xref: /linux/fs/exec.c (revision 71e2f4dd5a65bd8dbca0b77661e75eea471168f8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/pipe_fs_i.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/tlb.h>
70 
71 #include <trace/events/task.h>
72 #include "internal.h"
73 
74 #include <trace/events/sched.h>
75 
76 int suid_dumpable = 0;
77 
78 static LIST_HEAD(formats);
79 static DEFINE_RWLOCK(binfmt_lock);
80 
81 void __register_binfmt(struct linux_binfmt * fmt, int insert)
82 {
83 	BUG_ON(!fmt);
84 	if (WARN_ON(!fmt->load_binary))
85 		return;
86 	write_lock(&binfmt_lock);
87 	insert ? list_add(&fmt->lh, &formats) :
88 		 list_add_tail(&fmt->lh, &formats);
89 	write_unlock(&binfmt_lock);
90 }
91 
92 EXPORT_SYMBOL(__register_binfmt);
93 
94 void unregister_binfmt(struct linux_binfmt * fmt)
95 {
96 	write_lock(&binfmt_lock);
97 	list_del(&fmt->lh);
98 	write_unlock(&binfmt_lock);
99 }
100 
101 EXPORT_SYMBOL(unregister_binfmt);
102 
103 static inline void put_binfmt(struct linux_binfmt * fmt)
104 {
105 	module_put(fmt->module);
106 }
107 
108 bool path_noexec(const struct path *path)
109 {
110 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
111 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
112 }
113 
114 #ifdef CONFIG_USELIB
115 /*
116  * Note that a shared library must be both readable and executable due to
117  * security reasons.
118  *
119  * Also note that we take the address to load from from the file itself.
120  */
121 SYSCALL_DEFINE1(uselib, const char __user *, library)
122 {
123 	struct linux_binfmt *fmt;
124 	struct file *file;
125 	struct filename *tmp = getname(library);
126 	int error = PTR_ERR(tmp);
127 	static const struct open_flags uselib_flags = {
128 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
129 		.acc_mode = MAY_READ | MAY_EXEC,
130 		.intent = LOOKUP_OPEN,
131 		.lookup_flags = LOOKUP_FOLLOW,
132 	};
133 
134 	if (IS_ERR(tmp))
135 		goto out;
136 
137 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
138 	putname(tmp);
139 	error = PTR_ERR(file);
140 	if (IS_ERR(file))
141 		goto out;
142 
143 	error = -EINVAL;
144 	if (!S_ISREG(file_inode(file)->i_mode))
145 		goto exit;
146 
147 	error = -EACCES;
148 	if (path_noexec(&file->f_path))
149 		goto exit;
150 
151 	fsnotify_open(file);
152 
153 	error = -ENOEXEC;
154 
155 	read_lock(&binfmt_lock);
156 	list_for_each_entry(fmt, &formats, lh) {
157 		if (!fmt->load_shlib)
158 			continue;
159 		if (!try_module_get(fmt->module))
160 			continue;
161 		read_unlock(&binfmt_lock);
162 		error = fmt->load_shlib(file);
163 		read_lock(&binfmt_lock);
164 		put_binfmt(fmt);
165 		if (error != -ENOEXEC)
166 			break;
167 	}
168 	read_unlock(&binfmt_lock);
169 exit:
170 	fput(file);
171 out:
172   	return error;
173 }
174 #endif /* #ifdef CONFIG_USELIB */
175 
176 #ifdef CONFIG_MMU
177 /*
178  * The nascent bprm->mm is not visible until exec_mmap() but it can
179  * use a lot of memory, account these pages in current->mm temporary
180  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
181  * change the counter back via acct_arg_size(0).
182  */
183 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
184 {
185 	struct mm_struct *mm = current->mm;
186 	long diff = (long)(pages - bprm->vma_pages);
187 
188 	if (!mm || !diff)
189 		return;
190 
191 	bprm->vma_pages = pages;
192 	add_mm_counter(mm, MM_ANONPAGES, diff);
193 }
194 
195 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
196 		int write)
197 {
198 	struct page *page;
199 	int ret;
200 	unsigned int gup_flags = FOLL_FORCE;
201 
202 #ifdef CONFIG_STACK_GROWSUP
203 	if (write) {
204 		ret = expand_downwards(bprm->vma, pos);
205 		if (ret < 0)
206 			return NULL;
207 	}
208 #endif
209 
210 	if (write)
211 		gup_flags |= FOLL_WRITE;
212 
213 	/*
214 	 * We are doing an exec().  'current' is the process
215 	 * doing the exec and bprm->mm is the new process's mm.
216 	 */
217 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
218 			&page, NULL, NULL);
219 	if (ret <= 0)
220 		return NULL;
221 
222 	if (write)
223 		acct_arg_size(bprm, vma_pages(bprm->vma));
224 
225 	return page;
226 }
227 
228 static void put_arg_page(struct page *page)
229 {
230 	put_page(page);
231 }
232 
233 static void free_arg_pages(struct linux_binprm *bprm)
234 {
235 }
236 
237 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
238 		struct page *page)
239 {
240 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
241 }
242 
243 static int __bprm_mm_init(struct linux_binprm *bprm)
244 {
245 	int err;
246 	struct vm_area_struct *vma = NULL;
247 	struct mm_struct *mm = bprm->mm;
248 
249 	bprm->vma = vma = vm_area_alloc(mm);
250 	if (!vma)
251 		return -ENOMEM;
252 	vma_set_anonymous(vma);
253 
254 	if (down_write_killable(&mm->mmap_sem)) {
255 		err = -EINTR;
256 		goto err_free;
257 	}
258 
259 	/*
260 	 * Place the stack at the largest stack address the architecture
261 	 * supports. Later, we'll move this to an appropriate place. We don't
262 	 * use STACK_TOP because that can depend on attributes which aren't
263 	 * configured yet.
264 	 */
265 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 	vma->vm_end = STACK_TOP_MAX;
267 	vma->vm_start = vma->vm_end - PAGE_SIZE;
268 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270 
271 	err = insert_vm_struct(mm, vma);
272 	if (err)
273 		goto err;
274 
275 	mm->stack_vm = mm->total_vm = 1;
276 	arch_bprm_mm_init(mm, vma);
277 	up_write(&mm->mmap_sem);
278 	bprm->p = vma->vm_end - sizeof(void *);
279 	return 0;
280 err:
281 	up_write(&mm->mmap_sem);
282 err_free:
283 	bprm->vma = NULL;
284 	vm_area_free(vma);
285 	return err;
286 }
287 
288 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 {
290 	return len <= MAX_ARG_STRLEN;
291 }
292 
293 #else
294 
295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
296 {
297 }
298 
299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
300 		int write)
301 {
302 	struct page *page;
303 
304 	page = bprm->page[pos / PAGE_SIZE];
305 	if (!page && write) {
306 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
307 		if (!page)
308 			return NULL;
309 		bprm->page[pos / PAGE_SIZE] = page;
310 	}
311 
312 	return page;
313 }
314 
315 static void put_arg_page(struct page *page)
316 {
317 }
318 
319 static void free_arg_page(struct linux_binprm *bprm, int i)
320 {
321 	if (bprm->page[i]) {
322 		__free_page(bprm->page[i]);
323 		bprm->page[i] = NULL;
324 	}
325 }
326 
327 static void free_arg_pages(struct linux_binprm *bprm)
328 {
329 	int i;
330 
331 	for (i = 0; i < MAX_ARG_PAGES; i++)
332 		free_arg_page(bprm, i);
333 }
334 
335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
336 		struct page *page)
337 {
338 }
339 
340 static int __bprm_mm_init(struct linux_binprm *bprm)
341 {
342 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
343 	return 0;
344 }
345 
346 static bool valid_arg_len(struct linux_binprm *bprm, long len)
347 {
348 	return len <= bprm->p;
349 }
350 
351 #endif /* CONFIG_MMU */
352 
353 /*
354  * Create a new mm_struct and populate it with a temporary stack
355  * vm_area_struct.  We don't have enough context at this point to set the stack
356  * flags, permissions, and offset, so we use temporary values.  We'll update
357  * them later in setup_arg_pages().
