1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/pagemap.h> 36 #include <linux/perf_event.h> 37 #include <linux/highmem.h> 38 #include <linux/spinlock.h> 39 #include <linux/key.h> 40 #include <linux/personality.h> 41 #include <linux/binfmts.h> 42 #include <linux/utsname.h> 43 #include <linux/pid_namespace.h> 44 #include <linux/module.h> 45 #include <linux/namei.h> 46 #include <linux/proc_fs.h> 47 #include <linux/mount.h> 48 #include <linux/security.h> 49 #include <linux/ima.h> 50 #include <linux/syscalls.h> 51 #include <linux/tsacct_kern.h> 52 #include <linux/cn_proc.h> 53 #include <linux/audit.h> 54 #include <linux/tracehook.h> 55 #include <linux/kmod.h> 56 #include <linux/fsnotify.h> 57 #include <linux/fs_struct.h> 58 59 #include <asm/uaccess.h> 60 #include <asm/mmu_context.h> 61 #include <asm/tlb.h> 62 #include "internal.h" 63 64 int core_uses_pid; 65 char core_pattern[CORENAME_MAX_SIZE] = "core"; 66 int suid_dumpable = 0; 67 68 /* The maximal length of core_pattern is also specified in sysctl.c */ 69 70 static LIST_HEAD(formats); 71 static DEFINE_RWLOCK(binfmt_lock); 72 73 int __register_binfmt(struct linux_binfmt * fmt, int insert) 74 { 75 if (!fmt) 76 return -EINVAL; 77 write_lock(&binfmt_lock); 78 insert ? list_add(&fmt->lh, &formats) : 79 list_add_tail(&fmt->lh, &formats); 80 write_unlock(&binfmt_lock); 81 return 0; 82 } 83 84 EXPORT_SYMBOL(__register_binfmt); 85 86 void unregister_binfmt(struct linux_binfmt * fmt) 87 { 88 write_lock(&binfmt_lock); 89 list_del(&fmt->lh); 90 write_unlock(&binfmt_lock); 91 } 92 93 EXPORT_SYMBOL(unregister_binfmt); 94 95 static inline void put_binfmt(struct linux_binfmt * fmt) 96 { 97 module_put(fmt->module); 98 } 99 100 /* 101 * Note that a shared library must be both readable and executable due to 102 * security reasons. 103 * 104 * Also note that we take the address to load from from the file itself. 105 */ 106 SYSCALL_DEFINE1(uselib, const char __user *, library) 107 { 108 struct file *file; 109 char *tmp = getname(library); 110 int error = PTR_ERR(tmp); 111 112 if (IS_ERR(tmp)) 113 goto out; 114 115 file = do_filp_open(AT_FDCWD, tmp, 116 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, 117 MAY_READ | MAY_EXEC | MAY_OPEN); 118 putname(tmp); 119 error = PTR_ERR(file); 120 if (IS_ERR(file)) 121 goto out; 122 123 error = -EINVAL; 124 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 125 goto exit; 126 127 error = -EACCES; 128 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 129 goto exit; 130 131 fsnotify_open(file->f_path.dentry); 132 133 error = -ENOEXEC; 134 if(file->f_op) { 135 struct linux_binfmt * fmt; 136 137 read_lock(&binfmt_lock); 138 list_for_each_entry(fmt, &formats, lh) { 139 if (!fmt->load_shlib) 140 continue; 141 if (!try_module_get(fmt->module)) 142 continue; 143 read_unlock(&binfmt_lock); 144 error = fmt->load_shlib(file); 145 read_lock(&binfmt_lock); 146 put_binfmt(fmt); 147 if (error != -ENOEXEC) 148 break; 149 } 150 read_unlock(&binfmt_lock); 151 } 152 exit: 153 fput(file); 154 out: 155 return error; 156 } 157 158 #ifdef CONFIG_MMU 159 160 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 161 int write) 162 { 163 struct page *page; 164 int ret; 165 166 #ifdef CONFIG_STACK_GROWSUP 167 if (write) { 168 ret = expand_stack_downwards(bprm->vma, pos); 169 if (ret < 0) 170 return NULL; 171 } 172 #endif 173 ret = get_user_pages(current, bprm->mm, pos, 174 1, write, 1, &page, NULL); 175 if (ret <= 0) 176 return NULL; 177 178 if (write) { 179 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 180 struct rlimit *rlim; 181 182 /* 183 * We've historically supported up to 32 pages (ARG_MAX) 184 * of argument strings even with small stacks 185 */ 186 if (size <= ARG_MAX) 187 return page; 188 189 /* 190 * Limit to 1/4-th the stack size for the argv+env strings. 