xref: /linux/fs/exec.c (revision 6faadbbb7f9da70ce484f98f72223c20125a1009)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69 
70 #include <trace/events/task.h>
71 #include "internal.h"
72 
73 #include <trace/events/sched.h>
74 
75 int suid_dumpable = 0;
76 
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79 
80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 	BUG_ON(!fmt);
83 	if (WARN_ON(!fmt->load_binary))
84 		return;
85 	write_lock(&binfmt_lock);
86 	insert ? list_add(&fmt->lh, &formats) :
87 		 list_add_tail(&fmt->lh, &formats);
88 	write_unlock(&binfmt_lock);
89 }
90 
91 EXPORT_SYMBOL(__register_binfmt);
92 
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 	write_lock(&binfmt_lock);
96 	list_del(&fmt->lh);
97 	write_unlock(&binfmt_lock);
98 }
99 
100 EXPORT_SYMBOL(unregister_binfmt);
101 
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 	module_put(fmt->module);
105 }
106 
107 bool path_noexec(const struct path *path)
108 {
109 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111 }
112 
113 #ifdef CONFIG_USELIB
114 /*
115  * Note that a shared library must be both readable and executable due to
116  * security reasons.
117  *
118  * Also note that we take the address to load from from the file itself.
119  */
120 SYSCALL_DEFINE1(uselib, const char __user *, library)
121 {
122 	struct linux_binfmt *fmt;
123 	struct file *file;
124 	struct filename *tmp = getname(library);
125 	int error = PTR_ERR(tmp);
126 	static const struct open_flags uselib_flags = {
127 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128 		.acc_mode = MAY_READ | MAY_EXEC,
129 		.intent = LOOKUP_OPEN,
130 		.lookup_flags = LOOKUP_FOLLOW,
131 	};
132 
133 	if (IS_ERR(tmp))
134 		goto out;
135 
136 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137 	putname(tmp);
138 	error = PTR_ERR(file);
139 	if (IS_ERR(file))
140 		goto out;
141 
142 	error = -EINVAL;
143 	if (!S_ISREG(file_inode(file)->i_mode))
144 		goto exit;
145 
146 	error = -EACCES;
147 	if (path_noexec(&file->f_path))
148 		goto exit;
149 
150 	fsnotify_open(file);
151 
152 	error = -ENOEXEC;
153 
154 	read_lock(&binfmt_lock);
155 	list_for_each_entry(fmt, &formats, lh) {
156 		if (!fmt->load_shlib)
157 			continue;
158 		if (!try_module_get(fmt->module))
159 			continue;
160 		read_unlock(&binfmt_lock);
161 		error = fmt->load_shlib(file);
162 		read_lock(&binfmt_lock);
163 		put_binfmt(fmt);
164 		if (error != -ENOEXEC)
165 			break;
166 	}
167 	read_unlock(&binfmt_lock);
168 exit:
169 	fput(file);
170 out:
171   	return error;
172 }
173 #endif /* #ifdef CONFIG_USELIB */
174 
175 #ifdef CONFIG_MMU
176 /*
177  * The nascent bprm->mm is not visible until exec_mmap() but it can
178  * use a lot of memory, account these pages in current->mm temporary
179  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180  * change the counter back via acct_arg_size(0).
181  */
182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183 {
184 	struct mm_struct *mm = current->mm;
185 	long diff = (long)(pages - bprm->vma_pages);
186 
187 	if (!mm || !diff)
188 		return;
189 
190 	bprm->vma_pages = pages;
191 	add_mm_counter(mm, MM_ANONPAGES, diff);
192 }
193 
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 		int write)
196 {
197 	struct page *page;
198 	int ret;
199 	unsigned int gup_flags = FOLL_FORCE;
200 
201 #ifdef CONFIG_STACK_GROWSUP
202 	if (write) {
203 		ret = expand_downwards(bprm->vma, pos);
204 		if (ret < 0)
205 			return NULL;
206 	}
207 #endif
208 
209 	if (write)
210 		gup_flags |= FOLL_WRITE;
211 
212 	/*
213 	 * We are doing an exec().  'current' is the process
214 	 * doing the exec and bprm->mm is the new process's mm.
215 	 */
216 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217 			&page, NULL, NULL);
218 	if (ret <= 0)
219 		return NULL;
220 
221 	if (write) {
222 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
223 		unsigned long ptr_size, limit;
224 
225 		/*
226 		 * Since the stack will hold pointers to the strings, we
227 		 * must account for them as well.
228 		 *
229 		 * The size calculation is the entire vma while each arg page is
230 		 * built, so each time we get here it's calculating how far it
231 		 * is currently (rather than each call being just the newly
232 		 * added size from the arg page).  As a result, we need to
233 		 * always add the entire size of the pointers, so that on the
234 		 * last call to get_arg_page() we'll actually have the entire
235 		 * correct size.
236 		 */
237 		ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
238 		if (ptr_size > ULONG_MAX - size)
239 			goto fail;
240 		size += ptr_size;
241 
242 		acct_arg_size(bprm, size / PAGE_SIZE);
243 
244 		/*
245 		 * We've historically supported up to 32 pages (ARG_MAX)
246 		 * of argument strings even with small stacks
247 		 */
248 		if (size <= ARG_MAX)
249 			return page;
250 
251 		/*
252 		 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
253 		 * (whichever is smaller) for the argv+env strings.
254 		 * This ensures that:
255 		 *  - the remaining binfmt code will not run out of stack space,
256 		 *  - the program will have a reasonable amount of stack left
257 		 *    to work from.
258 		 */
259 		limit = _STK_LIM / 4 * 3;
260 		limit = min(limit, rlimit(RLIMIT_STACK) / 4);
261 		if (size > limit)
262 			goto fail;
263 	}
264 
265 	return page;
266 
267 fail:
268 	put_page(page);
269 	return NULL;
270 }
271 
272 static void put_arg_page(struct page *page)
273 {
274 	put_page(page);
275 }
276 
277 static void free_arg_pages(struct linux_binprm *bprm)
278 {
279 }
280 
281 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
282 		struct page *page)
283 {
284 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
285 }
286 
287 static int __bprm_mm_init(struct linux_binprm *bprm)
288 {
289 	int err;
290 	struct vm_area_struct *vma = NULL;
291 	struct mm_struct *mm = bprm->mm;
292 
293 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
294 	if (!vma)
295 		return -ENOMEM;
296 
297 	if (down_write_killable(&mm->mmap_sem)) {
298 		err = -EINTR;
299 		goto err_free;
300 	}
301 	vma->vm_mm = mm;
302 
303 	/*
304 	 * Place the stack at the largest stack address the architecture
305 	 * supports. Later, we'll move this to an appropriate place. We don't
306 	 * use STACK_TOP because that can depend on attributes which aren't
307 	 * configured yet.
