xref: /linux/fs/exec.c (revision 6de298ff13a807d12300bd616c6d3039987e6e87)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 
70 #include <linux/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/tlb.h>
73 
74 #include <trace/events/task.h>
75 #include "internal.h"
76 
77 #include <trace/events/sched.h>
78 
79 static int bprm_creds_from_file(struct linux_binprm *bprm);
80 
81 int suid_dumpable = 0;
82 
83 static LIST_HEAD(formats);
84 static DEFINE_RWLOCK(binfmt_lock);
85 
86 void __register_binfmt(struct linux_binfmt * fmt, int insert)
87 {
88 	write_lock(&binfmt_lock);
89 	insert ? list_add(&fmt->lh, &formats) :
90 		 list_add_tail(&fmt->lh, &formats);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(__register_binfmt);
95 
96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 	write_lock(&binfmt_lock);
99 	list_del(&fmt->lh);
100 	write_unlock(&binfmt_lock);
101 }
102 
103 EXPORT_SYMBOL(unregister_binfmt);
104 
105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 	module_put(fmt->module);
108 }
109 
110 bool path_noexec(const struct path *path)
111 {
112 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114 }
115 
116 #ifdef CONFIG_USELIB
117 /*
118  * Note that a shared library must be both readable and executable due to
119  * security reasons.
120  *
121  * Also note that we take the address to load from the file itself.
122  */
123 SYSCALL_DEFINE1(uselib, const char __user *, library)
124 {
125 	struct linux_binfmt *fmt;
126 	struct file *file;
127 	struct filename *tmp = getname(library);
128 	int error = PTR_ERR(tmp);
129 	static const struct open_flags uselib_flags = {
130 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131 		.acc_mode = MAY_READ | MAY_EXEC,
132 		.intent = LOOKUP_OPEN,
133 		.lookup_flags = LOOKUP_FOLLOW,
134 	};
135 
136 	if (IS_ERR(tmp))
137 		goto out;
138 
139 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
140 	putname(tmp);
141 	error = PTR_ERR(file);
142 	if (IS_ERR(file))
143 		goto out;
144 
145 	/*
146 	 * may_open() has already checked for this, so it should be
147 	 * impossible to trip now. But we need to be extra cautious
148 	 * and check again at the very end too.
149 	 */
150 	error = -EACCES;
151 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
152 			 path_noexec(&file->f_path)))
153 		goto exit;
154 
155 	error = -ENOEXEC;
156 
157 	read_lock(&binfmt_lock);
158 	list_for_each_entry(fmt, &formats, lh) {
159 		if (!fmt->load_shlib)
160 			continue;
161 		if (!try_module_get(fmt->module))
162 			continue;
163 		read_unlock(&binfmt_lock);
164 		error = fmt->load_shlib(file);
165 		read_lock(&binfmt_lock);
166 		put_binfmt(fmt);
167 		if (error != -ENOEXEC)
168 			break;
169 	}
170 	read_unlock(&binfmt_lock);
171 exit:
172 	fput(file);
173 out:
174 	return error;
175 }
176 #endif /* #ifdef CONFIG_USELIB */
177 
178 #ifdef CONFIG_MMU
179 /*
180  * The nascent bprm->mm is not visible until exec_mmap() but it can
181  * use a lot of memory, account these pages in current->mm temporary
182  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183  * change the counter back via acct_arg_size(0).
184  */
185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
186 {
187 	struct mm_struct *mm = current->mm;
188 	long diff = (long)(pages - bprm->vma_pages);
189 
190 	if (!mm || !diff)
191 		return;
192 
193 	bprm->vma_pages = pages;
194 	add_mm_counter(mm, MM_ANONPAGES, diff);
195 }
196 
197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
198 		int write)
199 {
200 	struct page *page;
201 	struct vm_area_struct *vma = bprm->vma;
202 	struct mm_struct *mm = bprm->mm;
203 	int ret;
204 
205 	/*
206 	 * Avoid relying on expanding the stack down in GUP (which
207 	 * does not work for STACK_GROWSUP anyway), and just do it
208 	 * by hand ahead of time.
209 	 */
210 	if (write && pos < vma->vm_start) {
211 		mmap_write_lock(mm);
212 		ret = expand_downwards(vma, pos);
213 		if (unlikely(ret < 0)) {
214 			mmap_write_unlock(mm);
215 			return NULL;
216 		}
217 		mmap_write_downgrade(mm);
218 	} else
219 		mmap_read_lock(mm);
220 
221 	/*
222 	 * We are doing an exec().  'current' is the process
223 	 * doing the exec and 'mm' is the new process's mm.
224 	 */
225 	ret = get_user_pages_remote(mm, pos, 1,
226 			write ? FOLL_WRITE : 0,
227 			&page, NULL);
228 	mmap_read_unlock(mm);
229 	if (ret <= 0)
230 		return NULL;
231 
232 	if (write)
233 		acct_arg_size(bprm, vma_pages(vma));
234 
235 	return page;
236 }
237 
238 static void put_arg_page(struct page *page)
239 {
240 	put_page(page);
241 }
242 
243 static void free_arg_pages(struct linux_binprm *bprm)
244 {
245 }
246 
247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248 		struct page *page)
249 {
250 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
251 }
252 
253 static int __bprm_mm_init(struct linux_binprm *bprm)
254 {
255 	int err;
256 	struct vm_area_struct *vma = NULL;
257 	struct mm_struct *mm = bprm->mm;
258 
259 	bprm->vma = vma = vm_area_alloc(mm);
260 	if (!vma)
261 		return -ENOMEM;
262 	vma_set_anonymous(vma);
263 
264 	if (mmap_write_lock_killable(mm)) {
265 		err = -EINTR;
266 		goto err_free;
267 	}
268 
269 	/*
270 	 * Place the stack at the largest stack address the architecture
271 	 * supports. Later, we'll move this to an appropriate place. We don't
272 	 * use STACK_TOP because that can depend on attributes which aren't
273 	 * configured yet.
274 	 */
275 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 	vma->vm_end = STACK_TOP_MAX;
277 	vma->vm_start = vma->vm_end - PAGE_SIZE;
278 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
279 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280 
281 	err = insert_vm_struct(mm, vma);
282 	if (err)
283 		goto err;
284 
285 	mm->stack_vm = mm->total_vm = 1;
286 	mmap_write_unlock(mm);
287 	bprm->p = vma->vm_end - sizeof(void *);
288 	return 0;
289 err:
290 	mmap_write_unlock(mm);
291 err_free:
292 	bprm->vma = NULL;
293 	vm_area_free(vma);
294 	return err;
295 }
296 
297 static bool valid_arg_len(struct linux_binprm *bprm, long len)
298 {
299 	return len <= MAX_ARG_STRLEN;
300 }
301 
302 #else
303 
304 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
305 {
306 }
307 
308 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 		int write)
310 {
311 	struct page *page;
312 
313 	page = bprm->page[pos / PAGE_SIZE];
314 	if (!page && write) {
315 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
316 		if (!page)
317 			return NULL;
318 		bprm->page[pos / PAGE_SIZE] = page;
319 	}
320 
321 	return page;
322 }
323 
324 static void put_arg_page(struct page *page)
325 {
326 }
327 
328 static void free_arg_page(struct linux_binprm *bprm, int i)
329 {
330 	if (bprm->page[i]) {
331 		__free_page(bprm->page[i]);
332 		bprm->page[i] = NULL;
333 	}
334 }
335 
336 static void free_arg_pages(struct linux_binprm *bprm)
337 {
338 	int i;
339 
340 	for (i = 0; i < MAX_ARG_PAGES; i++)
341 		free_arg_page(bprm, i);
342 }
343 
344 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 		struct page *page)
346 {
347 }
348 
349 static int __bprm_mm_init(struct linux_binprm *bprm)
350 {
351 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
352 	return 0;
353 }
354 
355 static bool valid_arg_len(struct linux_binprm *bprm, long len)
356 {
357 	return len <= bprm->p;
358 }
359 
360 #endif /* CONFIG_MMU */
361 
362 /*
363  * Create a new mm_struct and populate it with a temporary stack
364  * vm_area_struct.  We don't have enough context at this point to set the stack
365  * flags, permissions, and offset, so we use temporary values.  We'll update
366  * them later in setup_arg_pages().
