1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 #include <linux/user_events.h> 69 #include <linux/rseq.h> 70 #include <linux/ksm.h> 71 72 #include <linux/uaccess.h> 73 #include <asm/mmu_context.h> 74 #include <asm/tlb.h> 75 76 #include <trace/events/task.h> 77 #include "internal.h" 78 79 #include <trace/events/sched.h> 80 81 static int bprm_creds_from_file(struct linux_binprm *bprm); 82 83 int suid_dumpable = 0; 84 85 static LIST_HEAD(formats); 86 static DEFINE_RWLOCK(binfmt_lock); 87 88 void __register_binfmt(struct linux_binfmt * fmt, int insert) 89 { 90 write_lock(&binfmt_lock); 91 insert ? list_add(&fmt->lh, &formats) : 92 list_add_tail(&fmt->lh, &formats); 93 write_unlock(&binfmt_lock); 94 } 95 96 EXPORT_SYMBOL(__register_binfmt); 97 98 void unregister_binfmt(struct linux_binfmt * fmt) 99 { 100 write_lock(&binfmt_lock); 101 list_del(&fmt->lh); 102 write_unlock(&binfmt_lock); 103 } 104 105 EXPORT_SYMBOL(unregister_binfmt); 106 107 static inline void put_binfmt(struct linux_binfmt * fmt) 108 { 109 module_put(fmt->module); 110 } 111 112 bool path_noexec(const struct path *path) 113 { 114 return (path->mnt->mnt_flags & MNT_NOEXEC) || 115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 116 } 117 118 #ifdef CONFIG_USELIB 119 /* 120 * Note that a shared library must be both readable and executable due to 121 * security reasons. 122 * 123 * Also note that we take the address to load from the file itself. 124 */ 125 SYSCALL_DEFINE1(uselib, const char __user *, library) 126 { 127 struct linux_binfmt *fmt; 128 struct file *file; 129 struct filename *tmp = getname(library); 130 int error = PTR_ERR(tmp); 131 static const struct open_flags uselib_flags = { 132 .open_flag = O_LARGEFILE | O_RDONLY, 133 .acc_mode = MAY_READ | MAY_EXEC, 134 .intent = LOOKUP_OPEN, 135 .lookup_flags = LOOKUP_FOLLOW, 136 }; 137 138 if (IS_ERR(tmp)) 139 goto out; 140 141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 142 putname(tmp); 143 error = PTR_ERR(file); 144 if (IS_ERR(file)) 145 goto out; 146 147 /* 148 * Check do_open_execat() for an explanation. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 152 path_noexec(&file->f_path)) 153 goto exit; 154 155 error = -ENOEXEC; 156 157 read_lock(&binfmt_lock); 158 list_for_each_entry(fmt, &formats, lh) { 159 if (!fmt->load_shlib) 160 continue; 161 if (!try_module_get(fmt->module)) 162 continue; 163 read_unlock(&binfmt_lock); 164 error = fmt->load_shlib(file); 165 read_lock(&binfmt_lock); 166 put_binfmt(fmt); 167 if (error != -ENOEXEC) 168 break; 169 } 170 read_unlock(&binfmt_lock); 171 exit: 172 fput(file); 173 out: 174 return error; 175 } 176 #endif /* #ifdef CONFIG_USELIB */ 177 178 #ifdef CONFIG_MMU 179 /* 180 * The nascent bprm->mm is not visible until exec_mmap() but it can 181 * use a lot of memory, account these pages in current->mm temporary 182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 183 * change the counter back via acct_arg_size(0). 184 */ 185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 186 { 187 struct mm_struct *mm = current->mm; 188 long diff = (long)(pages - bprm->vma_pages); 189 190 if (!mm || !diff) 191 return; 192 193 bprm->vma_pages = pages; 194 add_mm_counter(mm, MM_ANONPAGES, diff); 195 } 196 197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 198 int write) 199 { 200 struct page *page; 201 struct vm_area_struct *vma = bprm->vma; 202 struct mm_struct *mm = bprm->mm; 203 int ret; 204 205 /* 206 * Avoid relying on expanding the stack down in GUP (which 207 * does not work for STACK_GROWSUP anyway), and just do it 208 * ahead of time. 209 */ 210 if (!mmap_read_lock_maybe_expand(mm, vma, pos, write)) 211 return NULL; 212 213 /* 214 * We are doing an exec(). 'current' is the process 215 * doing the exec and 'mm' is the new process's mm. 216 */ 217 ret = get_user_pages_remote(mm, pos, 1, 218 write ? FOLL_WRITE : 0, 219 &page, NULL); 220 mmap_read_unlock(mm); 221 if (ret <= 0) 222 return NULL; 223 224 if (write) 225 acct_arg_size(bprm, vma_pages(vma)); 226 227 return page; 228 } 229 230 static void put_arg_page(struct page *page) 231 { 232 put_page(page); 233 } 234 235 static void free_arg_pages(struct linux_binprm *bprm) 236 { 237 } 238 239 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 240 struct page *page) 241 { 242 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 243 } 244 245 static int __bprm_mm_init(struct linux_binprm *bprm) 246 { 247 int err; 248 struct vm_area_struct *vma = NULL; 249 struct mm_struct *mm = bprm->mm; 250 251 bprm->vma = vma = vm_area_alloc(mm); 252 if (!vma) 253 return -ENOMEM; 254 vma_set_anonymous(vma); 255 256 if (mmap_write_lock_killable(mm)) { 257 err = -EINTR; 258 goto err_free; 259 } 260 261 /* 262 * Need to be called with mmap write lock 263 * held, to avoid race with ksmd. 264 */ 265 err = ksm_execve(mm); 266 if (err) 267 goto err_ksm; 268 269 /* 270 * Place the stack at the largest stack address the architecture 271 * supports. Later, we'll move this to an appropriate place. We don't 272 * use STACK_TOP because that can depend on attributes which aren't 273 * configured yet. 274 */ 275 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 276 vma->vm_end = STACK_TOP_MAX; 277 vma->vm_start = vma->vm_end - PAGE_SIZE; 278 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP); 279 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 280 281 err = insert_vm_struct(mm, vma); 282 if (err) 283 goto err; 284 285 mm->stack_vm = mm->total_vm = 1; 286 mmap_write_unlock(mm); 287 bprm->p = vma->vm_end - sizeof(void *); 288 return 0; 289 err: 290 ksm_exit(mm); 291 err_ksm: 292 mmap_write_unlock(mm); 293 err_free: 294 bprm->vma = NULL; 295 vm_area_free(vma); 296 return err; 297 } 298 299 static bool valid_arg_len(struct linux_binprm *bprm, long len) 300 { 301 return len <= MAX_ARG_STRLEN; 302 } 303 304 #else 305 306 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 307 { 308 } 309 310 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 311 int write) 312 { 313 struct page *page; 314 315 page = bprm->page[pos / PAGE_SIZE]; 316 if (!page && write) { 317 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 318 if (!page) 319 return NULL; 320 bprm->page[pos / PAGE_SIZE] = page; 321 } 322 323 return page; 324 } 325 326 static void put_arg_page(struct page *page) 327 { 328 } 329 330 static void free_arg_page(struct linux_binprm *bprm, int i) 331 { 332 if (bprm->page[i]) { 333 __free_page(bprm->page[i]); 334 bprm->page[i] = NULL; 335 } 336 } 337 338 static void free_arg_pages(struct linux_binprm *bprm) 339 { 340 int i; 341 342 for (i = 0; i < MAX_ARG_PAGES; i++) 343 free_arg_page(bprm, i); 344 } 345 346 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 347 struct page *page) 348 { 349 } 350 351 static int __bprm_mm_init(struct linux_binprm *bprm) 352 { 353 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 354 return 0; 355 } 356 357 static bool valid_arg_len(struct linux_binprm *bprm, long len) 358 { 359 return len <= bprm->p; 360 } 361 362 #endif /* CONFIG_MMU */ 363 364 /* 365 * Create a new mm_struct and populate it with a temporary stack 366 * vm_area_struct. We don't have enough context at this point to set the stack 367 * flags, permissions, and offset, so we use temporary values. We'll update 368 * them later in setup_arg_pages(). 