358  */
359 static int bprm_mm_init(struct linux_binprm *bprm)
360 {
361 	int err;
362 	struct mm_struct *mm = NULL;
363 
364 	bprm->mm = mm = mm_alloc();
365 	err = -ENOMEM;
366 	if (!mm)
367 		goto err;
368 
369 	/* Save current stack limit for all calculations made during exec. */
370 	task_lock(current->group_leader);
371 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
372 	task_unlock(current->group_leader);
373 
374 	err = __bprm_mm_init(bprm);
375 	if (err)
376 		goto err;
377 
378 	return 0;
379 
380 err:
381 	if (mm) {
382 		bprm->mm = NULL;
383 		mmdrop(mm);
384 	}
385 
386 	return err;
387 }
388 
389 struct user_arg_ptr {
390 #ifdef CONFIG_COMPAT
391 	bool is_compat;
392 #endif
393 	union {
394 		const char __user *const __user *native;
395 #ifdef CONFIG_COMPAT
396 		const compat_uptr_t __user *compat;
397 #endif
398 	} ptr;
399 };
400 
401 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
402 {
403 	const char __user *native;
404 
405 #ifdef CONFIG_COMPAT
406 	if (unlikely(argv.is_compat)) {
407 		compat_uptr_t compat;
408 
409 		if (get_user(compat, argv.ptr.compat + nr))
410 			return ERR_PTR(-EFAULT);
411 
412 		return compat_ptr(compat);
413 	}
414 #endif
415 
416 	if (get_user(native, argv.ptr.native + nr))
417 		return ERR_PTR(-EFAULT);
418 
419 	return native;
420 }
421 
422 /*
423  * count() counts the number of strings in array ARGV.
424  */
425 static int count(struct user_arg_ptr argv, int max)
426 {
427 	int i = 0;
428 
429 	if (argv.ptr.native != NULL) {
430 		for (;;) {
431 			const char __user *p = get_user_arg_ptr(argv, i);
432 
433 			if (!p)
434 				break;
435 
436 			if (IS_ERR(p))
437 				return -EFAULT;
438 
439 			if (i >= max)
440 				return -E2BIG;
441 			++i;
442 
443 			if (fatal_signal_pending(current))
444 				return -ERESTARTNOHAND;
445 			cond_resched();
446 		}
447 	}
448 	return i;
449 }
450 
451 static int prepare_arg_pages(struct linux_binprm *bprm,
452 			struct user_arg_ptr argv, struct user_arg_ptr envp)
453 {
454 	unsigned long limit, ptr_size;
455 
456 	bprm->argc = count(argv, MAX_ARG_STRINGS);
457 	if (bprm->argc < 0)
458 		return bprm->argc;
459 
460 	bprm->envc = count(envp, MAX_ARG_STRINGS);
461 	if (bprm->envc < 0)
462 		return bprm->envc;
463 
464 	/*
465 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
466 	 * (whichever is smaller) for the argv+env strings.
467 	 * This ensures that:
468 	 *  - the remaining binfmt code will not run out of stack space,
469 	 *  - the program will have a reasonable amount of stack left
470 	 *    to work from.
471 	 */
472 	limit = _STK_LIM / 4 * 3;
473 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
474 	/*
475 	 * We've historically supported up to 32 pages (ARG_MAX)
476 	 * of argument strings even with small stacks
477 	 */
478 	limit = max_t(unsigned long, limit, ARG_MAX);
479 	/*
480 	 * We must account for the size of all the argv and envp pointers to
481 	 * the argv and envp strings, since they will also take up space in
482 	 * the stack. They aren't stored until much later when we can't
483 	 * signal to the parent that the child has run out of stack space.
484 	 * Instead, calculate it here so it's possible to fail gracefully.
485 	 */
486 	ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
487 	if (limit <= ptr_size)
488 		return -E2BIG;
489 	limit -= ptr_size;
490 
491 	bprm->argmin = bprm->p - limit;
492 	return 0;
493 }
494 
495 /*
496  * 'copy_strings()' copies argument/environment strings from the old
497  * processes's memory to the new process's stack.  The call to get_user_pages()
498  * ensures the destination page is created and not swapped out.
499  */
500 static int copy_strings(int argc, struct user_arg_ptr argv,
501 			struct linux_binprm *bprm)
502 {
503 	struct page *kmapped_page = NULL;
504 	char *kaddr = NULL;
505 	unsigned long kpos = 0;
506 	int ret;
507 
508 	while (argc-- > 0) {
509 		const char __user *str;
510 		int len;
511 		unsigned long pos;
512 
513 		ret = -EFAULT;
514 		str = get_user_arg_ptr(argv, argc);
515 		if (IS_ERR(str))
516 			goto out;
517 
518 		len = strnlen_user(str, MAX_ARG_STRLEN);
519 		if (!len)
520 			goto out;
521 
522 		ret = -E2BIG;
523 		if (!valid_arg_len(bprm, len))
524 			goto out;
525 
526 		/* We're going to work our way backwords. */
527 		pos = bprm->p;
528 		str += len;
529 		bprm->p -= len;
530 #ifdef CONFIG_MMU
531 		if (bprm->p < bprm->argmin)
532 			goto out;
533 #endif
534 
535 		while (len > 0) {
536 			int offset, bytes_to_copy;
537 
538 			if (fatal_signal_pending(current)) {
539 				ret = -ERESTARTNOHAND;
540 				goto out;
541 			}
542 			cond_resched();
543 
544 			offset = pos % PAGE_SIZE;
545 			if (offset == 0)
546 				offset = PAGE_SIZE;
547 
548 			bytes_to_copy = offset;
549 			if (bytes_to_copy > len)
550 				bytes_to_copy = len;
551 
552 			offset -= bytes_to_copy;
553 			pos -= bytes_to_copy;
554 			str -= bytes_to_copy;
555 			len -= bytes_to_copy;
556 
557 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
558 				struct page *page;
559 
560 				page = get_arg_page(bprm, pos, 1);
561 				if (!page) {
562 					ret = -E2BIG;
563 					goto out;
564 				}
565 
566 				if (kmapped_page) {
567 					flush_kernel_dcache_page(kmapped_page);
568 					kunmap(kmapped_page);
569 					put_arg_page(kmapped_page);
570 				}
571 				kmapped_page = page;
572 				kaddr = kmap(kmapped_page);
573 				kpos = pos & PAGE_MASK;
574 				flush_arg_page(bprm, kpos, kmapped_page);
575 			}
576 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
577 				ret = -EFAULT;
578 				goto out;
579 			}
580 		}
581 	}
582 	ret = 0;
583 out:
584 	if (kmapped_page) {
585 		flush_kernel_dcache_page(kmapped_page);
586 		kunmap(kmapped_page);
587 		put_arg_page(kmapped_page);
588 	}
589 	return ret;
590 }
591 
592 /*
593  * Like copy_strings, but get argv and its values from kernel memory.