367  */
368 static int bprm_mm_init(struct linux_binprm *bprm)
369 {
370 	int err;
371 	struct mm_struct *mm = NULL;
372 
373 	bprm->mm = mm = mm_alloc();
374 	err = -ENOMEM;
375 	if (!mm)
376 		goto err;
377 
378 	/* Save current stack limit for all calculations made during exec. */
379 	task_lock(current->group_leader);
380 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
381 	task_unlock(current->group_leader);
382 
383 	err = __bprm_mm_init(bprm);
384 	if (err)
385 		goto err;
386 
387 	return 0;
388 
389 err:
390 	if (mm) {
391 		bprm->mm = NULL;
392 		mmdrop(mm);
393 	}
394 
395 	return err;
396 }
397 
398 struct user_arg_ptr {
399 #ifdef CONFIG_COMPAT
400 	bool is_compat;
401 #endif
402 	union {
403 		const char __user *const __user *native;
404 #ifdef CONFIG_COMPAT
405 		const compat_uptr_t __user *compat;
406 #endif
407 	} ptr;
408 };
409 
410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
411 {
412 	const char __user *native;
413 
414 #ifdef CONFIG_COMPAT
415 	if (unlikely(argv.is_compat)) {
416 		compat_uptr_t compat;
417 
418 		if (get_user(compat, argv.ptr.compat + nr))
419 			return ERR_PTR(-EFAULT);
420 
421 		return compat_ptr(compat);
422 	}
423 #endif
424 
425 	if (get_user(native, argv.ptr.native + nr))
426 		return ERR_PTR(-EFAULT);
427 
428 	return native;
429 }
430 
431 /*
432  * count() counts the number of strings in array ARGV.
433  */
434 static int count(struct user_arg_ptr argv, int max)
435 {
436 	int i = 0;
437 
438 	if (argv.ptr.native != NULL) {
439 		for (;;) {
440 			const char __user *p = get_user_arg_ptr(argv, i);
441 
442 			if (!p)
443 				break;
444 
445 			if (IS_ERR(p))
446 				return -EFAULT;
447 
448 			if (i >= max)
449 				return -E2BIG;
450 			++i;
451 
452 			if (fatal_signal_pending(current))
453 				return -ERESTARTNOHAND;
454 			cond_resched();
455 		}
456 	}
457 	return i;
458 }
459 
460 static int count_strings_kernel(const char *const *argv)
461 {
462 	int i;
463 
464 	if (!argv)
465 		return 0;
466 
467 	for (i = 0; argv[i]; ++i) {
468 		if (i >= MAX_ARG_STRINGS)
469 			return -E2BIG;
470 		if (fatal_signal_pending(current))
471 			return -ERESTARTNOHAND;
472 		cond_resched();
473 	}
474 	return i;
475 }
476 
477 static int bprm_stack_limits(struct linux_binprm *bprm)
478 {
479 	unsigned long limit, ptr_size;
480 
481 	/*
482 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
483 	 * (whichever is smaller) for the argv+env strings.
484 	 * This ensures that:
485 	 *  - the remaining binfmt code will not run out of stack space,
486 	 *  - the program will have a reasonable amount of stack left
487 	 *    to work from.
488 	 */
489 	limit = _STK_LIM / 4 * 3;
490 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
491 	/*
492 	 * We've historically supported up to 32 pages (ARG_MAX)
493 	 * of argument strings even with small stacks
494 	 */
495 	limit = max_t(unsigned long, limit, ARG_MAX);
496 	/*
497 	 * We must account for the size of all the argv and envp pointers to
498 	 * the argv and envp strings, since they will also take up space in
499 	 * the stack. They aren't stored until much later when we can't
500 	 * signal to the parent that the child has run out of stack space.
501 	 * Instead, calculate it here so it's possible to fail gracefully.
502 	 *
503 	 * In the case of argc = 0, make sure there is space for adding a
504 	 * empty string (which will bump argc to 1), to ensure confused
505 	 * userspace programs don't start processing from argv[1], thinking
506 	 * argc can never be 0, to keep them from walking envp by accident.
507 	 * See do_execveat_common().
508 	 */
509 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
510 	if (limit <= ptr_size)
511 		return -E2BIG;
512 	limit -= ptr_size;
513 
514 	bprm->argmin = bprm->p - limit;
515 	return 0;
516 }
517 
518 /*
519  * 'copy_strings()' copies argument/environment strings from the old
520  * processes's memory to the new process's stack.  The call to get_user_pages()
521  * ensures the destination page is created and not swapped out.
522  */
523 static int copy_strings(int argc, struct user_arg_ptr argv,
524 			struct linux_binprm *bprm)
525 {
526 	struct page *kmapped_page = NULL;
527 	char *kaddr = NULL;
528 	unsigned long kpos = 0;
529 	int ret;
530 
531 	while (argc-- > 0) {
532 		const char __user *str;
533 		int len;
534 		unsigned long pos;
535 
536 		ret = -EFAULT;
537 		str = get_user_arg_ptr(argv, argc);
538 		if (IS_ERR(str))
539 			goto out;
540 
541 		len = strnlen_user(str, MAX_ARG_STRLEN);
542 		if (!len)
543 			goto out;
544 
545 		ret = -E2BIG;
546 		if (!valid_arg_len(bprm, len))
547 			goto out;
548 
549 		/* We're going to work our way backwards. */
550 		pos = bprm->p;
551 		str += len;
552 		bprm->p -= len;
553 #ifdef CONFIG_MMU
554 		if (bprm->p < bprm->argmin)
555 			goto out;
556 #endif
557 
558 		while (len > 0) {
559 			int offset, bytes_to_copy;
560 
561 			if (fatal_signal_pending(current)) {
562 				ret = -ERESTARTNOHAND;
563 				goto out;
564 			}
565 			cond_resched();
566 
567 			offset = pos % PAGE_SIZE;
568 			if (offset == 0)
569 				offset = PAGE_SIZE;
570 
571 			bytes_to_copy = offset;
572 			if (bytes_to_copy > len)
573 				bytes_to_copy = len;
574 
575 			offset -= bytes_to_copy;
576 			pos -= bytes_to_copy;
577 			str -= bytes_to_copy;
578 			len -= bytes_to_copy;
579 
580 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
581 				struct page *page;
582 
583 				page = get_arg_page(bprm, pos, 1);
584 				if (!page) {
585 					ret = -E2BIG;
586 					goto out;
587 				}
588 
589 				if (kmapped_page) {
590 					flush_dcache_page(kmapped_page);
591 					kunmap_local(kaddr);
592 					put_arg_page(kmapped_page);
593 				}
594 				kmapped_page = page;
595 				kaddr = kmap_local_page(kmapped_page);
596 				kpos = pos & PAGE_MASK;
597 				flush_arg_page(bprm, kpos, kmapped_page);
598 			}
599 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
600 				ret = -EFAULT;
601 				goto out;
602 			}
603 		}
604 	}
605 	ret = 0;
606 out:
607 	if (kmapped_page) {
608 		flush_dcache_page(kmapped_page);
609 		kunmap_local(kaddr);
610 		put_arg_page(kmapped_page);
611 	}
612 	return ret;
613 }
614 
615 /*
616  * Copy and argument/environment string from the kernel to the processes stack.
617  */
618 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
619 {
620 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
621 	unsigned long pos = bprm->p;
622 
623 	if (len == 0)
624 		return -EFAULT;
625 	if (!valid_arg_len(bprm, len))
626 		return -E2BIG;
627 
628 	/* We're going to work our way backwards. */
629 	arg += len;
630 	bprm->p -= len;
631 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
632 		return -E2BIG;
633 
634 	while (len > 0) {
635 		unsigned int bytes_to_copy = min_t(unsigned int, len,
636 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
637 		struct page *page;
638 
639 		pos -= bytes_to_copy;
640 		arg -= bytes_to_copy;
641 		len -= bytes_to_copy;
642 
643 		page = get_arg_page(bprm, pos, 1);
644 		if (!page)
645 			return -E2BIG;
646 		flush_arg_page(bprm, pos & PAGE_MASK, page);
647 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
648 		put_arg_page(page);
649 	}
650 
651 	return 0;
652 }
653 EXPORT_SYMBOL(copy_string_kernel);
654 
655 static int copy_strings_kernel(int argc, const char *const *argv,
656 			       struct linux_binprm *bprm)
657 {
658 	while (argc-- > 0) {
659 		int ret = copy_string_kernel(argv[argc], bprm);
660 		if (ret < 0)
661 			return ret;
662 		if (fatal_signal_pending(current))
663 			return -ERESTARTNOHAND;
664 		cond_resched();
665 	}
666 	return 0;
667 }
668 
669 #ifdef CONFIG_MMU
670 
671 /*
672  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
673  * the binfmt code determines where the new stack should reside, we shift it to
674  * its final location.  The process proceeds as follows:
675  *
676  * 1) Use shift to calculate the new vma endpoints.
