1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/vmacache.h> 32 #include <linux/stat.h> 33 #include <linux/fcntl.h> 34 #include <linux/swap.h> 35 #include <linux/string.h> 36 #include <linux/init.h> 37 #include <linux/sched/mm.h> 38 #include <linux/sched/coredump.h> 39 #include <linux/sched/signal.h> 40 #include <linux/sched/numa_balancing.h> 41 #include <linux/sched/task.h> 42 #include <linux/pagemap.h> 43 #include <linux/perf_event.h> 44 #include <linux/highmem.h> 45 #include <linux/spinlock.h> 46 #include <linux/key.h> 47 #include <linux/personality.h> 48 #include <linux/binfmts.h> 49 #include <linux/utsname.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/module.h> 52 #include <linux/namei.h> 53 #include <linux/mount.h> 54 #include <linux/security.h> 55 #include <linux/syscalls.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/audit.h> 59 #include <linux/kmod.h> 60 #include <linux/fsnotify.h> 61 #include <linux/fs_struct.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 #include <linux/io_uring.h> 66 #include <linux/syscall_user_dispatch.h> 67 #include <linux/coredump.h> 68 69 #include <linux/uaccess.h> 70 #include <asm/mmu_context.h> 71 #include <asm/tlb.h> 72 73 #include <trace/events/task.h> 74 #include "internal.h" 75 76 #include <trace/events/sched.h> 77 78 static int bprm_creds_from_file(struct linux_binprm *bprm); 79 80 int suid_dumpable = 0; 81 82 static LIST_HEAD(formats); 83 static DEFINE_RWLOCK(binfmt_lock); 84 85 void __register_binfmt(struct linux_binfmt * fmt, int insert) 86 { 87 write_lock(&binfmt_lock); 88 insert ? list_add(&fmt->lh, &formats) : 89 list_add_tail(&fmt->lh, &formats); 90 write_unlock(&binfmt_lock); 91 } 92 93 EXPORT_SYMBOL(__register_binfmt); 94 95 void unregister_binfmt(struct linux_binfmt * fmt) 96 { 97 write_lock(&binfmt_lock); 98 list_del(&fmt->lh); 99 write_unlock(&binfmt_lock); 100 } 101 102 EXPORT_SYMBOL(unregister_binfmt); 103 104 static inline void put_binfmt(struct linux_binfmt * fmt) 105 { 106 module_put(fmt->module); 107 } 108 109 bool path_noexec(const struct path *path) 110 { 111 return (path->mnt->mnt_flags & MNT_NOEXEC) || 112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 113 } 114 115 #ifdef CONFIG_USELIB 116 /* 117 * Note that a shared library must be both readable and executable due to 118 * security reasons. 119 * 120 * Also note that we take the address to load from the file itself. 121 */ 122 SYSCALL_DEFINE1(uselib, const char __user *, library) 123 { 124 struct linux_binfmt *fmt; 125 struct file *file; 126 struct filename *tmp = getname(library); 127 int error = PTR_ERR(tmp); 128 static const struct open_flags uselib_flags = { 129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 130 .acc_mode = MAY_READ | MAY_EXEC, 131 .intent = LOOKUP_OPEN, 132 .lookup_flags = LOOKUP_FOLLOW, 133 }; 134 135 if (IS_ERR(tmp)) 136 goto out; 137 138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 139 putname(tmp); 140 error = PTR_ERR(file); 141 if (IS_ERR(file)) 142 goto out; 143 144 /* 145 * may_open() has already checked for this, so it should be 146 * impossible to trip now. But we need to be extra cautious 147 * and check again at the very end too. 148 */ 149 error = -EACCES; 150 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 151 path_noexec(&file->f_path))) 152 goto exit; 153 154 fsnotify_open(file); 155 156 error = -ENOEXEC; 157 158 read_lock(&binfmt_lock); 159 list_for_each_entry(fmt, &formats, lh) { 160 if (!fmt->load_shlib) 161 continue; 162 if (!try_module_get(fmt->module)) 163 continue; 164 read_unlock(&binfmt_lock); 165 error = fmt->load_shlib(file); 166 read_lock(&binfmt_lock); 167 put_binfmt(fmt); 168 if (error != -ENOEXEC) 169 break; 170 } 171 read_unlock(&binfmt_lock); 172 exit: 173 fput(file); 174 out: 175 return error; 176 } 177 #endif /* #ifdef CONFIG_USELIB */ 178 179 #ifdef CONFIG_MMU 180 /* 181 * The nascent bprm->mm is not visible until exec_mmap() but it can 182 * use a lot of memory, account these pages in current->mm temporary 183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 184 * change the counter back via acct_arg_size(0). 185 */ 186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 187 { 188 struct mm_struct *mm = current->mm; 189 long diff = (long)(pages - bprm->vma_pages); 190 191 if (!mm || !diff) 192 return; 193 194 bprm->vma_pages = pages; 195 add_mm_counter(mm, MM_ANONPAGES, diff); 196 } 197 198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 199 int write) 200 { 201 struct page *page; 202 int ret; 203 unsigned int gup_flags = FOLL_FORCE; 204 205 #ifdef CONFIG_STACK_GROWSUP 206 if (write) { 207 ret = expand_downwards(bprm->vma, pos); 208 if (ret < 0) 209 return NULL; 210 } 211 #endif 212 213 if (write) 214 gup_flags |= FOLL_WRITE; 215 216 /* 217 * We are doing an exec(). 'current' is the process 218 * doing the exec and bprm->mm is the new process's mm. 219 */ 220 mmap_read_lock(bprm->mm); 221 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 222 &page, NULL, NULL); 223 mmap_read_unlock(bprm->mm); 224 if (ret <= 0) 225 return NULL; 226 227 if (write) 228 acct_arg_size(bprm, vma_pages(bprm->vma)); 229 230 return page; 231 } 232 233 static void put_arg_page(struct page *page) 234 { 235 put_page(page); 236 } 237 238 static void free_arg_pages(struct linux_binprm *bprm) 239 { 240 } 241 242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 243 struct page *page) 244 { 245 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 246 } 247 248 static int __bprm_mm_init(struct linux_binprm *bprm) 249 { 250 int err; 251 struct vm_area_struct *vma = NULL; 252 struct mm_struct *mm = bprm->mm; 253 254 bprm->vma = vma = vm_area_alloc(mm); 255 if (!vma) 256 return -ENOMEM; 257 vma_set_anonymous(vma); 258 259 if (mmap_write_lock_killable(mm)) { 260 err = -EINTR; 261 goto err_free; 262 } 263 264 /* 265 * Place the stack at the largest stack address the architecture 266 * supports. Later, we'll move this to an appropriate place. We don't 267 * use STACK_TOP because that can depend on attributes which aren't 268 * configured yet. 269 */ 270 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 271 vma->vm_end = STACK_TOP_MAX; 272 vma->vm_start = vma->vm_end - PAGE_SIZE; 273 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 274 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 275 276 err = insert_vm_struct(mm, vma); 277 if (err) 278 goto err; 279 280 mm->stack_vm = mm->total_vm = 1; 281 mmap_write_unlock(mm); 282 bprm->p = vma->vm_end - sizeof(void *); 283 return 0; 284 err: 285 mmap_write_unlock(mm); 286 err_free: 287 bprm->vma = NULL; 288 vm_area_free(vma); 289 return err; 290 } 291 292 static bool valid_arg_len(struct linux_binprm *bprm, long len) 293 { 294 return len <= MAX_ARG_STRLEN; 295 } 296 297 #else 298 299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 300 { 301 } 302 303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 304 int write) 305 { 306 struct page *page; 307 308 page = bprm->page[pos / PAGE_SIZE]; 309 if (!page && write) { 310 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 311 if (!page) 312 return NULL; 313 bprm->page[pos / PAGE_SIZE] = page; 314 } 315 