594  */
595 int copy_strings_kernel(int argc, const char *const *__argv,
596 			struct linux_binprm *bprm)
597 {
598 	int r;
599 	mm_segment_t oldfs = get_fs();
600 	struct user_arg_ptr argv = {
601 		.ptr.native = (const char __user *const  __user *)__argv,
602 	};
603 
604 	set_fs(KERNEL_DS);
605 	r = copy_strings(argc, argv, bprm);
606 	set_fs(oldfs);
607 
608 	return r;
609 }
610 EXPORT_SYMBOL(copy_strings_kernel);
611 
612 #ifdef CONFIG_MMU
613 
614 /*
615  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
616  * the binfmt code determines where the new stack should reside, we shift it to
617  * its final location.  The process proceeds as follows:
618  *
619  * 1) Use shift to calculate the new vma endpoints.
620  * 2) Extend vma to cover both the old and new ranges.  This ensures the
621  *    arguments passed to subsequent functions are consistent.
622  * 3) Move vma's page tables to the new range.
623  * 4) Free up any cleared pgd range.
624  * 5) Shrink the vma to cover only the new range.
625  */
626 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
627 {
628 	struct mm_struct *mm = vma->vm_mm;
629 	unsigned long old_start = vma->vm_start;
630 	unsigned long old_end = vma->vm_end;
631 	unsigned long length = old_end - old_start;
632 	unsigned long new_start = old_start - shift;
633 	unsigned long new_end = old_end - shift;
634 	struct mmu_gather tlb;
635 
636 	BUG_ON(new_start > new_end);
637 
638 	/*
639 	 * ensure there are no vmas between where we want to go
640 	 * and where we are
641 	 */
642 	if (vma != find_vma(mm, new_start))
643 		return -EFAULT;
644 
645 	/*
646 	 * cover the whole range: [new_start, old_end)
647 	 */
648 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
649 		return -ENOMEM;
650 
651 	/*
652 	 * move the page tables downwards, on failure we rely on
653 	 * process cleanup to remove whatever mess we made.
654 	 */
655 	if (length != move_page_tables(vma, old_start,
656 				       vma, new_start, length, false))
657 		return -ENOMEM;
658 
659 	lru_add_drain();
660 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
661 	if (new_end > old_start) {
662 		/*
663 		 * when the old and new regions overlap clear from new_end.
664 		 */
665 		free_pgd_range(&tlb, new_end, old_end, new_end,
666 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
667 	} else {
668 		/*
669 		 * otherwise, clean from old_start; this is done to not touch
670 		 * the address space in [new_end, old_start) some architectures
671 		 * have constraints on va-space that make this illegal (IA64) -
672 		 * for the others its just a little faster.
673 		 */
674 		free_pgd_range(&tlb, old_start, old_end, new_end,
675 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
676 	}
677 	tlb_finish_mmu(&tlb, old_start, old_end);
678 
679 	/*
680 	 * Shrink the vma to just the new range.  Always succeeds.
681 	 */
682 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
683 
684 	return 0;
685 }
686 
687 /*
688  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
689  * the stack is optionally relocated, and some extra space is added.
690  */
691 int setup_arg_pages(struct linux_binprm *bprm,
692 		    unsigned long stack_top,
693 		    int executable_stack)
694 {
695 	unsigned long ret;
696 	unsigned long stack_shift;
697 	struct mm_struct *mm = current->mm;
698 	struct vm_area_struct *vma = bprm->vma;
699 	struct vm_area_struct *prev = NULL;
700 	unsigned long vm_flags;
701 	unsigned long stack_base;
702 	unsigned long stack_size;
703 	unsigned long stack_expand;
704 	unsigned long rlim_stack;
705 
706 #ifdef CONFIG_STACK_GROWSUP
707 	/* Limit stack size */
708 	stack_base = bprm->rlim_stack.rlim_max;
709 	if (stack_base > STACK_SIZE_MAX)
710 		stack_base = STACK_SIZE_MAX;
711 
712 	/* Add space for stack randomization. */
713 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
714 
715 	/* Make sure we didn't let the argument array grow too large. */
716 	if (vma->vm_end - vma->vm_start > stack_base)
717 		return -ENOMEM;
718 
719 	stack_base = PAGE_ALIGN(stack_top - stack_base);
720 
721 	stack_shift = vma->vm_start - stack_base;
722 	mm->arg_start = bprm->p - stack_shift;
723 	bprm->p = vma->vm_end - stack_shift;
724 #else
725 	stack_top = arch_align_stack(stack_top);
726 	stack_top = PAGE_ALIGN(stack_top);
727 
728 	if (unlikely(stack_top < mmap_min_addr) ||
729 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
730 		return -ENOMEM;
731 
732 	stack_shift = vma->vm_end - stack_top;
733 
734 	bprm->p -= stack_shift;
735 	mm->arg_start = bprm->p;
736 #endif
737 
738 	if (bprm->loader)
739 		bprm->loader -= stack_shift;
740 	bprm->exec -= stack_shift;
741 
742 	if (down_write_killable(&mm->mmap_sem))
743 		return -EINTR;
744 
745 	vm_flags = VM_STACK_FLAGS;
746 
747 	/*
748 	 * Adjust stack execute permissions; explicitly enable for
749 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
750 	 * (arch default) otherwise.
751 	 */
752 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
753 		vm_flags |= VM_EXEC;
754 	else if (executable_stack == EXSTACK_DISABLE_X)
755 		vm_flags &= ~VM_EXEC;
756 	vm_flags |= mm->def_flags;
757 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
758 
759 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
760 			vm_flags);
761 	if (ret)
762 		goto out_unlock;
763 	BUG_ON(prev != vma);
764 
765 	/* Move stack pages down in memory. */
766 	if (stack_shift) {
767 		ret = shift_arg_pages(vma, stack_shift);
768 		if (ret)
769 			goto out_unlock;
770 	}
771 
772 	/* mprotect_fixup is overkill to remove the temporary stack flags */
773 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
774 
775 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
776 	stack_size = vma->vm_end - vma->vm_start;
777 	/*
778 	 * Align this down to a page boundary as expand_stack
779 	 * will align it up.
780 	 */
781 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
782 #ifdef CONFIG_STACK_GROWSUP
783 	if (stack_size + stack_expand > rlim_stack)
784 		stack_base = vma->vm_start + rlim_stack;
785 	else
786 		stack_base = vma->vm_end + stack_expand;
787 #else
788 	if (stack_size + stack_expand > rlim_stack)
789 		stack_base = vma->vm_end - rlim_stack;
790 	else
791 		stack_base = vma->vm_start - stack_expand;
792 #endif
793 	current->mm->start_stack = bprm->p;
794 	ret = expand_stack(vma, stack_base);
795 	if (ret)
796 		ret = -EFAULT;
797 
798 out_unlock:
799 	up_write(&mm->mmap_sem);
800 	return ret;
801 }
802 EXPORT_SYMBOL(setup_arg_pages);
803 
804 #else
805 
806 /*
807  * Transfer the program arguments and environment from the holding pages
808  * onto the stack. The provided stack pointer is adjusted accordingly.
