group_exit_code = exit_code; 1476 current->signal->group_stop_count = 0; 1477 retval = 0; 1478 } 1479 spin_unlock_irq(¤t->sighand->siglock); 1480 if (retval) { 1481 up_write(&mm->mmap_sem); 1482 goto fail; 1483 } 1484 1485 init_completion(&mm->core_done); 1486 coredump_wait(mm); 1487 1488 /* 1489 * Clear any false indication of pending signals that might 1490 * be seen by the filesystem code called to write the core file. 1491 */ 1492 clear_thread_flag(TIF_SIGPENDING); 1493 1494 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump) 1495 goto fail_unlock; 1496 1497 /* 1498 * lock_kernel() because format_corename() is controlled by sysctl, which 1499 * uses lock_kernel() 1500 */ 1501 lock_kernel(); 1502 format_corename(corename, core_pattern, signr); 1503 unlock_kernel(); 1504 file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 0600); 1505 if (IS_ERR(file)) 1506 goto fail_unlock; 1507 inode = file->f_dentry->d_inode; 1508 if (inode->i_nlink > 1) 1509 goto close_fail; /* multiple links - don't dump */ 1510 if (d_unhashed(file->f_dentry)) 1511 goto close_fail; 1512 1513 if (!S_ISREG(inode->i_mode)) 1514 goto close_fail; 1515 if (!file->f_op) 1516 goto close_fail; 1517 if (!file->f_op->write) 1518 goto close_fail; 1519 if (do_truncate(file->f_dentry, 0, 0, file) != 0) 1520 goto close_fail; 1521 1522 retval = binfmt->core_dump(signr, regs, file); 1523 1524 if (retval) 1525 current->signal->group_exit_code |= 0x80; 1526 close_fail: 1527 filp_close(file, NULL); 1528 fail_unlock: 1529 current->fsuid = fsuid; 1530 complete_all(&mm->core_done); 1531 fail: 1532 return retval; 1533 } 1534