316 return page; 317 } 318 319 static void put_arg_page(struct page *page) 320 { 321 } 322 323 static void free_arg_page(struct linux_binprm *bprm, int i) 324 { 325 if (bprm->page[i]) { 326 __free_page(bprm->page[i]); 327 bprm->page[i] = NULL; 328 } 329 } 330 331 static void free_arg_pages(struct linux_binprm *bprm) 332 { 333 int i; 334 335 for (i = 0; i < MAX_ARG_PAGES; i++) 336 free_arg_page(bprm, i); 337 } 338 339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 340 struct page *page) 341 { 342 } 343 344 static int __bprm_mm_init(struct linux_binprm *bprm) 345 { 346 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 347 return 0; 348 } 349 350 static bool valid_arg_len(struct linux_binprm *bprm, long len) 351 { 352 return len <= bprm->p; 353 } 354 355 #endif /* CONFIG_MMU */ 356 357 /* 358 * Create a new mm_struct and populate it with a temporary stack 359 * vm_area_struct. We don't have enough context at this point to set the stack 360 * flags, permissions, and offset, so we use temporary values. We'll update 361 * them later in setup_arg_pages(). 362 */ 363 static int bprm_mm_init(struct linux_binprm *bprm) 364 { 365 int err; 366 struct mm_struct *mm = NULL; 367 368 bprm->mm = mm = mm_alloc(); 369 err = -ENOMEM; 370 if (!mm) 371 goto err; 372 373 /* Save current stack limit for all calculations made during exec. */ 374 task_lock(current->group_leader); 375 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 376 task_unlock(current->group_leader); 377 378 err = __bprm_mm_init(bprm); 379 if (err) 380 goto err; 381 382 return 0; 383 384 err: 385 if (mm) { 386 bprm->mm = NULL; 387 mmdrop(mm); 388 } 389 390 return err; 391 } 392 393 struct user_arg_ptr { 394 #ifdef CONFIG_COMPAT 395 bool is_compat; 396 #endif 397 union { 398 const char __user *const __user *native; 399 #ifdef CONFIG_COMPAT 400 const compat_uptr_t __user *compat; 401 #endif 402 } ptr; 403 }; 404 405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 406 { 407 const char __user *native; 408 409 #ifdef CONFIG_COMPAT 410 if (unlikely(argv.is_compat)) { 411 compat_uptr_t compat; 412 413 if (get_user(compat, argv.ptr.compat + nr)) 414 return ERR_PTR(-EFAULT); 415 416 return compat_ptr(compat); 417 } 418 #endif 419 420 if (get_user(native, argv.ptr.native + nr)) 421 return ERR_PTR(-EFAULT); 422 423 return native; 424 } 425 426 /* 427 * count() counts the number of strings in array ARGV. 428 */ 429 static int count(struct user_arg_ptr argv, int max) 430 { 431 int i = 0; 432 433 if (argv.ptr.native != NULL) { 434 for (;;) { 435 const char __user *p = get_user_arg_ptr(argv, i); 436 437 if (!p) 438 break; 439 440 if (IS_ERR(p)) 441 return -EFAULT; 442 443 if (i >= max) 444 return -E2BIG; 445 ++i; 446 447 if (fatal_signal_pending(current)) 448 return -ERESTARTNOHAND; 449 cond_resched(); 450 } 451 } 452 return i; 453 } 454 455 static int count_strings_kernel(const char *const *argv) 456 { 457 int i; 458 459 if (!argv) 460 return 0; 461 462 for (i = 0; argv[i]; ++i) { 463 if (i >= MAX_ARG_STRINGS) 464 return -E2BIG; 465 if (fatal_signal_pending(current)) 466 return -ERESTARTNOHAND; 467 cond_resched(); 468 } 469 return i; 470 } 471 472 static int bprm_stack_limits(struct linux_binprm *bprm) 473 { 474 unsigned long limit, ptr_size; 475 476 /* 477 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 478 * (whichever is smaller) for the argv+env strings. 479 * This ensures that: 480 * - the remaining binfmt code will not run out of stack space, 481 * - the program will have a reasonable amount of stack left 482 * to work from. 483 */ 484 limit = _STK_LIM / 4 * 3; 485 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 486 /* 487 * We've historically supported up to 32 pages (ARG_MAX) 488 * of argument strings even with small stacks 489 */ 490 limit = max_t(unsigned long, limit, ARG_MAX); 491 /* 492 * We must account for the size of all the argv and envp pointers to 493 * the argv and envp strings, since they will also take up space in 494 * the stack. They aren't stored until much later when we can't 495 * signal to the parent that the child has run out of stack space. 496 * Instead, calculate it here so it's possible to fail gracefully. 497 * 498 * In the case of argc = 0, make sure there is space for adding a 499 * empty string (which will bump argc to 1), to ensure confused 500 * userspace programs don't start processing from argv[1], thinking 501 * argc can never be 0, to keep them from walking envp by accident. 502 * See do_execveat_common(). 503 */ 504 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *); 505 if (limit <= ptr_size) 506 return -E2BIG; 507 limit -= ptr_size; 508 509 bprm->argmin = bprm->p - limit; 510 return 0; 511 } 512 513 /* 514 * 'copy_strings()' copies argument/environment strings from the old 515 * processes's memory to the new process's stack. The call to get_user_pages() 516 * ensures the destination page is created and not swapped out. 517 */ 518 static int copy_strings(int argc, struct user_arg_ptr argv, 519 struct linux_binprm *bprm) 520 { 521 struct page *kmapped_page = NULL; 522 char *kaddr = NULL; 523 unsigned long kpos = 0; 524 int ret; 525 526 while (argc-- > 0) { 527 const char __user *str; 528 int len; 529 unsigned long pos; 530 531 ret = -EFAULT; 532 str = get_user_arg_ptr(argv, argc); 533 if (IS_ERR(str)) 534 goto out; 535 536 len = strnlen_user(str, MAX_ARG_STRLEN); 537 if (!len) 538 goto out; 539 540 ret = -E2BIG; 541 if (!valid_arg_len(bprm, len)) 542 goto out; 543 544 /* We're going to work our way backwards. */ 545 pos = bprm->p; 546 str += len; 547 bprm->p -= len; 548 #ifdef CONFIG_MMU 549 if (bprm->p < bprm->argmin) 550 goto out; 551 #endif 552 553 while (len > 0) { 554 int offset, bytes_to_copy; 555 556 if (fatal_signal_pending(current)) { 557 ret = -ERESTARTNOHAND; 558 goto out; 559 } 560 cond_resched(); 561 562 offset = pos % PAGE_SIZE; 563 if (offset == 0) 564 offset = PAGE_SIZE; 565 566 bytes_to_copy = offset; 567 if (bytes_to_copy > len) 568 bytes_to_copy = len; 569 570 offset -= bytes_to_copy; 571 pos -= bytes_to_copy; 572 str -= bytes_to_copy; 573 len -= bytes_to_copy; 574 575 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 576 struct page *page; 577 578 page = get_arg_page(bprm, pos, 1); 579 if (!page) { 580 ret = -E2BIG; 581 goto out; 582 } 583 584 if (kmapped_page) { 585 flush_dcache_page(kmapped_page); 586 kunmap(kmapped_page); 587 put_arg_page(kmapped_page); 588 } 589 kmapped_page = page; 590 kaddr = kmap(kmapped_page); 591 kpos = pos & PAGE_MASK; 592 flush_arg_page(bprm, kpos, kmapped_page); 593 } 594 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 595 ret = -EFAULT; 596 goto out; 597 } 598 } 599 } 600 ret = 0; 601 out: 602 if (kmapped_page) { 603 flush_dcache_page(kmapped_page); 604 kunmap(kmapped_page); 605 put_arg_page(kmapped_page); 606 } 607 return ret; 608 } 609 610 /* 611 * Copy and argument/environment string from the kernel to the processes stack. 