809  */
810 int transfer_args_to_stack(struct linux_binprm *bprm,
811 			   unsigned long *sp_location)
812 {
813 	unsigned long index, stop, sp;
814 	int ret = 0;
815 
816 	stop = bprm->p >> PAGE_SHIFT;
817 	sp = *sp_location;
818 
819 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
820 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
821 		char *src = kmap(bprm->page[index]) + offset;
822 		sp -= PAGE_SIZE - offset;
823 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
824 			ret = -EFAULT;
825 		kunmap(bprm->page[index]);
826 		if (ret)
827 			goto out;
828 	}
829 
830 	*sp_location = sp;
831 
832 out:
833 	return ret;
834 }
835 EXPORT_SYMBOL(transfer_args_to_stack);
836 
837 #endif /* CONFIG_MMU */
838 
839 static struct file *do_open_execat(int fd, struct filename *name, int flags)
840 {
841 	struct file *file;
842 	int err;
843 	struct open_flags open_exec_flags = {
844 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
845 		.acc_mode = MAY_EXEC,
846 		.intent = LOOKUP_OPEN,
847 		.lookup_flags = LOOKUP_FOLLOW,
848 	};
849 
850 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
851 		return ERR_PTR(-EINVAL);
852 	if (flags & AT_SYMLINK_NOFOLLOW)
853 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
854 	if (flags & AT_EMPTY_PATH)
855 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
856 
857 	file = do_filp_open(fd, name, &open_exec_flags);
858 	if (IS_ERR(file))
859 		goto out;
860 
861 	err = -EACCES;
862 	if (!S_ISREG(file_inode(file)->i_mode))
863 		goto exit;
864 
865 	if (path_noexec(&file->f_path))
866 		goto exit;
867 
868 	err = deny_write_access(file);
869 	if (err)
870 		goto exit;
871 
872 	if (name->name[0] != '\0')
873 		fsnotify_open(file);
874 
875 out:
876 	return file;
877 
878 exit:
879 	fput(file);
880 	return ERR_PTR(err);
881 }
882 
883 struct file *open_exec(const char *name)
884 {
885 	struct filename *filename = getname_kernel(name);
886 	struct file *f = ERR_CAST(filename);
887 
888 	if (!IS_ERR(filename)) {
889 		f = do_open_execat(AT_FDCWD, filename, 0);
890 		putname(filename);
891 	}
892 	return f;
893 }
894 EXPORT_SYMBOL(open_exec);
895 
896 int kernel_read_file(struct file *file, void **buf, loff_t *size,
897 		     loff_t max_size, enum kernel_read_file_id id)
898 {
899 	loff_t i_size, pos;
900 	ssize_t bytes = 0;
901 	int ret;
902 
903 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
904 		return -EINVAL;
905 
906 	ret = deny_write_access(file);
907 	if (ret)
908 		return ret;
909 
910 	ret = security_kernel_read_file(file, id);
911 	if (ret)
912 		goto out;
913 
914 	i_size = i_size_read(file_inode(file));
915 	if (i_size <= 0) {
916 		ret = -EINVAL;
917 		goto out;
918 	}
919 	if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
920 		ret = -EFBIG;
921 		goto out;
922 	}
923 
924 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
925 		*buf = vmalloc(i_size);
926 	if (!*buf) {
927 		ret = -ENOMEM;
928 		goto out;
929 	}
930 
931 	pos = 0;
932 	while (pos < i_size) {
933 		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
934 		if (bytes < 0) {
935 			ret = bytes;
936 			goto out_free;
937 		}
938 
939 		if (bytes == 0)
940 			break;
941 	}
942 
943 	if (pos != i_size) {
944 		ret = -EIO;
945 		goto out_free;
946 	}
947 
948 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
949 	if (!ret)
950 		*size = pos;
951 
952 out_free:
953 	if (ret < 0) {
954 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
955 			vfree(*buf);
956 			*buf = NULL;
957 		}
958 	}
959 
960 out:
961 	allow_write_access(file);
962 	return ret;
963 }
964 EXPORT_SYMBOL_GPL(kernel_read_file);
965 
966 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
967 			       loff_t max_size, enum kernel_read_file_id id)
968 {
969 	struct file *file;
970 	int ret;
971 
972 	if (!path || !*path)
973 		return -EINVAL;
974 
975 	file = filp_open(path, O_RDONLY, 0);
976 	if (IS_ERR(file))
977 		return PTR_ERR(file);
978 
979 	ret = kernel_read_file(file, buf, size, max_size, id);
980 	fput(file);
981 	return ret;
982 }
983 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
984 
985 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
986 			     enum kernel_read_file_id id)
987 {
988 	struct fd f = fdget(fd);
989 	int ret = -EBADF;
990 
991 	if (!f.file)
992 		goto out;
993 
994 	ret = kernel_read_file(f.file, buf, size, max_size, id);
995 out:
996 	fdput(f);
997 	return ret;
998 }
999 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1000 
1001 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1002 {
1003 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1004 	if (res > 0)
1005 		flush_icache_range(addr, addr + len);
1006 	return res;
1007 }
1008 EXPORT_SYMBOL(read_code);
1009 
1010 static int exec_mmap(struct mm_struct *mm)
1011 {
1012 	struct task_struct *tsk;
1013 	struct mm_struct *old_mm, *active_mm;
1014 
1015 	/* Notify parent that we're no longer interested in the old VM */
1016 	tsk = current;
1017 	old_mm = current->mm;
1018 	mm_release(tsk, old_mm);
1019 
1020 	if (old_mm) {
1021 		sync_mm_rss(old_mm);
1022 		/*
1023 		 * Make sure that if there is a core dump in progress
1024 		 * for the old mm, we get out and die instead of going
1025 		 * through with the exec.  We must hold mmap_sem around
1026 		 * checking core_state and changing tsk->mm.
1027 		 */
1028 		down_read(&old_mm->mmap_sem);
1029 		if (unlikely(old_mm->core_state)) {
1030 			up_read(&old_mm->mmap_sem);
1031 			return -EINTR;
1032 		}
1033 	}
1034 	task_lock(tsk);
1035 	active_mm = tsk->active_mm;
1036 	membarrier_exec_mmap(mm);
1037 	tsk->mm = mm;
1038 	tsk->active_mm = mm;
1039 	activate_mm(active_mm, mm);
1040 	tsk->mm->vmacache_seqnum = 0;
1041 	vmacache_flush(tsk);
1042 	task_unlock(tsk);
1043 	if (old_mm) {
1044 		up_read(&old_mm->mmap_sem);
1045 		BUG_ON(active_mm != old_mm);
1046 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1047 		mm_update_next_owner(old_mm);
1048 		mmput(old_mm);
1049 		return 0;
1050 	}
1051 	mmdrop(active_mm);
1052 	return 0;
1053 }
1054 
1055 /*
1056  * This function makes sure the current process has its own signal table,
1057  * so that flush_signal_handlers can later reset the handlers without
1058  * disturbing other processes.  (Other processes might share the signal
1059  * table via the CLONE_SIGHAND option to clone().)
1060  */
1061 static int de_thread(struct task_struct *tsk)
1062 {
1063 	struct signal_struct *sig = tsk->signal;
1064 	struct sighand_struct *oldsighand = tsk->sighand;
1065 	spinlock_t *lock = &oldsighand->siglock;
1066 
1067 	if (thread_group_empty(tsk))
1068 		goto no_thread_group;
1069 
1070 	/*
1071 	 * Kill all other threads in the thread group.
1072 	 */
1073 	spin_lock_irq(lock);
1074 	if (signal_group_exit(sig)) {
1075 		/*
1076 		 * Another group action in progress, just
1077 		 * return so that the signal is processed.