191 * This ensures that: 192 * - the remaining binfmt code will not run out of stack space, 193 * - the program will have a reasonable amount of stack left 194 * to work from. 195 */ 196 rlim = current->signal->rlim; 197 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 198 put_page(page); 199 return NULL; 200 } 201 } 202 203 return page; 204 } 205 206 static void put_arg_page(struct page *page) 207 { 208 put_page(page); 209 } 210 211 static void free_arg_page(struct linux_binprm *bprm, int i) 212 { 213 } 214 215 static void free_arg_pages(struct linux_binprm *bprm) 216 { 217 } 218 219 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 220 struct page *page) 221 { 222 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 223 } 224 225 static int __bprm_mm_init(struct linux_binprm *bprm) 226 { 227 int err; 228 struct vm_area_struct *vma = NULL; 229 struct mm_struct *mm = bprm->mm; 230 231 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 232 if (!vma) 233 return -ENOMEM; 234 235 down_write(&mm->mmap_sem); 236 vma->vm_mm = mm; 237 238 /* 239 * Place the stack at the largest stack address the architecture 240 * supports. Later, we'll move this to an appropriate place. We don't 241 * use STACK_TOP because that can depend on attributes which aren't 242 * configured yet. 243 */ 244 vma->vm_end = STACK_TOP_MAX; 245 vma->vm_start = vma->vm_end - PAGE_SIZE; 246 vma->vm_flags = VM_STACK_FLAGS; 247 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 248 err = insert_vm_struct(mm, vma); 249 if (err) 250 goto err; 251 252 mm->stack_vm = mm->total_vm = 1; 253 up_write(&mm->mmap_sem); 254 bprm->p = vma->vm_end - sizeof(void *); 255 return 0; 256 err: 257 up_write(&mm->mmap_sem); 258 bprm->vma = NULL; 259 kmem_cache_free(vm_area_cachep, vma); 260 return err; 261 } 262 263 static bool valid_arg_len(struct linux_binprm *bprm, long len) 264 { 265 return len <= MAX_ARG_STRLEN; 266 } 267 268 #else 269 270 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 271 int write) 272 { 273 struct page *page; 274 275 page = bprm->page[pos / PAGE_SIZE]; 276 if (!page && write) { 277 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 278 if (!page) 279 return NULL; 280 bprm->page[pos / PAGE_SIZE] = page; 281 } 282 283 return page; 284 } 285 286 static void put_arg_page(struct page *page) 287 { 288 } 289 290 static void free_arg_page(struct linux_binprm *bprm, int i) 291 { 292 if (bprm->page[i]) { 293 __free_page(bprm->page[i]); 294 bprm->page[i] = NULL; 295 } 296 } 297 298 static void free_arg_pages(struct linux_binprm *bprm) 299 { 300 int i; 301 302 for (i = 0; i < MAX_ARG_PAGES; i++) 303 free_arg_page(bprm, i); 304 } 305 306 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 307 struct page *page) 308 { 309 } 310 311 static int __bprm_mm_init(struct linux_binprm *bprm) 312 { 313 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 314 return 0; 315 } 316 317 static bool valid_arg_len(struct linux_binprm *bprm, long len) 318 { 319 return len <= bprm->p; 320 } 321 322 #endif /* CONFIG_MMU */ 323 324 /* 325 * Create a new mm_struct and populate it with a temporary stack 326 * vm_area_struct. We don't have enough context at this point to set the stack 327 * flags, permissions, and offset, so we use temporary values. We'll update 328 * them later in setup_arg_pages(). 