1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 #include <linux/user_events.h> 69 #include <linux/rseq.h> 70 #include <linux/ksm.h> 71 72 #include <linux/uaccess.h> 73 #include <asm/mmu_context.h> 74 #include <asm/tlb.h> 75 76 #include <trace/events/task.h> 77 #include "internal.h" 78 79 #include <trace/events/sched.h> 80 81 static int bprm_creds_from_file(struct linux_binprm *bprm); 82 83 int suid_dumpable = 0; 84 85 static LIST_HEAD(formats); 86 static DEFINE_RWLOCK(binfmt_lock); 87 88 void __register_binfmt(struct linux_binfmt * fmt, int insert) 89 { 90 write_lock(&binfmt_lock); 91 insert ? list_add(&fmt->lh, &formats) : 92 list_add_tail(&fmt->lh, &formats); 93 write_unlock(&binfmt_lock); 94 } 95 96 EXPORT_SYMBOL(__register_binfmt); 97 98 void unregister_binfmt(struct linux_binfmt * fmt) 99 { 100 write_lock(&binfmt_lock); 101 list_del(&fmt->lh); 102 write_unlock(&binfmt_lock); 103 } 104 105 EXPORT_SYMBOL(unregister_binfmt); 106 107 static inline void put_binfmt(struct linux_binfmt * fmt) 108 { 109 module_put(fmt->module); 110 } 111 112 bool path_noexec(const struct path *path) 113 { 114 return (path->mnt->mnt_flags & MNT_NOEXEC) || 115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 116 } 117 118 #ifdef CONFIG_USELIB 119 /* 120 * Note that a shared library must be both readable and executable due to 121 * security reasons. 122 * 123 * Also note that we take the address to load from the file itself. 124 */ 125 SYSCALL_DEFINE1(uselib, const char __user *, library) 126 { 127 struct linux_binfmt *fmt; 128 struct file *file; 129 struct filename *tmp = getname(library); 130 int error = PTR_ERR(tmp); 131 static const struct open_flags uselib_flags = { 132 .open_flag = O_LARGEFILE | O_RDONLY, 133 .acc_mode = MAY_READ | MAY_EXEC, 134 .intent = LOOKUP_OPEN, 135 .lookup_flags = LOOKUP_FOLLOW, 136 }; 137 138 if (IS_ERR(tmp)) 139 goto out; 140 141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 142 putname(tmp); 143 error = PTR_ERR(file); 144 if (IS_ERR(file)) 145 goto out; 146 147 /* 148 * Check do_open_execat() for an explanation. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 152 path_noexec(&file->f_path)) 153 goto exit; 154 155 error = -ENOEXEC; 156 157 read_lock(&binfmt_lock); 158 list_for_each_entry(fmt, &formats, lh) { 159 if (!fmt->load_shlib) 160 continue; 161 if (!try_module_get(fmt->module)) 162 continue; 163 read_unlock(&binfmt_lock); 164 error = fmt->load_shlib(file); 165 read_lock(&binfmt_lock); 166 put_binfmt(fmt); 167 if (error != -ENOEXEC) 168 break; 169 } 170 read_unlock(&binfmt_lock); 171 exit: 172 fput(file); 173 out: 174 return error; 175 } 176 #endif /* #ifdef CONFIG_USELIB */ 177 178 #ifdef CONFIG_MMU 179 /* 180 * The nascent bprm->mm is not visible until exec_mmap() but it can 181 * use a lot of memory, account these pages in current->mm temporary 182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 183 * change the counter back via acct_arg_size(0). 184 */ 185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 186 { 187 struct mm_struct *mm = current->mm; 188 long diff = (long)(pages - bprm->vma_pages); 189 190 if (!mm || !diff) 191 return; 192 193 bprm->vma_pages = pages; 194 add_mm_counter(mm, MM_ANONPAGES, diff); 195 } 196 197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 198 int write) 199 { 200 struct page *page; 201 struct vm_area_struct *vma = bprm->vma; 202 struct mm_struct *mm = bprm->mm; 203 int ret; 204 205 /* 206 * Avoid relying on expanding the stack down in GUP (which 207 * does not work for STACK_GROWSUP anyway), and just do it 208 * ahead of time. 209 */ 210 if (!mmap_read_lock_maybe_expand(mm, vma, pos, write)) 211 return NULL; 212 213 /* 214 * We are doing an exec(). 'current' is the process 215 * doing the exec and 'mm' is the new process's mm. 216 */ 217 ret = get_user_pages_remote(mm, pos, 1, 218 write ? FOLL_WRITE : 0, 219 &page, NULL); 220 mmap_read_unlock(mm); 221 if (ret <= 0) 222 return NULL; 223 224 if (write) 225 acct_arg_size(bprm, vma_pages(vma)); 226 227 return page; 228 } 229 230 static void put_arg_page(struct page *page) 231 { 232 put_page(page); 233 } 234 235 static void free_arg_pages(struct linux_binprm *bprm) 236 { 237 } 238 239 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 240 struct page *page) 241 { 242 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 243 } 244 245 static int __bprm_mm_init(struct linux_binprm *bprm) 246 { 247 int err; 248 struct vm_area_struct *vma = NULL; 249 struct mm_struct *mm = bprm->mm; 250 251 bprm->vma = vma = vm_area_alloc(mm); 252 if (!vma) 253 return -ENOMEM; 254 vma_set_anonymous(vma); 255 256 if (mmap_write_lock_killable(mm)) { 257 err = -EINTR; 258 goto err_free; 259 } 260 261 /* 262 * Need to be called with mmap write lock 263 * held, to avoid race with ksmd. 264 */ 265 err = ksm_execve(mm); 266 if (err) 267 goto err_ksm; 268 269 /* 270 * Place the stack at the largest stack address the architecture 271 * supports. Later, we'll move this to an appropriate place. We don't 272 * use STACK_TOP because that can depend on attributes which aren't 273 * configured yet. 274 */ 275 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 276 vma->vm_end = STACK_TOP_MAX; 277 vma->vm_start = vma->vm_end - PAGE_SIZE; 278 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP); 279 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 280 281 err = insert_vm_struct(mm, vma); 282 if (err) 283 goto err; 284 285 mm->stack_vm = mm->total_vm = 1; 286 mmap_write_unlock(mm); 287 bprm->p = vma->vm_end - sizeof(void *); 288 return 0; 289 err: 290 ksm_exit(mm); 291 err_ksm: 292 mmap_write_unlock(mm); 293 err_free: 294 bprm->vma = NULL; 295 vm_area_free(vma); 296 return err; 297 } 298 299 static bool valid_arg_len(struct linux_binprm *bprm, long len) 300 { 301 return len <= MAX_ARG_STRLEN; 302 } 303 304 #else 305 306 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 307 { 308 } 309 310 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 311 int write) 312 { 313 struct page *page; 314 315 page = bprm->page[pos / PAGE_SIZE]; 316 if (!page && write) { 317 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 318 if (!page) 319 return NULL; 320 bprm->page[pos / PAGE_SIZE] = page; 321 } 322 323 return page; 324 } 325 326 static void put_arg_page(struct page *page) 327 { 328 } 329 330 static void free_arg_page(struct linux_binprm *bprm, int i) 331 { 332 if (bprm->page[i]) { 333 __free_page(bprm->page[i]); 334 bprm->page[i] = NULL; 335 } 336 } 337 338 static void free_arg_pages(struct linux_binprm *bprm) 339 { 340 int i; 341 342 for (i = 0; i < MAX_ARG_PAGES; i++) 343 free_arg_page(bprm, i); 344 } 345 346 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 347 struct page *page) 348 { 349 } 350 351 static int __bprm_mm_init(struct linux_binprm *bprm) 352 { 353 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 354 return 0; 355 } 356 357 static bool valid_arg_len(struct linux_binprm *bprm, long len) 358 { 359 return len <= bprm->p; 360 } 361 362 #endif /* CONFIG_MMU */ 363 364 /* 365 * Create a new mm_struct and populate it with a temporary stack 366 * vm_area_struct. We don't have enough context at this point to set the stack 367 * flags, permissions, and offset, so we use temporary values. We'll update 368 * them later in setup_arg_pages(). 