677  * 2) Extend vma to cover both the old and new ranges.  This ensures the
678  *    arguments passed to subsequent functions are consistent.
679  * 3) Move vma's page tables to the new range.
680  * 4) Free up any cleared pgd range.
681  * 5) Shrink the vma to cover only the new range.
682  */
683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
684 {
685 	struct mm_struct *mm = vma->vm_mm;
686 	unsigned long old_start = vma->vm_start;
687 	unsigned long old_end = vma->vm_end;
688 	unsigned long length = old_end - old_start;
689 	unsigned long new_start = old_start - shift;
690 	unsigned long new_end = old_end - shift;
691 	VMA_ITERATOR(vmi, mm, new_start);
692 	struct vm_area_struct *next;
693 	struct mmu_gather tlb;
694 
695 	BUG_ON(new_start > new_end);
696 
697 	/*
698 	 * ensure there are no vmas between where we want to go
699 	 * and where we are
700 	 */
701 	if (vma != vma_next(&vmi))
702 		return -EFAULT;
703 
704 	/*
705 	 * cover the whole range: [new_start, old_end)
706 	 */
707 	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
708 		return -ENOMEM;
709 
710 	/*
711 	 * move the page tables downwards, on failure we rely on
712 	 * process cleanup to remove whatever mess we made.
713 	 */
714 	if (length != move_page_tables(vma, old_start,
715 				       vma, new_start, length, false))
716 		return -ENOMEM;
717 
718 	lru_add_drain();
719 	tlb_gather_mmu(&tlb, mm);
720 	next = vma_next(&vmi);
721 	if (new_end > old_start) {
722 		/*
723 		 * when the old and new regions overlap clear from new_end.
724 		 */
725 		free_pgd_range(&tlb, new_end, old_end, new_end,
726 			next ? next->vm_start : USER_PGTABLES_CEILING);
727 	} else {
728 		/*
729 		 * otherwise, clean from old_start; this is done to not touch
730 		 * the address space in [new_end, old_start) some architectures
731 		 * have constraints on va-space that make this illegal (IA64) -
732 		 * for the others its just a little faster.
733 		 */
734 		free_pgd_range(&tlb, old_start, old_end, new_end,
735 			next ? next->vm_start : USER_PGTABLES_CEILING);
736 	}
737 	tlb_finish_mmu(&tlb);
738 
739 	vma_prev(&vmi);
740 	/* Shrink the vma to just the new range */
741 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
742 }
743 
744 /*
745  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
746  * the stack is optionally relocated, and some extra space is added.
747  */
748 int setup_arg_pages(struct linux_binprm *bprm,
749 		    unsigned long stack_top,
750 		    int executable_stack)
751 {
752 	unsigned long ret;
753 	unsigned long stack_shift;
754 	struct mm_struct *mm = current->mm;
755 	struct vm_area_struct *vma = bprm->vma;
756 	struct vm_area_struct *prev = NULL;
757 	unsigned long vm_flags;
758 	unsigned long stack_base;
759 	unsigned long stack_size;
760 	unsigned long stack_expand;
761 	unsigned long rlim_stack;
762 	struct mmu_gather tlb;
763 	struct vma_iterator vmi;
764 
765 #ifdef CONFIG_STACK_GROWSUP
766 	/* Limit stack size */
767 	stack_base = bprm->rlim_stack.rlim_max;
768 
769 	stack_base = calc_max_stack_size(stack_base);
770 
771 	/* Add space for stack randomization. */
772 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
773 
774 	/* Make sure we didn't let the argument array grow too large. */
775 	if (vma->vm_end - vma->vm_start > stack_base)
776 		return -ENOMEM;
777 
778 	stack_base = PAGE_ALIGN(stack_top - stack_base);
779 
780 	stack_shift = vma->vm_start - stack_base;
781 	mm->arg_start = bprm->p - stack_shift;
782 	bprm->p = vma->vm_end - stack_shift;
783 #else
784 	stack_top = arch_align_stack(stack_top);
785 	stack_top = PAGE_ALIGN(stack_top);
786 
787 	if (unlikely(stack_top < mmap_min_addr) ||
788 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
789 		return -ENOMEM;
790 
791 	stack_shift = vma->vm_end - stack_top;
792 
793 	bprm->p -= stack_shift;
794 	mm->arg_start = bprm->p;
795 #endif
796 
797 	if (bprm->loader)
798 		bprm->loader -= stack_shift;
799 	bprm->exec -= stack_shift;
800 
801 	if (mmap_write_lock_killable(mm))
802 		return -EINTR;
803 
804 	vm_flags = VM_STACK_FLAGS;
805 
806 	/*
807 	 * Adjust stack execute permissions; explicitly enable for
808 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
809 	 * (arch default) otherwise.
810 	 */
811 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
812 		vm_flags |= VM_EXEC;
813 	else if (executable_stack == EXSTACK_DISABLE_X)
814 		vm_flags &= ~VM_EXEC;
815 	vm_flags |= mm->def_flags;
816 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
817 
818 	vma_iter_init(&vmi, mm, vma->vm_start);
819 
820 	tlb_gather_mmu(&tlb, mm);
821 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
822 			vm_flags);
823 	tlb_finish_mmu(&tlb);
824 
825 	if (ret)
826 		goto out_unlock;
827 	BUG_ON(prev != vma);
828 
829 	if (unlikely(vm_flags & VM_EXEC)) {
830 		pr_warn_once("process '%pD4' started with executable stack\n",
831 			     bprm->file);
832 	}
833 
834 	/* Move stack pages down in memory. */
835 	if (stack_shift) {
836 		ret = shift_arg_pages(vma, stack_shift);
837 		if (ret)
838 			goto out_unlock;
839 	}
840 
841 	/* mprotect_fixup is overkill to remove the temporary stack flags */
842 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
843 
844 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
845 	stack_size = vma->vm_end - vma->vm_start;
846 	/*
847 	 * Align this down to a page boundary as expand_stack
848 	 * will align it up.
849 	 */
850 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
851 
852 	stack_expand = min(rlim_stack, stack_size + stack_expand);
853 
854 #ifdef CONFIG_STACK_GROWSUP
855 	stack_base = vma->vm_start + stack_expand;
856 #else
857 	stack_base = vma->vm_end - stack_expand;
858 #endif
859 	current->mm->start_stack = bprm->p;
860 	ret = expand_stack_locked(vma, stack_base);
861 	if (ret)
862 		ret = -EFAULT;
863 
864 out_unlock:
865 	mmap_write_unlock(mm);
866 	return ret;
867 }
868 EXPORT_SYMBOL(setup_arg_pages);
869 
870 #else
871 
872 /*
873  * Transfer the program arguments and environment from the holding pages
874  * onto the stack. The provided stack pointer is adjusted accordingly.