329 */ 330 int bprm_mm_init(struct linux_binprm *bprm) 331 { 332 int err; 333 struct mm_struct *mm = NULL; 334 335 bprm->mm = mm = mm_alloc(); 336 err = -ENOMEM; 337 if (!mm) 338 goto err; 339 340 err = init_new_context(current, mm); 341 if (err) 342 goto err; 343 344 err = __bprm_mm_init(bprm); 345 if (err) 346 goto err; 347 348 return 0; 349 350 err: 351 if (mm) { 352 bprm->mm = NULL; 353 mmdrop(mm); 354 } 355 356 return err; 357 } 358 359 /* 360 * count() counts the number of strings in array ARGV. 361 */ 362 static int count(char __user * __user * argv, int max) 363 { 364 int i = 0; 365 366 if (argv != NULL) { 367 for (;;) { 368 char __user * p; 369 370 if (get_user(p, argv)) 371 return -EFAULT; 372 if (!p) 373 break; 374 argv++; 375 if (i++ >= max) 376 return -E2BIG; 377 cond_resched(); 378 } 379 } 380 return i; 381 } 382 383 /* 384 * 'copy_strings()' copies argument/environment strings from the old 385 * processes's memory to the new process's stack. The call to get_user_pages() 386 * ensures the destination page is created and not swapped out. 387 */ 388 static int copy_strings(int argc, char __user * __user * argv, 389 struct linux_binprm *bprm) 390 { 391 struct page *kmapped_page = NULL; 392 char *kaddr = NULL; 393 unsigned long kpos = 0; 394 int ret; 395 396 while (argc-- > 0) { 397 char __user *str; 398 int len; 399 unsigned long pos; 400 401 if (get_user(str, argv+argc) || 402 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 403 ret = -EFAULT; 404 goto out; 405 } 406 407 if (!valid_arg_len(bprm, len)) { 408 ret = -E2BIG; 409 goto out; 410 } 411 412 /* We're going to work our way backwords. */ 413 pos = bprm->p; 414 str += len; 415 bprm->p -= len; 416 417 while (len > 0) { 418 int offset, bytes_to_copy; 419 420 offset = pos % PAGE_SIZE; 421 if (offset == 0) 422 offset = PAGE_SIZE; 423 424 bytes_to_copy = offset; 425 if (bytes_to_copy > len) 426 bytes_to_copy = len; 427 428 offset -= bytes_to_copy; 429 pos -= bytes_to_copy; 430 str -= bytes_to_copy; 431 len -= bytes_to_copy; 432 433 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 434 struct page *page; 435 436 page = get_arg_page(bprm, pos, 1); 437 if (!page) { 438 ret = -E2BIG; 439 goto out; 440 } 441 442 if (kmapped_page) { 443 flush_kernel_dcache_page(kmapped_page); 444 kunmap(kmapped_page); 445 put_arg_page(kmapped_page); 446 } 447 kmapped_page = page; 448 kaddr = kmap(kmapped_page); 449 kpos = pos & PAGE_MASK; 450 flush_arg_page(bprm, kpos, kmapped_page); 451 } 452 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 453 ret = -EFAULT; 454 goto out; 455 } 456 } 457 } 458 ret = 0; 459 out: 460 if (kmapped_page) { 461 flush_kernel_dcache_page(kmapped_page); 462 kunmap(kmapped_page); 463 put_arg_page(kmapped_page); 464 } 465 return ret; 466 } 467 468 /* 469 * Like copy_strings, but get argv and its values from kernel memory. 470 */ 471 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 472 { 473 int r; 474 mm_segment_t oldfs = get_fs(); 475 set_fs(KERNEL_DS); 476 r = copy_strings(argc, (char __user * __user *)argv, bprm); 477 set_fs(oldfs); 478 return r; 479 } 480 EXPORT_SYMBOL(copy_strings_kernel); 481 482 #ifdef CONFIG_MMU 483 484 /* 485 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 486 * the binfmt code determines where the new stack should reside, we shift it to 487 * its final location. The process proceeds as follows: 488 * 489 * 1) Use shift to calculate the new vma endpoints. 490 * 2) Extend vma to cover both the old and new ranges. This ensures the 491 * arguments passed to subsequent functions are consistent. 492 * 3) Move vma's page tables to the new range. 493 * 4) Free up any cleared pgd range. 494 * 5) Shrink the vma to cover only the new range. 