369 */ 370 static int bprm_mm_init(struct linux_binprm *bprm) 371 { 372 int err; 373 struct mm_struct *mm = NULL; 374 375 bprm->mm = mm = mm_alloc(); 376 err = -ENOMEM; 377 if (!mm) 378 goto err; 379 380 /* Save current stack limit for all calculations made during exec. */ 381 task_lock(current->group_leader); 382 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 383 task_unlock(current->group_leader); 384 385 err = __bprm_mm_init(bprm); 386 if (err) 387 goto err; 388 389 return 0; 390 391 err: 392 if (mm) { 393 bprm->mm = NULL; 394 mmdrop(mm); 395 } 396 397 return err; 398 } 399 400 struct user_arg_ptr { 401 #ifdef CONFIG_COMPAT 402 bool is_compat; 403 #endif 404 union { 405 const char __user *const __user *native; 406 #ifdef CONFIG_COMPAT 407 const compat_uptr_t __user *compat; 408 #endif 409 } ptr; 410 }; 411 412 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 413 { 414 const char __user *native; 415 416 #ifdef CONFIG_COMPAT 417 if (unlikely(argv.is_compat)) { 418 compat_uptr_t compat; 419 420 if (get_user(compat, argv.ptr.compat + nr)) 421 return ERR_PTR(-EFAULT); 422 423 return compat_ptr(compat); 424 } 425 #endif 426 427 if (get_user(native, argv.ptr.native + nr)) 428 return ERR_PTR(-EFAULT); 429 430 return native; 431 } 432 433 /* 434 * count() counts the number of strings in array ARGV. 435 */ 436 static int count(struct user_arg_ptr argv, int max) 437 { 438 int i = 0; 439 440 if (argv.ptr.native != NULL) { 441 for (;;) { 442 const char __user *p = get_user_arg_ptr(argv, i); 443 444 if (!p) 445 break; 446 447 if (IS_ERR(p)) 448 return -EFAULT; 449 450 if (i >= max) 451 return -E2BIG; 452 ++i; 453 454 if (fatal_signal_pending(current)) 455 return -ERESTARTNOHAND; 456 cond_resched(); 457 } 458 } 459 return i; 460 } 461 462 static int count_strings_kernel(const char *const *argv) 463 { 464 int i; 465 466 if (!argv) 467 return 0; 468 469 for (i = 0; argv[i]; ++i) { 470 if (i >= MAX_ARG_STRINGS) 471 return -E2BIG; 472 if (fatal_signal_pending(current)) 473 return -ERESTARTNOHAND; 474 cond_resched(); 475 } 476 return i; 477 } 478 479 static inline int bprm_set_stack_limit(struct linux_binprm *bprm, 480 unsigned long limit) 481 { 482 #ifdef CONFIG_MMU 483 /* Avoid a pathological bprm->p. */ 484 if (bprm->p < limit) 485 return -E2BIG; 486 bprm->argmin = bprm->p - limit; 487 #endif 488 return 0; 489 } 490 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm) 491 { 492 #ifdef CONFIG_MMU 493 return bprm->p < bprm->argmin; 494 #else 495 return false; 496 #endif 497 } 498 499 /* 500 * Calculate bprm->argmin from: 501 * - _STK_LIM 502 * - ARG_MAX 503 * - bprm->rlim_stack.rlim_cur 504 * - bprm->argc 505 * - bprm->envc 506 * - bprm->p 507 */ 508 static int bprm_stack_limits(struct linux_binprm *bprm) 509 { 510 unsigned long limit, ptr_size; 511 512 /* 513 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 514 * (whichever is smaller) for the argv+env strings. 515 * This ensures that: 516 * - the remaining binfmt code will not run out of stack space, 517 * - the program will have a reasonable amount of stack left 518 * to work from. 519 */ 520 limit = _STK_LIM / 4 * 3; 521 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 522 /* 523 * We've historically supported up to 32 pages (ARG_MAX) 524 * of argument strings even with small stacks 525 */ 526 limit = max_t(unsigned long, limit, ARG_MAX); 527 /* Reject totally pathological counts. */ 528 if (bprm->argc < 0 || bprm->envc < 0) 529 return -E2BIG; 530 /* 531 * We must account for the size of all the argv and envp pointers to 532 * the argv and envp strings, since they will also take up space in 533 * the stack. They aren't stored until much later when we can't 534 * signal to the parent that the child has run out of stack space. 535 * Instead, calculate it here so it's possible to fail gracefully. 536 * 537 * In the case of argc = 0, make sure there is space for adding a 538 * empty string (which will bump argc to 1), to ensure confused 539 * userspace programs don't start processing from argv[1], thinking 540 * argc can never be 0, to keep them from walking envp by accident. 541 * See do_execveat_common(). 542 */ 543 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) || 544 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size)) 545 return -E2BIG; 546 if (limit <= ptr_size) 547 return -E2BIG; 548 limit -= ptr_size; 549 550 return bprm_set_stack_limit(bprm, limit); 551 } 552 553 /* 554 * 'copy_strings()' copies argument/environment strings from the old 555 * processes's memory to the new process's stack. The call to get_user_pages() 556 * ensures the destination page is created and not swapped out. 557 */ 558 static int copy_strings(int argc, struct user_arg_ptr argv, 559 struct linux_binprm *bprm) 560 { 561 struct page *kmapped_page = NULL; 562 char *kaddr = NULL; 563 unsigned long kpos = 0; 564 int ret; 565 566 while (argc-- > 0) { 567 const char __user *str; 568 int len; 569 unsigned long pos; 570 571 ret = -EFAULT; 572 str = get_user_arg_ptr(argv, argc); 573 if (IS_ERR(str)) 574 goto out; 575 576 len = strnlen_user(str, MAX_ARG_STRLEN); 577 if (!len) 578 goto out; 579 580 ret = -E2BIG; 581 if (!valid_arg_len(bprm, len)) 582 goto out; 583 584 /* We're going to work our way backwards. */ 585 pos = bprm->p; 586 str += len; 587 bprm->p -= len; 588 if (bprm_hit_stack_limit(bprm)) 589 goto out; 590 591 while (len > 0) { 592 int offset, bytes_to_copy; 593 594 if (fatal_signal_pending(current)) { 595 ret = -ERESTARTNOHAND; 596 goto out; 597 } 598 cond_resched(); 599 600 offset = pos % PAGE_SIZE; 601 if (offset == 0) 602 offset = PAGE_SIZE; 603 604 bytes_to_copy = offset; 605 if (bytes_to_copy > len) 606 bytes_to_copy = len; 607 608 offset -= bytes_to_copy; 609 pos -= bytes_to_copy; 610 str -= bytes_to_copy; 611 len -= bytes_to_copy; 612 613 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 614 struct page *page; 615 616 page = get_arg_page(bprm, pos, 1); 617 if (!page) { 618 ret = -E2BIG; 619 goto out; 620 } 621 622 if (kmapped_page) { 623 flush_dcache_page(kmapped_page); 624 kunmap_local(kaddr); 625 put_arg_page(kmapped_page); 626 } 627 kmapped_page = page; 628 kaddr = kmap_local_page(kmapped_page); 629 kpos = pos & PAGE_MASK; 630 flush_arg_page(bprm, kpos, kmapped_page); 631 } 632 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 633 ret = -EFAULT; 634 goto out; 635 } 636 } 637 } 638 ret = 0; 639 out: 640 if (kmapped_page) { 641 flush_dcache_page(kmapped_page); 642 kunmap_local(kaddr); 643 put_arg_page(kmapped_page); 644 } 645 return ret; 646 } 647 648 /* 649 * Copy and argument/environment string from the kernel to the processes stack. 