308 	 */
309 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
310 	vma->vm_end = STACK_TOP_MAX;
311 	vma->vm_start = vma->vm_end - PAGE_SIZE;
312 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
313 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
314 	INIT_LIST_HEAD(&vma->anon_vma_chain);
315 
316 	err = insert_vm_struct(mm, vma);
317 	if (err)
318 		goto err;
319 
320 	mm->stack_vm = mm->total_vm = 1;
321 	arch_bprm_mm_init(mm, vma);
322 	up_write(&mm->mmap_sem);
323 	bprm->p = vma->vm_end - sizeof(void *);
324 	return 0;
325 err:
326 	up_write(&mm->mmap_sem);
327 err_free:
328 	bprm->vma = NULL;
329 	kmem_cache_free(vm_area_cachep, vma);
330 	return err;
331 }
332 
333 static bool valid_arg_len(struct linux_binprm *bprm, long len)
334 {
335 	return len <= MAX_ARG_STRLEN;
336 }
337 
338 #else
339 
340 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
341 {
342 }
343 
344 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 		int write)
346 {
347 	struct page *page;
348 
349 	page = bprm->page[pos / PAGE_SIZE];
350 	if (!page && write) {
351 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
352 		if (!page)
353 			return NULL;
354 		bprm->page[pos / PAGE_SIZE] = page;
355 	}
356 
357 	return page;
358 }
359 
360 static void put_arg_page(struct page *page)
361 {
362 }
363 
364 static void free_arg_page(struct linux_binprm *bprm, int i)
365 {
366 	if (bprm->page[i]) {
367 		__free_page(bprm->page[i]);
368 		bprm->page[i] = NULL;
369 	}
370 }
371 
372 static void free_arg_pages(struct linux_binprm *bprm)
373 {
374 	int i;
375 
376 	for (i = 0; i < MAX_ARG_PAGES; i++)
377 		free_arg_page(bprm, i);
378 }
379 
380 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
381 		struct page *page)
382 {
383 }
384 
385 static int __bprm_mm_init(struct linux_binprm *bprm)
386 {
387 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
388 	return 0;
389 }
390 
391 static bool valid_arg_len(struct linux_binprm *bprm, long len)
392 {
393 	return len <= bprm->p;
394 }
395 
396 #endif /* CONFIG_MMU */
397 
398 /*
399  * Create a new mm_struct and populate it with a temporary stack
400  * vm_area_struct.  We don't have enough context at this point to set the stack
401  * flags, permissions, and offset, so we use temporary values.  We'll update
402  * them later in setup_arg_pages().
403  */
404 static int bprm_mm_init(struct linux_binprm *bprm)
405 {
406 	int err;
407 	struct mm_struct *mm = NULL;
408 
409 	bprm->mm = mm = mm_alloc();
410 	err = -ENOMEM;
411 	if (!mm)
412 		goto err;
413 
414 	err = __bprm_mm_init(bprm);
415 	if (err)
416 		goto err;
417 
418 	return 0;
419 
420 err:
421 	if (mm) {
422 		bprm->mm = NULL;
423 		mmdrop(mm);
424 	}
425 
426 	return err;
427 }
428 
429 struct user_arg_ptr {
430 #ifdef CONFIG_COMPAT
431 	bool is_compat;
432 #endif
433 	union {
434 		const char __user *const __user *native;
435 #ifdef CONFIG_COMPAT
436 		const compat_uptr_t __user *compat;
437 #endif
438 	} ptr;
439 };
440 
441 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
442 {
443 	const char __user *native;
444 
445 #ifdef CONFIG_COMPAT
446 	if (unlikely(argv.is_compat)) {
447 		compat_uptr_t compat;
448 
449 		if (get_user(compat, argv.ptr.compat + nr))
450 			return ERR_PTR(-EFAULT);
451 
452 		return compat_ptr(compat);
453 	}
454 #endif
455 
456 	if (get_user(native, argv.ptr.native + nr))
457 		return ERR_PTR(-EFAULT);
458 
459 	return native;
460 }
461 
462 /*
463  * count() counts the number of strings in array ARGV.
464  */
465 static int count(struct user_arg_ptr argv, int max)
466 {
467 	int i = 0;
468 
469 	if (argv.ptr.native != NULL) {
470 		for (;;) {
471 			const char __user *p = get_user_arg_ptr(argv, i);
472 
473 			if (!p)
474 				break;
475 
476 			if (IS_ERR(p))
477 				return -EFAULT;
478 
479 			if (i >= max)
480 				return -E2BIG;
481 			++i;
482 
483 			if (fatal_signal_pending(current))
484 				return -ERESTARTNOHAND;
485 			cond_resched();
486 		}
487 	}
488 	return i;
489 }
490 
491 /*
492  * 'copy_strings()' copies argument/environment strings from the old
493  * processes's memory to the new process's stack.  The call to get_user_pages()
494  * ensures the destination page is created and not swapped out.
495  */
496 static int copy_strings(int argc, struct user_arg_ptr argv,
497 			struct linux_binprm *bprm)
498 {
499 	struct page *kmapped_page = NULL;
500 	char *kaddr = NULL;
501 	unsigned long kpos = 0;
502 	int ret;
503 
504 	while (argc-- > 0) {
505 		const char __user *str;
506 		int len;
507 		unsigned long pos;
508 
509 		ret = -EFAULT;
510 		str = get_user_arg_ptr(argv, argc);
511 		if (IS_ERR(str))
512 			goto out;
513 
514 		len = strnlen_user(str, MAX_ARG_STRLEN);
515 		if (!len)
516 			goto out;
517 
518 		ret = -E2BIG;
519 		if (!valid_arg_len(bprm, len))
520 			goto out;
521 
522 		/* We're going to work our way backwords. */
523 		pos = bprm->p;
524 		str += len;
525 		bprm->p -= len;
526 
527 		while (len > 0) {
528 			int offset, bytes_to_copy;
529 
530 			if (fatal_signal_pending(current)) {
531 				ret = -ERESTARTNOHAND;
532 				goto out;
533 			}
534 			cond_resched();
535 
536 			offset = pos % PAGE_SIZE;
537 			if (offset == 0)
538 				offset = PAGE_SIZE;
539 
540 			bytes_to_copy = offset;
541 			if (bytes_to_copy > len)
542 				bytes_to_copy = len;
543 
544 			offset -= bytes_to_copy;
545 			pos -= bytes_to_copy;
546 			str -= bytes_to_copy;
547 			len -= bytes_to_copy;
548 
549 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
550 				struct page *page;
551 
552 				page = get_arg_page(bprm, pos, 1);
553 				if (!page) {
554 					ret = -E2BIG;
555 					goto out;
556 				}
557 
558 				if (kmapped_page) {
559 					flush_kernel_dcache_page(kmapped_page);
560 					kunmap(kmapped_page);
561 					put_arg_page(kmapped_page);
562 				}
563 				kmapped_page = page;
564 				kaddr = kmap(kmapped_page);
565 				kpos = pos & PAGE_MASK;
566 				flush_arg_page(bprm, kpos, kmapped_page);
567 			}
568 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
569 				ret = -EFAULT;
570 				goto out;
571 			}
572 		}
573 	}
574 	ret = 0;
575 out:
576 	if (kmapped_page) {
577 		flush_kernel_dcache_page(kmapped_page);
578 		kunmap(kmapped_page);
579 		put_arg_page(kmapped_page);
580 	}
581 	return ret;
582 }
583 
584 /*
585  * Like copy_strings, but get argv and its values from kernel memory.
586  */
587 int copy_strings_kernel(int argc, const char *const *__argv,
588 			struct linux_binprm *bprm)
589 {
590 	int r;
591 	mm_segment_t oldfs = get_fs();
592 	struct user_arg_ptr argv = {
593 		.ptr.native = (const char __user *const  __user *)__argv,
594 	};
595 
596 	set_fs(KERNEL_DS);
597 	r = copy_strings(argc, argv, bprm);
598 	set_fs(oldfs);
599 
600 	return r;
601 }
602 EXPORT_SYMBOL(copy_strings_kernel);
603 
604 #ifdef CONFIG_MMU
605 
606 /*
607  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
608  * the binfmt code determines where the new stack should reside, we shift it to
609  * its final location.  The process proceeds as follows:
610  *
611  * 1) Use shift to calculate the new vma endpoints.