495 */ 496 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 497 { 498 struct mm_struct *mm = vma->vm_mm; 499 unsigned long old_start = vma->vm_start; 500 unsigned long old_end = vma->vm_end; 501 unsigned long length = old_end - old_start; 502 unsigned long new_start = old_start - shift; 503 unsigned long new_end = old_end - shift; 504 struct mmu_gather *tlb; 505 506 BUG_ON(new_start > new_end); 507 508 /* 509 * ensure there are no vmas between where we want to go 510 * and where we are 511 */ 512 if (vma != find_vma(mm, new_start)) 513 return -EFAULT; 514 515 /* 516 * cover the whole range: [new_start, old_end) 517 */ 518 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 519 520 /* 521 * move the page tables downwards, on failure we rely on 522 * process cleanup to remove whatever mess we made. 523 */ 524 if (length != move_page_tables(vma, old_start, 525 vma, new_start, length)) 526 return -ENOMEM; 527 528 lru_add_drain(); 529 tlb = tlb_gather_mmu(mm, 0); 530 if (new_end > old_start) { 531 /* 532 * when the old and new regions overlap clear from new_end. 533 */ 534 free_pgd_range(tlb, new_end, old_end, new_end, 535 vma->vm_next ? vma->vm_next->vm_start : 0); 536 } else { 537 /* 538 * otherwise, clean from old_start; this is done to not touch 539 * the address space in [new_end, old_start) some architectures 540 * have constraints on va-space that make this illegal (IA64) - 541 * for the others its just a little faster. 542 */ 543 free_pgd_range(tlb, old_start, old_end, new_end, 544 vma->vm_next ? vma->vm_next->vm_start : 0); 545 } 546 tlb_finish_mmu(tlb, new_end, old_end); 547 548 /* 549 * shrink the vma to just the new range. 550 */ 551 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 552 553 return 0; 554 } 555 556 #define EXTRA_STACK_VM_PAGES 20 /* random */ 557 558 /* 559 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 560 * the stack is optionally relocated, and some extra space is added. 561 */ 562 int setup_arg_pages(struct linux_binprm *bprm, 563 unsigned long stack_top, 564 int executable_stack) 565 { 566 unsigned long ret; 567 unsigned long stack_shift; 568 struct mm_struct *mm = current->mm; 569 struct vm_area_struct *vma = bprm->vma; 570 struct vm_area_struct *prev = NULL; 571 unsigned long vm_flags; 572 unsigned long stack_base; 573 574 #ifdef CONFIG_STACK_GROWSUP 575 /* Limit stack size to 1GB */ 576 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 577 if (stack_base > (1 << 30)) 578 stack_base = 1 << 30; 579 580 /* Make sure we didn't let the argument array grow too large. */ 581 if (vma->vm_end - vma->vm_start > stack_base) 582 return -ENOMEM; 583 584 stack_base = PAGE_ALIGN(stack_top - stack_base); 585 586 stack_shift = vma->vm_start - stack_base; 587 mm->arg_start = bprm->p - stack_shift; 588 bprm->p = vma->vm_end - stack_shift; 589 #else 590 stack_top = arch_align_stack(stack_top); 591 stack_top = PAGE_ALIGN(stack_top); 592 stack_shift = vma->vm_end - stack_top; 593 594 bprm->p -= stack_shift; 595 mm->arg_start = bprm->p; 596 #endif 597 598 if (bprm->loader) 599 bprm->loader -= stack_shift; 600 bprm->exec -= stack_shift; 601 602 down_write(&mm->mmap_sem); 603 vm_flags = VM_STACK_FLAGS; 604 605 /* 606 * Adjust stack execute permissions; explicitly enable for 607 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 608 * (arch default) otherwise. 609 */ 610 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 611 vm_flags |= VM_EXEC; 612 else if (executable_stack == EXSTACK_DISABLE_X) 613 vm_flags &= ~VM_EXEC; 614 vm_flags |= mm->def_flags; 615 616 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 617 vm_flags); 618 if (ret) 619 goto out_unlock; 620 BUG_ON(prev != vma); 621 622 /* Move stack pages down in memory. */ 623 if (stack_shift) { 624 ret = shift_arg_pages(vma, stack_shift); 625 if (ret) { 626 up_write(&mm->mmap_sem); 627 return ret; 628 } 629 } 630 631 #ifdef CONFIG_STACK_GROWSUP 632 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 633 #else 634 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 635 #endif 636 ret = expand_stack(vma, stack_base); 637 if (ret) 638 ret = -EFAULT; 639 640 out_unlock: 641 up_write(&mm->mmap_sem); 642 return 0; 643 } 644 EXPORT_SYMBOL(setup_arg_pages); 645 646 #endif /* CONFIG_MMU */ 647 648 struct file *open_exec(const char *name) 649 { 650 struct