650 */ 651 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 652 { 653 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 654 unsigned long pos = bprm->p; 655 656 if (len == 0) 657 return -EFAULT; 658 if (!valid_arg_len(bprm, len)) 659 return -E2BIG; 660 661 /* We're going to work our way backwards. */ 662 arg += len; 663 bprm->p -= len; 664 if (bprm_hit_stack_limit(bprm)) 665 return -E2BIG; 666 667 while (len > 0) { 668 unsigned int bytes_to_copy = min_t(unsigned int, len, 669 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 670 struct page *page; 671 672 pos -= bytes_to_copy; 673 arg -= bytes_to_copy; 674 len -= bytes_to_copy; 675 676 page = get_arg_page(bprm, pos, 1); 677 if (!page) 678 return -E2BIG; 679 flush_arg_page(bprm, pos & PAGE_MASK, page); 680 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 681 put_arg_page(page); 682 } 683 684 return 0; 685 } 686 EXPORT_SYMBOL(copy_string_kernel); 687 688 static int copy_strings_kernel(int argc, const char *const *argv, 689 struct linux_binprm *bprm) 690 { 691 while (argc-- > 0) { 692 int ret = copy_string_kernel(argv[argc], bprm); 693 if (ret < 0) 694 return ret; 695 if (fatal_signal_pending(current)) 696 return -ERESTARTNOHAND; 697 cond_resched(); 698 } 699 return 0; 700 } 701 702 #ifdef CONFIG_MMU 703 704 /* 705 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 706 * the stack is optionally relocated, and some extra space is added. 707 */ 708 int setup_arg_pages(struct linux_binprm *bprm, 709 unsigned long stack_top, 710 int executable_stack) 711 { 712 unsigned long ret; 713 unsigned long stack_shift; 714 struct mm_struct *mm = current->mm; 715 struct vm_area_struct *vma = bprm->vma; 716 struct vm_area_struct *prev = NULL; 717 unsigned long vm_flags; 718 unsigned long stack_base; 719 unsigned long stack_size; 720 unsigned long stack_expand; 721 unsigned long rlim_stack; 722 struct mmu_gather tlb; 723 struct vma_iterator vmi; 724 725 #ifdef CONFIG_STACK_GROWSUP 726 /* Limit stack size */ 727 stack_base = bprm->rlim_stack.rlim_max; 728 729 stack_base = calc_max_stack_size(stack_base); 730 731 /* Add space for stack randomization. */ 732 if (current->flags & PF_RANDOMIZE) 733 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 734 735 /* Make sure we didn't let the argument array grow too large. */ 736 if (vma->vm_end - vma->vm_start > stack_base) 737 return -ENOMEM; 738 739 stack_base = PAGE_ALIGN(stack_top - stack_base); 740 741 stack_shift = vma->vm_start - stack_base; 742 mm->arg_start = bprm->p - stack_shift; 743 bprm->p = vma->vm_end - stack_shift; 744 #else 745 stack_top = arch_align_stack(stack_top); 746 stack_top = PAGE_ALIGN(stack_top); 747 748 if (unlikely(stack_top < mmap_min_addr) || 749 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 750 return -ENOMEM; 751 752 stack_shift = vma->vm_end - stack_top; 753 754 bprm->p -= stack_shift; 755 mm->arg_start = bprm->p; 756 #endif 757 758 bprm->exec -= stack_shift; 759 760 if (mmap_write_lock_killable(mm)) 761 return -EINTR; 762 763 vm_flags = VM_STACK_FLAGS; 764 765 /* 766 * Adjust stack execute permissions; explicitly enable for 767 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 768 * (arch default) otherwise. 769 */ 770 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 771 vm_flags |= VM_EXEC; 772 else if (executable_stack == EXSTACK_DISABLE_X) 773 vm_flags &= ~VM_EXEC; 774 vm_flags |= mm->def_flags; 775 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 776 777 vma_iter_init(&vmi, mm, vma->vm_start); 778 779 tlb_gather_mmu(&tlb, mm); 780 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end, 781 vm_flags); 782 tlb_finish_mmu(&tlb); 783 784 if (ret) 785 goto out_unlock; 786 BUG_ON(prev != vma); 787 788 if (unlikely(vm_flags & VM_EXEC)) { 789 pr_warn_once("process '%pD4' started with executable stack\n", 790 bprm->file); 791 } 792 793 /* Move stack pages down in memory. */ 794 if (stack_shift) { 795 /* 796 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 797 * the binfmt code determines where the new stack should reside, we shift it to 798 * its final location. 799 */ 800 ret = relocate_vma_down(vma, stack_shift); 801 if (ret) 802 goto out_unlock; 803 } 804 805 /* mprotect_fixup is overkill to remove the temporary stack flags */ 806 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); 807 808 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 809 stack_size = vma->vm_end - vma->vm_start; 810 /* 811 * Align this down to a page boundary as expand_stack 812 * will align it up. 813 */ 814 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 815 816 stack_expand = min(rlim_stack, stack_size + stack_expand); 817 818 #ifdef CONFIG_STACK_GROWSUP 819 stack_base = vma->vm_start + stack_expand; 820 #else 821 stack_base = vma->vm_end - stack_expand; 822 #endif 823 current->mm->start_stack = bprm->p; 824 ret = expand_stack_locked(vma, stack_base); 825 if (ret) 826 ret = -EFAULT; 827 828 out_unlock: 829 mmap_write_unlock(mm); 830 return ret; 831 } 832 EXPORT_SYMBOL(setup_arg_pages); 833 834 #else 835 836 /* 837 * Transfer the program arguments and environment from the holding pages 838 * onto the stack. The provided stack pointer is adjusted accordingly. 839 */ 840 int transfer_args_to_stack(struct linux_binprm *bprm, 841 unsigned long *sp_location) 842 { 843 unsigned long index, stop, sp; 844 int ret = 0; 845 846 stop = bprm->p >> PAGE_SHIFT; 847 sp = *sp_location; 848 849 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 850 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 851 char *src = kmap_local_page(bprm->page[index]) + offset; 852 sp -= PAGE_SIZE - offset; 853 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 854 ret = -EFAULT; 855 kunmap_local(src); 856 if (ret) 857 goto out; 858 } 859 860 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE; 861 *sp_location = sp; 862 863 out: 864 return ret; 865 } 866 EXPORT_SYMBOL(transfer_args_to_stack); 867 868 #endif /* CONFIG_MMU */ 869 870 /* 871 * On success, caller must call do_close_execat() on the returned 872 * struct file to close it. 873 */ 874 static struct file *do_open_execat(int fd, struct filename *name, int flags) 875 { 876 int err; 877 struct file *file __free(fput) = NULL; 878 struct open_flags open_exec_flags = { 879 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 880 .acc_mode = MAY_EXEC, 881 .intent = LOOKUP_OPEN, 882 .lookup_flags = LOOKUP_FOLLOW, 883 }; 884 885 if ((flags & 886 ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH | AT_EXECVE_CHECK)) != 0) 887 return ERR_PTR(-EINVAL); 888 if (flags & AT_SYMLINK_NOFOLLOW) 889 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 890 if (flags & AT_EMPTY_PATH) 891 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 892 893 file = do_filp_open(fd, name, &open_exec_flags); 894 if (IS_ERR(file)) 895 return file; 896 897 /* 898 * In the past the regular type check was here. It moved to may_open() in 899 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is 900 * an invariant that all non-regular files error out before we get here. 901 */ 902 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 903 path_noexec(&file->f_path)) 904 return ERR_PTR(-EACCES); 905 906 err = exe_file_deny_write_access(file); 907 if (err) 908 return ERR_PTR(err); 909 910 return no_free_ptr(file); 911 } 912 913 /** 914 * open_exec - Open a path name for execution 915 * 916 * @name: path name to open with the intent of executing it. 917 * 918 * Returns ERR_PTR on failure or allocated struct file on success. 919 * 920 * As this is a wrapper for the internal do_open_execat(), callers 921 * must call exe_file_allow_write_access() before fput() on release. Also see 922 * do_close_execat(). 