1078 		 */
1079 		spin_unlock_irq(lock);
1080 		return -EAGAIN;
1081 	}
1082 
1083 	sig->group_exit_task = tsk;
1084 	sig->notify_count = zap_other_threads(tsk);
1085 	if (!thread_group_leader(tsk))
1086 		sig->notify_count--;
1087 
1088 	while (sig->notify_count) {
1089 		__set_current_state(TASK_KILLABLE);
1090 		spin_unlock_irq(lock);
1091 		schedule();
1092 		if (__fatal_signal_pending(tsk))
1093 			goto killed;
1094 		spin_lock_irq(lock);
1095 	}
1096 	spin_unlock_irq(lock);
1097 
1098 	/*
1099 	 * At this point all other threads have exited, all we have to
1100 	 * do is to wait for the thread group leader to become inactive,
1101 	 * and to assume its PID:
1102 	 */
1103 	if (!thread_group_leader(tsk)) {
1104 		struct task_struct *leader = tsk->group_leader;
1105 
1106 		for (;;) {
1107 			cgroup_threadgroup_change_begin(tsk);
1108 			write_lock_irq(&tasklist_lock);
1109 			/*
1110 			 * Do this under tasklist_lock to ensure that
1111 			 * exit_notify() can't miss ->group_exit_task
1112 			 */
1113 			sig->notify_count = -1;
1114 			if (likely(leader->exit_state))
1115 				break;
1116 			__set_current_state(TASK_KILLABLE);
1117 			write_unlock_irq(&tasklist_lock);
1118 			cgroup_threadgroup_change_end(tsk);
1119 			schedule();
1120 			if (__fatal_signal_pending(tsk))
1121 				goto killed;
1122 		}
1123 
1124 		/*
1125 		 * The only record we have of the real-time age of a
1126 		 * process, regardless of execs it's done, is start_time.
1127 		 * All the past CPU time is accumulated in signal_struct
1128 		 * from sister threads now dead.  But in this non-leader
1129 		 * exec, nothing survives from the original leader thread,
1130 		 * whose birth marks the true age of this process now.
1131 		 * When we take on its identity by switching to its PID, we
1132 		 * also take its birthdate (always earlier than our own).
1133 		 */
1134 		tsk->start_time = leader->start_time;
1135 		tsk->real_start_time = leader->real_start_time;
1136 
1137 		BUG_ON(!same_thread_group(leader, tsk));
1138 		BUG_ON(has_group_leader_pid(tsk));
1139 		/*
1140 		 * An exec() starts a new thread group with the
1141 		 * TGID of the previous thread group. Rehash the
1142 		 * two threads with a switched PID, and release
1143 		 * the former thread group leader:
1144 		 */
1145 
1146 		/* Become a process group leader with the old leader's pid.
1147 		 * The old leader becomes a thread of the this thread group.
1148 		 * Note: The old leader also uses this pid until release_task
1149 		 *       is called.  Odd but simple and correct.
1150 		 */
1151 		tsk->pid = leader->pid;
1152 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1153 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1154 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1155 		transfer_pid(leader, tsk, PIDTYPE_SID);
1156 
1157 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1158 		list_replace_init(&leader->sibling, &tsk->sibling);
1159 
1160 		tsk->group_leader = tsk;
1161 		leader->group_leader = tsk;
1162 
1163 		tsk->exit_signal = SIGCHLD;
1164 		leader->exit_signal = -1;
1165 
1166 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1167 		leader->exit_state = EXIT_DEAD;
1168 
1169 		/*
1170 		 * We are going to release_task()->ptrace_unlink() silently,
1171 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1172 		 * the tracer wont't block again waiting for this thread.
1173 		 */
1174 		if (unlikely(leader->ptrace))
1175 			__wake_up_parent(leader, leader->parent);
1176 		write_unlock_irq(&tasklist_lock);
1177 		cgroup_threadgroup_change_end(tsk);
1178 
1179 		release_task(leader);
1180 	}
1181 
1182 	sig->group_exit_task = NULL;
1183 	sig->notify_count = 0;
1184 
1185 no_thread_group:
1186 	/* we have changed execution domain */
1187 	tsk->exit_signal = SIGCHLD;
1188 
1189 #ifdef CONFIG_POSIX_TIMERS
1190 	exit_itimers(sig);
1191 	flush_itimer_signals();
1192 #endif
1193 
1194 	if (refcount_read(&oldsighand->count) != 1) {
1195 		struct sighand_struct *newsighand;
1196 		/*
1197 		 * This ->sighand is shared with the CLONE_SIGHAND
1198 		 * but not CLONE_THREAD task, switch to the new one.
1199 		 */
1200 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1201 		if (!newsighand)
1202 			return -ENOMEM;
1203 
1204 		refcount_set(&newsighand->count, 1);
1205 		memcpy(newsighand->action, oldsighand->action,
1206 		       sizeof(newsighand->action));
1207 
1208 		write_lock_irq(&tasklist_lock);
1209 		spin_lock(&oldsighand->siglock);
1210 		rcu_assign_pointer(tsk->sighand, newsighand);
1211 		spin_unlock(&oldsighand->siglock);
1212 		write_unlock_irq(&tasklist_lock);
1213 
1214 		__cleanup_sighand(oldsighand);
1215 	}
1216 
1217 	BUG_ON(!thread_group_leader(tsk));
1218 	return 0;
1219 
1220 killed:
1221 	/* protects against exit_notify() and __exit_signal() */
1222 	read_lock(&tasklist_lock);
1223 	sig->group_exit_task = NULL;
1224 	sig->notify_count = 0;
1225 	read_unlock(&tasklist_lock);
1226 	return -EAGAIN;
1227 }
1228 
1229 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1230 {
1231 	task_lock(tsk);
1232 	strncpy(buf, tsk->comm, buf_size);
1233 	task_unlock(tsk);
1234 	return buf;
1235 }
1236 EXPORT_SYMBOL_GPL(__get_task_comm);
1237 
1238 /*
1239  * These functions flushes out all traces of the currently running executable
1240  * so that a new one can be started
1241  */
1242 
1243 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1244 {
1245 	task_lock(tsk);
1246 	trace_task_rename(tsk, buf);
1247 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1248 	task_unlock(tsk);
1249 	perf_event_comm(tsk, exec);
1250 }
1251 
1252 /*
1253  * Calling this is the point of no return. None of the failures will be
1254  * seen by userspace since either the process is already taking a fatal
1255  * signal (via de_thread() or coredump), or will have SEGV raised
1256  * (after exec_mmap()) by search_binary_handlers (see below).
1257  */
1258 int flush_old_exec(struct linux_binprm * bprm)
1259 {
1260 	int retval;
1261 
1262 	/*
1263 	 * Make sure we have a private signal table and that
1264 	 * we are unassociated from the previous thread group.
1265 	 */
1266 	retval = de_thread(current);
1267 	if (retval)
1268 		goto out;
1269 
1270 	/*
1271 	 * Must be called _before_ exec_mmap() as bprm->mm is
1272 	 * not visibile until then. This also enables the update
1273 	 * to be lockless.
1274 	 */
1275 	set_mm_exe_file(bprm->mm, bprm->file);
1276 
1277 	/*
1278 	 * Release all of the old mmap stuff
1279 	 */
1280 	acct_arg_size(bprm, 0);
1281 	retval = exec_mmap(bprm->mm);
1282 	if (retval)
1283 		goto out;
1284 
1285 	/*
1286 	 * After clearing bprm->mm (to mark that current is using the
1287 	 * prepared mm now), we have nothing left of the original
1288 	 * process. If anything from here on returns an error, the check
1289 	 * in search_binary_handler() will SEGV current.