file *file; 651 int err; 652 653 file = do_filp_open(AT_FDCWD, name, 654 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, 655 MAY_EXEC | MAY_OPEN); 656 if (IS_ERR(file)) 657 goto out; 658 659 err = -EACCES; 660 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 661 goto exit; 662 663 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 664 goto exit; 665 666 fsnotify_open(file->f_path.dentry); 667 668 err = deny_write_access(file); 669 if (err) 670 goto exit; 671 672 out: 673 return file; 674 675 exit: 676 fput(file); 677 return ERR_PTR(err); 678 } 679 EXPORT_SYMBOL(open_exec); 680 681 int kernel_read(struct file *file, loff_t offset, 682 char *addr, unsigned long count) 683 { 684 mm_segment_t old_fs; 685 loff_t pos = offset; 686 int result; 687 688 old_fs = get_fs(); 689 set_fs(get_ds()); 690 /* The cast to a user pointer is valid due to the set_fs() */ 691 result = vfs_read(file, (void __user *)addr, count, &pos); 692 set_fs(old_fs); 693 return result; 694 } 695 696 EXPORT_SYMBOL(kernel_read); 697 698 static int exec_mmap(struct mm_struct *mm) 699 { 700 struct task_struct *tsk; 701 struct mm_struct * old_mm, *active_mm; 702 703 /* Notify parent that we're no longer interested in the old VM */ 704 tsk = current; 705 old_mm = current->mm; 706 mm_release(tsk, old_mm); 707 708 if (old_mm) { 709 /* 710 * Make sure that if there is a core dump in progress 711 * for the old mm, we get out and die instead of going 712 * through with the exec. We must hold mmap_sem around 713 * checking core_state and changing tsk->mm. 714 */ 715 down_read(&old_mm->mmap_sem); 716 if (unlikely(old_mm->core_state)) { 717 up_read(&old_mm->mmap_sem); 718 return -EINTR; 719 } 720 } 721 task_lock(tsk); 722 active_mm = tsk->active_mm; 723 tsk->mm = mm; 724 tsk->active_mm = mm; 725 activate_mm(active_mm, mm); 726 task_unlock(tsk); 727 arch_pick_mmap_layout(mm); 728 if (old_mm) { 729 up_read(&old_mm->mmap_sem); 730 BUG_ON(active_mm != old_mm); 731 mm_update_next_owner(old_mm); 732 mmput(old_mm); 733 return 0; 734 } 735 mmdrop(active_mm); 736 return 0; 737 } 738 739 /* 740 * This function makes sure the current process has its own signal table, 741 * so that flush_signal_handlers can later reset the handlers without 742 * disturbing other processes. (Other processes might share the signal 743 * table via the CLONE_SIGHAND option to clone().) 744 */ 745 static int de_thread(struct task_struct *tsk) 746 { 747 struct signal_struct *sig = tsk->signal; 748 struct sighand_struct *oldsighand = tsk->sighand; 749 spinlock_t *lock = &oldsighand->siglock; 750 int count; 751 752 if (thread_group_empty(tsk)) 753 goto no_thread_group; 754 755 /* 756 * Kill all other threads in the thread group. 757 */ 758 spin_lock_irq(lock); 759 if (signal_group_exit(sig)) { 760 /* 761 * Another group action in progress, just 762 * return so that the signal is processed. 763 */ 764 spin_unlock_irq(lock); 765 return -EAGAIN; 766 } 767 sig->group_exit_task = tsk; 768 zap_other_threads(tsk); 769 770 /* Account for the thread group leader hanging around: */ 771 count = thread_group_leader(tsk) ? 1 : 2; 772 sig->notify_count = count; 773 while (atomic_read(&sig->count) > count) { 774 __set_current_state(TASK_UNINTERRUPTIBLE); 775 spin_unlock_irq(lock); 776 schedule(); 777 spin_lock_irq(lock); 778 } 779 spin_unlock_irq(lock); 780 781 /* 782 * At this point all other threads have exited, all we have to 783 * do is to wait for the thread group leader to become inactive, 784 * and to assume its PID: 785 */ 786 if (!thread_group_leader(tsk)) { 787 struct task_struct *leader = tsk->group_leader; 788 789 sig->notify_count = -1; /* for exit_notify() */ 790 for (;;) { 791 write_lock_irq(&tasklist_lock); 792 if (likely(leader->exit_state)) 793 break; 794 __set_current_state(TASK_UNINTERRUPTIBLE); 795 write_unlock_irq(&tasklist_lock); 796 schedule(); 797 } 798 799 /* 800 * The only record we have of the real-time age of a 801 * process, regardless of execs it's done, is start_time. 802 * All the past CPU time is accumulated in signal_struct 803 * from sister threads now dead. But in this non-leader 804 * exec, nothing survives from the original leader thread, 805 * whose birth marks the true age of this process now. 806 * When we take on its identity by switching to its PID, we 807 * also take its birthdate (always earlier than our own). 