369 */ 370 static int bprm_mm_init(struct linux_binprm *bprm) 371 { 372 int err; 373 struct mm_struct *mm = NULL; 374 375 bprm->mm = mm = mm_alloc(); 376 err = -ENOMEM; 377 if (!mm) 378 goto err; 379 380 /* Save current stack limit for all calculations made during exec. */ 381 task_lock(current->group_leader); 382 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 383 task_unlock(current->group_leader); 384 385 err = __bprm_mm_init(bprm); 386 if (err) 387 goto err; 388 389 return 0; 390 391 err: 392 if (mm) { 393 bprm->mm = NULL; 394 mmdrop(mm); 395 } 396 397 return err; 398 } 399 400 struct user_arg_ptr { 401 #ifdef CONFIG_COMPAT 402 bool is_compat; 403 #endif 404 union { 405 const char __user *const __user *native; 406 #ifdef CONFIG_COMPAT 407 const compat_uptr_t __user *compat; 408 #endif 409 } ptr; 410 }; 411 412 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 413 { 414 const char __user *native; 415 416 #ifdef CONFIG_COMPAT 417 if (unlikely(argv.is_compat)) { 418 compat_uptr_t compat; 419 420 if (get_user(compat, argv.ptr.compat + nr)) 421 return ERR_PTR(-EFAULT); 422 423 return compat_ptr(compat); 424 } 425 #endif 426 427 if (get_user(native, argv.ptr.native + nr)) 428 return ERR_PTR(-EFAULT); 429 430 return native; 431 } 432 433 /* 434 * count() counts the number of strings in array ARGV. 435 */ 436 static int count(struct user_arg_ptr argv, int max) 437 { 438 int i = 0; 439 440 if (argv.ptr.native != NULL) { 441 for (;;) { 442 const char __user *p = get_user_arg_ptr(argv, i); 443 444 if (!p) 445 break; 446 447 if (IS_ERR(p)) 448 return -EFAULT; 449 450 if (i >= max) 451 return -E2BIG; 452 ++i; 453 454 if (fatal_signal_pending(current)) 455 return -ERESTARTNOHAND; 456 cond_resched(); 457 } 458 } 459 return i; 460 } 461 462 static int count_strings_kernel(const char *const *argv) 463 { 464 int i; 465 466 if (!argv) 467 return 0; 468 469 for (i = 0; argv[i]; ++i) { 470 if (i >= MAX_ARG_STRINGS) 471 return -E2BIG; 472 if (fatal_signal_pending(current)) 473 return -ERESTARTNOHAND; 474 cond_resched(); 475 } 476 return i; 477 } 478 479 static inline int bprm_set_stack_limit(struct linux_binprm *bprm, 480 unsigned long limit) 481 { 482 #ifdef CONFIG_MMU 483 /* Avoid a pathological bprm->p. */ 484 if (bprm->p < limit) 485 return -E2BIG; 486 bprm->argmin = bprm->p - limit; 487 #endif 488 return 0; 489 } 490 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm) 491 { 492 #ifdef CONFIG_MMU 493 return bprm->p < bprm->argmin; 494 #else 495 return false; 496 #endif 497 } 498 499 /* 500 * Calculate bprm->argmin from: 501 * - _STK_LIM 502 * - ARG_MAX 503 * - bprm->rlim_stack.rlim_cur 504 * - bprm->argc 505 * - bprm->envc 506 * - bprm->p 507 */ 508 static int bprm_stack_limits(struct linux_binprm *bprm) 509 { 510 unsigned long limit, ptr_size; 511 512 /* 513 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 514 * (whichever is smaller) for the argv+env strings. 515 * This ensures that: 516 * - the remaining binfmt code will not run out of stack space, 517 * - the program will have a reasonable amount of stack left 518 * to work from. 519 */ 520 limit = _STK_LIM / 4 * 3; 521 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 522 /* 523 * We've historically supported up to 32 pages (ARG_MAX) 524 * of argument strings even with small stacks 525 */ 526 limit = max_t(unsigned long, limit, ARG_MAX); 527 /* Reject totally pathological counts. */ 528 if (bprm->argc < 0 || bprm->envc < 0) 529 return -E2BIG; 530 /* 531 * We must account for the size of all the argv and envp pointers to 532 * the argv and envp strings, since they will also take up space in 533 * the stack. They aren't stored until much later when we can't 534 * signal to the parent that the child has run out of stack space. 535 * Instead, calculate it here so it's possible to fail gracefully. 536 * 537 * In the case of argc = 0, make sure there is space for adding a 538 * empty string (which will bump argc to 1), to ensure confused 539 * userspace programs don't start processing from argv[1], thinking 540 * argc can never be 0, to keep them from walking envp by accident. 541 * See do_execveat_common(). 542 */ 543 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) || 544 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size)) 545 return -E2BIG; 546 if (limit <= ptr_size) 547 return -E2BIG; 548 limit -= ptr_size; 549 550 return bprm_set_stack_limit(bprm, limit); 551 } 552 553 /* 554 * 'copy_strings()' copies argument/environment strings from the old 555 * processes's memory to the new process's stack. The call to get_user_pages() 556 * ensures the destination page is created and not swapped out. 557 */ 558 static int copy_strings(int argc, struct user_arg_ptr argv, 559 struct linux_binprm *bprm) 560 { 561 struct page *kmapped_page = NULL; 562 char *kaddr = NULL; 563 unsigned long kpos = 0; 564 int ret; 565 566 while (argc-- > 0) { 567 const char __user *str; 568 int len; 569 unsigned long pos; 570 571 ret = -EFAULT; 572 str = get_user_arg_ptr(argv, argc); 573 if (IS_ERR(str)) 574 goto out; 575 576 len = strnlen_user(str, MAX_ARG_STRLEN); 577 if (!len) 578 goto out; 579 580 ret = -E2BIG; 581 if (!valid_arg_len(bprm, len)) 582 goto out; 583 584 /* We're going to work our way backwards. */ 585 pos = bprm->p; 586 str += len; 587 bprm->p -= len; 588 if (bprm_hit_stack_limit(bprm)) 589 goto out; 590 591 while (len > 0) { 592 int offset, bytes_to_copy; 593 594 if (fatal_signal_pending(current)) { 595 ret = -ERESTARTNOHAND; 596 goto out; 597 } 598 cond_resched(); 599 600 offset = pos % PAGE_SIZE; 601 if (offset == 0) 602 offset = PAGE_SIZE; 603 604 bytes_to_copy = offset; 605 if (bytes_to_copy > len) 606 bytes_to_copy = len; 607 608 offset -= bytes_to_copy; 609 pos -= bytes_to_copy; 610 str -= bytes_to_copy; 611 len -= bytes_to_copy; 612 613 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 614 struct page *page; 615 616 page = get_arg_page(bprm, pos, 1); 617 if (!page) { 618 ret = -E2BIG; 619 goto out; 620 } 621 622 if (kmapped_page) { 623 flush_dcache_page(kmapped_page); 624 kunmap_local(kaddr); 625 put_arg_page(kmapped_page); 626 } 627 kmapped_page = page; 628 kaddr = kmap_local_page(kmapped_page); 629 kpos = pos & PAGE_MASK; 630 flush_arg_page(bprm, kpos, kmapped_page); 631 } 632 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 633 ret = -EFAULT; 634 goto out; 635 } 636 } 637 } 638 ret = 0; 639 out: 640 if (kmapped_page) { 641 flush_dcache_page(kmapped_page); 642 kunmap_local(kaddr); 643 put_arg_page(kmapped_page); 644 } 645 return ret; 646 } 647 648 /* 649 * Copy and argument/environment string from the kernel to the processes stack. 