1290 	 */
1291 	bprm->mm = NULL;
1292 
1293 	set_fs(USER_DS);
1294 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1295 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1296 	flush_thread();
1297 	current->personality &= ~bprm->per_clear;
1298 
1299 	/*
1300 	 * We have to apply CLOEXEC before we change whether the process is
1301 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1302 	 * trying to access the should-be-closed file descriptors of a process
1303 	 * undergoing exec(2).
1304 	 */
1305 	do_close_on_exec(current->files);
1306 	return 0;
1307 
1308 out:
1309 	return retval;
1310 }
1311 EXPORT_SYMBOL(flush_old_exec);
1312 
1313 void would_dump(struct linux_binprm *bprm, struct file *file)
1314 {
1315 	struct inode *inode = file_inode(file);
1316 	if (inode_permission(inode, MAY_READ) < 0) {
1317 		struct user_namespace *old, *user_ns;
1318 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1319 
1320 		/* Ensure mm->user_ns contains the executable */
1321 		user_ns = old = bprm->mm->user_ns;
1322 		while ((user_ns != &init_user_ns) &&
1323 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1324 			user_ns = user_ns->parent;
1325 
1326 		if (old != user_ns) {
1327 			bprm->mm->user_ns = get_user_ns(user_ns);
1328 			put_user_ns(old);
1329 		}
1330 	}
1331 }
1332 EXPORT_SYMBOL(would_dump);
1333 
1334 void setup_new_exec(struct linux_binprm * bprm)
1335 {
1336 	/*
1337 	 * Once here, prepare_binrpm() will not be called any more, so
1338 	 * the final state of setuid/setgid/fscaps can be merged into the
1339 	 * secureexec flag.
1340 	 */
1341 	bprm->secureexec |= bprm->cap_elevated;
1342 
1343 	if (bprm->secureexec) {
1344 		/* Make sure parent cannot signal privileged process. */
1345 		current->pdeath_signal = 0;
1346 
1347 		/*
1348 		 * For secureexec, reset the stack limit to sane default to
1349 		 * avoid bad behavior from the prior rlimits. This has to
1350 		 * happen before arch_pick_mmap_layout(), which examines
1351 		 * RLIMIT_STACK, but after the point of no return to avoid
1352 		 * needing to clean up the change on failure.
1353 		 */
1354 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1355 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1356 	}
1357 
1358 	arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1359 
1360 	current->sas_ss_sp = current->sas_ss_size = 0;
1361 
1362 	/*
1363 	 * Figure out dumpability. Note that this checking only of current
1364 	 * is wrong, but userspace depends on it. This should be testing
1365 	 * bprm->secureexec instead.
1366 	 */
1367 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1368 	    !(uid_eq(current_euid(), current_uid()) &&
1369 	      gid_eq(current_egid(), current_gid())))
1370 		set_dumpable(current->mm, suid_dumpable);
1371 	else
1372 		set_dumpable(current->mm, SUID_DUMP_USER);
1373 
1374 	arch_setup_new_exec();
1375 	perf_event_exec();
1376 	__set_task_comm(current, kbasename(bprm->filename), true);
1377 
1378 	/* Set the new mm task size. We have to do that late because it may
1379 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1380 	 * some architectures like powerpc
1381 	 */
1382 	current->mm->task_size = TASK_SIZE;
1383 
1384 	/* An exec changes our domain. We are no longer part of the thread
1385 	   group */
1386 	current->self_exec_id++;
1387 	flush_signal_handlers(current, 0);
1388 }
1389 EXPORT_SYMBOL(setup_new_exec);
1390 
1391 /* Runs immediately before start_thread() takes over. */
1392 void finalize_exec(struct linux_binprm *bprm)
1393 {
1394 	/* Store any stack rlimit changes before starting thread. */
1395 	task_lock(current->group_leader);
1396 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1397 	task_unlock(current->group_leader);
1398 }
1399 EXPORT_SYMBOL(finalize_exec);
1400 
1401 /*
1402  * Prepare credentials and lock ->cred_guard_mutex.
1403  * install_exec_creds() commits the new creds and drops the lock.
1404  * Or, if exec fails before, free_bprm() should release ->cred and
1405  * and unlock.
1406  */
1407 static int prepare_bprm_creds(struct linux_binprm *bprm)
1408 {
1409 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1410 		return -ERESTARTNOINTR;
1411 
1412 	bprm->cred = prepare_exec_creds();
1413 	if (likely(bprm->cred))
1414 		return 0;
1415 
1416 	mutex_unlock(&current->signal->cred_guard_mutex);
1417 	return -ENOMEM;
1418 }
1419 
1420 static void free_bprm(struct linux_binprm *bprm)
1421 {
1422 	free_arg_pages(bprm);
1423 	if (bprm->cred) {
1424 		mutex_unlock(&current->signal->cred_guard_mutex);
1425 		abort_creds(bprm->cred);
1426 	}
1427 	if (bprm->file) {
1428 		allow_write_access(bprm->file);
1429 		fput(bprm->file);
1430 	}
1431 	/* If a binfmt changed the interp, free it. */
1432 	if (bprm->interp != bprm->filename)
1433 		kfree(bprm->interp);
1434 	kfree(bprm);
1435 }
1436 
1437 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1438 {
1439 	/* If a binfmt changed the interp, free it first. */
1440 	if (bprm->interp != bprm->filename)
1441 		kfree(bprm->interp);
1442 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1443 	if (!bprm->interp)
1444 		return -ENOMEM;
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL(bprm_change_interp);
1448 
1449 /*
1450  * install the new credentials for this executable
1451  */
1452 void install_exec_creds(struct linux_binprm *bprm)
1453 {
1454 	security_bprm_committing_creds(bprm);
1455 
1456 	commit_creds(bprm->cred);
1457 	bprm->cred = NULL;
1458 
1459 	/*
1460 	 * Disable monitoring for regular users
1461 	 * when executing setuid binaries. Must
1462 	 * wait until new credentials are committed
1463 	 * by commit_creds() above
1464 	 */
1465 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1466 		perf_event_exit_task(current);
1467 	/*
1468 	 * cred_guard_mutex must be held at least to this point to prevent
1469 	 * ptrace_attach() from altering our determination of the task's
1470 	 * credentials; any time after this it may be unlocked.
1471 	 */
1472 	security_bprm_committed_creds(bprm);
1473 	mutex_unlock(&current->signal->cred_guard_mutex);
1474 }
1475 EXPORT_SYMBOL(install_exec_creds);
1476 
1477 /*
1478  * determine how safe it is to execute the proposed program
1479  * - the caller must hold ->cred_guard_mutex to protect against
1480  *   PTRACE_ATTACH or seccomp thread-sync
1481  */
1482 static void check_unsafe_exec(struct linux_binprm *bprm)
1483 {
1484 	struct task_struct *p = current, *t;
1485 	unsigned n_fs;
1486 
1487 	if (p->ptrace)
1488 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1489 
1490 	/*
1491 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1492 	 * mess up.
1493 	 */
1494 	if (task_no_new_privs(current))
1495 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1496 
1497 	t = p;
1498 	n_fs = 1;
1499 	spin_lock(&p->fs->lock);
1500 	rcu_read_lock();
1501 	while_each_thread(p, t) {
1502 		if (t->fs == p->fs)
1503 			n_fs++;
1504 	}
1505 	rcu_read_unlock();
1506 
1507 	if (p->fs->users > n_fs)
1508 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1509 	else
1510 		p->fs->in_exec = 1;
1511 	spin_unlock(&p->fs->lock);
1512 }
1513 
1514 static void bprm_fill_uid(struct linux_binprm *bprm)
1515 {
1516 	struct inode *inode;
1517 	unsigned int mode;
1518 	kuid_t uid;
1519 	kgid_t gid;
1520 
1521 	/*
1522 	 * Since this can be called multiple times (via prepare_binprm),
1523 	 * we must clear any previous work done when setting set[ug]id
1524 	 * bits from any earlier bprm->file uses (for example when run
1525 	 * first for a setuid script then again for its interpreter).