612  * 2) Extend vma to cover both the old and new ranges.  This ensures the
613  *    arguments passed to subsequent functions are consistent.
614  * 3) Move vma's page tables to the new range.
615  * 4) Free up any cleared pgd range.
616  * 5) Shrink the vma to cover only the new range.
617  */
618 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
619 {
620 	struct mm_struct *mm = vma->vm_mm;
621 	unsigned long old_start = vma->vm_start;
622 	unsigned long old_end = vma->vm_end;
623 	unsigned long length = old_end - old_start;
624 	unsigned long new_start = old_start - shift;
625 	unsigned long new_end = old_end - shift;
626 	struct mmu_gather tlb;
627 
628 	BUG_ON(new_start > new_end);
629 
630 	/*
631 	 * ensure there are no vmas between where we want to go
632 	 * and where we are
633 	 */
634 	if (vma != find_vma(mm, new_start))
635 		return -EFAULT;
636 
637 	/*
638 	 * cover the whole range: [new_start, old_end)
639 	 */
640 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
641 		return -ENOMEM;
642 
643 	/*
644 	 * move the page tables downwards, on failure we rely on
645 	 * process cleanup to remove whatever mess we made.
646 	 */
647 	if (length != move_page_tables(vma, old_start,
648 				       vma, new_start, length, false))
649 		return -ENOMEM;
650 
651 	lru_add_drain();
652 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
653 	if (new_end > old_start) {
654 		/*
655 		 * when the old and new regions overlap clear from new_end.
656 		 */
657 		free_pgd_range(&tlb, new_end, old_end, new_end,
658 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
659 	} else {
660 		/*
661 		 * otherwise, clean from old_start; this is done to not touch
662 		 * the address space in [new_end, old_start) some architectures
663 		 * have constraints on va-space that make this illegal (IA64) -
664 		 * for the others its just a little faster.
665 		 */
666 		free_pgd_range(&tlb, old_start, old_end, new_end,
667 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
668 	}
669 	tlb_finish_mmu(&tlb, old_start, old_end);
670 
671 	/*
672 	 * Shrink the vma to just the new range.  Always succeeds.
673 	 */
674 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
675 
676 	return 0;
677 }
678 
679 /*
680  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
681  * the stack is optionally relocated, and some extra space is added.
682  */
683 int setup_arg_pages(struct linux_binprm *bprm,
684 		    unsigned long stack_top,
685 		    int executable_stack)
686 {
687 	unsigned long ret;
688 	unsigned long stack_shift;
689 	struct mm_struct *mm = current->mm;
690 	struct vm_area_struct *vma = bprm->vma;
691 	struct vm_area_struct *prev = NULL;
692 	unsigned long vm_flags;
693 	unsigned long stack_base;
694 	unsigned long stack_size;
695 	unsigned long stack_expand;
696 	unsigned long rlim_stack;
697 
698 #ifdef CONFIG_STACK_GROWSUP
699 	/* Limit stack size */
700 	stack_base = rlimit_max(RLIMIT_STACK);
701 	if (stack_base > STACK_SIZE_MAX)
702 		stack_base = STACK_SIZE_MAX;
703 
704 	/* Add space for stack randomization. */
705 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
706 
707 	/* Make sure we didn't let the argument array grow too large. */
708 	if (vma->vm_end - vma->vm_start > stack_base)
709 		return -ENOMEM;
710 
711 	stack_base = PAGE_ALIGN(stack_top - stack_base);
712 
713 	stack_shift = vma->vm_start - stack_base;
714 	mm->arg_start = bprm->p - stack_shift;
715 	bprm->p = vma->vm_end - stack_shift;
716 #else
717 	stack_top = arch_align_stack(stack_top);
718 	stack_top = PAGE_ALIGN(stack_top);
719 
720 	if (unlikely(stack_top < mmap_min_addr) ||
721 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
722 		return -ENOMEM;
723 
724 	stack_shift = vma->vm_end - stack_top;
725 
726 	bprm->p -= stack_shift;
727 	mm->arg_start = bprm->p;
728 #endif
729 
730 	if (bprm->loader)
731 		bprm->loader -= stack_shift;
732 	bprm->exec -= stack_shift;
733 
734 	if (down_write_killable(&mm->mmap_sem))
735 		return -EINTR;
736 
737 	vm_flags = VM_STACK_FLAGS;
738 
739 	/*
740 	 * Adjust stack execute permissions; explicitly enable for
741 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
742 	 * (arch default) otherwise.
743 	 */
744 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
745 		vm_flags |= VM_EXEC;
746 	else if (executable_stack == EXSTACK_DISABLE_X)
747 		vm_flags &= ~VM_EXEC;
748 	vm_flags |= mm->def_flags;
749 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
750 
751 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
752 			vm_flags);
753 	if (ret)
754 		goto out_unlock;
755 	BUG_ON(prev != vma);
756 
757 	/* Move stack pages down in memory. */
758 	if (stack_shift) {
759 		ret = shift_arg_pages(vma, stack_shift);
760 		if (ret)
761 			goto out_unlock;
762 	}
763 
764 	/* mprotect_fixup is overkill to remove the temporary stack flags */
765 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
766 
767 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
768 	stack_size = vma->vm_end - vma->vm_start;
769 	/*
770 	 * Align this down to a page boundary as expand_stack
771 	 * will align it up.
772 	 */
773 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
774 #ifdef CONFIG_STACK_GROWSUP
775 	if (stack_size + stack_expand > rlim_stack)
776 		stack_base = vma->vm_start + rlim_stack;
777 	else
778 		stack_base = vma->vm_end + stack_expand;
779 #else
780 	if (stack_size + stack_expand > rlim_stack)
781 		stack_base = vma->vm_end - rlim_stack;
782 	else
783 		stack_base = vma->vm_start - stack_expand;
784 #endif
785 	current->mm->start_stack = bprm->p;
786 	ret = expand_stack(vma, stack_base);
787 	if (ret)
788 		ret = -EFAULT;
789 
790 out_unlock:
791 	up_write(&mm->mmap_sem);
792 	return ret;
793 }
794 EXPORT_SYMBOL(setup_arg_pages);
795 
796 #else
797 
798 /*
799  * Transfer the program arguments and environment from the holding pages
800  * onto the stack. The provided stack pointer is adjusted accordingly.