808 */ 809 tsk->start_time = leader->start_time; 810 811 BUG_ON(!same_thread_group(leader, tsk)); 812 BUG_ON(has_group_leader_pid(tsk)); 813 /* 814 * An exec() starts a new thread group with the 815 * TGID of the previous thread group. Rehash the 816 * two threads with a switched PID, and release 817 * the former thread group leader: 818 */ 819 820 /* Become a process group leader with the old leader's pid. 821 * The old leader becomes a thread of the this thread group. 822 * Note: The old leader also uses this pid until release_task 823 * is called. Odd but simple and correct. 824 */ 825 detach_pid(tsk, PIDTYPE_PID); 826 tsk->pid = leader->pid; 827 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 828 transfer_pid(leader, tsk, PIDTYPE_PGID); 829 transfer_pid(leader, tsk, PIDTYPE_SID); 830 list_replace_rcu(&leader->tasks, &tsk->tasks); 831 832 tsk->group_leader = tsk; 833 leader->group_leader = tsk; 834 835 tsk->exit_signal = SIGCHLD; 836 837 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 838 leader->exit_state = EXIT_DEAD; 839 write_unlock_irq(&tasklist_lock); 840 841 release_task(leader); 842 } 843 844 sig->group_exit_task = NULL; 845 sig->notify_count = 0; 846 847 no_thread_group: 848 if (current->mm) 849 setmax_mm_hiwater_rss(&sig->maxrss, current->mm); 850 851 exit_itimers(sig); 852 flush_itimer_signals(); 853 854 if (atomic_read(&oldsighand->count) != 1) { 855 struct sighand_struct *newsighand; 856 /* 857 * This ->sighand is shared with the CLONE_SIGHAND 858 * but not CLONE_THREAD task, switch to the new one. 859 */ 860 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 861 if (!newsighand) 862 return -ENOMEM; 863 864 atomic_set(&newsighand->count, 1); 865 memcpy(newsighand->action, oldsighand->action, 866 sizeof(newsighand->action)); 867 868 write_lock_irq(&tasklist_lock); 869 spin_lock(&oldsighand->siglock); 870 rcu_assign_pointer(tsk->sighand, newsighand); 871 spin_unlock(&oldsighand->siglock); 872 write_unlock_irq(&tasklist_lock); 873 874 __cleanup_sighand(oldsighand); 875 } 876 877 BUG_ON(!thread_group_leader(tsk)); 878 return 0; 879 } 880 881 /* 882 * These functions flushes out all traces of the currently running executable 883 * so that a new one can be started 884 */ 885 static void flush_old_files(struct files_struct * files) 886 { 887 long j = -1; 888 struct fdtable *fdt; 889 890 spin_lock(&files->file_lock); 891 for (;;) { 892 unsigned long set, i; 893 894 j++; 895 i = j * __NFDBITS; 896 fdt = files_fdtable(files); 897 if (i >= fdt->max_fds) 898 break; 899 set = fdt->close_on_exec->fds_bits[j]; 900 if (!set) 901 continue; 902 fdt->close_on_exec->fds_bits[j] = 0; 903 spin_unlock(&files->file_lock); 904 for ( ; set ; i++,set >>= 1) { 905 if (set & 1) { 906 sys_close(i); 907 } 908 } 909 spin_lock(&files->file_lock); 910 911 } 912 spin_unlock(&files->file_lock); 913 } 914 915 char *get_task_comm(char *buf, struct task_struct *tsk) 916 { 917 /* buf must be at least sizeof(tsk->comm) in size */ 918 task_lock(tsk); 919 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 920 task_unlock(tsk); 921 return buf; 922 } 923 924 void set_task_comm(struct task_struct *tsk, char *buf) 925 { 926 task_lock(tsk); 927 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 928 task_unlock(tsk); 929 perf_event_comm(tsk); 930 } 931 932 int flush_old_exec(struct linux_binprm * bprm) 933 { 934 char * name; 935 int i, ch, retval; 936 char tcomm[sizeof(current->comm)]; 937 938 /* 939 * Make sure we have a private signal table and that 940 * we are unassociated from the previous thread group. 