650 */ 651 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 652 { 653 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 654 unsigned long pos = bprm->p; 655 656 if (len == 0) 657 return -EFAULT; 658 if (!valid_arg_len(bprm, len)) 659 return -E2BIG; 660 661 /* We're going to work our way backwards. */ 662 arg += len; 663 bprm->p -= len; 664 if (bprm_hit_stack_limit(bprm)) 665 return -E2BIG; 666 667 while (len > 0) { 668 unsigned int bytes_to_copy = min_t(unsigned int, len, 669 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 670 struct page *page; 671 672 pos -= bytes_to_copy; 673 arg -= bytes_to_copy; 674 len -= bytes_to_copy; 675 676 page = get_arg_page(bprm, pos, 1); 677 if (!page) 678 return -E2BIG; 679 flush_arg_page(bprm, pos & PAGE_MASK, page); 680 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 681 put_arg_page(page); 682 } 683 684 return 0; 685 } 686 EXPORT_SYMBOL(copy_string_kernel); 687 688 static int copy_strings_kernel(int argc, const char *const *argv, 689 struct linux_binprm *bprm) 690 { 691 while (argc-- > 0) { 692 int ret = copy_string_kernel(argv[argc], bprm); 693 if (ret < 0) 694 return ret; 695 if (fatal_signal_pending(current)) 696 return -ERESTARTNOHAND; 697 cond_resched(); 698 } 699 return 0; 700 } 701 702 #ifdef CONFIG_MMU 703 704 /* 705 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 706 * the stack is optionally relocated, and some extra space is added. 707 */ 708 int setup_arg_pages(struct linux_binprm *bprm, 709 unsigned long stack_top, 710 int executable_stack) 711 { 712 unsigned long ret; 713 unsigned long stack_shift; 714 struct mm_struct *mm = current->mm; 715 struct vm_area_struct *vma = bprm->vma; 716 struct vm_area_struct *prev = NULL; 717 unsigned long vm_flags; 718 unsigned long stack_base; 719 unsigned long stack_size; 720 unsigned long stack_expand; 721 unsigned long rlim_stack; 722 struct mmu_gather tlb; 723 struct vma_iterator vmi; 724 725 #ifdef CONFIG_STACK_GROWSUP 726 /* Limit stack size */ 727 stack_base = bprm->rlim_stack.rlim_max; 728 729 stack_base = calc_max_stack_size(stack_base); 730 731 /* Add space for stack randomization. */ 732 if (current->flags & PF_RANDOMIZE) 733 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 734 735 /* Make sure we didn't let the argument array grow too large. */ 736 if (vma->vm_end - vma->vm_start > stack_base) 737 return -ENOMEM; 738 739 stack_base = PAGE_ALIGN(stack_top - stack_base); 740 741 stack_shift = vma->vm_start - stack_base; 742 mm->arg_start = bprm->p - stack_shift; 743 bprm->p = vma->vm_end - stack_shift; 744 #else 745 stack_top = arch_align_stack(stack_top); 746 stack_top = PAGE_ALIGN(stack_top); 747 748 if (unlikely(stack_top < mmap_min_addr) || 749 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 750 return -ENOMEM; 751 752 stack_shift = vma->vm_end - stack_top; 753 754 bprm->p -= stack_shift; 755 mm->arg_start = bprm->p; 756 #endif 757 758 if (bprm->loader) 759 bprm->loader -= stack_shift; 760 bprm->exec -= stack_shift; 761 762 if (mmap_write_lock_killable(mm)) 763 return -EINTR; 764 765 vm_flags = VM_STACK_FLAGS; 766 767 /* 768 * Adjust stack execute permissions; explicitly enable for 769 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 770 * (arch default) otherwise. 771 */ 772 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 773 vm_flags |= VM_EXEC; 774 else if (executable_stack == EXSTACK_DISABLE_X) 775 vm_flags &= ~VM_EXEC; 776 vm_flags |= mm->def_flags; 777 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 778 779 vma_iter_init(&vmi, mm, vma->vm_start); 780 781 tlb_gather_mmu(&tlb, mm); 782 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end, 783 vm_flags); 784 tlb_finish_mmu(&tlb); 785 786 if (ret) 787 goto out_unlock; 788 BUG_ON(prev != vma); 789 790 if (unlikely(vm_flags & VM_EXEC)) { 791 pr_warn_once("process '%pD4' started with executable stack\n", 792 bprm->file); 793 } 794 795 /* Move stack pages down in memory. */ 796 if (stack_shift) { 797 /* 798 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 799 * the binfmt code determines where the new stack should reside, we shift it to 800 * its final location. 801 */ 802 ret = relocate_vma_down(vma, stack_shift); 803 if (ret) 804 goto out_unlock; 805 } 806 807 /* mprotect_fixup is overkill to remove the temporary stack flags */ 808 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); 809 810 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 811 stack_size = vma->vm_end - vma->vm_start; 812 /* 813 * Align this down to a page boundary as expand_stack 814 * will align it up. 815 */ 816 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 817 818 stack_expand = min(rlim_stack, stack_size + stack_expand); 819 820 #ifdef CONFIG_STACK_GROWSUP 821 stack_base = vma->vm_start + stack_expand; 822 #else 823 stack_base = vma->vm_end - stack_expand; 824 #endif 825 current->mm->start_stack = bprm->p; 826 ret = expand_stack_locked(vma, stack_base); 827 if (ret) 828 ret = -EFAULT; 829 830 out_unlock: 831 mmap_write_unlock(mm); 832 return ret; 833 } 834 EXPORT_SYMBOL(setup_arg_pages); 835 836 #else 837 838 /* 839 * Transfer the program arguments and environment from the holding pages 840 * onto the stack. The provided stack pointer is adjusted accordingly. 841 */ 842 int transfer_args_to_stack(struct linux_binprm *bprm, 843 unsigned long *sp_location) 844 { 845 unsigned long index, stop, sp; 846 int ret = 0; 847 848 stop = bprm->p >> PAGE_SHIFT; 849 sp = *sp_location; 850 851 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 852 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 853 char *src = kmap_local_page(bprm->page[index]) + offset; 854 sp -= PAGE_SIZE - offset; 855 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 856 ret = -EFAULT; 857 kunmap_local(src); 858 if (ret) 859 goto out; 860 } 861 862 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE; 863 *sp_location = sp; 864 865 out: 866 return ret; 867 } 868 EXPORT_SYMBOL(transfer_args_to_stack); 869 870 #endif /* CONFIG_MMU */ 871 872 /* 873 * On success, caller must call do_close_execat() on the returned 874 * struct file to close it. 875 */ 876 static struct file *do_open_execat(int fd, struct filename *name, int flags) 877 { 878 int err; 879 struct file *file __free(fput) = NULL; 880 struct open_flags open_exec_flags = { 881 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 882 .acc_mode = MAY_EXEC, 883 .intent = LOOKUP_OPEN, 884 .lookup_flags = LOOKUP_FOLLOW, 885 }; 886 887 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 888 return ERR_PTR(-EINVAL); 889 if (flags & AT_SYMLINK_NOFOLLOW) 890 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 891 if (flags & AT_EMPTY_PATH) 892 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 893 894 file = do_filp_open(fd, name, &open_exec_flags); 895 if (IS_ERR(file)) 896 return file; 897 898 /* 899 * In the past the regular type check was here. It moved to may_open() in 900 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is 901 * an invariant that all non-regular files error out before we get here. 902 */ 903 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 904 path_noexec(&file->f_path)) 905 return ERR_PTR(-EACCES); 906 907 err = deny_write_access(file); 908 if (err) 909 return ERR_PTR(err); 910 911 return no_free_ptr(file); 912 } 913 914 /** 915 * open_exec - Open a path name for execution 916 * 917 * @name: path name to open with the intent of executing it. 918 * 919 * Returns ERR_PTR on failure or allocated struct file on success. 