875  */
876 int transfer_args_to_stack(struct linux_binprm *bprm,
877 			   unsigned long *sp_location)
878 {
879 	unsigned long index, stop, sp;
880 	int ret = 0;
881 
882 	stop = bprm->p >> PAGE_SHIFT;
883 	sp = *sp_location;
884 
885 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
886 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
887 		char *src = kmap_local_page(bprm->page[index]) + offset;
888 		sp -= PAGE_SIZE - offset;
889 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
890 			ret = -EFAULT;
891 		kunmap_local(src);
892 		if (ret)
893 			goto out;
894 	}
895 
896 	*sp_location = sp;
897 
898 out:
899 	return ret;
900 }
901 EXPORT_SYMBOL(transfer_args_to_stack);
902 
903 #endif /* CONFIG_MMU */
904 
905 static struct file *do_open_execat(int fd, struct filename *name, int flags)
906 {
907 	struct file *file;
908 	int err;
909 	struct open_flags open_exec_flags = {
910 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
911 		.acc_mode = MAY_EXEC,
912 		.intent = LOOKUP_OPEN,
913 		.lookup_flags = LOOKUP_FOLLOW,
914 	};
915 
916 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
917 		return ERR_PTR(-EINVAL);
918 	if (flags & AT_SYMLINK_NOFOLLOW)
919 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
920 	if (flags & AT_EMPTY_PATH)
921 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
922 
923 	file = do_filp_open(fd, name, &open_exec_flags);
924 	if (IS_ERR(file))
925 		goto out;
926 
927 	/*
928 	 * may_open() has already checked for this, so it should be
929 	 * impossible to trip now. But we need to be extra cautious
930 	 * and check again at the very end too.
931 	 */
932 	err = -EACCES;
933 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
934 			 path_noexec(&file->f_path)))
935 		goto exit;
936 
937 	err = deny_write_access(file);
938 	if (err)
939 		goto exit;
940 
941 out:
942 	return file;
943 
944 exit:
945 	fput(file);
946 	return ERR_PTR(err);
947 }
948 
949 struct file *open_exec(const char *name)
950 {
951 	struct filename *filename = getname_kernel(name);
952 	struct file *f = ERR_CAST(filename);
953 
954 	if (!IS_ERR(filename)) {
955 		f = do_open_execat(AT_FDCWD, filename, 0);
956 		putname(filename);
957 	}
958 	return f;
959 }
960 EXPORT_SYMBOL(open_exec);
961 
962 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
963 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
964 {
965 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
966 	if (res > 0)
967 		flush_icache_user_range(addr, addr + len);
968 	return res;
969 }
970 EXPORT_SYMBOL(read_code);
971 #endif
972 
973 /*
974  * Maps the mm_struct mm into the current task struct.
975  * On success, this function returns with exec_update_lock
976  * held for writing.
977  */
978 static int exec_mmap(struct mm_struct *mm)
979 {
980 	struct task_struct *tsk;
981 	struct mm_struct *old_mm, *active_mm;
982 	int ret;
983 
984 	/* Notify parent that we're no longer interested in the old VM */
985 	tsk = current;
986 	old_mm = current->mm;
987 	exec_mm_release(tsk, old_mm);
988 	if (old_mm)
989 		sync_mm_rss(old_mm);
990 
991 	ret = down_write_killable(&tsk->signal->exec_update_lock);
992 	if (ret)
993 		return ret;
994 
995 	if (old_mm) {
996 		/*
997 		 * If there is a pending fatal signal perhaps a signal
998 		 * whose default action is to create a coredump get
999 		 * out and die instead of going through with the exec.
1000 		 */
1001 		ret = mmap_read_lock_killable(old_mm);
1002 		if (ret) {
1003 			up_write(&tsk->signal->exec_update_lock);
1004 			return ret;
1005 		}
1006 	}
1007 
1008 	task_lock(tsk);
1009 	membarrier_exec_mmap(mm);
1010 
1011 	local_irq_disable();
1012 	active_mm = tsk->active_mm;
1013 	tsk->active_mm = mm;
1014 	tsk->mm = mm;
1015 	mm_init_cid(mm);
1016 	/*
1017 	 * This prevents preemption while active_mm is being loaded and
1018 	 * it and mm are being updated, which could cause problems for
1019 	 * lazy tlb mm refcounting when these are updated by context
1020 	 * switches. Not all architectures can handle irqs off over
1021 	 * activate_mm yet.
1022 	 */
1023 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1024 		local_irq_enable();
1025 	activate_mm(active_mm, mm);
1026 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1027 		local_irq_enable();
1028 	lru_gen_add_mm(mm);
1029 	task_unlock(tsk);
1030 	lru_gen_use_mm(mm);
1031 	if (old_mm) {
1032 		mmap_read_unlock(old_mm);
1033 		BUG_ON(active_mm != old_mm);
1034 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1035 		mm_update_next_owner(old_mm);
1036 		mmput(old_mm);
1037 		return 0;
1038 	}
1039 	mmdrop_lazy_tlb(active_mm);
1040 	return 0;
1041 }
1042 
1043 static int de_thread(struct task_struct *tsk)
1044 {
1045 	struct signal_struct *sig = tsk->signal;
1046 	struct sighand_struct *oldsighand = tsk->sighand;
1047 	spinlock_t *lock = &oldsighand->siglock;
1048 
1049 	if (thread_group_empty(tsk))
1050 		goto no_thread_group;
1051 
1052 	/*
1053 	 * Kill all other threads in the thread group.
1054 	 */
1055 	spin_lock_irq(lock);
1056 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1057 		/*
1058 		 * Another group action in progress, just
1059 		 * return so that the signal is processed.
1060 		 */
1061 		spin_unlock_irq(lock);
1062 		return -EAGAIN;
1063 	}
1064 
1065 	sig->group_exec_task = tsk;
1066 	sig->notify_count = zap_other_threads(tsk);
1067 	if (!thread_group_leader(tsk))
1068 		sig->notify_count--;
1069 
1070 	while (sig->notify_count) {
1071 		__set_current_state(TASK_KILLABLE);
1072 		spin_unlock_irq(lock);
1073 		schedule();
1074 		if (__fatal_signal_pending(tsk))
1075 			goto killed;
1076 		spin_lock_irq(lock);
1077 	}
1078 	spin_unlock_irq(lock);
1079 
1080 	/*
1081 	 * At this point all other threads have exited, all we have to
1082 	 * do is to wait for the thread group leader to become inactive,
1083 	 * and to assume its PID:
1084 	 */
1085 	if (!thread_group_leader(tsk)) {
1086 		struct task_struct *leader = tsk->group_leader;
1087 
1088 		for (;;) {
1089 			cgroup_threadgroup_change_begin(tsk);
1090 			write_lock_irq(&tasklist_lock);
1091 			/*
1092 			 * Do this under tasklist_lock to ensure that
1093 			 * exit_notify() can't miss ->group_exec_task
1094 			 */
1095 			sig->notify_count = -1;
1096 			if (likely(leader->exit_state))
1097 				break;
1098 			__set_current_state(TASK_KILLABLE);
1099 			write_unlock_irq(&tasklist_lock);
1100 			cgroup_threadgroup_change_end(tsk);
1101 			schedule();
1102 			if (__fatal_signal_pending(tsk))
1103 				goto killed;
1104 		}
1105 
1106 		/*
1107 		 * The only record we have of the real-time age of a
1108 		 * process, regardless of execs it's done, is start_time.
1109 		 * All the past CPU time is accumulated in signal_struct
1110 		 * from sister threads now dead.  But in this non-leader
1111 		 * exec, nothing survives from the original leader thread,
1112 		 * whose birth marks the true age of this process now.
1113 		 * When we take on its identity by switching to its PID, we
1114 		 * also take its birthdate (always earlier than our own).
1115 		 */
1116 		tsk->start_time = leader->start_time;
1117 		tsk->start_boottime = leader->start_boottime;
1118 
1119 		BUG_ON(!same_thread_group(leader, tsk));
1120 		/*
1121 		 * An exec() starts a new thread group with the
1122 		 * TGID of the previous thread group. Rehash the
1123 		 * two threads with a switched PID, and release
1124 		 * the former thread group leader:
1125 		 */
1126 
1127 		/* Become a process group leader with the old leader's pid.
1128 		 * The old leader becomes a thread of the this thread group.
1129 		 */
1130 		exchange_tids(tsk, leader);
1131 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1132 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1133 		transfer_pid(leader, tsk, PIDTYPE_SID);
1134 
1135 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1136 		list_replace_init(&leader->sibling, &tsk->sibling);
1137 
1138 		tsk->group_leader = tsk;
1139 		leader->group_leader = tsk;
1140 
1141 		tsk->exit_signal = SIGCHLD;
1142 		leader->exit_signal = -1;
1143 
1144 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1145 		leader->exit_state = EXIT_DEAD;
1146 
1147 		/*
1148 		 * We are going to release_task()->ptrace_unlink() silently,
1149 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1150 		 * the tracer won't block again waiting for this thread.