801  */
802 int transfer_args_to_stack(struct linux_binprm *bprm,
803 			   unsigned long *sp_location)
804 {
805 	unsigned long index, stop, sp;
806 	int ret = 0;
807 
808 	stop = bprm->p >> PAGE_SHIFT;
809 	sp = *sp_location;
810 
811 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
812 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
813 		char *src = kmap(bprm->page[index]) + offset;
814 		sp -= PAGE_SIZE - offset;
815 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
816 			ret = -EFAULT;
817 		kunmap(bprm->page[index]);
818 		if (ret)
819 			goto out;
820 	}
821 
822 	*sp_location = sp;
823 
824 out:
825 	return ret;
826 }
827 EXPORT_SYMBOL(transfer_args_to_stack);
828 
829 #endif /* CONFIG_MMU */
830 
831 static struct file *do_open_execat(int fd, struct filename *name, int flags)
832 {
833 	struct file *file;
834 	int err;
835 	struct open_flags open_exec_flags = {
836 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
837 		.acc_mode = MAY_EXEC,
838 		.intent = LOOKUP_OPEN,
839 		.lookup_flags = LOOKUP_FOLLOW,
840 	};
841 
842 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
843 		return ERR_PTR(-EINVAL);
844 	if (flags & AT_SYMLINK_NOFOLLOW)
845 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
846 	if (flags & AT_EMPTY_PATH)
847 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
848 
849 	file = do_filp_open(fd, name, &open_exec_flags);
850 	if (IS_ERR(file))
851 		goto out;
852 
853 	err = -EACCES;
854 	if (!S_ISREG(file_inode(file)->i_mode))
855 		goto exit;
856 
857 	if (path_noexec(&file->f_path))
858 		goto exit;
859 
860 	err = deny_write_access(file);
861 	if (err)
862 		goto exit;
863 
864 	if (name->name[0] != '\0')
865 		fsnotify_open(file);
866 
867 out:
868 	return file;
869 
870 exit:
871 	fput(file);
872 	return ERR_PTR(err);
873 }
874 
875 struct file *open_exec(const char *name)
876 {
877 	struct filename *filename = getname_kernel(name);
878 	struct file *f = ERR_CAST(filename);
879 
880 	if (!IS_ERR(filename)) {
881 		f = do_open_execat(AT_FDCWD, filename, 0);
882 		putname(filename);
883 	}
884 	return f;
885 }
886 EXPORT_SYMBOL(open_exec);
887 
888 int kernel_read(struct file *file, loff_t offset,
889 		char *addr, unsigned long count)
890 {
891 	mm_segment_t old_fs;
892 	loff_t pos = offset;
893 	int result;
894 
895 	old_fs = get_fs();
896 	set_fs(get_ds());
897 	/* The cast to a user pointer is valid due to the set_fs() */
898 	result = vfs_read(file, (void __user *)addr, count, &pos);
899 	set_fs(old_fs);
900 	return result;
901 }
902 
903 EXPORT_SYMBOL(kernel_read);
904 
905 int kernel_read_file(struct file *file, void **buf, loff_t *size,
906 		     loff_t max_size, enum kernel_read_file_id id)
907 {
908 	loff_t i_size, pos;
909 	ssize_t bytes = 0;
910 	int ret;
911 
912 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
913 		return -EINVAL;
914 
915 	ret = security_kernel_read_file(file, id);
916 	if (ret)
917 		return ret;
918 
919 	ret = deny_write_access(file);
920 	if (ret)
921 		return ret;
922 
923 	i_size = i_size_read(file_inode(file));
924 	if (max_size > 0 && i_size > max_size) {
925 		ret = -EFBIG;
926 		goto out;
927 	}
928 	if (i_size <= 0) {
929 		ret = -EINVAL;
930 		goto out;
931 	}
932 
933 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
934 		*buf = vmalloc(i_size);
935 	if (!*buf) {
936 		ret = -ENOMEM;
937 		goto out;
938 	}
939 
940 	pos = 0;
941 	while (pos < i_size) {
942 		bytes = kernel_read(file, pos, (char *)(*buf) + pos,
943 				    i_size - pos);
944 		if (bytes < 0) {
945 			ret = bytes;
946 			goto out;
947 		}
948 
949 		if (bytes == 0)
950 			break;
951 		pos += bytes;
952 	}
953 
954 	if (pos != i_size) {
955 		ret = -EIO;
956 		goto out_free;
957 	}
958 
959 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
960 	if (!ret)
961 		*size = pos;
962 
963 out_free:
964 	if (ret < 0) {
965 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
966 			vfree(*buf);
967 			*buf = NULL;
968 		}
969 	}
970 
971 out:
972 	allow_write_access(file);
973 	return ret;
974 }
975 EXPORT_SYMBOL_GPL(kernel_read_file);
976 
977 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
978 			       loff_t max_size, enum kernel_read_file_id id)
979 {
980 	struct file *file;
981 	int ret;
982 
983 	if (!path || !*path)
984 		return -EINVAL;
985 
986 	file = filp_open(path, O_RDONLY, 0);
987 	if (IS_ERR(file))
988 		return PTR_ERR(file);
989 
990 	ret = kernel_read_file(file, buf, size, max_size, id);
991 	fput(file);
992 	return ret;
993 }
994 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
995 
996 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
997 			     enum kernel_read_file_id id)
998 {
999 	struct fd f = fdget(fd);
1000 	int ret = -EBADF;
1001 
1002 	if (!f.file)
1003 		goto out;
1004 
1005 	ret = kernel_read_file(f.file, buf, size, max_size, id);
1006 out:
1007 	fdput(f);
1008 	return ret;
1009 }
1010 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1011 
1012 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1013 {
1014 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1015 	if (res > 0)
1016 		flush_icache_range(addr, addr + len);
1017 	return res;
1018 }
1019 EXPORT_SYMBOL(read_code);
1020 
1021 static int exec_mmap(struct mm_struct *mm)
1022 {
1023 	struct task_struct *tsk;
1024 	struct mm_struct *old_mm, *active_mm;
1025 
1026 	/* Notify parent that we're no longer interested in the old VM */
1027 	tsk = current;
1028 	old_mm = current->mm;
1029 	mm_release(tsk, old_mm);
1030 
1031 	if (old_mm) {
1032 		sync_mm_rss(old_mm);
1033 		/*
1034 		 * Make sure that if there is a core dump in progress
1035 		 * for the old mm, we get out and die instead of going
1036 		 * through with the exec.  We must hold mmap_sem around
1037 		 * checking core_state and changing tsk->mm.
1038 		 */
1039 		down_read(&old_mm->mmap_sem);
1040 		if (unlikely(old_mm->core_state)) {
1041 			up_read(&old_mm->mmap_sem);
1042 			return -EINTR;
1043 		}
1044 	}
1045 	task_lock(tsk);
1046 	active_mm = tsk->active_mm;
1047 	tsk->mm = mm;
1048 	tsk->active_mm = mm;
1049 	activate_mm(active_mm, mm);
1050 	tsk->mm->vmacache_seqnum = 0;
1051 	vmacache_flush(tsk);
1052 	task_unlock(tsk);
1053 	if (old_mm) {
1054 		up_read(&old_mm->mmap_sem);
1055 		BUG_ON(active_mm != old_mm);
1056 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1057 		mm_update_next_owner(old_mm);
1058 		mmput(old_mm);
1059 		return 0;
1060 	}
1061 	mmdrop(active_mm);
1062 	return 0;
1063 }
1064 
1065 /*
1066  * This function makes sure the current process has its own signal table,
1067  * so that flush_signal_handlers can later reset the handlers without
1068  * disturbing other processes.  (Other processes might share the signal
1069  * table via the CLONE_SIGHAND option to clone().)
1070  */
1071 static int de_thread(struct task_struct *tsk)
1072 {
1073 	struct signal_struct *sig = tsk->signal;
1074 	struct sighand_struct *oldsighand = tsk->sighand;
1075 	spinlock_t *lock = &oldsighand->siglock;
1076 
1077 	if (thread_group_empty(tsk))
1078 		goto no_thread_group;
1079 
1080 	/*
1081 	 * Kill all other threads in the thread group.