612 */ 613 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 614 { 615 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 616 unsigned long pos = bprm->p; 617 618 if (len == 0) 619 return -EFAULT; 620 if (!valid_arg_len(bprm, len)) 621 return -E2BIG; 622 623 /* We're going to work our way backwards. */ 624 arg += len; 625 bprm->p -= len; 626 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 627 return -E2BIG; 628 629 while (len > 0) { 630 unsigned int bytes_to_copy = min_t(unsigned int, len, 631 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 632 struct page *page; 633 char *kaddr; 634 635 pos -= bytes_to_copy; 636 arg -= bytes_to_copy; 637 len -= bytes_to_copy; 638 639 page = get_arg_page(bprm, pos, 1); 640 if (!page) 641 return -E2BIG; 642 kaddr = kmap_atomic(page); 643 flush_arg_page(bprm, pos & PAGE_MASK, page); 644 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy); 645 flush_dcache_page(page); 646 kunmap_atomic(kaddr); 647 put_arg_page(page); 648 } 649 650 return 0; 651 } 652 EXPORT_SYMBOL(copy_string_kernel); 653 654 static int copy_strings_kernel(int argc, const char *const *argv, 655 struct linux_binprm *bprm) 656 { 657 while (argc-- > 0) { 658 int ret = copy_string_kernel(argv[argc], bprm); 659 if (ret < 0) 660 return ret; 661 if (fatal_signal_pending(current)) 662 return -ERESTARTNOHAND; 663 cond_resched(); 664 } 665 return 0; 666 } 667 668 #ifdef CONFIG_MMU 669 670 /* 671 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 672 * the binfmt code determines where the new stack should reside, we shift it to 673 * its final location. The process proceeds as follows: 674 * 675 * 1) Use shift to calculate the new vma endpoints. 676 * 2) Extend vma to cover both the old and new ranges. This ensures the 677 * arguments passed to subsequent functions are consistent. 678 * 3) Move vma's page tables to the new range. 679 * 4) Free up any cleared pgd range. 680 * 5) Shrink the vma to cover only the new range. 681 */ 682 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 683 { 684 struct mm_struct *mm = vma->vm_mm; 685 unsigned long old_start = vma->vm_start; 686 unsigned long old_end = vma->vm_end; 687 unsigned long length = old_end - old_start; 688 unsigned long new_start = old_start - shift; 689 unsigned long new_end = old_end - shift; 690 struct mmu_gather tlb; 691 692 BUG_ON(new_start > new_end); 693 694 /* 695 * ensure there are no vmas between where we want to go 696 * and where we are 697 */ 698 if (vma != find_vma(mm, new_start)) 699 return -EFAULT; 700 701 /* 702 * cover the whole range: [new_start, old_end) 703 */ 704 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 705 return -ENOMEM; 706 707 /* 708 * move the page tables downwards, on failure we rely on 709 * process cleanup to remove whatever mess we made. 710 */ 711 if (length != move_page_tables(vma, old_start, 712 vma, new_start, length, false)) 713 return -ENOMEM; 714 715 lru_add_drain(); 716 tlb_gather_mmu(&tlb, mm); 717 if (new_end > old_start) { 718 /* 719 * when the old and new regions overlap clear from new_end. 720 */ 721 free_pgd_range(&tlb, new_end, old_end, new_end, 722 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 723 } else { 724 /* 725 * otherwise, clean from old_start; this is done to not touch 726 * the address space in [new_end, old_start) some architectures 727 * have constraints on va-space that make this illegal (IA64) - 728 * for the others its just a little faster. 729 */ 730 free_pgd_range(&tlb, old_start, old_end, new_end, 731 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 732 } 733 tlb_finish_mmu(&tlb); 734 735 /* 736 * Shrink the vma to just the new range. Always succeeds. 737 */ 738 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 739 740 return 0; 741 } 742 743 /* 744 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 745 * the stack is optionally relocated, and some extra space is added. 746 */ 747 int setup_arg_pages(struct linux_binprm *bprm, 748 unsigned long stack_top, 749 int executable_stack) 750 { 751 unsigned long ret; 752 unsigned long stack_shift; 753 struct mm_struct *mm = current->mm; 754 struct vm_area_struct *vma = bprm->vma; 755 struct vm_area_struct *prev = NULL; 756 unsigned long vm_flags; 757 unsigned long stack_base; 758 unsigned long stack_size; 759 unsigned long stack_expand; 760 unsigned long rlim_stack; 761 struct mmu_gather tlb; 762 763 #ifdef CONFIG_STACK_GROWSUP 764 /* Limit stack size */ 765 stack_base = bprm->rlim_stack.rlim_max; 766 767 stack_base = calc_max_stack_size(stack_base); 768 769 /* Add space for stack randomization. */ 770 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 771 772 /* Make sure we didn't let the argument array grow too large. */ 773 if (vma->vm_end - vma->vm_start > stack_base) 774 return -ENOMEM; 775 776 stack_base = PAGE_ALIGN(stack_top - stack_base); 777 778 stack_shift = vma->vm_start - stack_base; 779 mm->arg_start = bprm->p - stack_shift; 780 bprm->p = vma->vm_end - stack_shift; 781 #else 782 stack_top = arch_align_stack(stack_top); 783 stack_top = PAGE_ALIGN(stack_top); 784 785 if (unlikely(stack_top < mmap_min_addr) || 786 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 787 return -ENOMEM; 788 789 stack_shift = vma->vm_end - stack_top; 790 791 bprm->p -= stack_shift; 792 mm->arg_start = bprm->p; 793 #endif 794 795 if (bprm->loader) 796 bprm->loader -= stack_shift; 797 bprm->exec -= stack_shift; 798 799 if (mmap_write_lock_killable(mm)) 800 return -EINTR; 801 802 vm_flags = VM_STACK_FLAGS; 803 804 /* 805 * Adjust stack execute permissions; explicitly enable for 806 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 807 * (arch default) otherwise. 808 */ 809 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 810 vm_flags |= VM_EXEC; 811 else if (executable_stack == EXSTACK_DISABLE_X) 812 vm_flags &= ~VM_EXEC; 813 vm_flags |= mm->def_flags; 814 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 815 816 tlb_gather_mmu(&tlb, mm); 817 ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end, 818 vm_flags); 819 tlb_finish_mmu(&tlb); 820 821 if (ret) 822 goto out_unlock; 823 BUG_ON(prev != vma); 824 825 if (unlikely(vm_flags & VM_EXEC)) { 826 pr_warn_once("process '%pD4' started with executable stack\n", 827 bprm->file); 828 } 829 830 /* Move stack pages down in memory. */ 831 if (stack_shift) { 832 ret = shift_arg_pages(vma, stack_shift); 833 if (ret) 834 goto out_unlock; 835 } 836 837 /* mprotect_fixup is overkill to remove the temporary stack flags */ 838 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 839 840 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 841 stack_size = vma->vm_end - vma->vm_start; 842 /* 843 * Align this down to a page boundary as expand_stack 844 * will align it up. 845 */ 846 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 847 #ifdef CONFIG_STACK_GROWSUP 848 if (stack_size + stack_expand > rlim_stack) 849 stack_base = vma->vm_start + rlim_stack; 850 else 851 stack_base = vma->vm_end + stack_expand; 852 #else 853 if (stack_size + stack_expand > rlim_stack) 854 stack_base = vma->vm_end - rlim_stack; 855 else 856 stack_base = vma->vm_start - stack_expand; 857 #endif 858 current->mm->start_stack = bprm->p; 859 ret = expand_stack(vma, stack_base); 860 if (ret) 861 ret = -EFAULT; 862 863 out_unlock: 864 mmap_write_unlock(mm); 865 return ret; 866 } 867 EXPORT_SYMBOL(setup_arg_pages); 868 869 #else 870 871 /* 872 * Transfer the program arguments and environment from the holding pages 873 * onto the stack. The provided stack pointer is adjusted accordingly. 