1151 		 */
1152 		if (unlikely(leader->ptrace))
1153 			__wake_up_parent(leader, leader->parent);
1154 		write_unlock_irq(&tasklist_lock);
1155 		cgroup_threadgroup_change_end(tsk);
1156 
1157 		release_task(leader);
1158 	}
1159 
1160 	sig->group_exec_task = NULL;
1161 	sig->notify_count = 0;
1162 
1163 no_thread_group:
1164 	/* we have changed execution domain */
1165 	tsk->exit_signal = SIGCHLD;
1166 
1167 	BUG_ON(!thread_group_leader(tsk));
1168 	return 0;
1169 
1170 killed:
1171 	/* protects against exit_notify() and __exit_signal() */
1172 	read_lock(&tasklist_lock);
1173 	sig->group_exec_task = NULL;
1174 	sig->notify_count = 0;
1175 	read_unlock(&tasklist_lock);
1176 	return -EAGAIN;
1177 }
1178 
1179 
1180 /*
1181  * This function makes sure the current process has its own signal table,
1182  * so that flush_signal_handlers can later reset the handlers without
1183  * disturbing other processes.  (Other processes might share the signal
1184  * table via the CLONE_SIGHAND option to clone().)
1185  */
1186 static int unshare_sighand(struct task_struct *me)
1187 {
1188 	struct sighand_struct *oldsighand = me->sighand;
1189 
1190 	if (refcount_read(&oldsighand->count) != 1) {
1191 		struct sighand_struct *newsighand;
1192 		/*
1193 		 * This ->sighand is shared with the CLONE_SIGHAND
1194 		 * but not CLONE_THREAD task, switch to the new one.
1195 		 */
1196 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1197 		if (!newsighand)
1198 			return -ENOMEM;
1199 
1200 		refcount_set(&newsighand->count, 1);
1201 
1202 		write_lock_irq(&tasklist_lock);
1203 		spin_lock(&oldsighand->siglock);
1204 		memcpy(newsighand->action, oldsighand->action,
1205 		       sizeof(newsighand->action));
1206 		rcu_assign_pointer(me->sighand, newsighand);
1207 		spin_unlock(&oldsighand->siglock);
1208 		write_unlock_irq(&tasklist_lock);
1209 
1210 		__cleanup_sighand(oldsighand);
1211 	}
1212 	return 0;
1213 }
1214 
1215 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1216 {
1217 	task_lock(tsk);
1218 	/* Always NUL terminated and zero-padded */
1219 	strscpy_pad(buf, tsk->comm, buf_size);
1220 	task_unlock(tsk);
1221 	return buf;
1222 }
1223 EXPORT_SYMBOL_GPL(__get_task_comm);
1224 
1225 /*
1226  * These functions flushes out all traces of the currently running executable
1227  * so that a new one can be started
1228  */
1229 
1230 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1231 {
1232 	task_lock(tsk);
1233 	trace_task_rename(tsk, buf);
1234 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1235 	task_unlock(tsk);
1236 	perf_event_comm(tsk, exec);
1237 }
1238 
1239 /*
1240  * Calling this is the point of no return. None of the failures will be
1241  * seen by userspace since either the process is already taking a fatal
1242  * signal (via de_thread() or coredump), or will have SEGV raised
1243  * (after exec_mmap()) by search_binary_handler (see below).
1244  */
1245 int begin_new_exec(struct linux_binprm * bprm)
1246 {
1247 	struct task_struct *me = current;
1248 	int retval;
1249 
1250 	/* Once we are committed compute the creds */
1251 	retval = bprm_creds_from_file(bprm);
1252 	if (retval)
1253 		return retval;
1254 
1255 	/*
1256 	 * Ensure all future errors are fatal.
1257 	 */
1258 	bprm->point_of_no_return = true;
1259 
1260 	/*
1261 	 * Make this the only thread in the thread group.
1262 	 */
1263 	retval = de_thread(me);
1264 	if (retval)
1265 		goto out;
1266 
1267 	/*
1268 	 * Cancel any io_uring activity across execve
1269 	 */
1270 	io_uring_task_cancel();
1271 
1272 	/* Ensure the files table is not shared. */
1273 	retval = unshare_files();
1274 	if (retval)
1275 		goto out;
1276 
1277 	/*
1278 	 * Must be called _before_ exec_mmap() as bprm->mm is
1279 	 * not visible until then. This also enables the update
1280 	 * to be lockless.
1281 	 */
1282 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1283 	if (retval)
1284 		goto out;
1285 
1286 	/* If the binary is not readable then enforce mm->dumpable=0 */
1287 	would_dump(bprm, bprm->file);
1288 	if (bprm->have_execfd)
1289 		would_dump(bprm, bprm->executable);
1290 
1291 	/*
1292 	 * Release all of the old mmap stuff
1293 	 */
1294 	acct_arg_size(bprm, 0);
1295 	retval = exec_mmap(bprm->mm);
1296 	if (retval)
1297 		goto out;
1298 
1299 	bprm->mm = NULL;
1300 
1301 	retval = exec_task_namespaces();
1302 	if (retval)
1303 		goto out_unlock;
1304 
1305 #ifdef CONFIG_POSIX_TIMERS
1306 	spin_lock_irq(&me->sighand->siglock);
1307 	posix_cpu_timers_exit(me);
1308 	spin_unlock_irq(&me->sighand->siglock);
1309 	exit_itimers(me);
1310 	flush_itimer_signals();
1311 #endif
1312 
1313 	/*
1314 	 * Make the signal table private.
1315 	 */
1316 	retval = unshare_sighand(me);
1317 	if (retval)
1318 		goto out_unlock;
1319 
1320 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1321 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1322 	flush_thread();
1323 	me->personality &= ~bprm->per_clear;
1324 
1325 	clear_syscall_work_syscall_user_dispatch(me);
1326 
1327 	/*
1328 	 * We have to apply CLOEXEC before we change whether the process is
1329 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1330 	 * trying to access the should-be-closed file descriptors of a process
1331 	 * undergoing exec(2).
1332 	 */
1333 	do_close_on_exec(me->files);
1334 
1335 	if (bprm->secureexec) {
1336 		/* Make sure parent cannot signal privileged process. */
1337 		me->pdeath_signal = 0;
1338 
1339 		/*
1340 		 * For secureexec, reset the stack limit to sane default to
1341 		 * avoid bad behavior from the prior rlimits. This has to
1342 		 * happen before arch_pick_mmap_layout(), which examines
1343 		 * RLIMIT_STACK, but after the point of no return to avoid
1344 		 * needing to clean up the change on failure.
1345 		 */
1346 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1347 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1348 	}
1349 
1350 	me->sas_ss_sp = me->sas_ss_size = 0;
1351 
1352 	/*
1353 	 * Figure out dumpability. Note that this checking only of current
1354 	 * is wrong, but userspace depends on it. This should be testing
1355 	 * bprm->secureexec instead.
1356 	 */
1357 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1358 	    !(uid_eq(current_euid(), current_uid()) &&
1359 	      gid_eq(current_egid(), current_gid())))
1360 		set_dumpable(current->mm, suid_dumpable);
1361 	else
1362 		set_dumpable(current->mm, SUID_DUMP_USER);
1363 
1364 	perf_event_exec();
1365 	__set_task_comm(me, kbasename(bprm->filename), true);
1366 
1367 	/* An exec changes our domain. We are no longer part of the thread
1368 	   group */
1369 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1370 	flush_signal_handlers(me, 0);
1371 
1372 	retval = set_cred_ucounts(bprm->cred);
1373 	if (retval < 0)
1374 		goto out_unlock;
1375 
1376 	/*
1377 	 * install the new credentials for this executable
1378 	 */
1379 	security_bprm_committing_creds(bprm);
1380 
1381 	commit_creds(bprm->cred);
1382 	bprm->cred = NULL;
1383 
1384 	/*
1385 	 * Disable monitoring for regular users
1386 	 * when executing setuid binaries. Must
1387 	 * wait until new credentials are committed
1388 	 * by commit_creds() above
1389 	 */
1390 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1391 		perf_event_exit_task(me);
1392 	/*
1393 	 * cred_guard_mutex must be held at least to this point to prevent
1394 	 * ptrace_attach() from altering our determination of the task's
1395 	 * credentials; any time after this it may be unlocked.