920 * 921 * As this is a wrapper for the internal do_open_execat(), callers 922 * must call allow_write_access() before fput() on release. Also see 923 * do_close_execat(). 924 */ 925 struct file *open_exec(const char *name) 926 { 927 struct filename *filename = getname_kernel(name); 928 struct file *f = ERR_CAST(filename); 929 930 if (!IS_ERR(filename)) { 931 f = do_open_execat(AT_FDCWD, filename, 0); 932 putname(filename); 933 } 934 return f; 935 } 936 EXPORT_SYMBOL(open_exec); 937 938 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 939 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 940 { 941 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 942 if (res > 0) 943 flush_icache_user_range(addr, addr + len); 944 return res; 945 } 946 EXPORT_SYMBOL(read_code); 947 #endif 948 949 /* 950 * Maps the mm_struct mm into the current task struct. 951 * On success, this function returns with exec_update_lock 952 * held for writing. 953 */ 954 static int exec_mmap(struct mm_struct *mm) 955 { 956 struct task_struct *tsk; 957 struct mm_struct *old_mm, *active_mm; 958 int ret; 959 960 /* Notify parent that we're no longer interested in the old VM */ 961 tsk = current; 962 old_mm = current->mm; 963 exec_mm_release(tsk, old_mm); 964 965 ret = down_write_killable(&tsk->signal->exec_update_lock); 966 if (ret) 967 return ret; 968 969 if (old_mm) { 970 /* 971 * If there is a pending fatal signal perhaps a signal 972 * whose default action is to create a coredump get 973 * out and die instead of going through with the exec. 974 */ 975 ret = mmap_read_lock_killable(old_mm); 976 if (ret) { 977 up_write(&tsk->signal->exec_update_lock); 978 return ret; 979 } 980 } 981 982 task_lock(tsk); 983 membarrier_exec_mmap(mm); 984 985 local_irq_disable(); 986 active_mm = tsk->active_mm; 987 tsk->active_mm = mm; 988 tsk->mm = mm; 989 mm_init_cid(mm, tsk); 990 /* 991 * This prevents preemption while active_mm is being loaded and 992 * it and mm are being updated, which could cause problems for 993 * lazy tlb mm refcounting when these are updated by context 994 * switches. Not all architectures can handle irqs off over 995 * activate_mm yet. 996 */ 997 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 998 local_irq_enable(); 999 activate_mm(active_mm, mm); 1000 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1001 local_irq_enable(); 1002 lru_gen_add_mm(mm); 1003 task_unlock(tsk); 1004 lru_gen_use_mm(mm); 1005 if (old_mm) { 1006 mmap_read_unlock(old_mm); 1007 BUG_ON(active_mm != old_mm); 1008 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1009 mm_update_next_owner(old_mm); 1010 mmput(old_mm); 1011 return 0; 1012 } 1013 mmdrop_lazy_tlb(active_mm); 1014 return 0; 1015 } 1016 1017 static int de_thread(struct task_struct *tsk) 1018 { 1019 struct signal_struct *sig = tsk->signal; 1020 struct sighand_struct *oldsighand = tsk->sighand; 1021 spinlock_t *lock = &oldsighand->siglock; 1022 1023 if (thread_group_empty(tsk)) 1024 goto no_thread_group; 1025 1026 /* 1027 * Kill all other threads in the thread group. 1028 */ 1029 spin_lock_irq(lock); 1030 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1031 /* 1032 * Another group action in progress, just 1033 * return so that the signal is processed. 1034 */ 1035 spin_unlock_irq(lock); 1036 return -EAGAIN; 1037 } 1038 1039 sig->group_exec_task = tsk; 1040 sig->notify_count = zap_other_threads(tsk); 1041 if (!thread_group_leader(tsk)) 1042 sig->notify_count--; 1043 1044 while (sig->notify_count) { 1045 __set_current_state(TASK_KILLABLE); 1046 spin_unlock_irq(lock); 1047 schedule(); 1048 if (__fatal_signal_pending(tsk)) 1049 goto killed; 1050 spin_lock_irq(lock); 1051 } 1052 spin_unlock_irq(lock); 1053 1054 /* 1055 * At this point all other threads have exited, all we have to 1056 * do is to wait for the thread group leader to become inactive, 1057 * and to assume its PID: 1058 */ 1059 if (!thread_group_leader(tsk)) { 1060 struct task_struct *leader = tsk->group_leader; 1061 1062 for (;;) { 1063 cgroup_threadgroup_change_begin(tsk); 1064 write_lock_irq(&tasklist_lock); 1065 /* 1066 * Do this under tasklist_lock to ensure that 1067 * exit_notify() can't miss ->group_exec_task 1068 */ 1069 sig->notify_count = -1; 1070 if (likely(leader->exit_state)) 1071 break; 1072 __set_current_state(TASK_KILLABLE); 1073 write_unlock_irq(&tasklist_lock); 1074 cgroup_threadgroup_change_end(tsk); 1075 schedule(); 1076 if (__fatal_signal_pending(tsk)) 1077 goto killed; 1078 } 1079 1080 /* 1081 * The only record we have of the real-time age of a 1082 * process, regardless of execs it's done, is start_time. 1083 * All the past CPU time is accumulated in signal_struct 1084 * from sister threads now dead. But in this non-leader 1085 * exec, nothing survives from the original leader thread, 1086 * whose birth marks the true age of this process now. 1087 * When we take on its identity by switching to its PID, we 1088 * also take its birthdate (always earlier than our own). 1089 */ 1090 tsk->start_time = leader->start_time; 1091 tsk->start_boottime = leader->start_boottime; 1092 1093 BUG_ON(!same_thread_group(leader, tsk)); 1094 /* 1095 * An exec() starts a new thread group with the 1096 * TGID of the previous thread group. Rehash the 1097 * two threads with a switched PID, and release 1098 * the former thread group leader: 1099 */ 1100 1101 /* Become a process group leader with the old leader's pid. 1102 * The old leader becomes a thread of the this thread group. 1103 */ 1104 exchange_tids(tsk, leader); 1105 transfer_pid(leader, tsk, PIDTYPE_TGID); 1106 transfer_pid(leader, tsk, PIDTYPE_PGID); 1107 transfer_pid(leader, tsk, PIDTYPE_SID); 1108 1109 list_replace_rcu(&leader->tasks, &tsk->tasks); 1110 list_replace_init(&leader->sibling, &tsk->sibling); 1111 1112 tsk->group_leader = tsk; 1113 leader->group_leader = tsk; 1114 1115 tsk->exit_signal = SIGCHLD; 1116 leader->exit_signal = -1; 1117 1118 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1119 leader->exit_state = EXIT_DEAD; 1120 /* 1121 * We are going to release_task()->ptrace_unlink() silently, 1122 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1123 * the tracer won't block again waiting for this thread. 1124 */ 1125 if (unlikely(leader->ptrace)) 1126 __wake_up_parent(leader, leader->parent); 1127 write_unlock_irq(&tasklist_lock); 1128 cgroup_threadgroup_change_end(tsk); 1129 1130 release_task(leader); 1131 } 1132 1133 sig->group_exec_task = NULL; 1134 sig->notify_count = 0; 1135 1136 no_thread_group: 1137 /* we have changed execution domain */ 1138 tsk->exit_signal = SIGCHLD; 1139 1140 BUG_ON(!thread_group_leader(tsk)); 1141 return 0; 1142 1143 killed: 1144 /* protects against exit_notify() and __exit_signal() */ 1145 read_lock(&tasklist_lock); 1146 sig->group_exec_task = NULL; 1147 sig->notify_count = 0; 1148 read_unlock(&tasklist_lock); 1149 return -EAGAIN; 1150 } 1151 1152 1153 /* 1154 * This function makes sure the current process has its own signal table, 1155 * so that flush_signal_handlers can later reset the handlers without 1156 * disturbing other processes. (Other processes might share the signal 1157 * table via the CLONE_SIGHAND option to clone().) 