923 */ 924 struct file *open_exec(const char *name) 925 { 926 struct filename *filename = getname_kernel(name); 927 struct file *f = ERR_CAST(filename); 928 929 if (!IS_ERR(filename)) { 930 f = do_open_execat(AT_FDCWD, filename, 0); 931 putname(filename); 932 } 933 return f; 934 } 935 EXPORT_SYMBOL(open_exec); 936 937 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 938 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 939 { 940 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 941 if (res > 0) 942 flush_icache_user_range(addr, addr + len); 943 return res; 944 } 945 EXPORT_SYMBOL(read_code); 946 #endif 947 948 /* 949 * Maps the mm_struct mm into the current task struct. 950 * On success, this function returns with exec_update_lock 951 * held for writing. 952 */ 953 static int exec_mmap(struct mm_struct *mm) 954 { 955 struct task_struct *tsk; 956 struct mm_struct *old_mm, *active_mm; 957 int ret; 958 959 /* Notify parent that we're no longer interested in the old VM */ 960 tsk = current; 961 old_mm = current->mm; 962 exec_mm_release(tsk, old_mm); 963 964 ret = down_write_killable(&tsk->signal->exec_update_lock); 965 if (ret) 966 return ret; 967 968 if (old_mm) { 969 /* 970 * If there is a pending fatal signal perhaps a signal 971 * whose default action is to create a coredump get 972 * out and die instead of going through with the exec. 973 */ 974 ret = mmap_read_lock_killable(old_mm); 975 if (ret) { 976 up_write(&tsk->signal->exec_update_lock); 977 return ret; 978 } 979 } 980 981 task_lock(tsk); 982 membarrier_exec_mmap(mm); 983 984 local_irq_disable(); 985 active_mm = tsk->active_mm; 986 tsk->active_mm = mm; 987 tsk->mm = mm; 988 mm_init_cid(mm, tsk); 989 /* 990 * This prevents preemption while active_mm is being loaded and 991 * it and mm are being updated, which could cause problems for 992 * lazy tlb mm refcounting when these are updated by context 993 * switches. Not all architectures can handle irqs off over 994 * activate_mm yet. 995 */ 996 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 997 local_irq_enable(); 998 activate_mm(active_mm, mm); 999 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1000 local_irq_enable(); 1001 lru_gen_add_mm(mm); 1002 task_unlock(tsk); 1003 lru_gen_use_mm(mm); 1004 if (old_mm) { 1005 mmap_read_unlock(old_mm); 1006 BUG_ON(active_mm != old_mm); 1007 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1008 mm_update_next_owner(old_mm); 1009 mmput(old_mm); 1010 return 0; 1011 } 1012 mmdrop_lazy_tlb(active_mm); 1013 return 0; 1014 } 1015 1016 static int de_thread(struct task_struct *tsk) 1017 { 1018 struct signal_struct *sig = tsk->signal; 1019 struct sighand_struct *oldsighand = tsk->sighand; 1020 spinlock_t *lock = &oldsighand->siglock; 1021 1022 if (thread_group_empty(tsk)) 1023 goto no_thread_group; 1024 1025 /* 1026 * Kill all other threads in the thread group. 1027 */ 1028 spin_lock_irq(lock); 1029 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1030 /* 1031 * Another group action in progress, just 1032 * return so that the signal is processed. 1033 */ 1034 spin_unlock_irq(lock); 1035 return -EAGAIN; 1036 } 1037 1038 sig->group_exec_task = tsk; 1039 sig->notify_count = zap_other_threads(tsk); 1040 if (!thread_group_leader(tsk)) 1041 sig->notify_count--; 1042 1043 while (sig->notify_count) { 1044 __set_current_state(TASK_KILLABLE); 1045 spin_unlock_irq(lock); 1046 schedule(); 1047 if (__fatal_signal_pending(tsk)) 1048 goto killed; 1049 spin_lock_irq(lock); 1050 } 1051 spin_unlock_irq(lock); 1052 1053 /* 1054 * At this point all other threads have exited, all we have to 1055 * do is to wait for the thread group leader to become inactive, 1056 * and to assume its PID: 1057 */ 1058 if (!thread_group_leader(tsk)) { 1059 struct task_struct *leader = tsk->group_leader; 1060 1061 for (;;) { 1062 cgroup_threadgroup_change_begin(tsk); 1063 write_lock_irq(&tasklist_lock); 1064 /* 1065 * Do this under tasklist_lock to ensure that 1066 * exit_notify() can't miss ->group_exec_task 1067 */ 1068 sig->notify_count = -1; 1069 if (likely(leader->exit_state)) 1070 break; 1071 __set_current_state(TASK_KILLABLE); 1072 write_unlock_irq(&tasklist_lock); 1073 cgroup_threadgroup_change_end(tsk); 1074 schedule(); 1075 if (__fatal_signal_pending(tsk)) 1076 goto killed; 1077 } 1078 1079 /* 1080 * The only record we have of the real-time age of a 1081 * process, regardless of execs it's done, is start_time. 1082 * All the past CPU time is accumulated in signal_struct 1083 * from sister threads now dead. But in this non-leader 1084 * exec, nothing survives from the original leader thread, 1085 * whose birth marks the true age of this process now. 1086 * When we take on its identity by switching to its PID, we 1087 * also take its birthdate (always earlier than our own). 1088 */ 1089 tsk->start_time = leader->start_time; 1090 tsk->start_boottime = leader->start_boottime; 1091 1092 BUG_ON(!same_thread_group(leader, tsk)); 1093 /* 1094 * An exec() starts a new thread group with the 1095 * TGID of the previous thread group. Rehash the 1096 * two threads with a switched PID, and release 1097 * the former thread group leader: 1098 */ 1099 1100 /* Become a process group leader with the old leader's pid. 1101 * The old leader becomes a thread of the this thread group. 1102 */ 1103 exchange_tids(tsk, leader); 1104 transfer_pid(leader, tsk, PIDTYPE_TGID); 1105 transfer_pid(leader, tsk, PIDTYPE_PGID); 1106 transfer_pid(leader, tsk, PIDTYPE_SID); 1107 1108 list_replace_rcu(&leader->tasks, &tsk->tasks); 1109 list_replace_init(&leader->sibling, &tsk->sibling); 1110 1111 tsk->group_leader = tsk; 1112 leader->group_leader = tsk; 1113 1114 tsk->exit_signal = SIGCHLD; 1115 leader->exit_signal = -1; 1116 1117 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1118 leader->exit_state = EXIT_DEAD; 1119 /* 1120 * We are going to release_task()->ptrace_unlink() silently, 1121 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1122 * the tracer won't block again waiting for this thread. 1123 */ 1124 if (unlikely(leader->ptrace)) 1125 __wake_up_parent(leader, leader->parent); 1126 write_unlock_irq(&tasklist_lock); 1127 cgroup_threadgroup_change_end(tsk); 1128 1129 release_task(leader); 1130 } 1131 1132 sig->group_exec_task = NULL; 1133 sig->notify_count = 0; 1134 1135 no_thread_group: 1136 /* we have changed execution domain */ 1137 tsk->exit_signal = SIGCHLD; 1138 1139 BUG_ON(!thread_group_leader(tsk)); 1140 return 0; 1141 1142 killed: 1143 /* protects against exit_notify() and __exit_signal() */ 1144 read_lock(&tasklist_lock); 1145 sig->group_exec_task = NULL; 1146 sig->notify_count = 0; 1147 read_unlock(&tasklist_lock); 1148 return -EAGAIN; 1149 } 1150 1151 1152 /* 1153 * This function makes sure the current process has its own signal table, 1154 * so that flush_signal_handlers can later reset the handlers without 1155 * disturbing other processes. (Other processes might share the signal 1156 * table via the CLONE_SIGHAND option to clone().) 