1396 	 */
1397 	security_bprm_committed_creds(bprm);
1398 
1399 	/* Pass the opened binary to the interpreter. */
1400 	if (bprm->have_execfd) {
1401 		retval = get_unused_fd_flags(0);
1402 		if (retval < 0)
1403 			goto out_unlock;
1404 		fd_install(retval, bprm->executable);
1405 		bprm->executable = NULL;
1406 		bprm->execfd = retval;
1407 	}
1408 	return 0;
1409 
1410 out_unlock:
1411 	up_write(&me->signal->exec_update_lock);
1412 out:
1413 	return retval;
1414 }
1415 EXPORT_SYMBOL(begin_new_exec);
1416 
1417 void would_dump(struct linux_binprm *bprm, struct file *file)
1418 {
1419 	struct inode *inode = file_inode(file);
1420 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1421 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1422 		struct user_namespace *old, *user_ns;
1423 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1424 
1425 		/* Ensure mm->user_ns contains the executable */
1426 		user_ns = old = bprm->mm->user_ns;
1427 		while ((user_ns != &init_user_ns) &&
1428 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1429 			user_ns = user_ns->parent;
1430 
1431 		if (old != user_ns) {
1432 			bprm->mm->user_ns = get_user_ns(user_ns);
1433 			put_user_ns(old);
1434 		}
1435 	}
1436 }
1437 EXPORT_SYMBOL(would_dump);
1438 
1439 void setup_new_exec(struct linux_binprm * bprm)
1440 {
1441 	/* Setup things that can depend upon the personality */
1442 	struct task_struct *me = current;
1443 
1444 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1445 
1446 	arch_setup_new_exec();
1447 
1448 	/* Set the new mm task size. We have to do that late because it may
1449 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1450 	 * some architectures like powerpc
1451 	 */
1452 	me->mm->task_size = TASK_SIZE;
1453 	up_write(&me->signal->exec_update_lock);
1454 	mutex_unlock(&me->signal->cred_guard_mutex);
1455 }
1456 EXPORT_SYMBOL(setup_new_exec);
1457 
1458 /* Runs immediately before start_thread() takes over. */
1459 void finalize_exec(struct linux_binprm *bprm)
1460 {
1461 	/* Store any stack rlimit changes before starting thread. */
1462 	task_lock(current->group_leader);
1463 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1464 	task_unlock(current->group_leader);
1465 }
1466 EXPORT_SYMBOL(finalize_exec);
1467 
1468 /*
1469  * Prepare credentials and lock ->cred_guard_mutex.
1470  * setup_new_exec() commits the new creds and drops the lock.
1471  * Or, if exec fails before, free_bprm() should release ->cred
1472  * and unlock.
1473  */
1474 static int prepare_bprm_creds(struct linux_binprm *bprm)
1475 {
1476 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1477 		return -ERESTARTNOINTR;
1478 
1479 	bprm->cred = prepare_exec_creds();
1480 	if (likely(bprm->cred))
1481 		return 0;
1482 
1483 	mutex_unlock(&current->signal->cred_guard_mutex);
1484 	return -ENOMEM;
1485 }
1486 
1487 static void free_bprm(struct linux_binprm *bprm)
1488 {
1489 	if (bprm->mm) {
1490 		acct_arg_size(bprm, 0);
1491 		mmput(bprm->mm);
1492 	}
1493 	free_arg_pages(bprm);
1494 	if (bprm->cred) {
1495 		mutex_unlock(&current->signal->cred_guard_mutex);
1496 		abort_creds(bprm->cred);
1497 	}
1498 	if (bprm->file) {
1499 		allow_write_access(bprm->file);
1500 		fput(bprm->file);
1501 	}
1502 	if (bprm->executable)
1503 		fput(bprm->executable);
1504 	/* If a binfmt changed the interp, free it. */
1505 	if (bprm->interp != bprm->filename)
1506 		kfree(bprm->interp);
1507 	kfree(bprm->fdpath);
1508 	kfree(bprm);
1509 }
1510 
1511 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1512 {
1513 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1514 	int retval = -ENOMEM;
1515 	if (!bprm)
1516 		goto out;
1517 
1518 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1519 		bprm->filename = filename->name;
1520 	} else {
1521 		if (filename->name[0] == '\0')
1522 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1523 		else
1524 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1525 						  fd, filename->name);
1526 		if (!bprm->fdpath)
1527 			goto out_free;
1528 
1529 		bprm->filename = bprm->fdpath;
1530 	}
1531 	bprm->interp = bprm->filename;
1532 
1533 	retval = bprm_mm_init(bprm);
1534 	if (retval)
1535 		goto out_free;
1536 	return bprm;
1537 
1538 out_free:
1539 	free_bprm(bprm);
1540 out:
1541 	return ERR_PTR(retval);
1542 }
1543 
1544 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1545 {
1546 	/* If a binfmt changed the interp, free it first. */
1547 	if (bprm->interp != bprm->filename)
1548 		kfree(bprm->interp);
1549 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1550 	if (!bprm->interp)
1551 		return -ENOMEM;
1552 	return 0;
1553 }
1554 EXPORT_SYMBOL(bprm_change_interp);
1555 
1556 /*
1557  * determine how safe it is to execute the proposed program
1558  * - the caller must hold ->cred_guard_mutex to protect against
1559  *   PTRACE_ATTACH or seccomp thread-sync
1560  */
1561 static void check_unsafe_exec(struct linux_binprm *bprm)
1562 {
1563 	struct task_struct *p = current, *t;
1564 	unsigned n_fs;
1565 
1566 	if (p->ptrace)
1567 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1568 
1569 	/*
1570 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1571 	 * mess up.
1572 	 */
1573 	if (task_no_new_privs(current))
1574 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1575 
1576 	/*
1577 	 * If another task is sharing our fs, we cannot safely
1578 	 * suid exec because the differently privileged task
1579 	 * will be able to manipulate the current directory, etc.
1580 	 * It would be nice to force an unshare instead...
1581 	 */
1582 	t = p;
1583 	n_fs = 1;
1584 	spin_lock(&p->fs->lock);
1585 	rcu_read_lock();
1586 	while_each_thread(p, t) {
1587 		if (t->fs == p->fs)
1588 			n_fs++;
1589 	}
1590 	rcu_read_unlock();
1591 
1592 	if (p->fs->users > n_fs)
1593 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1594 	else
1595 		p->fs->in_exec = 1;
1596 	spin_unlock(&p->fs->lock);
1597 }
1598 
1599 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1600 {
1601 	/* Handle suid and sgid on files */
1602 	struct mnt_idmap *idmap;
1603 	struct inode *inode = file_inode(file);
1604 	unsigned int mode;
1605 	vfsuid_t vfsuid;
1606 	vfsgid_t vfsgid;
1607 
1608 	if (!mnt_may_suid(file->f_path.mnt))
1609 		return;
1610 
1611 	if (task_no_new_privs(current))
1612 		return;
1613 
1614 	mode = READ_ONCE(inode->i_mode);
1615 	if (!(mode & (S_ISUID|S_ISGID)))
1616 		return;
1617 
1618 	idmap = file_mnt_idmap(file);
1619 
1620 	/* Be careful if suid/sgid is set */
1621 	inode_lock(inode);
1622 
1623 	/* reload atomically mode/uid/gid now that lock held */
1624 	mode = inode->i_mode;
1625 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1626 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1627 	inode_unlock(inode);
1628 
1629 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1630 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1631 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1632 		return;
1633 
1634 	if (mode & S_ISUID) {
1635 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1636 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1637 	}
1638 
1639 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1640 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1641 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1642 	}
1643 }
1644 
1645 /*
1646  * Compute brpm->cred based upon the final binary.
1647  */
1648 static int bprm_creds_from_file(struct linux_binprm *bprm)
1649 {
1650 	/* Compute creds based on which file? */
1651 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1652 
1653 	bprm_fill_uid(bprm, file);
1654 	return security_bprm_creds_from_file(bprm, file);
1655 }
1656 
1657 /*
1658  * Fill the binprm structure from the inode.