1082 	 */
1083 	spin_lock_irq(lock);
1084 	if (signal_group_exit(sig)) {
1085 		/*
1086 		 * Another group action in progress, just
1087 		 * return so that the signal is processed.
1088 		 */
1089 		spin_unlock_irq(lock);
1090 		return -EAGAIN;
1091 	}
1092 
1093 	sig->group_exit_task = tsk;
1094 	sig->notify_count = zap_other_threads(tsk);
1095 	if (!thread_group_leader(tsk))
1096 		sig->notify_count--;
1097 
1098 	while (sig->notify_count) {
1099 		__set_current_state(TASK_KILLABLE);
1100 		spin_unlock_irq(lock);
1101 		schedule();
1102 		if (unlikely(__fatal_signal_pending(tsk)))
1103 			goto killed;
1104 		spin_lock_irq(lock);
1105 	}
1106 	spin_unlock_irq(lock);
1107 
1108 	/*
1109 	 * At this point all other threads have exited, all we have to
1110 	 * do is to wait for the thread group leader to become inactive,
1111 	 * and to assume its PID:
1112 	 */
1113 	if (!thread_group_leader(tsk)) {
1114 		struct task_struct *leader = tsk->group_leader;
1115 
1116 		for (;;) {
1117 			cgroup_threadgroup_change_begin(tsk);
1118 			write_lock_irq(&tasklist_lock);
1119 			/*
1120 			 * Do this under tasklist_lock to ensure that
1121 			 * exit_notify() can't miss ->group_exit_task
1122 			 */
1123 			sig->notify_count = -1;
1124 			if (likely(leader->exit_state))
1125 				break;
1126 			__set_current_state(TASK_KILLABLE);
1127 			write_unlock_irq(&tasklist_lock);
1128 			cgroup_threadgroup_change_end(tsk);
1129 			schedule();
1130 			if (unlikely(__fatal_signal_pending(tsk)))
1131 				goto killed;
1132 		}
1133 
1134 		/*
1135 		 * The only record we have of the real-time age of a
1136 		 * process, regardless of execs it's done, is start_time.
1137 		 * All the past CPU time is accumulated in signal_struct
1138 		 * from sister threads now dead.  But in this non-leader
1139 		 * exec, nothing survives from the original leader thread,
1140 		 * whose birth marks the true age of this process now.
1141 		 * When we take on its identity by switching to its PID, we
1142 		 * also take its birthdate (always earlier than our own).
1143 		 */
1144 		tsk->start_time = leader->start_time;
1145 		tsk->real_start_time = leader->real_start_time;
1146 
1147 		BUG_ON(!same_thread_group(leader, tsk));
1148 		BUG_ON(has_group_leader_pid(tsk));
1149 		/*
1150 		 * An exec() starts a new thread group with the
1151 		 * TGID of the previous thread group. Rehash the
1152 		 * two threads with a switched PID, and release
1153 		 * the former thread group leader:
1154 		 */
1155 
1156 		/* Become a process group leader with the old leader's pid.
1157 		 * The old leader becomes a thread of the this thread group.
1158 		 * Note: The old leader also uses this pid until release_task
1159 		 *       is called.  Odd but simple and correct.
1160 		 */
1161 		tsk->pid = leader->pid;
1162 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1163 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1164 		transfer_pid(leader, tsk, PIDTYPE_SID);
1165 
1166 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1167 		list_replace_init(&leader->sibling, &tsk->sibling);
1168 
1169 		tsk->group_leader = tsk;
1170 		leader->group_leader = tsk;
1171 
1172 		tsk->exit_signal = SIGCHLD;
1173 		leader->exit_signal = -1;
1174 
1175 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1176 		leader->exit_state = EXIT_DEAD;
1177 
1178 		/*
1179 		 * We are going to release_task()->ptrace_unlink() silently,
1180 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1181 		 * the tracer wont't block again waiting for this thread.
1182 		 */
1183 		if (unlikely(leader->ptrace))
1184 			__wake_up_parent(leader, leader->parent);
1185 		write_unlock_irq(&tasklist_lock);
1186 		cgroup_threadgroup_change_end(tsk);
1187 
1188 		release_task(leader);
1189 	}
1190 
1191 	sig->group_exit_task = NULL;
1192 	sig->notify_count = 0;
1193 
1194 no_thread_group:
1195 	/* we have changed execution domain */
1196 	tsk->exit_signal = SIGCHLD;
1197 
1198 #ifdef CONFIG_POSIX_TIMERS
1199 	exit_itimers(sig);
1200 	flush_itimer_signals();
1201 #endif
1202 
1203 	if (atomic_read(&oldsighand->count) != 1) {
1204 		struct sighand_struct *newsighand;
1205 		/*
1206 		 * This ->sighand is shared with the CLONE_SIGHAND
1207 		 * but not CLONE_THREAD task, switch to the new one.
1208 		 */
1209 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1210 		if (!newsighand)
1211 			return -ENOMEM;
1212 
1213 		atomic_set(&newsighand->count, 1);
1214 		memcpy(newsighand->action, oldsighand->action,
1215 		       sizeof(newsighand->action));
1216 
1217 		write_lock_irq(&tasklist_lock);
1218 		spin_lock(&oldsighand->siglock);
1219 		rcu_assign_pointer(tsk->sighand, newsighand);
1220 		spin_unlock(&oldsighand->siglock);
1221 		write_unlock_irq(&tasklist_lock);
1222 
1223 		__cleanup_sighand(oldsighand);
1224 	}
1225 
1226 	BUG_ON(!thread_group_leader(tsk));
1227 	return 0;
1228 
1229 killed:
1230 	/* protects against exit_notify() and __exit_signal() */
1231 	read_lock(&tasklist_lock);
1232 	sig->group_exit_task = NULL;
1233 	sig->notify_count = 0;
1234 	read_unlock(&tasklist_lock);
1235 	return -EAGAIN;
1236 }
1237 
1238 char *get_task_comm(char *buf, struct task_struct *tsk)
1239 {
1240 	/* buf must be at least sizeof(tsk->comm) in size */
1241 	task_lock(tsk);
1242 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1243 	task_unlock(tsk);
1244 	return buf;
1245 }
1246 EXPORT_SYMBOL_GPL(get_task_comm);
1247 
1248 /*
1249  * These functions flushes out all traces of the currently running executable
1250  * so that a new one can be started
1251  */
1252 
1253 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1254 {
1255 	task_lock(tsk);
1256 	trace_task_rename(tsk, buf);
1257 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1258 	task_unlock(tsk);
1259 	perf_event_comm(tsk, exec);
1260 }
1261 
1262 /*
1263  * Calling this is the point of no return. None of the failures will be
1264  * seen by userspace since either the process is already taking a fatal
1265  * signal (via de_thread() or coredump), or will have SEGV raised
1266  * (after exec_mmap()) by search_binary_handlers (see below).
1267  */
1268 int flush_old_exec(struct linux_binprm * bprm)
1269 {
1270 	int retval;
1271 
1272 	/*
1273 	 * Make sure we have a private signal table and that
1274 	 * we are unassociated from the previous thread group.
1275 	 */
1276 	retval = de_thread(current);
1277 	if (retval)
1278 		goto out;
1279 
1280 	/*
1281 	 * Must be called _before_ exec_mmap() as bprm->mm is
1282 	 * not visibile until then. This also enables the update
1283 	 * to be lockless.