874 */ 875 int transfer_args_to_stack(struct linux_binprm *bprm, 876 unsigned long *sp_location) 877 { 878 unsigned long index, stop, sp; 879 int ret = 0; 880 881 stop = bprm->p >> PAGE_SHIFT; 882 sp = *sp_location; 883 884 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 885 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 886 char *src = kmap(bprm->page[index]) + offset; 887 sp -= PAGE_SIZE - offset; 888 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 889 ret = -EFAULT; 890 kunmap(bprm->page[index]); 891 if (ret) 892 goto out; 893 } 894 895 *sp_location = sp; 896 897 out: 898 return ret; 899 } 900 EXPORT_SYMBOL(transfer_args_to_stack); 901 902 #endif /* CONFIG_MMU */ 903 904 static struct file *do_open_execat(int fd, struct filename *name, int flags) 905 { 906 struct file *file; 907 int err; 908 struct open_flags open_exec_flags = { 909 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 910 .acc_mode = MAY_EXEC, 911 .intent = LOOKUP_OPEN, 912 .lookup_flags = LOOKUP_FOLLOW, 913 }; 914 915 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 916 return ERR_PTR(-EINVAL); 917 if (flags & AT_SYMLINK_NOFOLLOW) 918 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 919 if (flags & AT_EMPTY_PATH) 920 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 921 922 file = do_filp_open(fd, name, &open_exec_flags); 923 if (IS_ERR(file)) 924 goto out; 925 926 /* 927 * may_open() has already checked for this, so it should be 928 * impossible to trip now. But we need to be extra cautious 929 * and check again at the very end too. 930 */ 931 err = -EACCES; 932 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 933 path_noexec(&file->f_path))) 934 goto exit; 935 936 err = deny_write_access(file); 937 if (err) 938 goto exit; 939 940 if (name->name[0] != '\0') 941 fsnotify_open(file); 942 943 out: 944 return file; 945 946 exit: 947 fput(file); 948 return ERR_PTR(err); 949 } 950 951 struct file *open_exec(const char *name) 952 { 953 struct filename *filename = getname_kernel(name); 954 struct file *f = ERR_CAST(filename); 955 956 if (!IS_ERR(filename)) { 957 f = do_open_execat(AT_FDCWD, filename, 0); 958 putname(filename); 959 } 960 return f; 961 } 962 EXPORT_SYMBOL(open_exec); 963 964 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ 965 defined(CONFIG_BINFMT_ELF_FDPIC) 966 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 967 { 968 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 969 if (res > 0) 970 flush_icache_user_range(addr, addr + len); 971 return res; 972 } 973 EXPORT_SYMBOL(read_code); 974 #endif 975 976 /* 977 * Maps the mm_struct mm into the current task struct. 978 * On success, this function returns with exec_update_lock 979 * held for writing. 980 */ 981 static int exec_mmap(struct mm_struct *mm) 982 { 983 struct task_struct *tsk; 984 struct mm_struct *old_mm, *active_mm; 985 int ret; 986 987 /* Notify parent that we're no longer interested in the old VM */ 988 tsk = current; 989 old_mm = current->mm; 990 exec_mm_release(tsk, old_mm); 991 if (old_mm) 992 sync_mm_rss(old_mm); 993 994 ret = down_write_killable(&tsk->signal->exec_update_lock); 995 if (ret) 996 return ret; 997 998 if (old_mm) { 999 /* 1000 * If there is a pending fatal signal perhaps a signal 1001 * whose default action is to create a coredump get 1002 * out and die instead of going through with the exec. 1003 */ 1004 ret = mmap_read_lock_killable(old_mm); 1005 if (ret) { 1006 up_write(&tsk->signal->exec_update_lock); 1007 return ret; 1008 } 1009 } 1010 1011 task_lock(tsk); 1012 membarrier_exec_mmap(mm); 1013 1014 local_irq_disable(); 1015 active_mm = tsk->active_mm; 1016 tsk->active_mm = mm; 1017 tsk->mm = mm; 1018 /* 1019 * This prevents preemption while active_mm is being loaded and 1020 * it and mm are being updated, which could cause problems for 1021 * lazy tlb mm refcounting when these are updated by context 1022 * switches. Not all architectures can handle irqs off over 1023 * activate_mm yet. 1024 */ 1025 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1026 local_irq_enable(); 1027 activate_mm(active_mm, mm); 1028 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1029 local_irq_enable(); 1030 tsk->mm->vmacache_seqnum = 0; 1031 vmacache_flush(tsk); 1032 task_unlock(tsk); 1033 if (old_mm) { 1034 mmap_read_unlock(old_mm); 1035 BUG_ON(active_mm != old_mm); 1036 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1037 mm_update_next_owner(old_mm); 1038 mmput(old_mm); 1039 return 0; 1040 } 1041 mmdrop(active_mm); 1042 return 0; 1043 } 1044 1045 static int de_thread(struct task_struct *tsk) 1046 { 1047 struct signal_struct *sig = tsk->signal; 1048 struct sighand_struct *oldsighand = tsk->sighand; 1049 spinlock_t *lock = &oldsighand->siglock; 1050 1051 if (thread_group_empty(tsk)) 1052 goto no_thread_group; 1053 1054 /* 1055 * Kill all other threads in the thread group. 1056 */ 1057 spin_lock_irq(lock); 1058 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1059 /* 1060 * Another group action in progress, just 1061 * return so that the signal is processed. 1062 */ 1063 spin_unlock_irq(lock); 1064 return -EAGAIN; 1065 } 1066 1067 sig->group_exec_task = tsk; 1068 sig->notify_count = zap_other_threads(tsk); 1069 if (!thread_group_leader(tsk)) 1070 sig->notify_count--; 1071 1072 while (sig->notify_count) { 1073 __set_current_state(TASK_KILLABLE); 1074 spin_unlock_irq(lock); 1075 schedule(); 1076 if (__fatal_signal_pending(tsk)) 1077 goto killed; 1078 spin_lock_irq(lock); 1079 } 1080 spin_unlock_irq(lock); 1081 1082 /* 1083 * At this point all other threads have exited, all we have to 1084 * do is to wait for the thread group leader to become inactive, 1085 * and to assume its PID: 1086 */ 1087 if (!thread_group_leader(tsk)) { 1088 struct task_struct *leader = tsk->group_leader; 1089 1090 for (;;) { 1091 cgroup_threadgroup_change_begin(tsk); 1092 write_lock_irq(&tasklist_lock); 1093 /* 1094 * Do this under tasklist_lock to ensure that 1095 * exit_notify() can't miss ->group_exec_task 1096 */ 1097 sig->notify_count = -1; 1098 if (likely(leader->exit_state)) 1099 break; 1100 __set_current_state(TASK_KILLABLE); 1101 write_unlock_irq(&tasklist_lock); 1102 cgroup_threadgroup_change_end(tsk); 1103 schedule(); 1104 if (__fatal_signal_pending(tsk)) 1105 goto killed; 1106 } 1107 1108 /* 1109 * The only record we have of the real-time age of a 1110 * process, regardless of execs it's done, is start_time. 1111 * All the past CPU time is accumulated in signal_struct 1112 * from sister threads now dead. But in this non-leader 1113 * exec, nothing survives from the original leader thread, 1114 * whose birth marks the true age of this process now. 1115 * When we take on its identity by switching to its PID, we 1116 * also take its birthdate (always earlier than our own). 