1659  * Read the first BINPRM_BUF_SIZE bytes
1660  *
1661  * This may be called multiple times for binary chains (scripts for example).
1662  */
1663 static int prepare_binprm(struct linux_binprm *bprm)
1664 {
1665 	loff_t pos = 0;
1666 
1667 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1668 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1669 }
1670 
1671 /*
1672  * Arguments are '\0' separated strings found at the location bprm->p
1673  * points to; chop off the first by relocating brpm->p to right after
1674  * the first '\0' encountered.
1675  */
1676 int remove_arg_zero(struct linux_binprm *bprm)
1677 {
1678 	int ret = 0;
1679 	unsigned long offset;
1680 	char *kaddr;
1681 	struct page *page;
1682 
1683 	if (!bprm->argc)
1684 		return 0;
1685 
1686 	do {
1687 		offset = bprm->p & ~PAGE_MASK;
1688 		page = get_arg_page(bprm, bprm->p, 0);
1689 		if (!page) {
1690 			ret = -EFAULT;
1691 			goto out;
1692 		}
1693 		kaddr = kmap_local_page(page);
1694 
1695 		for (; offset < PAGE_SIZE && kaddr[offset];
1696 				offset++, bprm->p++)
1697 			;
1698 
1699 		kunmap_local(kaddr);
1700 		put_arg_page(page);
1701 	} while (offset == PAGE_SIZE);
1702 
1703 	bprm->p++;
1704 	bprm->argc--;
1705 	ret = 0;
1706 
1707 out:
1708 	return ret;
1709 }
1710 EXPORT_SYMBOL(remove_arg_zero);
1711 
1712 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1713 /*
1714  * cycle the list of binary formats handler, until one recognizes the image
1715  */
1716 static int search_binary_handler(struct linux_binprm *bprm)
1717 {
1718 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1719 	struct linux_binfmt *fmt;
1720 	int retval;
1721 
1722 	retval = prepare_binprm(bprm);
1723 	if (retval < 0)
1724 		return retval;
1725 
1726 	retval = security_bprm_check(bprm);
1727 	if (retval)
1728 		return retval;
1729 
1730 	retval = -ENOENT;
1731  retry:
1732 	read_lock(&binfmt_lock);
1733 	list_for_each_entry(fmt, &formats, lh) {
1734 		if (!try_module_get(fmt->module))
1735 			continue;
1736 		read_unlock(&binfmt_lock);
1737 
1738 		retval = fmt->load_binary(bprm);
1739 
1740 		read_lock(&binfmt_lock);
1741 		put_binfmt(fmt);
1742 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1743 			read_unlock(&binfmt_lock);
1744 			return retval;
1745 		}
1746 	}
1747 	read_unlock(&binfmt_lock);
1748 
1749 	if (need_retry) {
1750 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1751 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1752 			return retval;
1753 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1754 			return retval;
1755 		need_retry = false;
1756 		goto retry;
1757 	}
1758 
1759 	return retval;
1760 }
1761 
1762 /* binfmt handlers will call back into begin_new_exec() on success. */
1763 static int exec_binprm(struct linux_binprm *bprm)
1764 {
1765 	pid_t old_pid, old_vpid;
1766 	int ret, depth;
1767 
1768 	/* Need to fetch pid before load_binary changes it */
1769 	old_pid = current->pid;
1770 	rcu_read_lock();
1771 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1772 	rcu_read_unlock();
1773 
1774 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1775 	for (depth = 0;; depth++) {
1776 		struct file *exec;
1777 		if (depth > 5)
1778 			return -ELOOP;
1779 
1780 		ret = search_binary_handler(bprm);
1781 		if (ret < 0)
1782 			return ret;
1783 		if (!bprm->interpreter)
1784 			break;
1785 
1786 		exec = bprm->file;
1787 		bprm->file = bprm->interpreter;
1788 		bprm->interpreter = NULL;
1789 
1790 		allow_write_access(exec);
1791 		if (unlikely(bprm->have_execfd)) {
1792 			if (bprm->executable) {
1793 				fput(exec);
1794 				return -ENOEXEC;
1795 			}
1796 			bprm->executable = exec;
1797 		} else
1798 			fput(exec);
1799 	}
1800 
1801 	audit_bprm(bprm);
1802 	trace_sched_process_exec(current, old_pid, bprm);
1803 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1804 	proc_exec_connector(current);
1805 	return 0;
1806 }
1807 
1808 /*
1809  * sys_execve() executes a new program.
1810  */
1811 static int bprm_execve(struct linux_binprm *bprm,
1812 		       int fd, struct filename *filename, int flags)
1813 {
1814 	struct file *file;
1815 	int retval;
1816 
1817 	retval = prepare_bprm_creds(bprm);
1818 	if (retval)
1819 		return retval;
1820 
1821 	/*
1822 	 * Check for unsafe execution states before exec_binprm(), which
1823 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1824 	 * where setuid-ness is evaluated.
1825 	 */
1826 	check_unsafe_exec(bprm);
1827 	current->in_execve = 1;
1828 	sched_mm_cid_before_execve(current);
1829 
1830 	file = do_open_execat(fd, filename, flags);
1831 	retval = PTR_ERR(file);
1832 	if (IS_ERR(file))
1833 		goto out_unmark;
1834 
1835 	sched_exec();
1836 
1837 	bprm->file = file;
1838 	/*
1839 	 * Record that a name derived from an O_CLOEXEC fd will be
1840 	 * inaccessible after exec.  This allows the code in exec to
1841 	 * choose to fail when the executable is not mmaped into the
1842 	 * interpreter and an open file descriptor is not passed to
1843 	 * the interpreter.  This makes for a better user experience
1844 	 * than having the interpreter start and then immediately fail
1845 	 * when it finds the executable is inaccessible.
1846 	 */
1847 	if (bprm->fdpath && get_close_on_exec(fd))
1848 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1849 
1850 	/* Set the unchanging part of bprm->cred */
1851 	retval = security_bprm_creds_for_exec(bprm);
1852 	if (retval)
1853 		goto out;
1854 
1855 	retval = exec_binprm(bprm);
1856 	if (retval < 0)
1857 		goto out;
1858 
1859 	sched_mm_cid_after_execve(current);
1860 	/* execve succeeded */
1861 	current->fs->in_exec = 0;
1862 	current->in_execve = 0;
1863 	rseq_execve(current);
1864 	user_events_execve(current);
1865 	acct_update_integrals(current);
1866 	task_numa_free(current, false);
1867 	return retval;
1868 
1869 out:
1870 	/*
1871 	 * If past the point of no return ensure the code never
1872 	 * returns to the userspace process.  Use an existing fatal
1873 	 * signal if present otherwise terminate the process with
1874 	 * SIGSEGV.
1875 	 */
1876 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1877 		force_fatal_sig(SIGSEGV);
1878 
1879 out_unmark:
1880 	sched_mm_cid_after_execve(current);
1881 	current->fs->in_exec = 0;
1882 	current->in_execve = 0;
1883 
1884 	return retval;
1885 }
1886 
1887 static int do_execveat_common(int fd, struct filename *filename,
1888 			      struct user_arg_ptr argv,
1889 			      struct user_arg_ptr envp,
1890 			      int flags)
1891 {
1892 	struct linux_binprm *bprm;
1893 	int retval;
1894 
1895 	if (IS_ERR(filename))
1896 		return PTR_ERR(filename);
1897 
1898 	/*
1899 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1900 	 * set*uid() to execve() because too many poorly written programs
1901 	 * don't check setuid() return code.  Here we additionally recheck
1902 	 * whether NPROC limit is still exceeded.