1284 	 */
1285 	set_mm_exe_file(bprm->mm, bprm->file);
1286 
1287 	/*
1288 	 * Release all of the old mmap stuff
1289 	 */
1290 	acct_arg_size(bprm, 0);
1291 	retval = exec_mmap(bprm->mm);
1292 	if (retval)
1293 		goto out;
1294 
1295 	/*
1296 	 * After clearing bprm->mm (to mark that current is using the
1297 	 * prepared mm now), we have nothing left of the original
1298 	 * process. If anything from here on returns an error, the check
1299 	 * in search_binary_handler() will SEGV current.
1300 	 */
1301 	bprm->mm = NULL;
1302 
1303 	set_fs(USER_DS);
1304 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1305 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1306 	flush_thread();
1307 	current->personality &= ~bprm->per_clear;
1308 
1309 	/*
1310 	 * We have to apply CLOEXEC before we change whether the process is
1311 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1312 	 * trying to access the should-be-closed file descriptors of a process
1313 	 * undergoing exec(2).
1314 	 */
1315 	do_close_on_exec(current->files);
1316 	return 0;
1317 
1318 out:
1319 	return retval;
1320 }
1321 EXPORT_SYMBOL(flush_old_exec);
1322 
1323 void would_dump(struct linux_binprm *bprm, struct file *file)
1324 {
1325 	struct inode *inode = file_inode(file);
1326 	if (inode_permission(inode, MAY_READ) < 0) {
1327 		struct user_namespace *old, *user_ns;
1328 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1329 
1330 		/* Ensure mm->user_ns contains the executable */
1331 		user_ns = old = bprm->mm->user_ns;
1332 		while ((user_ns != &init_user_ns) &&
1333 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1334 			user_ns = user_ns->parent;
1335 
1336 		if (old != user_ns) {
1337 			bprm->mm->user_ns = get_user_ns(user_ns);
1338 			put_user_ns(old);
1339 		}
1340 	}
1341 }
1342 EXPORT_SYMBOL(would_dump);
1343 
1344 void setup_new_exec(struct linux_binprm * bprm)
1345 {
1346 	/*
1347 	 * Once here, prepare_binrpm() will not be called any more, so
1348 	 * the final state of setuid/setgid/fscaps can be merged into the
1349 	 * secureexec flag.
1350 	 */
1351 	bprm->secureexec |= bprm->cap_elevated;
1352 
1353 	if (bprm->secureexec) {
1354 		/* Make sure parent cannot signal privileged process. */
1355 		current->pdeath_signal = 0;
1356 
1357 		/*
1358 		 * For secureexec, reset the stack limit to sane default to
1359 		 * avoid bad behavior from the prior rlimits. This has to
1360 		 * happen before arch_pick_mmap_layout(), which examines
1361 		 * RLIMIT_STACK, but after the point of no return to avoid
1362 		 * needing to clean up the change on failure.
1363 		 */
1364 		if (current->signal->rlim[RLIMIT_STACK].rlim_cur > _STK_LIM)
1365 			current->signal->rlim[RLIMIT_STACK].rlim_cur = _STK_LIM;
1366 	}
1367 
1368 	arch_pick_mmap_layout(current->mm);
1369 
1370 	current->sas_ss_sp = current->sas_ss_size = 0;
1371 
1372 	/* Figure out dumpability. */
1373 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1374 	    bprm->secureexec)
1375 		set_dumpable(current->mm, suid_dumpable);
1376 	else
1377 		set_dumpable(current->mm, SUID_DUMP_USER);
1378 
1379 	arch_setup_new_exec();
1380 	perf_event_exec();
1381 	__set_task_comm(current, kbasename(bprm->filename), true);
1382 
1383 	/* Set the new mm task size. We have to do that late because it may
1384 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1385 	 * some architectures like powerpc
1386 	 */
1387 	current->mm->task_size = TASK_SIZE;
1388 
1389 	/* An exec changes our domain. We are no longer part of the thread
1390 	   group */
1391 	current->self_exec_id++;
1392 	flush_signal_handlers(current, 0);
1393 }
1394 EXPORT_SYMBOL(setup_new_exec);
1395 
1396 /*
1397  * Prepare credentials and lock ->cred_guard_mutex.
1398  * install_exec_creds() commits the new creds and drops the lock.
1399  * Or, if exec fails before, free_bprm() should release ->cred and
1400  * and unlock.
1401  */
1402 int prepare_bprm_creds(struct linux_binprm *bprm)
1403 {
1404 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1405 		return -ERESTARTNOINTR;
1406 
1407 	bprm->cred = prepare_exec_creds();
1408 	if (likely(bprm->cred))
1409 		return 0;
1410 
1411 	mutex_unlock(&current->signal->cred_guard_mutex);
1412 	return -ENOMEM;
1413 }
1414 
1415 static void free_bprm(struct linux_binprm *bprm)
1416 {
1417 	free_arg_pages(bprm);
1418 	if (bprm->cred) {
1419 		mutex_unlock(&current->signal->cred_guard_mutex);
1420 		abort_creds(bprm->cred);
1421 	}
1422 	if (bprm->file) {
1423 		allow_write_access(bprm->file);
1424 		fput(bprm->file);
1425 	}
1426 	/* If a binfmt changed the interp, free it. */
1427 	if (bprm->interp != bprm->filename)
1428 		kfree(bprm->interp);
1429 	kfree(bprm);
1430 }
1431 
1432 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1433 {
1434 	/* If a binfmt changed the interp, free it first. */
1435 	if (bprm->interp != bprm->filename)
1436 		kfree(bprm->interp);
1437 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1438 	if (!bprm->interp)
1439 		return -ENOMEM;
1440 	return 0;
1441 }
1442 EXPORT_SYMBOL(bprm_change_interp);
1443 
1444 /*
1445  * install the new credentials for this executable
1446  */
1447 void install_exec_creds(struct linux_binprm *bprm)
1448 {
1449 	security_bprm_committing_creds(bprm);
1450 
1451 	commit_creds(bprm->cred);
1452 	bprm->cred = NULL;
1453 
1454 	/*
1455 	 * Disable monitoring for regular users
1456 	 * when executing setuid binaries. Must
1457 	 * wait until new credentials are committed
1458 	 * by commit_creds() above
1459 	 */
1460 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1461 		perf_event_exit_task(current);
1462 	/*
1463 	 * cred_guard_mutex must be held at least to this point to prevent
1464 	 * ptrace_attach() from altering our determination of the task's
1465 	 * credentials; any time after this it may be unlocked.
1466 	 */
1467 	security_bprm_committed_creds(bprm);
1468 	mutex_unlock(&current->signal->cred_guard_mutex);
1469 }
1470 EXPORT_SYMBOL(install_exec_creds);
1471 
1472 /*
1473  * determine how safe it is to execute the proposed program
1474  * - the caller must hold ->cred_guard_mutex to protect against
1475  *   PTRACE_ATTACH or seccomp thread-sync
1476  */
1477 static void check_unsafe_exec(struct linux_binprm *bprm)
1478 {
1479 	struct task_struct *p = current, *t;
1480 	unsigned n_fs;
1481 
1482 	if (p->ptrace)
1483 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1484 
1485 	/*
1486 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1487 	 * mess up.