1117 */ 1118 tsk->start_time = leader->start_time; 1119 tsk->start_boottime = leader->start_boottime; 1120 1121 BUG_ON(!same_thread_group(leader, tsk)); 1122 /* 1123 * An exec() starts a new thread group with the 1124 * TGID of the previous thread group. Rehash the 1125 * two threads with a switched PID, and release 1126 * the former thread group leader: 1127 */ 1128 1129 /* Become a process group leader with the old leader's pid. 1130 * The old leader becomes a thread of the this thread group. 1131 */ 1132 exchange_tids(tsk, leader); 1133 transfer_pid(leader, tsk, PIDTYPE_TGID); 1134 transfer_pid(leader, tsk, PIDTYPE_PGID); 1135 transfer_pid(leader, tsk, PIDTYPE_SID); 1136 1137 list_replace_rcu(&leader->tasks, &tsk->tasks); 1138 list_replace_init(&leader->sibling, &tsk->sibling); 1139 1140 tsk->group_leader = tsk; 1141 leader->group_leader = tsk; 1142 1143 tsk->exit_signal = SIGCHLD; 1144 leader->exit_signal = -1; 1145 1146 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1147 leader->exit_state = EXIT_DEAD; 1148 1149 /* 1150 * We are going to release_task()->ptrace_unlink() silently, 1151 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1152 * the tracer wont't block again waiting for this thread. 1153 */ 1154 if (unlikely(leader->ptrace)) 1155 __wake_up_parent(leader, leader->parent); 1156 write_unlock_irq(&tasklist_lock); 1157 cgroup_threadgroup_change_end(tsk); 1158 1159 release_task(leader); 1160 } 1161 1162 sig->group_exec_task = NULL; 1163 sig->notify_count = 0; 1164 1165 no_thread_group: 1166 /* we have changed execution domain */ 1167 tsk->exit_signal = SIGCHLD; 1168 1169 BUG_ON(!thread_group_leader(tsk)); 1170 return 0; 1171 1172 killed: 1173 /* protects against exit_notify() and __exit_signal() */ 1174 read_lock(&tasklist_lock); 1175 sig->group_exec_task = NULL; 1176 sig->notify_count = 0; 1177 read_unlock(&tasklist_lock); 1178 return -EAGAIN; 1179 } 1180 1181 1182 /* 1183 * This function makes sure the current process has its own signal table, 1184 * so that flush_signal_handlers can later reset the handlers without 1185 * disturbing other processes. (Other processes might share the signal 1186 * table via the CLONE_SIGHAND option to clone().) 1187 */ 1188 static int unshare_sighand(struct task_struct *me) 1189 { 1190 struct sighand_struct *oldsighand = me->sighand; 1191 1192 if (refcount_read(&oldsighand->count) != 1) { 1193 struct sighand_struct *newsighand; 1194 /* 1195 * This ->sighand is shared with the CLONE_SIGHAND 1196 * but not CLONE_THREAD task, switch to the new one. 1197 */ 1198 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1199 if (!newsighand) 1200 return -ENOMEM; 1201 1202 refcount_set(&newsighand->count, 1); 1203 memcpy(newsighand->action, oldsighand->action, 1204 sizeof(newsighand->action)); 1205 1206 write_lock_irq(&tasklist_lock); 1207 spin_lock(&oldsighand->siglock); 1208 rcu_assign_pointer(me->sighand, newsighand); 1209 spin_unlock(&oldsighand->siglock); 1210 write_unlock_irq(&tasklist_lock); 1211 1212 __cleanup_sighand(oldsighand); 1213 } 1214 return 0; 1215 } 1216 1217 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1218 { 1219 task_lock(tsk); 1220 /* Always NUL terminated and zero-padded */ 1221 strscpy_pad(buf, tsk->comm, buf_size); 1222 task_unlock(tsk); 1223 return buf; 1224 } 1225 EXPORT_SYMBOL_GPL(__get_task_comm); 1226 1227 /* 1228 * These functions flushes out all traces of the currently running executable 1229 * so that a new one can be started 1230 */ 1231 1232 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1233 { 1234 task_lock(tsk); 1235 trace_task_rename(tsk, buf); 1236 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1237 task_unlock(tsk); 1238 perf_event_comm(tsk, exec); 1239 } 1240 1241 /* 1242 * Calling this is the point of no return. None of the failures will be 1243 * seen by userspace since either the process is already taking a fatal 1244 * signal (via de_thread() or coredump), or will have SEGV raised 1245 * (after exec_mmap()) by search_binary_handler (see below). 1246 */ 1247 int begin_new_exec(struct linux_binprm * bprm) 1248 { 1249 struct task_struct *me = current; 1250 int retval; 1251 1252 /* Once we are committed compute the creds */ 1253 retval = bprm_creds_from_file(bprm); 1254 if (retval) 1255 return retval; 1256 1257 /* 1258 * Ensure all future errors are fatal. 1259 */ 1260 bprm->point_of_no_return = true; 1261 1262 /* 1263 * Make this the only thread in the thread group. 1264 */ 1265 retval = de_thread(me); 1266 if (retval) 1267 goto out; 1268 1269 /* 1270 * Cancel any io_uring activity across execve 1271 */ 1272 io_uring_task_cancel(); 1273 1274 /* Ensure the files table is not shared. */ 1275 retval = unshare_files(); 1276 if (retval) 1277 goto out; 1278 1279 /* 1280 * Must be called _before_ exec_mmap() as bprm->mm is 1281 * not visible until then. This also enables the update 1282 * to be lockless. 1283 */ 1284 retval = set_mm_exe_file(bprm->mm, bprm->file); 1285 if (retval) 1286 goto out; 1287 1288 /* If the binary is not readable then enforce mm->dumpable=0 */ 1289 would_dump(bprm, bprm->file); 1290 if (bprm->have_execfd) 1291 would_dump(bprm, bprm->executable); 1292 1293 /* 1294 * Release all of the old mmap stuff 1295 */ 1296 acct_arg_size(bprm, 0); 1297 retval = exec_mmap(bprm->mm); 1298 if (retval) 1299 goto out; 1300 1301 bprm->mm = NULL; 1302 1303 #ifdef CONFIG_POSIX_TIMERS 1304 exit_itimers(me->signal); 1305 flush_itimer_signals(); 1306 #endif 1307 1308 /* 1309 * Make the signal table private. 1310 */ 1311 retval = unshare_sighand(me); 1312 if (retval) 1313 goto out_unlock; 1314 1315 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1316 PF_NOFREEZE | PF_NO_SETAFFINITY); 1317 flush_thread(); 1318 me->personality &= ~bprm->per_clear; 1319 1320 clear_syscall_work_syscall_user_dispatch(me); 1321 1322 /* 1323 * We have to apply CLOEXEC before we change whether the process is 1324 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1325 * trying to access the should-be-closed file descriptors of a process 1326 * undergoing exec(2). 1327 */ 1328 do_close_on_exec(me->files); 1329 1330 if (bprm->secureexec) { 1331 /* Make sure parent cannot signal privileged process. */ 1332 me->pdeath_signal = 0; 1333 1334 /* 1335 * For secureexec, reset the stack limit to sane default to 1336 * avoid bad behavior from the prior rlimits. This has to 1337 * happen before arch_pick_mmap_layout(), which examines 1338 * RLIMIT_STACK, but after the point of no return to avoid 1339 * needing to clean up the change on failure. 1340 */ 1341 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1342 bprm->rlim_stack.rlim_cur = _STK_LIM; 1343 } 1344 1345 me->sas_ss_sp = me->sas_ss_size = 0; 1346 1347 /* 1348 * Figure out dumpability. Note that this checking only of current 1349 * is wrong, but userspace depends on it. This should be testing 1350 * bprm->secureexec instead. 1351 */ 1352 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1353 !