1158 */ 1159 static int unshare_sighand(struct task_struct *me) 1160 { 1161 struct sighand_struct *oldsighand = me->sighand; 1162 1163 if (refcount_read(&oldsighand->count) != 1) { 1164 struct sighand_struct *newsighand; 1165 /* 1166 * This ->sighand is shared with the CLONE_SIGHAND 1167 * but not CLONE_THREAD task, switch to the new one. 1168 */ 1169 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1170 if (!newsighand) 1171 return -ENOMEM; 1172 1173 refcount_set(&newsighand->count, 1); 1174 1175 write_lock_irq(&tasklist_lock); 1176 spin_lock(&oldsighand->siglock); 1177 memcpy(newsighand->action, oldsighand->action, 1178 sizeof(newsighand->action)); 1179 rcu_assign_pointer(me->sighand, newsighand); 1180 spin_unlock(&oldsighand->siglock); 1181 write_unlock_irq(&tasklist_lock); 1182 1183 __cleanup_sighand(oldsighand); 1184 } 1185 return 0; 1186 } 1187 1188 /* 1189 * These functions flushes out all traces of the currently running executable 1190 * so that a new one can be started 1191 */ 1192 1193 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1194 { 1195 task_lock(tsk); 1196 trace_task_rename(tsk, buf); 1197 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1198 task_unlock(tsk); 1199 perf_event_comm(tsk, exec); 1200 } 1201 1202 /* 1203 * Calling this is the point of no return. None of the failures will be 1204 * seen by userspace since either the process is already taking a fatal 1205 * signal (via de_thread() or coredump), or will have SEGV raised 1206 * (after exec_mmap()) by search_binary_handler (see below). 1207 */ 1208 int begin_new_exec(struct linux_binprm * bprm) 1209 { 1210 struct task_struct *me = current; 1211 int retval; 1212 1213 /* Once we are committed compute the creds */ 1214 retval = bprm_creds_from_file(bprm); 1215 if (retval) 1216 return retval; 1217 1218 /* 1219 * This tracepoint marks the point before flushing the old exec where 1220 * the current task is still unchanged, but errors are fatal (point of 1221 * no return). The later "sched_process_exec" tracepoint is called after 1222 * the current task has successfully switched to the new exec. 1223 */ 1224 trace_sched_prepare_exec(current, bprm); 1225 1226 /* 1227 * Ensure all future errors are fatal. 1228 */ 1229 bprm->point_of_no_return = true; 1230 1231 /* 1232 * Make this the only thread in the thread group. 1233 */ 1234 retval = de_thread(me); 1235 if (retval) 1236 goto out; 1237 1238 /* 1239 * Cancel any io_uring activity across execve 1240 */ 1241 io_uring_task_cancel(); 1242 1243 /* Ensure the files table is not shared. */ 1244 retval = unshare_files(); 1245 if (retval) 1246 goto out; 1247 1248 /* 1249 * Must be called _before_ exec_mmap() as bprm->mm is 1250 * not visible until then. Doing it here also ensures 1251 * we don't race against replace_mm_exe_file(). 1252 */ 1253 retval = set_mm_exe_file(bprm->mm, bprm->file); 1254 if (retval) 1255 goto out; 1256 1257 /* If the binary is not readable then enforce mm->dumpable=0 */ 1258 would_dump(bprm, bprm->file); 1259 if (bprm->have_execfd) 1260 would_dump(bprm, bprm->executable); 1261 1262 /* 1263 * Release all of the old mmap stuff 1264 */ 1265 acct_arg_size(bprm, 0); 1266 retval = exec_mmap(bprm->mm); 1267 if (retval) 1268 goto out; 1269 1270 bprm->mm = NULL; 1271 1272 retval = exec_task_namespaces(); 1273 if (retval) 1274 goto out_unlock; 1275 1276 #ifdef CONFIG_POSIX_TIMERS 1277 spin_lock_irq(&me->sighand->siglock); 1278 posix_cpu_timers_exit(me); 1279 spin_unlock_irq(&me->sighand->siglock); 1280 exit_itimers(me); 1281 flush_itimer_signals(); 1282 #endif 1283 1284 /* 1285 * Make the signal table private. 1286 */ 1287 retval = unshare_sighand(me); 1288 if (retval) 1289 goto out_unlock; 1290 1291 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1292 PF_NOFREEZE | PF_NO_SETAFFINITY); 1293 flush_thread(); 1294 me->personality &= ~bprm->per_clear; 1295 1296 clear_syscall_work_syscall_user_dispatch(me); 1297 1298 /* 1299 * We have to apply CLOEXEC before we change whether the process is 1300 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1301 * trying to access the should-be-closed file descriptors of a process 1302 * undergoing exec(2). 1303 */ 1304 do_close_on_exec(me->files); 1305 1306 if (bprm->secureexec) { 1307 /* Make sure parent cannot signal privileged process. */ 1308 me->pdeath_signal = 0; 1309 1310 /* 1311 * For secureexec, reset the stack limit to sane default to 1312 * avoid bad behavior from the prior rlimits. This has to 1313 * happen before arch_pick_mmap_layout(), which examines 1314 * RLIMIT_STACK, but after the point of no return to avoid 1315 * needing to clean up the change on failure. 1316 */ 1317 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1318 bprm->rlim_stack.rlim_cur = _STK_LIM; 1319 } 1320 1321 me->sas_ss_sp = me->sas_ss_size = 0; 1322 1323 /* 1324 * Figure out dumpability. Note that this checking only of current 1325 * is wrong, but userspace depends on it. This should be testing 1326 * bprm->secureexec instead. 1327 */ 1328 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1329 !(uid_eq(current_euid(), current_uid()) && 1330 gid_eq(current_egid(), current_gid()))) 1331 set_dumpable(current->mm, suid_dumpable); 1332 else 1333 set_dumpable(current->mm, SUID_DUMP_USER); 1334 1335 perf_event_exec(); 1336 __set_task_comm(me, kbasename(bprm->filename), true); 1337 1338 /* An exec changes our domain. We are no longer part of the thread 1339 group */ 1340 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1341 flush_signal_handlers(me, 0); 1342 1343 retval = set_cred_ucounts(bprm->cred); 1344 if (retval < 0) 1345 goto out_unlock; 1346 1347 /* 1348 * install the new credentials for this executable 1349 */ 1350 security_bprm_committing_creds(bprm); 1351 1352 commit_creds(bprm->cred); 1353 bprm->cred = NULL; 1354 1355 /* 1356 * Disable monitoring for regular users 1357 * when executing setuid binaries. Must 1358 * wait until new credentials are committed 1359 * by commit_creds() above 1360 */ 1361 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1362 perf_event_exit_task(me); 1363 /* 1364 * cred_guard_mutex must be held at least to this point to prevent 1365 * ptrace_attach() from altering our determination of the task's 1366 * credentials; any time after this it may be unlocked. 