1903 	 */
1904 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1905 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1906 		retval = -EAGAIN;
1907 		goto out_ret;
1908 	}
1909 
1910 	/* We're below the limit (still or again), so we don't want to make
1911 	 * further execve() calls fail. */
1912 	current->flags &= ~PF_NPROC_EXCEEDED;
1913 
1914 	bprm = alloc_bprm(fd, filename);
1915 	if (IS_ERR(bprm)) {
1916 		retval = PTR_ERR(bprm);
1917 		goto out_ret;
1918 	}
1919 
1920 	retval = count(argv, MAX_ARG_STRINGS);
1921 	if (retval == 0)
1922 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1923 			     current->comm, bprm->filename);
1924 	if (retval < 0)
1925 		goto out_free;
1926 	bprm->argc = retval;
1927 
1928 	retval = count(envp, MAX_ARG_STRINGS);
1929 	if (retval < 0)
1930 		goto out_free;
1931 	bprm->envc = retval;
1932 
1933 	retval = bprm_stack_limits(bprm);
1934 	if (retval < 0)
1935 		goto out_free;
1936 
1937 	retval = copy_string_kernel(bprm->filename, bprm);
1938 	if (retval < 0)
1939 		goto out_free;
1940 	bprm->exec = bprm->p;
1941 
1942 	retval = copy_strings(bprm->envc, envp, bprm);
1943 	if (retval < 0)
1944 		goto out_free;
1945 
1946 	retval = copy_strings(bprm->argc, argv, bprm);
1947 	if (retval < 0)
1948 		goto out_free;
1949 
1950 	/*
1951 	 * When argv is empty, add an empty string ("") as argv[0] to
1952 	 * ensure confused userspace programs that start processing
1953 	 * from argv[1] won't end up walking envp. See also
1954 	 * bprm_stack_limits().
1955 	 */
1956 	if (bprm->argc == 0) {
1957 		retval = copy_string_kernel("", bprm);
1958 		if (retval < 0)
1959 			goto out_free;
1960 		bprm->argc = 1;
1961 	}
1962 
1963 	retval = bprm_execve(bprm, fd, filename, flags);
1964 out_free:
1965 	free_bprm(bprm);
1966 
1967 out_ret:
1968 	putname(filename);
1969 	return retval;
1970 }
1971 
1972 int kernel_execve(const char *kernel_filename,
1973 		  const char *const *argv, const char *const *envp)
1974 {
1975 	struct filename *filename;
1976 	struct linux_binprm *bprm;
1977 	int fd = AT_FDCWD;
1978 	int retval;
1979 
1980 	/* It is non-sense for kernel threads to call execve */
1981 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1982 		return -EINVAL;
1983 
1984 	filename = getname_kernel(kernel_filename);
1985 	if (IS_ERR(filename))
1986 		return PTR_ERR(filename);
1987 
1988 	bprm = alloc_bprm(fd, filename);
1989 	if (IS_ERR(bprm)) {
1990 		retval = PTR_ERR(bprm);
1991 		goto out_ret;
1992 	}
1993 
1994 	retval = count_strings_kernel(argv);
1995 	if (WARN_ON_ONCE(retval == 0))
1996 		retval = -EINVAL;
1997 	if (retval < 0)
1998 		goto out_free;
1999 	bprm->argc = retval;
2000 
2001 	retval = count_strings_kernel(envp);
2002 	if (retval < 0)
2003 		goto out_free;
2004 	bprm->envc = retval;
2005 
2006 	retval = bprm_stack_limits(bprm);
2007 	if (retval < 0)
2008 		goto out_free;
2009 
2010 	retval = copy_string_kernel(bprm->filename, bprm);
2011 	if (retval < 0)
2012 		goto out_free;
2013 	bprm->exec = bprm->p;
2014 
2015 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2016 	if (retval < 0)
2017 		goto out_free;
2018 
2019 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2020 	if (retval < 0)
2021 		goto out_free;
2022 
2023 	retval = bprm_execve(bprm, fd, filename, 0);
2024 out_free:
2025 	free_bprm(bprm);
2026 out_ret:
2027 	putname(filename);
2028 	return retval;
2029 }
2030 
2031 static int do_execve(struct filename *filename,
2032 	const char __user *const __user *__argv,
2033 	const char __user *const __user *__envp)
2034 {
2035 	struct user_arg_ptr argv = { .ptr.native = __argv };
2036 	struct user_arg_ptr envp = { .ptr.native = __envp };
2037 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2038 }
2039 
2040 static int do_execveat(int fd, struct filename *filename,
2041 		const char __user *const __user *__argv,
2042 		const char __user *const __user *__envp,
2043 		int flags)
2044 {
2045 	struct user_arg_ptr argv = { .ptr.native = __argv };
2046 	struct user_arg_ptr envp = { .ptr.native = __envp };
2047 
2048 	return do_execveat_common(fd, filename, argv, envp, flags);
2049 }
2050 
2051 #ifdef CONFIG_COMPAT
2052 static int compat_do_execve(struct filename *filename,
2053 	const compat_uptr_t __user *__argv,
2054 	const compat_uptr_t __user *__envp)
2055 {
2056 	struct user_arg_ptr argv = {
2057 		.is_compat = true,
2058 		.ptr.compat = __argv,
2059 	};
2060 	struct user_arg_ptr envp = {
2061 		.is_compat = true,
2062 		.ptr.compat = __envp,
2063 	};
2064 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2065 }
2066 
2067 static int compat_do_execveat(int fd, struct filename *filename,
2068 			      const compat_uptr_t __user *__argv,
2069 			      const compat_uptr_t __user *__envp,
2070 			      int flags)
2071 {
2072 	struct user_arg_ptr argv = {
2073 		.is_compat = true,
2074 		.ptr.compat = __argv,
2075 	};
2076 	struct user_arg_ptr envp = {
2077 		.is_compat = true,
2078 		.ptr.compat = __envp,
2079 	};
2080 	return do_execveat_common(fd, filename, argv, envp, flags);
2081 }
2082 #endif
2083 
2084 void set_binfmt(struct linux_binfmt *new)
2085 {
2086 	struct mm_struct *mm = current->mm;
2087 
2088 	if (mm->binfmt)
2089 		module_put(mm->binfmt->module);
2090 
2091 	mm->binfmt = new;
2092 	if (new)
2093 		__module_get(new->module);
2094 }
2095 EXPORT_SYMBOL(set_binfmt);
2096 
2097 /*
2098  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2099  */
2100 void set_dumpable(struct mm_struct *mm, int value)
2101 {
2102 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2103 		return;
2104 
2105 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2106 }
2107 
2108 SYSCALL_DEFINE3(execve,
2109 		const char __user *, filename,
2110 		const char __user *const __user *, argv,
2111 		const char __user *const __user *, envp)
2112 {
2113 	return do_execve(getname(filename), argv, envp);
2114 }
2115 
2116 SYSCALL_DEFINE5(execveat,
2117 		int, fd, const char __user *, filename,
2118 		const char __user *const __user *, argv,
2119 		const char __user *const __user *, envp,
2120 		int, flags)
2121 {
2122 	return do_execveat(fd,
2123 			   getname_uflags(filename, flags),
2124 			   argv, envp, flags);
2125 }
2126 
2127 #ifdef CONFIG_COMPAT
2128 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2129 	const compat_uptr_t __user *, argv,
2130 	const compat_uptr_t __user *, envp)
2131 {
2132 	return compat_do_execve(getname(filename), argv, envp);
2133 }
2134 
2135 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2136 		       const char __user *, filename,
2137 		       const compat_uptr_t __user *, argv,
2138 		       const compat_uptr_t __user *, envp,
2139 		       int,  flags)
2140 {
2141 	return compat_do_execveat(fd,
2142 				  getname_uflags(filename, flags),
2143 				  argv, envp, flags);
2144 }
2145 #endif
2146 
2147 #ifdef CONFIG_SYSCTL
2148 
2149 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2150 		void *buffer, size_t *lenp, loff_t *ppos)
2151 {
2152 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2153 
2154 	if (!error)
2155 		validate_coredump_safety();
2156 	return error;
2157 }
2158 
2159 static struct ctl_table fs_exec_sysctls[] = {
2160 	{
2161 		.procname	= "suid_dumpable",
2162 		.data		= &suid_dumpable,
2163 		.maxlen		= sizeof(int),
2164 		.mode		= 0644,
2165 		.proc_handler	= proc_dointvec_minmax_coredump,
2166 		.extra1		= SYSCTL_ZERO,
2167 		.extra2		= SYSCTL_TWO,
2168 	},
2169 	{ }
2170 };
2171 
2172 static int __init init_fs_exec_sysctls(void)
2173 {
2174 	register_sysctl_init("fs", fs_exec_sysctls);
2175 	return 0;
2176 }
2177 
2178 fs_initcall(init_fs_exec_sysctls);
2179 #endif /* CONFIG_SYSCTL */
2180