1157 */ 1158 static int unshare_sighand(struct task_struct *me) 1159 { 1160 struct sighand_struct *oldsighand = me->sighand; 1161 1162 if (refcount_read(&oldsighand->count) != 1) { 1163 struct sighand_struct *newsighand; 1164 /* 1165 * This ->sighand is shared with the CLONE_SIGHAND 1166 * but not CLONE_THREAD task, switch to the new one. 1167 */ 1168 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1169 if (!newsighand) 1170 return -ENOMEM; 1171 1172 refcount_set(&newsighand->count, 1); 1173 1174 write_lock_irq(&tasklist_lock); 1175 spin_lock(&oldsighand->siglock); 1176 memcpy(newsighand->action, oldsighand->action, 1177 sizeof(newsighand->action)); 1178 rcu_assign_pointer(me->sighand, newsighand); 1179 spin_unlock(&oldsighand->siglock); 1180 write_unlock_irq(&tasklist_lock); 1181 1182 __cleanup_sighand(oldsighand); 1183 } 1184 return 0; 1185 } 1186 1187 /* 1188 * This is unlocked -- the string will always be NUL-terminated, but 1189 * may show overlapping contents if racing concurrent reads. 1190 */ 1191 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1192 { 1193 size_t len = min(strlen(buf), sizeof(tsk->comm) - 1); 1194 1195 trace_task_rename(tsk, buf); 1196 memcpy(tsk->comm, buf, len); 1197 memset(&tsk->comm[len], 0, sizeof(tsk->comm) - len); 1198 perf_event_comm(tsk, exec); 1199 } 1200 1201 /* 1202 * Calling this is the point of no return. None of the failures will be 1203 * seen by userspace since either the process is already taking a fatal 1204 * signal (via de_thread() or coredump), or will have SEGV raised 1205 * (after exec_mmap()) by search_binary_handler (see below). 1206 */ 1207 int begin_new_exec(struct linux_binprm * bprm) 1208 { 1209 struct task_struct *me = current; 1210 int retval; 1211 1212 /* Once we are committed compute the creds */ 1213 retval = bprm_creds_from_file(bprm); 1214 if (retval) 1215 return retval; 1216 1217 /* 1218 * This tracepoint marks the point before flushing the old exec where 1219 * the current task is still unchanged, but errors are fatal (point of 1220 * no return). The later "sched_process_exec" tracepoint is called after 1221 * the current task has successfully switched to the new exec. 1222 */ 1223 trace_sched_prepare_exec(current, bprm); 1224 1225 /* 1226 * Ensure all future errors are fatal. 1227 */ 1228 bprm->point_of_no_return = true; 1229 1230 /* Make this the only thread in the thread group */ 1231 retval = de_thread(me); 1232 if (retval) 1233 goto out; 1234 /* see the comment in check_unsafe_exec() */ 1235 current->fs->in_exec = 0; 1236 /* 1237 * Cancel any io_uring activity across execve 1238 */ 1239 io_uring_task_cancel(); 1240 1241 /* Ensure the files table is not shared. */ 1242 retval = unshare_files(); 1243 if (retval) 1244 goto out; 1245 1246 /* 1247 * Must be called _before_ exec_mmap() as bprm->mm is 1248 * not visible until then. Doing it here also ensures 1249 * we don't race against replace_mm_exe_file(). 1250 */ 1251 retval = set_mm_exe_file(bprm->mm, bprm->file); 1252 if (retval) 1253 goto out; 1254 1255 /* If the binary is not readable then enforce mm->dumpable=0 */ 1256 would_dump(bprm, bprm->file); 1257 if (bprm->have_execfd) 1258 would_dump(bprm, bprm->executable); 1259 1260 /* 1261 * Release all of the old mmap stuff 1262 */ 1263 acct_arg_size(bprm, 0); 1264 retval = exec_mmap(bprm->mm); 1265 if (retval) 1266 goto out; 1267 1268 bprm->mm = NULL; 1269 1270 retval = exec_task_namespaces(); 1271 if (retval) 1272 goto out_unlock; 1273 1274 #ifdef CONFIG_POSIX_TIMERS 1275 spin_lock_irq(&me->sighand->siglock); 1276 posix_cpu_timers_exit(me); 1277 spin_unlock_irq(&me->sighand->siglock); 1278 exit_itimers(me); 1279 flush_itimer_signals(); 1280 #endif 1281 1282 /* 1283 * Make the signal table private. 1284 */ 1285 retval = unshare_sighand(me); 1286 if (retval) 1287 goto out_unlock; 1288 1289 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1290 PF_NOFREEZE | PF_NO_SETAFFINITY); 1291 flush_thread(); 1292 me->personality &= ~bprm->per_clear; 1293 1294 clear_syscall_work_syscall_user_dispatch(me); 1295 1296 /* 1297 * We have to apply CLOEXEC before we change whether the process is 1298 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1299 * trying to access the should-be-closed file descriptors of a process 1300 * undergoing exec(2). 1301 */ 1302 do_close_on_exec(me->files); 1303 1304 if (bprm->secureexec) { 1305 /* Make sure parent cannot signal privileged process. */ 1306 me->pdeath_signal = 0; 1307 1308 /* 1309 * For secureexec, reset the stack limit to sane default to 1310 * avoid bad behavior from the prior rlimits. This has to 1311 * happen before arch_pick_mmap_layout(), which examines 1312 * RLIMIT_STACK, but after the point of no return to avoid 1313 * needing to clean up the change on failure. 1314 */ 1315 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1316 bprm->rlim_stack.rlim_cur = _STK_LIM; 1317 } 1318 1319 me->sas_ss_sp = me->sas_ss_size = 0; 1320 1321 /* 1322 * Figure out dumpability. Note that this checking only of current 1323 * is wrong, but userspace depends on it. This should be testing 1324 * bprm->secureexec instead. 1325 */ 1326 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1327 !(uid_eq(current_euid(), current_uid()) && 1328 gid_eq(current_egid(), current_gid()))) 1329 set_dumpable(current->mm, suid_dumpable); 1330 else 1331 set_dumpable(current->mm, SUID_DUMP_USER); 1332 1333 perf_event_exec(); 1334 1335 /* 1336 * If the original filename was empty, alloc_bprm() made up a path 1337 * that will probably not be useful to admins running ps or similar. 1338 * Let's fix it up to be something reasonable. 1339 */ 1340 if (bprm->comm_from_dentry) { 1341 /* 1342 * Hold RCU lock to keep the name from being freed behind our back. 1343 * Use acquire semantics to make sure the terminating NUL from 1344 * __d_alloc() is seen. 1345 * 1346 * Note, we're deliberately sloppy here. We don't need to care about 1347 * detecting a concurrent rename and just want a terminated name. 1348 */ 1349 rcu_read_lock(); 1350 __set_task_comm(me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name), 1351 true); 1352 rcu_read_unlock(); 1353 } else { 1354 __set_task_comm(me, kbasename(bprm->filename), true); 1355 } 1356 1357 /* An exec changes our domain. We are no longer part of the thread 1358 group */ 1359 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1360 flush_signal_handlers(me, 0); 1361 1362 retval = set_cred_ucounts(bprm->cred); 1363 if (retval < 0) 1364 goto out_unlock; 1365 1366 /* 1367 * install the new credentials for this executable 1368 */ 1369 security_bprm_committing_creds(bprm); 1370 1371 commit_creds(bprm->cred); 1372 bprm->cred = NULL; 1373 1374 /* 1375 * Disable monitoring for regular users 1376 * when executing setuid binaries. Must 1377 * wait until new credentials are committed 1378 * by commit_creds() above 1379 */ 1380 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1381 perf_event_exit_task(me); 1382 /* 1383 * cred_guard_mutex must be held at least to this point to prevent 1384 * ptrace_attach() from altering our determination of the task's 1385 * credentials; any time after this it may be unlocked. 