1367 */ 1368 security_bprm_committed_creds(bprm); 1369 1370 /* Pass the opened binary to the interpreter. */ 1371 if (bprm->have_execfd) { 1372 retval = get_unused_fd_flags(0); 1373 if (retval < 0) 1374 goto out_unlock; 1375 fd_install(retval, bprm->executable); 1376 bprm->executable = NULL; 1377 bprm->execfd = retval; 1378 } 1379 return 0; 1380 1381 out_unlock: 1382 up_write(&me->signal->exec_update_lock); 1383 if (!bprm->cred) 1384 mutex_unlock(&me->signal->cred_guard_mutex); 1385 1386 out: 1387 return retval; 1388 } 1389 EXPORT_SYMBOL(begin_new_exec); 1390 1391 void would_dump(struct linux_binprm *bprm, struct file *file) 1392 { 1393 struct inode *inode = file_inode(file); 1394 struct mnt_idmap *idmap = file_mnt_idmap(file); 1395 if (inode_permission(idmap, inode, MAY_READ) < 0) { 1396 struct user_namespace *old, *user_ns; 1397 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1398 1399 /* Ensure mm->user_ns contains the executable */ 1400 user_ns = old = bprm->mm->user_ns; 1401 while ((user_ns != &init_user_ns) && 1402 !privileged_wrt_inode_uidgid(user_ns, idmap, inode)) 1403 user_ns = user_ns->parent; 1404 1405 if (old != user_ns) { 1406 bprm->mm->user_ns = get_user_ns(user_ns); 1407 put_user_ns(old); 1408 } 1409 } 1410 } 1411 EXPORT_SYMBOL(would_dump); 1412 1413 void setup_new_exec(struct linux_binprm * bprm) 1414 { 1415 /* Setup things that can depend upon the personality */ 1416 struct task_struct *me = current; 1417 1418 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1419 1420 arch_setup_new_exec(); 1421 1422 /* Set the new mm task size. We have to do that late because it may 1423 * depend on TIF_32BIT which is only updated in flush_thread() on 1424 * some architectures like powerpc 1425 */ 1426 me->mm->task_size = TASK_SIZE; 1427 up_write(&me->signal->exec_update_lock); 1428 mutex_unlock(&me->signal->cred_guard_mutex); 1429 } 1430 EXPORT_SYMBOL(setup_new_exec); 1431 1432 /* Runs immediately before start_thread() takes over. */ 1433 void finalize_exec(struct linux_binprm *bprm) 1434 { 1435 /* Store any stack rlimit changes before starting thread. */ 1436 task_lock(current->group_leader); 1437 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1438 task_unlock(current->group_leader); 1439 } 1440 EXPORT_SYMBOL(finalize_exec); 1441 1442 /* 1443 * Prepare credentials and lock ->cred_guard_mutex. 1444 * setup_new_exec() commits the new creds and drops the lock. 1445 * Or, if exec fails before, free_bprm() should release ->cred 1446 * and unlock. 1447 */ 1448 static int prepare_bprm_creds(struct linux_binprm *bprm) 1449 { 1450 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1451 return -ERESTARTNOINTR; 1452 1453 bprm->cred = prepare_exec_creds(); 1454 if (likely(bprm->cred)) 1455 return 0; 1456 1457 mutex_unlock(¤t->signal->cred_guard_mutex); 1458 return -ENOMEM; 1459 } 1460 1461 /* Matches do_open_execat() */ 1462 static void do_close_execat(struct file *file) 1463 { 1464 if (!file) 1465 return; 1466 allow_write_access(file); 1467 fput(file); 1468 } 1469 1470 static void free_bprm(struct linux_binprm *bprm) 1471 { 1472 if (bprm->mm) { 1473 acct_arg_size(bprm, 0); 1474 mmput(bprm->mm); 1475 } 1476 free_arg_pages(bprm); 1477 if (bprm->cred) { 1478 mutex_unlock(¤t->signal->cred_guard_mutex); 1479 abort_creds(bprm->cred); 1480 } 1481 do_close_execat(bprm->file); 1482 if (bprm->executable) 1483 fput(bprm->executable); 1484 /* If a binfmt changed the interp, free it. */ 1485 if (bprm->interp != bprm->filename) 1486 kfree(bprm->interp); 1487 kfree(bprm->fdpath); 1488 kfree(bprm); 1489 } 1490 1491 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags) 1492 { 1493 struct linux_binprm *bprm; 1494 struct file *file; 1495 int retval = -ENOMEM; 1496 1497 file = do_open_execat(fd, filename, flags); 1498 if (IS_ERR(file)) 1499 return ERR_CAST(file); 1500 1501 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1502 if (!bprm) { 1503 do_close_execat(file); 1504 return ERR_PTR(-ENOMEM); 1505 } 1506 1507 bprm->file = file; 1508 1509 if (fd == AT_FDCWD || filename->name[0] == '/') { 1510 bprm->filename = filename->name; 1511 } else { 1512 if (filename->name[0] == '\0') 1513 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1514 else 1515 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1516 fd, filename->name); 1517 if (!bprm->fdpath) 1518 goto out_free; 1519 1520 /* 1521 * Record that a name derived from an O_CLOEXEC fd will be 1522 * inaccessible after exec. This allows the code in exec to 1523 * choose to fail when the executable is not mmaped into the 1524 * interpreter and an open file descriptor is not passed to 1525 * the interpreter. This makes for a better user experience 1526 * than having the interpreter start and then immediately fail 1527 * when it finds the executable is inaccessible. 1528 */ 1529 if (get_close_on_exec(fd)) 1530 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1531 1532 bprm->filename = bprm->fdpath; 1533 } 1534 bprm->interp = bprm->filename; 1535 1536 retval = bprm_mm_init(bprm); 1537 if (!retval) 1538 return bprm; 1539 1540 out_free: 1541 free_bprm(bprm); 1542 return ERR_PTR(retval); 1543 } 1544 1545 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1546 { 1547 /* If a binfmt changed the interp, free it first. */ 1548 if (bprm->interp != bprm->filename) 1549 kfree(bprm->interp); 1550 bprm->interp = kstrdup(interp, GFP_KERNEL); 1551 if (!bprm->interp) 1552 return -ENOMEM; 1553 return 0; 1554 } 1555 EXPORT_SYMBOL(bprm_change_interp); 1556 1557 /* 1558 * determine how safe it is to execute the proposed program 1559 * - the caller must hold ->cred_guard_mutex to protect against 1560 * PTRACE_ATTACH or seccomp thread-sync 1561 */ 1562 static void check_unsafe_exec(struct linux_binprm *bprm) 1563 { 1564 struct task_struct *p = current, *t; 1565 unsigned n_fs; 1566 1567 if (p->ptrace) 1568 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1569 1570 /* 1571 * This isn't strictly necessary, but it makes it harder for LSMs to 1572 * mess up. 1573 */ 1574 if (task_no_new_privs(current)) 1575 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1576 1577 /* 1578 * If another task is sharing our fs, we cannot safely 1579 * suid exec because the differently privileged task 1580 * will be able to manipulate the current directory, etc. 1581 * It would be nice to force an unshare instead... 1582 */ 1583 n_fs = 1; 1584 spin_lock(&p->fs->lock); 1585 rcu_read_lock(); 1586 for_other_threads(p, t) { 1587 if (t->fs == p->fs) 1588 n_fs++; 1589 } 1590 rcu_read_unlock(); 1591 1592 /* "users" and "in_exec" locked for copy_fs() */ 1593 if (p->fs->users > n_fs) 1594 bprm->unsafe |= LSM_UNSAFE_SHARE; 1595 else 1596 p->fs->in_exec = 1; 1597 spin_unlock(&p->fs->lock); 1598 } 1599 1600 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1601 { 1602 /* Handle suid and sgid on files */ 1603 struct mnt_idmap *idmap; 1604 struct inode *inode = file_inode(file); 1605 unsigned int mode; 1606 vfsuid_t vfsuid; 1607 vfsgid_t vfsgid; 1608 int err; 1609 1610 if (!mnt_may_suid(file->f_path.mnt)) 1611 return; 1612 1613 if (task_no_new_privs(current)) 1614 return; 1615 1616 mode = READ_ONCE(inode->i_mode); 1617 if (!