1488 	 */
1489 	if (task_no_new_privs(current))
1490 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1491 
1492 	t = p;
1493 	n_fs = 1;
1494 	spin_lock(&p->fs->lock);
1495 	rcu_read_lock();
1496 	while_each_thread(p, t) {
1497 		if (t->fs == p->fs)
1498 			n_fs++;
1499 	}
1500 	rcu_read_unlock();
1501 
1502 	if (p->fs->users > n_fs)
1503 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1504 	else
1505 		p->fs->in_exec = 1;
1506 	spin_unlock(&p->fs->lock);
1507 }
1508 
1509 static void bprm_fill_uid(struct linux_binprm *bprm)
1510 {
1511 	struct inode *inode;
1512 	unsigned int mode;
1513 	kuid_t uid;
1514 	kgid_t gid;
1515 
1516 	/*
1517 	 * Since this can be called multiple times (via prepare_binprm),
1518 	 * we must clear any previous work done when setting set[ug]id
1519 	 * bits from any earlier bprm->file uses (for example when run
1520 	 * first for a setuid script then again for its interpreter).
1521 	 */
1522 	bprm->cred->euid = current_euid();
1523 	bprm->cred->egid = current_egid();
1524 
1525 	if (!mnt_may_suid(bprm->file->f_path.mnt))
1526 		return;
1527 
1528 	if (task_no_new_privs(current))
1529 		return;
1530 
1531 	inode = bprm->file->f_path.dentry->d_inode;
1532 	mode = READ_ONCE(inode->i_mode);
1533 	if (!(mode & (S_ISUID|S_ISGID)))
1534 		return;
1535 
1536 	/* Be careful if suid/sgid is set */
1537 	inode_lock(inode);
1538 
1539 	/* reload atomically mode/uid/gid now that lock held */
1540 	mode = inode->i_mode;
1541 	uid = inode->i_uid;
1542 	gid = inode->i_gid;
1543 	inode_unlock(inode);
1544 
1545 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1546 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1547 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1548 		return;
1549 
1550 	if (mode & S_ISUID) {
1551 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1552 		bprm->cred->euid = uid;
1553 	}
1554 
1555 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1556 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1557 		bprm->cred->egid = gid;
1558 	}
1559 }
1560 
1561 /*
1562  * Fill the binprm structure from the inode.
1563  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1564  *
1565  * This may be called multiple times for binary chains (scripts for example).
1566  */
1567 int prepare_binprm(struct linux_binprm *bprm)
1568 {
1569 	int retval;
1570 
1571 	bprm_fill_uid(bprm);
1572 
1573 	/* fill in binprm security blob */
1574 	retval = security_bprm_set_creds(bprm);
1575 	if (retval)
1576 		return retval;
1577 	bprm->called_set_creds = 1;
1578 
1579 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1580 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1581 }
1582 
1583 EXPORT_SYMBOL(prepare_binprm);
1584 
1585 /*
1586  * Arguments are '\0' separated strings found at the location bprm->p
1587  * points to; chop off the first by relocating brpm->p to right after
1588  * the first '\0' encountered.
1589  */
1590 int remove_arg_zero(struct linux_binprm *bprm)
1591 {
1592 	int ret = 0;
1593 	unsigned long offset;
1594 	char *kaddr;
1595 	struct page *page;
1596 
1597 	if (!bprm->argc)
1598 		return 0;
1599 
1600 	do {
1601 		offset = bprm->p & ~PAGE_MASK;
1602 		page = get_arg_page(bprm, bprm->p, 0);
1603 		if (!page) {
1604 			ret = -EFAULT;
1605 			goto out;
1606 		}
1607 		kaddr = kmap_atomic(page);
1608 
1609 		for (; offset < PAGE_SIZE && kaddr[offset];
1610 				offset++, bprm->p++)
1611 			;
1612 
1613 		kunmap_atomic(kaddr);
1614 		put_arg_page(page);
1615 	} while (offset == PAGE_SIZE);
1616 
1617 	bprm->p++;
1618 	bprm->argc--;
1619 	ret = 0;
1620 
1621 out:
1622 	return ret;
1623 }
1624 EXPORT_SYMBOL(remove_arg_zero);
1625 
1626 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1627 /*
1628  * cycle the list of binary formats handler, until one recognizes the image
1629  */
1630 int search_binary_handler(struct linux_binprm *bprm)
1631 {
1632 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1633 	struct linux_binfmt *fmt;
1634 	int retval;
1635 
1636 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1637 	if (bprm->recursion_depth > 5)
1638 		return -ELOOP;
1639 
1640 	retval = security_bprm_check(bprm);
1641 	if (retval)
1642 		return retval;
1643 
1644 	retval = -ENOENT;
1645  retry:
1646 	read_lock(&binfmt_lock);
1647 	list_for_each_entry(fmt, &formats, lh) {
1648 		if (!try_module_get(fmt->module))
1649 			continue;
1650 		read_unlock(&binfmt_lock);
1651 		bprm->recursion_depth++;
1652 		retval = fmt->load_binary(bprm);
1653 		read_lock(&binfmt_lock);
1654 		put_binfmt(fmt);
1655 		bprm->recursion_depth--;
1656 		if (retval < 0 && !bprm->mm) {
1657 			/* we got to flush_old_exec() and failed after it */
1658 			read_unlock(&binfmt_lock);
1659 			force_sigsegv(SIGSEGV, current);
1660 			return retval;
1661 		}
1662 		if (retval != -ENOEXEC || !bprm->file) {
1663 			read_unlock(&binfmt_lock);
1664 			return retval;
1665 		}
1666 	}
1667 	read_unlock(&binfmt_lock);
1668 
1669 	if (need_retry) {
1670 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1671 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1672 			return retval;
1673 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1674 			return retval;
1675 		need_retry = false;
1676 		goto retry;
1677 	}
1678 
1679 	return retval;
1680 }
1681 EXPORT_SYMBOL(search_binary_handler);
1682 
1683 static int exec_binprm(struct linux_binprm *bprm)
1684 {
1685 	pid_t old_pid, old_vpid;
1686 	int ret;
1687 
1688 	/* Need to fetch pid before load_binary changes it */
1689 	old_pid = current->pid;
1690 	rcu_read_lock();
1691 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1692 	rcu_read_unlock();
1693 
1694 	ret = search_binary_handler(bprm);
1695 	if (ret >= 0) {
1696 		audit_bprm(bprm);
1697 		trace_sched_process_exec(current, old_pid, bprm);
1698 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1699 		proc_exec_connector(current);
1700 	}
1701 
1702 	return ret;
1703 }
1704 
1705 /*
1706  * sys_execve() executes a new program.
1707  */
1708 static int do_execveat_common(int fd, struct filename *filename,
1709 			      struct user_arg_ptr argv,
1710 			      struct user_arg_ptr envp,
1711 			      int flags)
1712 {
1713 	char *pathbuf = NULL;
1714 	struct linux_binprm *bprm;
1715 	struct file *file;
1716 	struct files_struct *displaced;
1717 	int retval;
1718 
1719 	if (IS_ERR(filename))
1720 		return PTR_ERR(filename);
1721 
1722 	/*
1723 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1724 	 * set*uid() to execve() because too many poorly written programs
1725 	 * don't check setuid() return code.  Here we additionally recheck
1726 	 * whether NPROC limit is still exceeded.