1386 */ 1387 security_bprm_committed_creds(bprm); 1388 1389 /* Pass the opened binary to the interpreter. */ 1390 if (bprm->have_execfd) { 1391 retval = get_unused_fd_flags(0); 1392 if (retval < 0) 1393 goto out_unlock; 1394 fd_install(retval, bprm->executable); 1395 bprm->executable = NULL; 1396 bprm->execfd = retval; 1397 } 1398 return 0; 1399 1400 out_unlock: 1401 up_write(&me->signal->exec_update_lock); 1402 if (!bprm->cred) 1403 mutex_unlock(&me->signal->cred_guard_mutex); 1404 1405 out: 1406 return retval; 1407 } 1408 EXPORT_SYMBOL(begin_new_exec); 1409 1410 void would_dump(struct linux_binprm *bprm, struct file *file) 1411 { 1412 struct inode *inode = file_inode(file); 1413 struct mnt_idmap *idmap = file_mnt_idmap(file); 1414 if (inode_permission(idmap, inode, MAY_READ) < 0) { 1415 struct user_namespace *old, *user_ns; 1416 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1417 1418 /* Ensure mm->user_ns contains the executable */ 1419 user_ns = old = bprm->mm->user_ns; 1420 while ((user_ns != &init_user_ns) && 1421 !privileged_wrt_inode_uidgid(user_ns, idmap, inode)) 1422 user_ns = user_ns->parent; 1423 1424 if (old != user_ns) { 1425 bprm->mm->user_ns = get_user_ns(user_ns); 1426 put_user_ns(old); 1427 } 1428 } 1429 } 1430 EXPORT_SYMBOL(would_dump); 1431 1432 void setup_new_exec(struct linux_binprm * bprm) 1433 { 1434 /* Setup things that can depend upon the personality */ 1435 struct task_struct *me = current; 1436 1437 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1438 1439 arch_setup_new_exec(); 1440 1441 /* Set the new mm task size. We have to do that late because it may 1442 * depend on TIF_32BIT which is only updated in flush_thread() on 1443 * some architectures like powerpc 1444 */ 1445 me->mm->task_size = TASK_SIZE; 1446 up_write(&me->signal->exec_update_lock); 1447 mutex_unlock(&me->signal->cred_guard_mutex); 1448 } 1449 EXPORT_SYMBOL(setup_new_exec); 1450 1451 /* Runs immediately before start_thread() takes over. */ 1452 void finalize_exec(struct linux_binprm *bprm) 1453 { 1454 /* Store any stack rlimit changes before starting thread. */ 1455 task_lock(current->group_leader); 1456 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1457 task_unlock(current->group_leader); 1458 } 1459 EXPORT_SYMBOL(finalize_exec); 1460 1461 /* 1462 * Prepare credentials and lock ->cred_guard_mutex. 1463 * setup_new_exec() commits the new creds and drops the lock. 1464 * Or, if exec fails before, free_bprm() should release ->cred 1465 * and unlock. 1466 */ 1467 static int prepare_bprm_creds(struct linux_binprm *bprm) 1468 { 1469 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1470 return -ERESTARTNOINTR; 1471 1472 bprm->cred = prepare_exec_creds(); 1473 if (likely(bprm->cred)) 1474 return 0; 1475 1476 mutex_unlock(¤t->signal->cred_guard_mutex); 1477 return -ENOMEM; 1478 } 1479 1480 /* Matches do_open_execat() */ 1481 static void do_close_execat(struct file *file) 1482 { 1483 if (!file) 1484 return; 1485 exe_file_allow_write_access(file); 1486 fput(file); 1487 } 1488 1489 static void free_bprm(struct linux_binprm *bprm) 1490 { 1491 if (bprm->mm) { 1492 acct_arg_size(bprm, 0); 1493 mmput(bprm->mm); 1494 } 1495 free_arg_pages(bprm); 1496 if (bprm->cred) { 1497 /* in case exec fails before de_thread() succeeds */ 1498 current->fs->in_exec = 0; 1499 mutex_unlock(¤t->signal->cred_guard_mutex); 1500 abort_creds(bprm->cred); 1501 } 1502 do_close_execat(bprm->file); 1503 if (bprm->executable) 1504 fput(bprm->executable); 1505 /* If a binfmt changed the interp, free it. */ 1506 if (bprm->interp != bprm->filename) 1507 kfree(bprm->interp); 1508 kfree(bprm->fdpath); 1509 kfree(bprm); 1510 } 1511 1512 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags) 1513 { 1514 struct linux_binprm *bprm; 1515 struct file *file; 1516 int retval = -ENOMEM; 1517 1518 file = do_open_execat(fd, filename, flags); 1519 if (IS_ERR(file)) 1520 return ERR_CAST(file); 1521 1522 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1523 if (!bprm) { 1524 do_close_execat(file); 1525 return ERR_PTR(-ENOMEM); 1526 } 1527 1528 bprm->file = file; 1529 1530 if (fd == AT_FDCWD || filename->name[0] == '/') { 1531 bprm->filename = filename->name; 1532 } else { 1533 if (filename->name[0] == '\0') { 1534 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1535 bprm->comm_from_dentry = 1; 1536 } else { 1537 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1538 fd, filename->name); 1539 } 1540 if (!bprm->fdpath) 1541 goto out_free; 1542 1543 /* 1544 * Record that a name derived from an O_CLOEXEC fd will be 1545 * inaccessible after exec. This allows the code in exec to 1546 * choose to fail when the executable is not mmaped into the 1547 * interpreter and an open file descriptor is not passed to 1548 * the interpreter. This makes for a better user experience 1549 * than having the interpreter start and then immediately fail 1550 * when it finds the executable is inaccessible. 1551 */ 1552 if (get_close_on_exec(fd)) 1553 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1554 1555 bprm->filename = bprm->fdpath; 1556 } 1557 bprm->interp = bprm->filename; 1558 1559 /* 1560 * At this point, security_file_open() has already been called (with 1561 * __FMODE_EXEC) and access control checks for AT_EXECVE_CHECK will 1562 * stop just after the security_bprm_creds_for_exec() call in 1563 * bprm_execve(). Indeed, the kernel should not try to parse the 1564 * content of the file with exec_binprm() nor change the calling 1565 * thread, which means that the following security functions will not 1566 * be called: 1567 * - security_bprm_check() 1568 * - security_bprm_creds_from_file() 1569 * - security_bprm_committing_creds() 1570 * - security_bprm_committed_creds() 1571 */ 1572 bprm->is_check = !!(flags & AT_EXECVE_CHECK); 1573 1574 retval = bprm_mm_init(bprm); 1575 if (!retval) 1576 return bprm; 1577 1578 out_free: 1579 free_bprm(bprm); 1580 return ERR_PTR(retval); 1581 } 1582 1583 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1584 { 1585 /* If a binfmt changed the interp, free it first. */ 1586 if (bprm->interp != bprm->filename) 1587 kfree(bprm->interp); 1588 bprm->interp = kstrdup(interp, GFP_KERNEL); 1589 if (!bprm->interp) 1590 return -ENOMEM; 1591 return 0; 1592 } 1593 EXPORT_SYMBOL(bprm_change_interp); 1594 1595 /* 1596 * determine how safe it is to execute the proposed program 1597 * - the caller must hold ->cred_guard_mutex to protect against 1598 * PTRACE_ATTACH or seccomp thread-sync 1599 */ 1600 static void check_unsafe_exec(struct linux_binprm *bprm) 1601 { 1602 struct task_struct *p = current, *t; 1603 unsigned n_fs; 1604 1605 if (p->ptrace) 1606 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1607 1608 /* 1609 * This isn't strictly necessary, but it makes it harder for LSMs to 1610 * mess up. 1611 */ 1612 if (task_no_new_privs(current)) 1613 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1614 1615 /* 1616 * If another task is sharing our fs, we cannot safely 1617 * suid exec because the differently privileged task 1618 * will be able to manipulate the current directory, etc. 1619 * It would be nice to force an unshare instead... 