(uid_eq(current_euid(), current_uid()) && 1354 gid_eq(current_egid(), current_gid()))) 1355 set_dumpable(current->mm, suid_dumpable); 1356 else 1357 set_dumpable(current->mm, SUID_DUMP_USER); 1358 1359 perf_event_exec(); 1360 __set_task_comm(me, kbasename(bprm->filename), true); 1361 1362 /* An exec changes our domain. We are no longer part of the thread 1363 group */ 1364 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1365 flush_signal_handlers(me, 0); 1366 1367 retval = set_cred_ucounts(bprm->cred); 1368 if (retval < 0) 1369 goto out_unlock; 1370 1371 /* 1372 * install the new credentials for this executable 1373 */ 1374 security_bprm_committing_creds(bprm); 1375 1376 commit_creds(bprm->cred); 1377 bprm->cred = NULL; 1378 1379 /* 1380 * Disable monitoring for regular users 1381 * when executing setuid binaries. Must 1382 * wait until new credentials are committed 1383 * by commit_creds() above 1384 */ 1385 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1386 perf_event_exit_task(me); 1387 /* 1388 * cred_guard_mutex must be held at least to this point to prevent 1389 * ptrace_attach() from altering our determination of the task's 1390 * credentials; any time after this it may be unlocked. 1391 */ 1392 security_bprm_committed_creds(bprm); 1393 1394 /* Pass the opened binary to the interpreter. */ 1395 if (bprm->have_execfd) { 1396 retval = get_unused_fd_flags(0); 1397 if (retval < 0) 1398 goto out_unlock; 1399 fd_install(retval, bprm->executable); 1400 bprm->executable = NULL; 1401 bprm->execfd = retval; 1402 } 1403 return 0; 1404 1405 out_unlock: 1406 up_write(&me->signal->exec_update_lock); 1407 out: 1408 return retval; 1409 } 1410 EXPORT_SYMBOL(begin_new_exec); 1411 1412 void would_dump(struct linux_binprm *bprm, struct file *file) 1413 { 1414 struct inode *inode = file_inode(file); 1415 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 1416 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) { 1417 struct user_namespace *old, *user_ns; 1418 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1419 1420 /* Ensure mm->user_ns contains the executable */ 1421 user_ns = old = bprm->mm->user_ns; 1422 while ((user_ns != &init_user_ns) && 1423 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode)) 1424 user_ns = user_ns->parent; 1425 1426 if (old != user_ns) { 1427 bprm->mm->user_ns = get_user_ns(user_ns); 1428 put_user_ns(old); 1429 } 1430 } 1431 } 1432 EXPORT_SYMBOL(would_dump); 1433 1434 void setup_new_exec(struct linux_binprm * bprm) 1435 { 1436 /* Setup things that can depend upon the personality */ 1437 struct task_struct *me = current; 1438 1439 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1440 1441 arch_setup_new_exec(); 1442 1443 /* Set the new mm task size. We have to do that late because it may 1444 * depend on TIF_32BIT which is only updated in flush_thread() on 1445 * some architectures like powerpc 1446 */ 1447 me->mm->task_size = TASK_SIZE; 1448 up_write(&me->signal->exec_update_lock); 1449 mutex_unlock(&me->signal->cred_guard_mutex); 1450 } 1451 EXPORT_SYMBOL(setup_new_exec); 1452 1453 /* Runs immediately before start_thread() takes over. */ 1454 void finalize_exec(struct linux_binprm *bprm) 1455 { 1456 /* Store any stack rlimit changes before starting thread. */ 1457 task_lock(current->group_leader); 1458 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1459 task_unlock(current->group_leader); 1460 } 1461 EXPORT_SYMBOL(finalize_exec); 1462 1463 /* 1464 * Prepare credentials and lock ->cred_guard_mutex. 1465 * setup_new_exec() commits the new creds and drops the lock. 1466 * Or, if exec fails before, free_bprm() should release ->cred 1467 * and unlock. 1468 */ 1469 static int prepare_bprm_creds(struct linux_binprm *bprm) 1470 { 1471 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1472 return -ERESTARTNOINTR; 1473 1474 bprm->cred = prepare_exec_creds(); 1475 if (likely(bprm->cred)) 1476 return 0; 1477 1478 mutex_unlock(¤t->signal->cred_guard_mutex); 1479 return -ENOMEM; 1480 } 1481 1482 static void free_bprm(struct linux_binprm *bprm) 1483 { 1484 if (bprm->mm) { 1485 acct_arg_size(bprm, 0); 1486 mmput(bprm->mm); 1487 } 1488 free_arg_pages(bprm); 1489 if (bprm->cred) { 1490 mutex_unlock(¤t->signal->cred_guard_mutex); 1491 abort_creds(bprm->cred); 1492 } 1493 if (bprm->file) { 1494 allow_write_access(bprm->file); 1495 fput(bprm->file); 1496 } 1497 if (bprm->executable) 1498 fput(bprm->executable); 1499 /* If a binfmt changed the interp, free it. */ 1500 if (bprm->interp != bprm->filename) 1501 kfree(bprm->interp); 1502 kfree(bprm->fdpath); 1503 kfree(bprm); 1504 } 1505 1506 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1507 { 1508 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1509 int retval = -ENOMEM; 1510 if (!bprm) 1511 goto out; 1512 1513 if (fd == AT_FDCWD || filename->name[0] == '/') { 1514 bprm->filename = filename->name; 1515 } else { 1516 if (filename->name[0] == '\0') 1517 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1518 else 1519 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1520 fd, filename->name); 1521 if (!bprm->fdpath) 1522 goto out_free; 1523 1524 bprm->filename = bprm->fdpath; 1525 } 1526 bprm->interp = bprm->filename; 1527 1528 retval = bprm_mm_init(bprm); 1529 if (retval) 1530 goto out_free; 1531 return bprm; 1532 1533 out_free: 1534 free_bprm(bprm); 1535 out: 1536 return ERR_PTR(retval); 1537 } 1538 1539 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1540 { 1541 /* If a binfmt changed the interp, free it first. */ 1542 if (bprm->interp != bprm->filename) 1543 kfree(bprm->interp); 1544 bprm->interp = kstrdup(interp, GFP_KERNEL); 1545 if (!bprm->interp) 1546 return -ENOMEM; 1547 return 0; 1548 } 1549 EXPORT_SYMBOL(bprm_change_interp); 1550 1551 /* 1552 * determine how safe it is to execute the proposed program 1553 * - the caller must hold ->cred_guard_mutex to protect against 1554 * PTRACE_ATTACH or seccomp thread-sync 1555 */ 1556 static void check_unsafe_exec(struct linux_binprm *bprm) 1557 { 1558 struct task_struct *p = current, *t; 1559 unsigned n_fs; 1560 1561 if (p->ptrace) 1562 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1563 1564 /* 1565 * This isn't strictly necessary, but it makes it harder for LSMs to 1566 * mess up. 1567 */ 1568 if (task_no_new_privs(current)) 1569 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1570 1571 t = p; 1572 n_fs = 1; 1573 spin_lock(&p->fs->lock); 1574 rcu_read_lock(); 1575 while_each_thread(p, t) { 1576 if (t->fs == p->fs) 1577 n_fs++; 1578 } 1579 rcu_read_unlock(); 1580 1581 if (p->fs->users > n_fs) 1582 bprm->unsafe |= LSM_UNSAFE_SHARE; 1583 else 1584 p->fs->in_exec = 1; 1585 spin_unlock(&p->fs->lock); 1586 } 1587 1588 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1589 { 1590 /* Handle suid and sgid on files */ 1591 struct user_namespace *mnt_userns; 1592 struct inode *inode; 1593 unsigned int mode; 1594 kuid_t uid; 1595 kgid_t gid; 1596 1597 if (!mnt_may_suid(file->f_path.mnt)) 1598 return; 1599 1600 if (task_no_new_privs(current)) 1601 return; 1602 1603 inode = file->f_path.dentry->d_inode; 1604 mode = READ_ONCE(inode->i_mode); 1605 if (!