(mode & (S_ISUID|S_ISGID))) 1618 return; 1619 1620 idmap = file_mnt_idmap(file); 1621 1622 /* Be careful if suid/sgid is set */ 1623 inode_lock(inode); 1624 1625 /* Atomically reload and check mode/uid/gid now that lock held. */ 1626 mode = inode->i_mode; 1627 vfsuid = i_uid_into_vfsuid(idmap, inode); 1628 vfsgid = i_gid_into_vfsgid(idmap, inode); 1629 err = inode_permission(idmap, inode, MAY_EXEC); 1630 inode_unlock(inode); 1631 1632 /* Did the exec bit vanish out from under us? Give up. */ 1633 if (err) 1634 return; 1635 1636 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1637 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1638 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1639 return; 1640 1641 if (mode & S_ISUID) { 1642 bprm->per_clear |= PER_CLEAR_ON_SETID; 1643 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1644 } 1645 1646 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1647 bprm->per_clear |= PER_CLEAR_ON_SETID; 1648 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1649 } 1650 } 1651 1652 /* 1653 * Compute brpm->cred based upon the final binary. 1654 */ 1655 static int bprm_creds_from_file(struct linux_binprm *bprm) 1656 { 1657 /* Compute creds based on which file? */ 1658 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1659 1660 bprm_fill_uid(bprm, file); 1661 return security_bprm_creds_from_file(bprm, file); 1662 } 1663 1664 /* 1665 * Fill the binprm structure from the inode. 1666 * Read the first BINPRM_BUF_SIZE bytes 1667 * 1668 * This may be called multiple times for binary chains (scripts for example). 1669 */ 1670 static int prepare_binprm(struct linux_binprm *bprm) 1671 { 1672 loff_t pos = 0; 1673 1674 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1675 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1676 } 1677 1678 /* 1679 * Arguments are '\0' separated strings found at the location bprm->p 1680 * points to; chop off the first by relocating brpm->p to right after 1681 * the first '\0' encountered. 1682 */ 1683 int remove_arg_zero(struct linux_binprm *bprm) 1684 { 1685 unsigned long offset; 1686 char *kaddr; 1687 struct page *page; 1688 1689 if (!bprm->argc) 1690 return 0; 1691 1692 do { 1693 offset = bprm->p & ~PAGE_MASK; 1694 page = get_arg_page(bprm, bprm->p, 0); 1695 if (!page) 1696 return -EFAULT; 1697 kaddr = kmap_local_page(page); 1698 1699 for (; offset < PAGE_SIZE && kaddr[offset]; 1700 offset++, bprm->p++) 1701 ; 1702 1703 kunmap_local(kaddr); 1704 put_arg_page(page); 1705 } while (offset == PAGE_SIZE); 1706 1707 bprm->p++; 1708 bprm->argc--; 1709 1710 return 0; 1711 } 1712 EXPORT_SYMBOL(remove_arg_zero); 1713 1714 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1715 /* 1716 * cycle the list of binary formats handler, until one recognizes the image 1717 */ 1718 static int search_binary_handler(struct linux_binprm *bprm) 1719 { 1720 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1721 struct linux_binfmt *fmt; 1722 int retval; 1723 1724 retval = prepare_binprm(bprm); 1725 if (retval < 0) 1726 return retval; 1727 1728 retval = security_bprm_check(bprm); 1729 if (retval) 1730 return retval; 1731 1732 retval = -ENOENT; 1733 retry: 1734 read_lock(&binfmt_lock); 1735 list_for_each_entry(fmt, &formats, lh) { 1736 if (!try_module_get(fmt->module)) 1737 continue; 1738 read_unlock(&binfmt_lock); 1739 1740 retval = fmt->load_binary(bprm); 1741 1742 read_lock(&binfmt_lock); 1743 put_binfmt(fmt); 1744 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1745 read_unlock(&binfmt_lock); 1746 return retval; 1747 } 1748 } 1749 read_unlock(&binfmt_lock); 1750 1751 if (need_retry) { 1752 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1753 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1754 return retval; 1755 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1756 return retval; 1757 need_retry = false; 1758 goto retry; 1759 } 1760 1761 return retval; 1762 } 1763 1764 /* binfmt handlers will call back into begin_new_exec() on success. */ 1765 static int exec_binprm(struct linux_binprm *bprm) 1766 { 1767 pid_t old_pid, old_vpid; 1768 int ret, depth; 1769 1770 /* Need to fetch pid before load_binary changes it */ 1771 old_pid = current->pid; 1772 rcu_read_lock(); 1773 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1774 rcu_read_unlock(); 1775 1776 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1777 for (depth = 0;; depth++) { 1778 struct file *exec; 1779 if (depth > 5) 1780 return -ELOOP; 1781 1782 ret = search_binary_handler(bprm); 1783 if (ret < 0) 1784 return ret; 1785 if (!bprm->interpreter) 1786 break; 1787 1788 exec = bprm->file; 1789 bprm->file = bprm->interpreter; 1790 bprm->interpreter = NULL; 1791 1792 allow_write_access(exec); 1793 if (unlikely(bprm->have_execfd)) { 1794 if (bprm->executable) { 1795 fput(exec); 1796 return -ENOEXEC; 1797 } 1798 bprm->executable = exec; 1799 } else 1800 fput(exec); 1801 } 1802 1803 audit_bprm(bprm); 1804 trace_sched_process_exec(current, old_pid, bprm); 1805 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1806 proc_exec_connector(current); 1807 return 0; 1808 } 1809 1810 static int bprm_execve(struct linux_binprm *bprm) 1811 { 1812 int retval; 1813 1814 retval = prepare_bprm_creds(bprm); 1815 if (retval) 1816 return retval; 1817 1818 /* 1819 * Check for unsafe execution states before exec_binprm(), which 1820 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1821 * where setuid-ness is evaluated. 1822 */ 1823 check_unsafe_exec(bprm); 1824 current->in_execve = 1; 1825 sched_mm_cid_before_execve(current); 1826 1827 sched_exec(); 1828 1829 /* Set the unchanging part of bprm->cred */ 1830 retval = security_bprm_creds_for_exec(bprm); 1831 if (retval) 1832 goto out; 1833 1834 retval = exec_binprm(bprm); 1835 if (retval < 0) 1836 goto out; 1837 1838 sched_mm_cid_after_execve(current); 1839 /* execve succeeded */ 1840 current->fs->in_exec = 0; 1841 current->in_execve = 0; 1842 rseq_execve(current); 1843 user_events_execve(current); 1844 acct_update_integrals(current); 1845 task_numa_free(current, false); 1846 return retval; 1847 1848 out: 1849 /* 1850 * If past the point of no return ensure the code never 1851 * returns to the userspace process. Use an existing fatal 1852 * signal if present otherwise terminate the process with 1853 * SIGSEGV. 1854 */ 1855 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1856 force_fatal_sig(SIGSEGV); 1857 1858 sched_mm_cid_after_execve(current); 1859 current->fs->in_exec = 0; 1860 current->in_execve = 0; 1861 1862 return retval; 1863 } 1864 1865 static int do_execveat_common(int fd, struct filename *filename, 1866 struct user_arg_ptr argv, 1867 struct user_arg_ptr envp, 1868 int flags) 1869 { 1870 struct linux_binprm *bprm; 1871 int retval; 1872 1873 if (IS_ERR(filename)) 1874 return PTR_ERR(filename); 1875 1876 /* 1877 * We move the actual failure in case of RLIMIT_NPROC excess from 1878 * set*uid() to execve() because too many poorly written programs 1879 * don't check setuid() return code. Here we additionally recheck 1880 * whether NPROC limit is still exceeded. 