1620 * 1621 * Otherwise we set fs->in_exec = 1 to deny clone(CLONE_FS) 1622 * from another sub-thread until de_thread() succeeds, this 1623 * state is protected by cred_guard_mutex we hold. 1624 */ 1625 n_fs = 1; 1626 spin_lock(&p->fs->lock); 1627 rcu_read_lock(); 1628 for_other_threads(p, t) { 1629 if (t->fs == p->fs) 1630 n_fs++; 1631 } 1632 rcu_read_unlock(); 1633 1634 /* "users" and "in_exec" locked for copy_fs() */ 1635 if (p->fs->users > n_fs) 1636 bprm->unsafe |= LSM_UNSAFE_SHARE; 1637 else 1638 p->fs->in_exec = 1; 1639 spin_unlock(&p->fs->lock); 1640 } 1641 1642 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1643 { 1644 /* Handle suid and sgid on files */ 1645 struct mnt_idmap *idmap; 1646 struct inode *inode = file_inode(file); 1647 unsigned int mode; 1648 vfsuid_t vfsuid; 1649 vfsgid_t vfsgid; 1650 int err; 1651 1652 if (!mnt_may_suid(file->f_path.mnt)) 1653 return; 1654 1655 if (task_no_new_privs(current)) 1656 return; 1657 1658 mode = READ_ONCE(inode->i_mode); 1659 if (!(mode & (S_ISUID|S_ISGID))) 1660 return; 1661 1662 idmap = file_mnt_idmap(file); 1663 1664 /* Be careful if suid/sgid is set */ 1665 inode_lock(inode); 1666 1667 /* Atomically reload and check mode/uid/gid now that lock held. */ 1668 mode = inode->i_mode; 1669 vfsuid = i_uid_into_vfsuid(idmap, inode); 1670 vfsgid = i_gid_into_vfsgid(idmap, inode); 1671 err = inode_permission(idmap, inode, MAY_EXEC); 1672 inode_unlock(inode); 1673 1674 /* Did the exec bit vanish out from under us? Give up. */ 1675 if (err) 1676 return; 1677 1678 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1679 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1680 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1681 return; 1682 1683 if (mode & S_ISUID) { 1684 bprm->per_clear |= PER_CLEAR_ON_SETID; 1685 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1686 } 1687 1688 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1689 bprm->per_clear |= PER_CLEAR_ON_SETID; 1690 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1691 } 1692 } 1693 1694 /* 1695 * Compute brpm->cred based upon the final binary. 1696 */ 1697 static int bprm_creds_from_file(struct linux_binprm *bprm) 1698 { 1699 /* Compute creds based on which file? */ 1700 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1701 1702 bprm_fill_uid(bprm, file); 1703 return security_bprm_creds_from_file(bprm, file); 1704 } 1705 1706 /* 1707 * Fill the binprm structure from the inode. 1708 * Read the first BINPRM_BUF_SIZE bytes 1709 * 1710 * This may be called multiple times for binary chains (scripts for example). 1711 */ 1712 static int prepare_binprm(struct linux_binprm *bprm) 1713 { 1714 loff_t pos = 0; 1715 1716 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1717 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1718 } 1719 1720 /* 1721 * Arguments are '\0' separated strings found at the location bprm->p 1722 * points to; chop off the first by relocating brpm->p to right after 1723 * the first '\0' encountered. 1724 */ 1725 int remove_arg_zero(struct linux_binprm *bprm) 1726 { 1727 unsigned long offset; 1728 char *kaddr; 1729 struct page *page; 1730 1731 if (!bprm->argc) 1732 return 0; 1733 1734 do { 1735 offset = bprm->p & ~PAGE_MASK; 1736 page = get_arg_page(bprm, bprm->p, 0); 1737 if (!page) 1738 return -EFAULT; 1739 kaddr = kmap_local_page(page); 1740 1741 for (; offset < PAGE_SIZE && kaddr[offset]; 1742 offset++, bprm->p++) 1743 ; 1744 1745 kunmap_local(kaddr); 1746 put_arg_page(page); 1747 } while (offset == PAGE_SIZE); 1748 1749 bprm->p++; 1750 bprm->argc--; 1751 1752 return 0; 1753 } 1754 EXPORT_SYMBOL(remove_arg_zero); 1755 1756 /* 1757 * cycle the list of binary formats handler, until one recognizes the image 1758 */ 1759 static int search_binary_handler(struct linux_binprm *bprm) 1760 { 1761 struct linux_binfmt *fmt; 1762 int retval; 1763 1764 retval = prepare_binprm(bprm); 1765 if (retval < 0) 1766 return retval; 1767 1768 retval = security_bprm_check(bprm); 1769 if (retval) 1770 return retval; 1771 1772 read_lock(&binfmt_lock); 1773 list_for_each_entry(fmt, &formats, lh) { 1774 if (!try_module_get(fmt->module)) 1775 continue; 1776 read_unlock(&binfmt_lock); 1777 1778 retval = fmt->load_binary(bprm); 1779 1780 read_lock(&binfmt_lock); 1781 put_binfmt(fmt); 1782 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1783 read_unlock(&binfmt_lock); 1784 return retval; 1785 } 1786 } 1787 read_unlock(&binfmt_lock); 1788 1789 return -ENOEXEC; 1790 } 1791 1792 /* binfmt handlers will call back into begin_new_exec() on success. */ 1793 static int exec_binprm(struct linux_binprm *bprm) 1794 { 1795 pid_t old_pid, old_vpid; 1796 int ret, depth; 1797 1798 /* Need to fetch pid before load_binary changes it */ 1799 old_pid = current->pid; 1800 rcu_read_lock(); 1801 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1802 rcu_read_unlock(); 1803 1804 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1805 for (depth = 0;; depth++) { 1806 struct file *exec; 1807 if (depth > 5) 1808 return -ELOOP; 1809 1810 ret = search_binary_handler(bprm); 1811 if (ret < 0) 1812 return ret; 1813 if (!bprm->interpreter) 1814 break; 1815 1816 exec = bprm->file; 1817 bprm->file = bprm->interpreter; 1818 bprm->interpreter = NULL; 1819 1820 exe_file_allow_write_access(exec); 1821 if (unlikely(bprm->have_execfd)) { 1822 if (bprm->executable) { 1823 fput(exec); 1824 return -ENOEXEC; 1825 } 1826 bprm->executable = exec; 1827 } else 1828 fput(exec); 1829 } 1830 1831 audit_bprm(bprm); 1832 trace_sched_process_exec(current, old_pid, bprm); 1833 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1834 proc_exec_connector(current); 1835 return 0; 1836 } 1837 1838 static int bprm_execve(struct linux_binprm *bprm) 1839 { 1840 int retval; 1841 1842 retval = prepare_bprm_creds(bprm); 1843 if (retval) 1844 return retval; 1845 1846 /* 1847 * Check for unsafe execution states before exec_binprm(), which 1848 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1849 * where setuid-ness is evaluated. 1850 */ 1851 check_unsafe_exec(bprm); 1852 current->in_execve = 1; 1853 sched_mm_cid_before_execve(current); 1854 1855 sched_exec(); 1856 1857 /* Set the unchanging part of bprm->cred */ 1858 retval = security_bprm_creds_for_exec(bprm); 1859 if (retval || bprm->is_check) 1860 goto out; 1861 1862 retval = exec_binprm(bprm); 1863 if (retval < 0) 1864 goto out; 1865 1866 sched_mm_cid_after_execve(current); 1867 rseq_execve(current); 1868 /* execve succeeded */ 1869 current->in_execve = 0; 1870 user_events_execve(current); 1871 acct_update_integrals(current); 1872 task_numa_free(current, false); 1873 return retval; 1874 1875 out: 1876 /* 1877 * If past the point of no return ensure the code never 1878 * returns to the userspace process. Use an existing fatal 1879 * signal if present otherwise terminate the process with 1880 * SIGSEGV. 1881 */ 1882 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1883 force_fatal_sig(SIGSEGV); 1884 1885 sched_mm_cid_after_execve(current); 1886 rseq_set_notify_resume(current); 1887 current->in_execve = 0; 1888 1889 return retval; 1890 } 1891 1892 static int do_execveat_common(int fd, struct filename *filename, 1893 struct user_arg_ptr argv, 1894 struct user_arg_ptr envp, 1895 int flags) 1896 { 1897 struct linux_binprm *bprm; 1898 int retval; 1899 1900 if (IS_ERR(filename)) 1901 return PTR_ERR(filename); 1902 1903 /* 1904 * We move the actual failure in case of RLIMIT_NPROC excess from 1905 * set*uid() to execve() because too many poorly written programs 1906 * don't check setuid() return code. Here we additionally recheck 1907 * whether NPROC limit is still exceeded. 