(mode & (S_ISUID|S_ISGID))) 1606 return; 1607 1608 mnt_userns = file_mnt_user_ns(file); 1609 1610 /* Be careful if suid/sgid is set */ 1611 inode_lock(inode); 1612 1613 /* reload atomically mode/uid/gid now that lock held */ 1614 mode = inode->i_mode; 1615 uid = i_uid_into_mnt(mnt_userns, inode); 1616 gid = i_gid_into_mnt(mnt_userns, inode); 1617 inode_unlock(inode); 1618 1619 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1620 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1621 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1622 return; 1623 1624 if (mode & S_ISUID) { 1625 bprm->per_clear |= PER_CLEAR_ON_SETID; 1626 bprm->cred->euid = uid; 1627 } 1628 1629 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1630 bprm->per_clear |= PER_CLEAR_ON_SETID; 1631 bprm->cred->egid = gid; 1632 } 1633 } 1634 1635 /* 1636 * Compute brpm->cred based upon the final binary. 1637 */ 1638 static int bprm_creds_from_file(struct linux_binprm *bprm) 1639 { 1640 /* Compute creds based on which file? */ 1641 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1642 1643 bprm_fill_uid(bprm, file); 1644 return security_bprm_creds_from_file(bprm, file); 1645 } 1646 1647 /* 1648 * Fill the binprm structure from the inode. 1649 * Read the first BINPRM_BUF_SIZE bytes 1650 * 1651 * This may be called multiple times for binary chains (scripts for example). 1652 */ 1653 static int prepare_binprm(struct linux_binprm *bprm) 1654 { 1655 loff_t pos = 0; 1656 1657 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1658 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1659 } 1660 1661 /* 1662 * Arguments are '\0' separated strings found at the location bprm->p 1663 * points to; chop off the first by relocating brpm->p to right after 1664 * the first '\0' encountered. 1665 */ 1666 int remove_arg_zero(struct linux_binprm *bprm) 1667 { 1668 int ret = 0; 1669 unsigned long offset; 1670 char *kaddr; 1671 struct page *page; 1672 1673 if (!bprm->argc) 1674 return 0; 1675 1676 do { 1677 offset = bprm->p & ~PAGE_MASK; 1678 page = get_arg_page(bprm, bprm->p, 0); 1679 if (!page) { 1680 ret = -EFAULT; 1681 goto out; 1682 } 1683 kaddr = kmap_atomic(page); 1684 1685 for (; offset < PAGE_SIZE && kaddr[offset]; 1686 offset++, bprm->p++) 1687 ; 1688 1689 kunmap_atomic(kaddr); 1690 put_arg_page(page); 1691 } while (offset == PAGE_SIZE); 1692 1693 bprm->p++; 1694 bprm->argc--; 1695 ret = 0; 1696 1697 out: 1698 return ret; 1699 } 1700 EXPORT_SYMBOL(remove_arg_zero); 1701 1702 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1703 /* 1704 * cycle the list of binary formats handler, until one recognizes the image 1705 */ 1706 static int search_binary_handler(struct linux_binprm *bprm) 1707 { 1708 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1709 struct linux_binfmt *fmt; 1710 int retval; 1711 1712 retval = prepare_binprm(bprm); 1713 if (retval < 0) 1714 return retval; 1715 1716 retval = security_bprm_check(bprm); 1717 if (retval) 1718 return retval; 1719 1720 retval = -ENOENT; 1721 retry: 1722 read_lock(&binfmt_lock); 1723 list_for_each_entry(fmt, &formats, lh) { 1724 if (!try_module_get(fmt->module)) 1725 continue; 1726 read_unlock(&binfmt_lock); 1727 1728 retval = fmt->load_binary(bprm); 1729 1730 read_lock(&binfmt_lock); 1731 put_binfmt(fmt); 1732 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1733 read_unlock(&binfmt_lock); 1734 return retval; 1735 } 1736 } 1737 read_unlock(&binfmt_lock); 1738 1739 if (need_retry) { 1740 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1741 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1742 return retval; 1743 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1744 return retval; 1745 need_retry = false; 1746 goto retry; 1747 } 1748 1749 return retval; 1750 } 1751 1752 static int exec_binprm(struct linux_binprm *bprm) 1753 { 1754 pid_t old_pid, old_vpid; 1755 int ret, depth; 1756 1757 /* Need to fetch pid before load_binary changes it */ 1758 old_pid = current->pid; 1759 rcu_read_lock(); 1760 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1761 rcu_read_unlock(); 1762 1763 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1764 for (depth = 0;; depth++) { 1765 struct file *exec; 1766 if (depth > 5) 1767 return -ELOOP; 1768 1769 ret = search_binary_handler(bprm); 1770 if (ret < 0) 1771 return ret; 1772 if (!bprm->interpreter) 1773 break; 1774 1775 exec = bprm->file; 1776 bprm->file = bprm->interpreter; 1777 bprm->interpreter = NULL; 1778 1779 allow_write_access(exec); 1780 if (unlikely(bprm->have_execfd)) { 1781 if (bprm->executable) { 1782 fput(exec); 1783 return -ENOEXEC; 1784 } 1785 bprm->executable = exec; 1786 } else 1787 fput(exec); 1788 } 1789 1790 audit_bprm(bprm); 1791 trace_sched_process_exec(current, old_pid, bprm); 1792 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1793 proc_exec_connector(current); 1794 return 0; 1795 } 1796 1797 /* 1798 * sys_execve() executes a new program. 1799 */ 1800 static int bprm_execve(struct linux_binprm *bprm, 1801 int fd, struct filename *filename, int flags) 1802 { 1803 struct file *file; 1804 int retval; 1805 1806 retval = prepare_bprm_creds(bprm); 1807 if (retval) 1808 return retval; 1809 1810 check_unsafe_exec(bprm); 1811 current->in_execve = 1; 1812 1813 file = do_open_execat(fd, filename, flags); 1814 retval = PTR_ERR(file); 1815 if (IS_ERR(file)) 1816 goto out_unmark; 1817 1818 sched_exec(); 1819 1820 bprm->file = file; 1821 /* 1822 * Record that a name derived from an O_CLOEXEC fd will be 1823 * inaccessible after exec. This allows the code in exec to 1824 * choose to fail when the executable is not mmaped into the 1825 * interpreter and an open file descriptor is not passed to 1826 * the interpreter. This makes for a better user experience 1827 * than having the interpreter start and then immediately fail 1828 * when it finds the executable is inaccessible. 1829 */ 1830 if (bprm->fdpath && get_close_on_exec(fd)) 1831 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1832 1833 /* Set the unchanging part of bprm->cred */ 1834 retval = security_bprm_creds_for_exec(bprm); 1835 if (retval) 1836 goto out; 1837 1838 retval = exec_binprm(bprm); 1839 if (retval < 0) 1840 goto out; 1841 1842 /* execve succeeded */ 1843 current->fs->in_exec = 0; 1844 current->in_execve = 0; 1845 rseq_execve(current); 1846 acct_update_integrals(current); 1847 task_numa_free(current, false); 1848 return retval; 1849 1850 out: 1851 /* 1852 * If past the point of no return ensure the code never 1853 * returns to the userspace process. Use an existing fatal 1854 * signal if present otherwise terminate the process with 1855 * SIGSEGV. 1856 */ 1857 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1858 force_fatal_sig(SIGSEGV); 1859 1860 out_unmark: 1861 current->fs->in_exec = 0; 1862 current->in_execve = 0; 1863 1864 return retval; 1865 } 1866 1867 static int do_execveat_common(int fd, struct filename *filename, 1868 struct user_arg_ptr argv, 1869 struct user_arg_ptr envp, 1870 int flags) 1871 { 1872 struct linux_binprm *bprm; 1873 int retval; 1874 1875 if (IS_ERR(filename)) 1876 return PTR_ERR(filename); 1877 1878 /* 1879 * We move the actual failure in case of RLIMIT_NPROC excess from 1880 * set*uid() to execve() because too many poorly written programs 1881 * don't check setuid() return code. Here we additionally recheck 1882 * whether NPROC limit is still exceeded. 