1526 	 */
1527 	bprm->cred->euid = current_euid();
1528 	bprm->cred->egid = current_egid();
1529 
1530 	if (!mnt_may_suid(bprm->file->f_path.mnt))
1531 		return;
1532 
1533 	if (task_no_new_privs(current))
1534 		return;
1535 
1536 	inode = bprm->file->f_path.dentry->d_inode;
1537 	mode = READ_ONCE(inode->i_mode);
1538 	if (!(mode & (S_ISUID|S_ISGID)))
1539 		return;
1540 
1541 	/* Be careful if suid/sgid is set */
1542 	inode_lock(inode);
1543 
1544 	/* reload atomically mode/uid/gid now that lock held */
1545 	mode = inode->i_mode;
1546 	uid = inode->i_uid;
1547 	gid = inode->i_gid;
1548 	inode_unlock(inode);
1549 
1550 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1551 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1552 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1553 		return;
1554 
1555 	if (mode & S_ISUID) {
1556 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1557 		bprm->cred->euid = uid;
1558 	}
1559 
1560 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1561 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1562 		bprm->cred->egid = gid;
1563 	}
1564 }
1565 
1566 /*
1567  * Fill the binprm structure from the inode.
1568  * Check permissions, then read the first BINPRM_BUF_SIZE bytes
1569  *
1570  * This may be called multiple times for binary chains (scripts for example).
1571  */
1572 int prepare_binprm(struct linux_binprm *bprm)
1573 {
1574 	int retval;
1575 	loff_t pos = 0;
1576 
1577 	bprm_fill_uid(bprm);
1578 
1579 	/* fill in binprm security blob */
1580 	retval = security_bprm_set_creds(bprm);
1581 	if (retval)
1582 		return retval;
1583 	bprm->called_set_creds = 1;
1584 
1585 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1586 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1587 }
1588 
1589 EXPORT_SYMBOL(prepare_binprm);
1590 
1591 /*
1592  * Arguments are '\0' separated strings found at the location bprm->p
1593  * points to; chop off the first by relocating brpm->p to right after
1594  * the first '\0' encountered.
1595  */
1596 int remove_arg_zero(struct linux_binprm *bprm)
1597 {
1598 	int ret = 0;
1599 	unsigned long offset;
1600 	char *kaddr;
1601 	struct page *page;
1602 
1603 	if (!bprm->argc)
1604 		return 0;
1605 
1606 	do {
1607 		offset = bprm->p & ~PAGE_MASK;
1608 		page = get_arg_page(bprm, bprm->p, 0);
1609 		if (!page) {
1610 			ret = -EFAULT;
1611 			goto out;
1612 		}
1613 		kaddr = kmap_atomic(page);
1614 
1615 		for (; offset < PAGE_SIZE && kaddr[offset];
1616 				offset++, bprm->p++)
1617 			;
1618 
1619 		kunmap_atomic(kaddr);
1620 		put_arg_page(page);
1621 	} while (offset == PAGE_SIZE);
1622 
1623 	bprm->p++;
1624 	bprm->argc--;
1625 	ret = 0;
1626 
1627 out:
1628 	return ret;
1629 }
1630 EXPORT_SYMBOL(remove_arg_zero);
1631 
1632 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1633 /*
1634  * cycle the list of binary formats handler, until one recognizes the image
1635  */
1636 int search_binary_handler(struct linux_binprm *bprm)
1637 {
1638 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1639 	struct linux_binfmt *fmt;
1640 	int retval;
1641 
1642 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1643 	if (bprm->recursion_depth > 5)
1644 		return -ELOOP;
1645 
1646 	retval = security_bprm_check(bprm);
1647 	if (retval)
1648 		return retval;
1649 
1650 	retval = -ENOENT;
1651  retry:
1652 	read_lock(&binfmt_lock);
1653 	list_for_each_entry(fmt, &formats, lh) {
1654 		if (!try_module_get(fmt->module))
1655 			continue;
1656 		read_unlock(&binfmt_lock);
1657 
1658 		bprm->recursion_depth++;
1659 		retval = fmt->load_binary(bprm);
1660 		bprm->recursion_depth--;
1661 
1662 		read_lock(&binfmt_lock);
1663 		put_binfmt(fmt);
1664 		if (retval < 0 && !bprm->mm) {
1665 			/* we got to flush_old_exec() and failed after it */
1666 			read_unlock(&binfmt_lock);
1667 			force_sigsegv(SIGSEGV);
1668 			return retval;
1669 		}
1670 		if (retval != -ENOEXEC || !bprm->file) {
1671 			read_unlock(&binfmt_lock);
1672 			return retval;
1673 		}
1674 	}
1675 	read_unlock(&binfmt_lock);
1676 
1677 	if (need_retry) {
1678 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1679 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1680 			return retval;
1681 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1682 			return retval;
1683 		need_retry = false;
1684 		goto retry;
1685 	}
1686 
1687 	return retval;
1688 }
1689 EXPORT_SYMBOL(search_binary_handler);
1690 
1691 static int exec_binprm(struct linux_binprm *bprm)
1692 {
1693 	pid_t old_pid, old_vpid;
1694 	int ret;
1695 
1696 	/* Need to fetch pid before load_binary changes it */
1697 	old_pid = current->pid;
1698 	rcu_read_lock();
1699 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1700 	rcu_read_unlock();
1701 
1702 	ret = search_binary_handler(bprm);
1703 	if (ret >= 0) {
1704 		audit_bprm(bprm);
1705 		trace_sched_process_exec(current, old_pid, bprm);
1706 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1707 		proc_exec_connector(current);
1708 	}
1709 
1710 	return ret;
1711 }
1712 
1713 /*
1714  * sys_execve() executes a new program.
1715  */
1716 static int __do_execve_file(int fd, struct filename *filename,
1717 			    struct user_arg_ptr argv,
1718 			    struct user_arg_ptr envp,
1719 			    int flags, struct file *file)
1720 {
1721 	char *pathbuf = NULL;
1722 	struct linux_binprm *bprm;
1723 	struct files_struct *displaced;
1724 	int retval;
1725 
1726 	if (IS_ERR(filename))
1727 		return PTR_ERR(filename);
1728 
1729 	/*
1730 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1731 	 * set*uid() to execve() because too many poorly written programs
1732 	 * don't check setuid() return code.  Here we additionally recheck
1733 	 * whether NPROC limit is still exceeded.