1727 	 */
1728 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1729 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1730 		retval = -EAGAIN;
1731 		goto out_ret;
1732 	}
1733 
1734 	/* We're below the limit (still or again), so we don't want to make
1735 	 * further execve() calls fail. */
1736 	current->flags &= ~PF_NPROC_EXCEEDED;
1737 
1738 	retval = unshare_files(&displaced);
1739 	if (retval)
1740 		goto out_ret;
1741 
1742 	retval = -ENOMEM;
1743 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1744 	if (!bprm)
1745 		goto out_files;
1746 
1747 	retval = prepare_bprm_creds(bprm);
1748 	if (retval)
1749 		goto out_free;
1750 
1751 	check_unsafe_exec(bprm);
1752 	current->in_execve = 1;
1753 
1754 	file = do_open_execat(fd, filename, flags);
1755 	retval = PTR_ERR(file);
1756 	if (IS_ERR(file))
1757 		goto out_unmark;
1758 
1759 	sched_exec();
1760 
1761 	bprm->file = file;
1762 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1763 		bprm->filename = filename->name;
1764 	} else {
1765 		if (filename->name[0] == '\0')
1766 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1767 		else
1768 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1769 					    fd, filename->name);
1770 		if (!pathbuf) {
1771 			retval = -ENOMEM;
1772 			goto out_unmark;
1773 		}
1774 		/*
1775 		 * Record that a name derived from an O_CLOEXEC fd will be
1776 		 * inaccessible after exec. Relies on having exclusive access to
1777 		 * current->files (due to unshare_files above).
1778 		 */
1779 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1780 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1781 		bprm->filename = pathbuf;
1782 	}
1783 	bprm->interp = bprm->filename;
1784 
1785 	retval = bprm_mm_init(bprm);
1786 	if (retval)
1787 		goto out_unmark;
1788 
1789 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1790 	if ((retval = bprm->argc) < 0)
1791 		goto out;
1792 
1793 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1794 	if ((retval = bprm->envc) < 0)
1795 		goto out;
1796 
1797 	retval = prepare_binprm(bprm);
1798 	if (retval < 0)
1799 		goto out;
1800 
1801 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1802 	if (retval < 0)
1803 		goto out;
1804 
1805 	bprm->exec = bprm->p;
1806 	retval = copy_strings(bprm->envc, envp, bprm);
1807 	if (retval < 0)
1808 		goto out;
1809 
1810 	retval = copy_strings(bprm->argc, argv, bprm);
1811 	if (retval < 0)
1812 		goto out;
1813 
1814 	would_dump(bprm, bprm->file);
1815 
1816 	retval = exec_binprm(bprm);
1817 	if (retval < 0)
1818 		goto out;
1819 
1820 	/* execve succeeded */
1821 	current->fs->in_exec = 0;
1822 	current->in_execve = 0;
1823 	acct_update_integrals(current);
1824 	task_numa_free(current);
1825 	free_bprm(bprm);
1826 	kfree(pathbuf);
1827 	putname(filename);
1828 	if (displaced)
1829 		put_files_struct(displaced);
1830 	return retval;
1831 
1832 out:
1833 	if (bprm->mm) {
1834 		acct_arg_size(bprm, 0);
1835 		mmput(bprm->mm);
1836 	}
1837 
1838 out_unmark:
1839 	current->fs->in_exec = 0;
1840 	current->in_execve = 0;
1841 
1842 out_free:
1843 	free_bprm(bprm);
1844 	kfree(pathbuf);
1845 
1846 out_files:
1847 	if (displaced)
1848 		reset_files_struct(displaced);
1849 out_ret:
1850 	putname(filename);
1851 	return retval;
1852 }
1853 
1854 int do_execve(struct filename *filename,
1855 	const char __user *const __user *__argv,
1856 	const char __user *const __user *__envp)
1857 {
1858 	struct user_arg_ptr argv = { .ptr.native = __argv };
1859 	struct user_arg_ptr envp = { .ptr.native = __envp };
1860 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1861 }
1862 
1863 int do_execveat(int fd, struct filename *filename,
1864 		const char __user *const __user *__argv,
1865 		const char __user *const __user *__envp,
1866 		int flags)
1867 {
1868 	struct user_arg_ptr argv = { .ptr.native = __argv };
1869 	struct user_arg_ptr envp = { .ptr.native = __envp };
1870 
1871 	return do_execveat_common(fd, filename, argv, envp, flags);
1872 }
1873 
1874 #ifdef CONFIG_COMPAT
1875 static int compat_do_execve(struct filename *filename,
1876 	const compat_uptr_t __user *__argv,
1877 	const compat_uptr_t __user *__envp)
1878 {
1879 	struct user_arg_ptr argv = {
1880 		.is_compat = true,
1881 		.ptr.compat = __argv,
1882 	};
1883 	struct user_arg_ptr envp = {
1884 		.is_compat = true,
1885 		.ptr.compat = __envp,
1886 	};
1887 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1888 }
1889 
1890 static int compat_do_execveat(int fd, struct filename *filename,
1891 			      const compat_uptr_t __user *__argv,
1892 			      const compat_uptr_t __user *__envp,
1893 			      int flags)
1894 {
1895 	struct user_arg_ptr argv = {
1896 		.is_compat = true,
1897 		.ptr.compat = __argv,
1898 	};
1899 	struct user_arg_ptr envp = {
1900 		.is_compat = true,
1901 		.ptr.compat = __envp,
1902 	};
1903 	return do_execveat_common(fd, filename, argv, envp, flags);
1904 }
1905 #endif
1906 
1907 void set_binfmt(struct linux_binfmt *new)
1908 {
1909 	struct mm_struct *mm = current->mm;
1910 
1911 	if (mm->binfmt)
1912 		module_put(mm->binfmt->module);
1913 
1914 	mm->binfmt = new;
1915 	if (new)
1916 		__module_get(new->module);
1917 }
1918 EXPORT_SYMBOL(set_binfmt);
1919 
1920 /*
1921  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1922  */
1923 void set_dumpable(struct mm_struct *mm, int value)
1924 {
1925 	unsigned long old, new;
1926 
1927 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1928 		return;
1929 
1930 	do {
1931 		old = ACCESS_ONCE(mm->flags);
1932 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1933 	} while (cmpxchg(&mm->flags, old, new) != old);
1934 }
1935 
1936 SYSCALL_DEFINE3(execve,
1937 		const char __user *, filename,
1938 		const char __user *const __user *, argv,
1939 		const char __user *const __user *, envp)
1940 {
1941 	return do_execve(getname(filename), argv, envp);
1942 }
1943 
1944 SYSCALL_DEFINE5(execveat,
1945 		int, fd, const char __user *, filename,
1946 		const char __user *const __user *, argv,
1947 		const char __user *const __user *, envp,
1948 		int, flags)
1949 {
1950 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1951 
1952 	return do_execveat(fd,
1953 			   getname_flags(filename, lookup_flags, NULL),
1954 			   argv, envp, flags);
1955 }
1956 
1957 #ifdef CONFIG_COMPAT
1958 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1959 	const compat_uptr_t __user *, argv,
1960 	const compat_uptr_t __user *, envp)
1961 {
1962 	return compat_do_execve(getname(filename), argv, envp);
1963 }
1964 
1965 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1966 		       const char __user *, filename,
1967 		       const compat_uptr_t __user *, argv,
1968 		       const compat_uptr_t __user *, envp,
1969 		       int,  flags)
1970 {
1971 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1972 
1973 	return compat_do_execveat(fd,
1974 				  getname_flags(filename, lookup_flags, NULL),
1975 				  argv, envp, flags);
1976 }
1977 #endif
1978