1883 */ 1884 if ((current->flags & PF_NPROC_EXCEEDED) && 1885 is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1886 retval = -EAGAIN; 1887 goto out_ret; 1888 } 1889 1890 /* We're below the limit (still or again), so we don't want to make 1891 * further execve() calls fail. */ 1892 current->flags &= ~PF_NPROC_EXCEEDED; 1893 1894 bprm = alloc_bprm(fd, filename); 1895 if (IS_ERR(bprm)) { 1896 retval = PTR_ERR(bprm); 1897 goto out_ret; 1898 } 1899 1900 retval = count(argv, MAX_ARG_STRINGS); 1901 if (retval == 0) 1902 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1903 current->comm, bprm->filename); 1904 if (retval < 0) 1905 goto out_free; 1906 bprm->argc = retval; 1907 1908 retval = count(envp, MAX_ARG_STRINGS); 1909 if (retval < 0) 1910 goto out_free; 1911 bprm->envc = retval; 1912 1913 retval = bprm_stack_limits(bprm); 1914 if (retval < 0) 1915 goto out_free; 1916 1917 retval = copy_string_kernel(bprm->filename, bprm); 1918 if (retval < 0) 1919 goto out_free; 1920 bprm->exec = bprm->p; 1921 1922 retval = copy_strings(bprm->envc, envp, bprm); 1923 if (retval < 0) 1924 goto out_free; 1925 1926 retval = copy_strings(bprm->argc, argv, bprm); 1927 if (retval < 0) 1928 goto out_free; 1929 1930 /* 1931 * When argv is empty, add an empty string ("") as argv[0] to 1932 * ensure confused userspace programs that start processing 1933 * from argv[1] won't end up walking envp. See also 1934 * bprm_stack_limits(). 1935 */ 1936 if (bprm->argc == 0) { 1937 retval = copy_string_kernel("", bprm); 1938 if (retval < 0) 1939 goto out_free; 1940 bprm->argc = 1; 1941 } 1942 1943 retval = bprm_execve(bprm, fd, filename, flags); 1944 out_free: 1945 free_bprm(bprm); 1946 1947 out_ret: 1948 putname(filename); 1949 return retval; 1950 } 1951 1952 int kernel_execve(const char *kernel_filename, 1953 const char *const *argv, const char *const *envp) 1954 { 1955 struct filename *filename; 1956 struct linux_binprm *bprm; 1957 int fd = AT_FDCWD; 1958 int retval; 1959 1960 /* It is non-sense for kernel threads to call execve */ 1961 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1962 return -EINVAL; 1963 1964 filename = getname_kernel(kernel_filename); 1965 if (IS_ERR(filename)) 1966 return PTR_ERR(filename); 1967 1968 bprm = alloc_bprm(fd, filename); 1969 if (IS_ERR(bprm)) { 1970 retval = PTR_ERR(bprm); 1971 goto out_ret; 1972 } 1973 1974 retval = count_strings_kernel(argv); 1975 if (WARN_ON_ONCE(retval == 0)) 1976 retval = -EINVAL; 1977 if (retval < 0) 1978 goto out_free; 1979 bprm->argc = retval; 1980 1981 retval = count_strings_kernel(envp); 1982 if (retval < 0) 1983 goto out_free; 1984 bprm->envc = retval; 1985 1986 retval = bprm_stack_limits(bprm); 1987 if (retval < 0) 1988 goto out_free; 1989 1990 retval = copy_string_kernel(bprm->filename, bprm); 1991 if (retval < 0) 1992 goto out_free; 1993 bprm->exec = bprm->p; 1994 1995 retval = copy_strings_kernel(bprm->envc, envp, bprm); 1996 if (retval < 0) 1997 goto out_free; 1998 1999 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2000 if (retval < 0) 2001 goto out_free; 2002 2003 retval = bprm_execve(bprm, fd, filename, 0); 2004 out_free: 2005 free_bprm(bprm); 2006 out_ret: 2007 putname(filename); 2008 return retval; 2009 } 2010 2011 static int do_execve(struct filename *filename, 2012 const char __user *const __user *__argv, 2013 const char __user *const __user *__envp) 2014 { 2015 struct user_arg_ptr argv = { .ptr.native = __argv }; 2016 struct user_arg_ptr envp = { .ptr.native = __envp }; 2017 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2018 } 2019 2020 static int do_execveat(int fd, struct filename *filename, 2021 const char __user *const __user *__argv, 2022 const char __user *const __user *__envp, 2023 int flags) 2024 { 2025 struct user_arg_ptr argv = { .ptr.native = __argv }; 2026 struct user_arg_ptr envp = { .ptr.native = __envp }; 2027 2028 return do_execveat_common(fd, filename, argv, envp, flags); 2029 } 2030 2031 #ifdef CONFIG_COMPAT 2032 static int compat_do_execve(struct filename *filename, 2033 const compat_uptr_t __user *__argv, 2034 const compat_uptr_t __user *__envp) 2035 { 2036 struct user_arg_ptr argv = { 2037 .is_compat = true, 2038 .ptr.compat = __argv, 2039 }; 2040 struct user_arg_ptr envp = { 2041 .is_compat = true, 2042 .ptr.compat = __envp, 2043 }; 2044 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2045 } 2046 2047 static int compat_do_execveat(int fd, struct filename *filename, 2048 const compat_uptr_t __user *__argv, 2049 const compat_uptr_t __user *__envp, 2050 int flags) 2051 { 2052 struct user_arg_ptr argv = { 2053 .is_compat = true, 2054 .ptr.compat = __argv, 2055 }; 2056 struct user_arg_ptr envp = { 2057 .is_compat = true, 2058 .ptr.compat = __envp, 2059 }; 2060 return do_execveat_common(fd, filename, argv, envp, flags); 2061 } 2062 #endif 2063 2064 void set_binfmt(struct linux_binfmt *new) 2065 { 2066 struct mm_struct *mm = current->mm; 2067 2068 if (mm->binfmt) 2069 module_put(mm->binfmt->module); 2070 2071 mm->binfmt = new; 2072 if (new) 2073 __module_get(new->module); 2074 } 2075 EXPORT_SYMBOL(set_binfmt); 2076 2077 /* 2078 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2079 */ 2080 void set_dumpable(struct mm_struct *mm, int value) 2081 { 2082 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2083 return; 2084 2085 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2086 } 2087 2088 SYSCALL_DEFINE3(execve, 2089 const char __user *, filename, 2090 const char __user *const __user *, argv, 2091 const char __user *const __user *, envp) 2092 { 2093 return do_execve(getname(filename), argv, envp); 2094 } 2095 2096 SYSCALL_DEFINE5(execveat, 2097 int, fd, const char __user *, filename, 2098 const char __user *const __user *, argv, 2099 const char __user *const __user *, envp, 2100 int, flags) 2101 { 2102 return do_execveat(fd, 2103 getname_uflags(filename, flags), 2104 argv, envp, flags); 2105 } 2106 2107 #ifdef CONFIG_COMPAT 2108 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2109 const compat_uptr_t __user *, argv, 2110 const compat_uptr_t __user *, envp) 2111 { 2112 return compat_do_execve(getname(filename), argv, envp); 2113 } 2114 2115 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2116 const char __user *, filename, 2117 const compat_uptr_t __user *, argv, 2118 const compat_uptr_t __user *, envp, 2119 int, flags) 2120 { 2121 return compat_do_execveat(fd, 2122 getname_uflags(filename, flags), 2123 argv, envp, flags); 2124 } 2125 #endif 2126 2127 #ifdef CONFIG_SYSCTL 2128 2129 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write, 2130 void *buffer, size_t *lenp, loff_t *ppos) 2131 { 2132 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2133 2134 if (!error) 2135 validate_coredump_safety(); 2136 return error; 2137 } 2138 2139 static struct ctl_table fs_exec_sysctls[] = { 2140 { 2141 .procname = "suid_dumpable", 2142 .data = &suid_dumpable, 2143 .maxlen = sizeof(int), 2144 .mode = 0644, 2145 .proc_handler = proc_dointvec_minmax_coredump, 2146 .extra1 = SYSCTL_ZERO, 2147 .extra2 = SYSCTL_TWO, 2148 }, 2149 { } 2150 }; 2151 2152 static int __init init_fs_exec_sysctls(void) 2153 { 2154 register_sysctl_init("fs", fs_exec_sysctls); 2155 return 0; 2156 } 2157 2158 fs_initcall(init_fs_exec_sysctls); 2159 #endif /* CONFIG_SYSCTL */ 2160