1881 */ 1882 if ((current->flags & PF_NPROC_EXCEEDED) && 1883 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1884 retval = -EAGAIN; 1885 goto out_ret; 1886 } 1887 1888 /* We're below the limit (still or again), so we don't want to make 1889 * further execve() calls fail. */ 1890 current->flags &= ~PF_NPROC_EXCEEDED; 1891 1892 bprm = alloc_bprm(fd, filename, flags); 1893 if (IS_ERR(bprm)) { 1894 retval = PTR_ERR(bprm); 1895 goto out_ret; 1896 } 1897 1898 retval = count(argv, MAX_ARG_STRINGS); 1899 if (retval == 0) 1900 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1901 current->comm, bprm->filename); 1902 if (retval < 0) 1903 goto out_free; 1904 bprm->argc = retval; 1905 1906 retval = count(envp, MAX_ARG_STRINGS); 1907 if (retval < 0) 1908 goto out_free; 1909 bprm->envc = retval; 1910 1911 retval = bprm_stack_limits(bprm); 1912 if (retval < 0) 1913 goto out_free; 1914 1915 retval = copy_string_kernel(bprm->filename, bprm); 1916 if (retval < 0) 1917 goto out_free; 1918 bprm->exec = bprm->p; 1919 1920 retval = copy_strings(bprm->envc, envp, bprm); 1921 if (retval < 0) 1922 goto out_free; 1923 1924 retval = copy_strings(bprm->argc, argv, bprm); 1925 if (retval < 0) 1926 goto out_free; 1927 1928 /* 1929 * When argv is empty, add an empty string ("") as argv[0] to 1930 * ensure confused userspace programs that start processing 1931 * from argv[1] won't end up walking envp. See also 1932 * bprm_stack_limits(). 1933 */ 1934 if (bprm->argc == 0) { 1935 retval = copy_string_kernel("", bprm); 1936 if (retval < 0) 1937 goto out_free; 1938 bprm->argc = 1; 1939 } 1940 1941 retval = bprm_execve(bprm); 1942 out_free: 1943 free_bprm(bprm); 1944 1945 out_ret: 1946 putname(filename); 1947 return retval; 1948 } 1949 1950 int kernel_execve(const char *kernel_filename, 1951 const char *const *argv, const char *const *envp) 1952 { 1953 struct filename *filename; 1954 struct linux_binprm *bprm; 1955 int fd = AT_FDCWD; 1956 int retval; 1957 1958 /* It is non-sense for kernel threads to call execve */ 1959 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1960 return -EINVAL; 1961 1962 filename = getname_kernel(kernel_filename); 1963 if (IS_ERR(filename)) 1964 return PTR_ERR(filename); 1965 1966 bprm = alloc_bprm(fd, filename, 0); 1967 if (IS_ERR(bprm)) { 1968 retval = PTR_ERR(bprm); 1969 goto out_ret; 1970 } 1971 1972 retval = count_strings_kernel(argv); 1973 if (WARN_ON_ONCE(retval == 0)) 1974 retval = -EINVAL; 1975 if (retval < 0) 1976 goto out_free; 1977 bprm->argc = retval; 1978 1979 retval = count_strings_kernel(envp); 1980 if (retval < 0) 1981 goto out_free; 1982 bprm->envc = retval; 1983 1984 retval = bprm_stack_limits(bprm); 1985 if (retval < 0) 1986 goto out_free; 1987 1988 retval = copy_string_kernel(bprm->filename, bprm); 1989 if (retval < 0) 1990 goto out_free; 1991 bprm->exec = bprm->p; 1992 1993 retval = copy_strings_kernel(bprm->envc, envp, bprm); 1994 if (retval < 0) 1995 goto out_free; 1996 1997 retval = copy_strings_kernel(bprm->argc, argv, bprm); 1998 if (retval < 0) 1999 goto out_free; 2000 2001 retval = bprm_execve(bprm); 2002 out_free: 2003 free_bprm(bprm); 2004 out_ret: 2005 putname(filename); 2006 return retval; 2007 } 2008 2009 static int do_execve(struct filename *filename, 2010 const char __user *const __user *__argv, 2011 const char __user *const __user *__envp) 2012 { 2013 struct user_arg_ptr argv = { .ptr.native = __argv }; 2014 struct user_arg_ptr envp = { .ptr.native = __envp }; 2015 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2016 } 2017 2018 static int do_execveat(int fd, struct filename *filename, 2019 const char __user *const __user *__argv, 2020 const char __user *const __user *__envp, 2021 int flags) 2022 { 2023 struct user_arg_ptr argv = { .ptr.native = __argv }; 2024 struct user_arg_ptr envp = { .ptr.native = __envp }; 2025 2026 return do_execveat_common(fd, filename, argv, envp, flags); 2027 } 2028 2029 #ifdef CONFIG_COMPAT 2030 static int compat_do_execve(struct filename *filename, 2031 const compat_uptr_t __user *__argv, 2032 const compat_uptr_t __user *__envp) 2033 { 2034 struct user_arg_ptr argv = { 2035 .is_compat = true, 2036 .ptr.compat = __argv, 2037 }; 2038 struct user_arg_ptr envp = { 2039 .is_compat = true, 2040 .ptr.compat = __envp, 2041 }; 2042 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2043 } 2044 2045 static int compat_do_execveat(int fd, struct filename *filename, 2046 const compat_uptr_t __user *__argv, 2047 const compat_uptr_t __user *__envp, 2048 int flags) 2049 { 2050 struct user_arg_ptr argv = { 2051 .is_compat = true, 2052 .ptr.compat = __argv, 2053 }; 2054 struct user_arg_ptr envp = { 2055 .is_compat = true, 2056 .ptr.compat = __envp, 2057 }; 2058 return do_execveat_common(fd, filename, argv, envp, flags); 2059 } 2060 #endif 2061 2062 void set_binfmt(struct linux_binfmt *new) 2063 { 2064 struct mm_struct *mm = current->mm; 2065 2066 if (mm->binfmt) 2067 module_put(mm->binfmt->module); 2068 2069 mm->binfmt = new; 2070 if (new) 2071 __module_get(new->module); 2072 } 2073 EXPORT_SYMBOL(set_binfmt); 2074 2075 /* 2076 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2077 */ 2078 void set_dumpable(struct mm_struct *mm, int value) 2079 { 2080 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2081 return; 2082 2083 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2084 } 2085 2086 SYSCALL_DEFINE3(execve, 2087 const char __user *, filename, 2088 const char __user *const __user *, argv, 2089 const char __user *const __user *, envp) 2090 { 2091 return do_execve(getname(filename), argv, envp); 2092 } 2093 2094 SYSCALL_DEFINE5(execveat, 2095 int, fd, const char __user *, filename, 2096 const char __user *const __user *, argv, 2097 const char __user *const __user *, envp, 2098 int, flags) 2099 { 2100 return do_execveat(fd, 2101 getname_uflags(filename, flags), 2102 argv, envp, flags); 2103 } 2104 2105 #ifdef CONFIG_COMPAT 2106 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2107 const compat_uptr_t __user *, argv, 2108 const compat_uptr_t __user *, envp) 2109 { 2110 return compat_do_execve(getname(filename), argv, envp); 2111 } 2112 2113 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2114 const char __user *, filename, 2115 const compat_uptr_t __user *, argv, 2116 const compat_uptr_t __user *, envp, 2117 int, flags) 2118 { 2119 return compat_do_execveat(fd, 2120 getname_uflags(filename, flags), 2121 argv, envp, flags); 2122 } 2123 #endif 2124 2125 #ifdef CONFIG_SYSCTL 2126 2127 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write, 2128 void *buffer, size_t *lenp, loff_t *ppos) 2129 { 2130 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2131 2132 if (!error) 2133 validate_coredump_safety(); 2134 return error; 2135 } 2136 2137 static struct ctl_table fs_exec_sysctls[] = { 2138 { 2139 .procname = "suid_dumpable", 2140 .data = &suid_dumpable, 2141 .maxlen = sizeof(int), 2142 .mode = 0644, 2143 .proc_handler = proc_dointvec_minmax_coredump, 2144 .extra1 = SYSCTL_ZERO, 2145 .extra2 = SYSCTL_TWO, 2146 }, 2147 }; 2148 2149 static int __init init_fs_exec_sysctls(void) 2150 { 2151 register_sysctl_init("fs", fs_exec_sysctls); 2152 return 0; 2153 } 2154 2155 fs_initcall(init_fs_exec_sysctls); 2156 #endif /* CONFIG_SYSCTL */ 2157 2158 #ifdef CONFIG_EXEC_KUNIT_TEST 2159 #include "tests/exec_kunit.c" 2160 #endif 2161