1908 */ 1909 if ((current->flags & PF_NPROC_EXCEEDED) && 1910 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1911 retval = -EAGAIN; 1912 goto out_ret; 1913 } 1914 1915 /* We're below the limit (still or again), so we don't want to make 1916 * further execve() calls fail. */ 1917 current->flags &= ~PF_NPROC_EXCEEDED; 1918 1919 bprm = alloc_bprm(fd, filename, flags); 1920 if (IS_ERR(bprm)) { 1921 retval = PTR_ERR(bprm); 1922 goto out_ret; 1923 } 1924 1925 retval = count(argv, MAX_ARG_STRINGS); 1926 if (retval < 0) 1927 goto out_free; 1928 bprm->argc = retval; 1929 1930 retval = count(envp, MAX_ARG_STRINGS); 1931 if (retval < 0) 1932 goto out_free; 1933 bprm->envc = retval; 1934 1935 retval = bprm_stack_limits(bprm); 1936 if (retval < 0) 1937 goto out_free; 1938 1939 retval = copy_string_kernel(bprm->filename, bprm); 1940 if (retval < 0) 1941 goto out_free; 1942 bprm->exec = bprm->p; 1943 1944 retval = copy_strings(bprm->envc, envp, bprm); 1945 if (retval < 0) 1946 goto out_free; 1947 1948 retval = copy_strings(bprm->argc, argv, bprm); 1949 if (retval < 0) 1950 goto out_free; 1951 1952 /* 1953 * When argv is empty, add an empty string ("") as argv[0] to 1954 * ensure confused userspace programs that start processing 1955 * from argv[1] won't end up walking envp. See also 1956 * bprm_stack_limits(). 1957 */ 1958 if (bprm->argc == 0) { 1959 retval = copy_string_kernel("", bprm); 1960 if (retval < 0) 1961 goto out_free; 1962 bprm->argc = 1; 1963 1964 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1965 current->comm, bprm->filename); 1966 } 1967 1968 retval = bprm_execve(bprm); 1969 out_free: 1970 free_bprm(bprm); 1971 1972 out_ret: 1973 putname(filename); 1974 return retval; 1975 } 1976 1977 int kernel_execve(const char *kernel_filename, 1978 const char *const *argv, const char *const *envp) 1979 { 1980 struct filename *filename; 1981 struct linux_binprm *bprm; 1982 int fd = AT_FDCWD; 1983 int retval; 1984 1985 /* It is non-sense for kernel threads to call execve */ 1986 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1987 return -EINVAL; 1988 1989 filename = getname_kernel(kernel_filename); 1990 if (IS_ERR(filename)) 1991 return PTR_ERR(filename); 1992 1993 bprm = alloc_bprm(fd, filename, 0); 1994 if (IS_ERR(bprm)) { 1995 retval = PTR_ERR(bprm); 1996 goto out_ret; 1997 } 1998 1999 retval = count_strings_kernel(argv); 2000 if (WARN_ON_ONCE(retval == 0)) 2001 retval = -EINVAL; 2002 if (retval < 0) 2003 goto out_free; 2004 bprm->argc = retval; 2005 2006 retval = count_strings_kernel(envp); 2007 if (retval < 0) 2008 goto out_free; 2009 bprm->envc = retval; 2010 2011 retval = bprm_stack_limits(bprm); 2012 if (retval < 0) 2013 goto out_free; 2014 2015 retval = copy_string_kernel(bprm->filename, bprm); 2016 if (retval < 0) 2017 goto out_free; 2018 bprm->exec = bprm->p; 2019 2020 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2021 if (retval < 0) 2022 goto out_free; 2023 2024 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2025 if (retval < 0) 2026 goto out_free; 2027 2028 retval = bprm_execve(bprm); 2029 out_free: 2030 free_bprm(bprm); 2031 out_ret: 2032 putname(filename); 2033 return retval; 2034 } 2035 2036 static int do_execve(struct filename *filename, 2037 const char __user *const __user *__argv, 2038 const char __user *const __user *__envp) 2039 { 2040 struct user_arg_ptr argv = { .ptr.native = __argv }; 2041 struct user_arg_ptr envp = { .ptr.native = __envp }; 2042 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2043 } 2044 2045 static int do_execveat(int fd, struct filename *filename, 2046 const char __user *const __user *__argv, 2047 const char __user *const __user *__envp, 2048 int flags) 2049 { 2050 struct user_arg_ptr argv = { .ptr.native = __argv }; 2051 struct user_arg_ptr envp = { .ptr.native = __envp }; 2052 2053 return do_execveat_common(fd, filename, argv, envp, flags); 2054 } 2055 2056 #ifdef CONFIG_COMPAT 2057 static int compat_do_execve(struct filename *filename, 2058 const compat_uptr_t __user *__argv, 2059 const compat_uptr_t __user *__envp) 2060 { 2061 struct user_arg_ptr argv = { 2062 .is_compat = true, 2063 .ptr.compat = __argv, 2064 }; 2065 struct user_arg_ptr envp = { 2066 .is_compat = true, 2067 .ptr.compat = __envp, 2068 }; 2069 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2070 } 2071 2072 static int compat_do_execveat(int fd, struct filename *filename, 2073 const compat_uptr_t __user *__argv, 2074 const compat_uptr_t __user *__envp, 2075 int flags) 2076 { 2077 struct user_arg_ptr argv = { 2078 .is_compat = true, 2079 .ptr.compat = __argv, 2080 }; 2081 struct user_arg_ptr envp = { 2082 .is_compat = true, 2083 .ptr.compat = __envp, 2084 }; 2085 return do_execveat_common(fd, filename, argv, envp, flags); 2086 } 2087 #endif 2088 2089 void set_binfmt(struct linux_binfmt *new) 2090 { 2091 struct mm_struct *mm = current->mm; 2092 2093 if (mm->binfmt) 2094 module_put(mm->binfmt->module); 2095 2096 mm->binfmt = new; 2097 if (new) 2098 __module_get(new->module); 2099 } 2100 EXPORT_SYMBOL(set_binfmt); 2101 2102 /* 2103 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2104 */ 2105 void set_dumpable(struct mm_struct *mm, int value) 2106 { 2107 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2108 return; 2109 2110 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2111 } 2112 2113 SYSCALL_DEFINE3(execve, 2114 const char __user *, filename, 2115 const char __user *const __user *, argv, 2116 const char __user *const __user *, envp) 2117 { 2118 return do_execve(getname(filename), argv, envp); 2119 } 2120 2121 SYSCALL_DEFINE5(execveat, 2122 int, fd, const char __user *, filename, 2123 const char __user *const __user *, argv, 2124 const char __user *const __user *, envp, 2125 int, flags) 2126 { 2127 return do_execveat(fd, 2128 getname_uflags(filename, flags), 2129 argv, envp, flags); 2130 } 2131 2132 #ifdef CONFIG_COMPAT 2133 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2134 const compat_uptr_t __user *, argv, 2135 const compat_uptr_t __user *, envp) 2136 { 2137 return compat_do_execve(getname(filename), argv, envp); 2138 } 2139 2140 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2141 const char __user *, filename, 2142 const compat_uptr_t __user *, argv, 2143 const compat_uptr_t __user *, envp, 2144 int, flags) 2145 { 2146 return compat_do_execveat(fd, 2147 getname_uflags(filename, flags), 2148 argv, envp, flags); 2149 } 2150 #endif 2151 2152 #ifdef CONFIG_SYSCTL 2153 2154 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write, 2155 void *buffer, size_t *lenp, loff_t *ppos) 2156 { 2157 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2158 2159 if (!error) 2160 validate_coredump_safety(); 2161 return error; 2162 } 2163 2164 static const struct ctl_table fs_exec_sysctls[] = { 2165 { 2166 .procname = "suid_dumpable", 2167 .data = &suid_dumpable, 2168 .maxlen = sizeof(int), 2169 .mode = 0644, 2170 .proc_handler = proc_dointvec_minmax_coredump, 2171 .extra1 = SYSCTL_ZERO, 2172 .extra2 = SYSCTL_TWO, 2173 }, 2174 }; 2175 2176 static int __init init_fs_exec_sysctls(void) 2177 { 2178 register_sysctl_init("fs", fs_exec_sysctls); 2179 return 0; 2180 } 2181 2182 fs_initcall(init_fs_exec_sysctls); 2183 #endif /* CONFIG_SYSCTL */ 2184 2185 #ifdef CONFIG_EXEC_KUNIT_TEST 2186 #include "tests/exec_kunit.c" 2187 #endif 2188