1734 	 */
1735 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1736 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1737 		retval = -EAGAIN;
1738 		goto out_ret;
1739 	}
1740 
1741 	/* We're below the limit (still or again), so we don't want to make
1742 	 * further execve() calls fail. */
1743 	current->flags &= ~PF_NPROC_EXCEEDED;
1744 
1745 	retval = unshare_files(&displaced);
1746 	if (retval)
1747 		goto out_ret;
1748 
1749 	retval = -ENOMEM;
1750 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1751 	if (!bprm)
1752 		goto out_files;
1753 
1754 	retval = prepare_bprm_creds(bprm);
1755 	if (retval)
1756 		goto out_free;
1757 
1758 	check_unsafe_exec(bprm);
1759 	current->in_execve = 1;
1760 
1761 	if (!file)
1762 		file = do_open_execat(fd, filename, flags);
1763 	retval = PTR_ERR(file);
1764 	if (IS_ERR(file))
1765 		goto out_unmark;
1766 
1767 	sched_exec();
1768 
1769 	bprm->file = file;
1770 	if (!filename) {
1771 		bprm->filename = "none";
1772 	} else if (fd == AT_FDCWD || filename->name[0] == '/') {
1773 		bprm->filename = filename->name;
1774 	} else {
1775 		if (filename->name[0] == '\0')
1776 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1777 		else
1778 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1779 					    fd, filename->name);
1780 		if (!pathbuf) {
1781 			retval = -ENOMEM;
1782 			goto out_unmark;
1783 		}
1784 		/*
1785 		 * Record that a name derived from an O_CLOEXEC fd will be
1786 		 * inaccessible after exec. Relies on having exclusive access to
1787 		 * current->files (due to unshare_files above).
1788 		 */
1789 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1790 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1791 		bprm->filename = pathbuf;
1792 	}
1793 	bprm->interp = bprm->filename;
1794 
1795 	retval = bprm_mm_init(bprm);
1796 	if (retval)
1797 		goto out_unmark;
1798 
1799 	retval = prepare_arg_pages(bprm, argv, envp);
1800 	if (retval < 0)
1801 		goto out;
1802 
1803 	retval = prepare_binprm(bprm);
1804 	if (retval < 0)
1805 		goto out;
1806 
1807 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1808 	if (retval < 0)
1809 		goto out;
1810 
1811 	bprm->exec = bprm->p;
1812 	retval = copy_strings(bprm->envc, envp, bprm);
1813 	if (retval < 0)
1814 		goto out;
1815 
1816 	retval = copy_strings(bprm->argc, argv, bprm);
1817 	if (retval < 0)
1818 		goto out;
1819 
1820 	would_dump(bprm, bprm->file);
1821 
1822 	retval = exec_binprm(bprm);
1823 	if (retval < 0)
1824 		goto out;
1825 
1826 	/* execve succeeded */
1827 	current->fs->in_exec = 0;
1828 	current->in_execve = 0;
1829 	rseq_execve(current);
1830 	acct_update_integrals(current);
1831 	task_numa_free(current, false);
1832 	free_bprm(bprm);
1833 	kfree(pathbuf);
1834 	if (filename)
1835 		putname(filename);
1836 	if (displaced)
1837 		put_files_struct(displaced);
1838 	return retval;
1839 
1840 out:
1841 	if (bprm->mm) {
1842 		acct_arg_size(bprm, 0);
1843 		mmput(bprm->mm);
1844 	}
1845 
1846 out_unmark:
1847 	current->fs->in_exec = 0;
1848 	current->in_execve = 0;
1849 
1850 out_free:
1851 	free_bprm(bprm);
1852 	kfree(pathbuf);
1853 
1854 out_files:
1855 	if (displaced)
1856 		reset_files_struct(displaced);
1857 out_ret:
1858 	if (filename)
1859 		putname(filename);
1860 	return retval;
1861 }
1862 
1863 static int do_execveat_common(int fd, struct filename *filename,
1864 			      struct user_arg_ptr argv,
1865 			      struct user_arg_ptr envp,
1866 			      int flags)
1867 {
1868 	return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1869 }
1870 
1871 int do_execve_file(struct file *file, void *__argv, void *__envp)
1872 {
1873 	struct user_arg_ptr argv = { .ptr.native = __argv };
1874 	struct user_arg_ptr envp = { .ptr.native = __envp };
1875 
1876 	return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1877 }
1878 
1879 int do_execve(struct filename *filename,
1880 	const char __user *const __user *__argv,
1881 	const char __user *const __user *__envp)
1882 {
1883 	struct user_arg_ptr argv = { .ptr.native = __argv };
1884 	struct user_arg_ptr envp = { .ptr.native = __envp };
1885 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1886 }
1887 
1888 int do_execveat(int fd, struct filename *filename,
1889 		const char __user *const __user *__argv,
1890 		const char __user *const __user *__envp,
1891 		int flags)
1892 {
1893 	struct user_arg_ptr argv = { .ptr.native = __argv };
1894 	struct user_arg_ptr envp = { .ptr.native = __envp };
1895 
1896 	return do_execveat_common(fd, filename, argv, envp, flags);
1897 }
1898 
1899 #ifdef CONFIG_COMPAT
1900 static int compat_do_execve(struct filename *filename,
1901 	const compat_uptr_t __user *__argv,
1902 	const compat_uptr_t __user *__envp)
1903 {
1904 	struct user_arg_ptr argv = {
1905 		.is_compat = true,
1906 		.ptr.compat = __argv,
1907 	};
1908 	struct user_arg_ptr envp = {
1909 		.is_compat = true,
1910 		.ptr.compat = __envp,
1911 	};
1912 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1913 }
1914 
1915 static int compat_do_execveat(int fd, struct filename *filename,
1916 			      const compat_uptr_t __user *__argv,
1917 			      const compat_uptr_t __user *__envp,
1918 			      int flags)
1919 {
1920 	struct user_arg_ptr argv = {
1921 		.is_compat = true,
1922 		.ptr.compat = __argv,
1923 	};
1924 	struct user_arg_ptr envp = {
1925 		.is_compat = true,
1926 		.ptr.compat = __envp,
1927 	};
1928 	return do_execveat_common(fd, filename, argv, envp, flags);
1929 }
1930 #endif
1931 
1932 void set_binfmt(struct linux_binfmt *new)
1933 {
1934 	struct mm_struct *mm = current->mm;
1935 
1936 	if (mm->binfmt)
1937 		module_put(mm->binfmt->module);
1938 
1939 	mm->binfmt = new;
1940 	if (new)
1941 		__module_get(new->module);
1942 }
1943 EXPORT_SYMBOL(set_binfmt);
1944 
1945 /*
1946  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1947  */
1948 void set_dumpable(struct mm_struct *mm, int value)
1949 {
1950 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1951 		return;
1952 
1953 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
1954 }
1955 
1956 SYSCALL_DEFINE3(execve,
1957 		const char __user *, filename,
1958 		const char __user *const __user *, argv,
1959 		const char __user *const __user *, envp)
1960 {
1961 	return do_execve(getname(filename), argv, envp);
1962 }
1963 
1964 SYSCALL_DEFINE5(execveat,
1965 		int, fd, const char __user *, filename,
1966 		const char __user *const __user *, argv,
1967 		const char __user *const __user *, envp,
1968 		int, flags)
1969 {
1970 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1971 
1972 	return do_execveat(fd,
1973 			   getname_flags(filename, lookup_flags, NULL),
1974 			   argv, envp, flags);
1975 }
1976 
1977 #ifdef CONFIG_COMPAT
1978 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1979 	const compat_uptr_t __user *, argv,
1980 	const compat_uptr_t __user *, envp)
1981 {
1982 	return compat_do_execve(getname(filename), argv, envp);
1983 }
1984 
1985 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1986 		       const char __user *, filename,
1987 		       const compat_uptr_t __user *, argv,
1988 		       const compat_uptr_t __user *, envp,
1989 		       int,  flags)
1990 {
1991 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1992 
1993 	return compat_do_execveat(fd,
1994 				  getname_flags(filename, lookup_flags, NULL),
1995 				  argv, envp, flags);
1996 }
1997 #endif
1998