941 */ 942 retval = de_thread(current); 943 if (retval) 944 goto out; 945 946 set_mm_exe_file(bprm->mm, bprm->file); 947 948 /* 949 * Release all of the old mmap stuff 950 */ 951 retval = exec_mmap(bprm->mm); 952 if (retval) 953 goto out; 954 955 bprm->mm = NULL; /* We're using it now */ 956 957 /* This is the point of no return */ 958 current->sas_ss_sp = current->sas_ss_size = 0; 959 960 if (current_euid() == current_uid() && current_egid() == current_gid()) 961 set_dumpable(current->mm, 1); 962 else 963 set_dumpable(current->mm, suid_dumpable); 964 965 name = bprm->filename; 966 967 /* Copies the binary name from after last slash */ 968 for (i=0; (ch = *(name++)) != '\0';) { 969 if (ch == '/') 970 i = 0; /* overwrite what we wrote */ 971 else 972 if (i < (sizeof(tcomm) - 1)) 973 tcomm[i++] = ch; 974 } 975 tcomm[i] = '\0'; 976 set_task_comm(current, tcomm); 977 978 current->flags &= ~PF_RANDOMIZE; 979 flush_thread(); 980 981 /* Set the new mm task size. We have to do that late because it may 982 * depend on TIF_32BIT which is only updated in flush_thread() on 983 * some architectures like powerpc 984 */ 985 current->mm->task_size = TASK_SIZE; 986 987 /* install the new credentials */ 988 if (bprm->cred->uid != current_euid() || 989 bprm->cred->gid != current_egid()) { 990 current->pdeath_signal = 0; 991 } else if (file_permission(bprm->file, MAY_READ) || 992 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) { 993 set_dumpable(current->mm, suid_dumpable); 994 } 995 996 current->personality &= ~bprm->per_clear; 997 998 /* 999 * Flush performance counters when crossing a 1000 * security domain: 1001 */ 1002 if (!get_dumpable(current->mm)) 1003 perf_event_exit_task(current); 1004 1005 /* An exec changes our domain. We are no longer part of the thread 1006 group */ 1007 1008 current->self_exec_id++; 1009 1010 flush_signal_handlers(current, 0); 1011 flush_old_files(current->files); 1012 1013 return 0; 1014 1015 out: 1016 return retval; 1017 } 1018 1019 EXPORT_SYMBOL(flush_old_exec); 1020 1021 /* 1022 * Prepare credentials and lock ->cred_guard_mutex. 1023 * install_exec_creds() commits the new creds and drops the lock. 1024 * Or, if exec fails before, free_bprm() should release ->cred and 1025 * and unlock. 1026 */ 1027 int prepare_bprm_creds(struct linux_binprm *bprm) 1028 { 1029 if (mutex_lock_interruptible(¤t->cred_guard_mutex)) 1030 return -ERESTARTNOINTR; 1031 1032 bprm->cred = prepare_exec_creds(); 1033 if (likely(bprm->cred)) 1034 return 0; 1035 1036 mutex_unlock(¤t->cred_guard_mutex); 1037 return -ENOMEM; 1038 } 1039 1040 void free_bprm(struct linux_binprm *bprm) 1041 { 1042 free_arg_pages(bprm); 1043 if (bprm->cred) { 1044 mutex_unlock(¤t->cred_guard_mutex); 1045 abort_creds(bprm->cred); 1046 } 1047 kfree(bprm); 1048 } 1049 1050 /* 1051 * install the new credentials for this executable 1052 */ 1053 void install_exec_creds(struct linux_binprm *bprm) 1054 { 1055 security_bprm_committing_creds(bprm); 1056 1057 commit_creds(bprm->cred); 1058 bprm->cred = NULL; 1059 /* 1060 * cred_guard_mutex must be held at least to this point to prevent 1061 * ptrace_attach() from altering our determination of the task's 1062 * credentials; any time after this it may be unlocked. 1063 */ 1064 security_bprm_committed_creds(bprm); 1065 mutex_unlock(¤t->cred_guard_mutex); 1066 } 1067 EXPORT_SYMBOL(install_exec_creds); 1068 1069 /* 1070 * determine how safe it is to execute the proposed program 1071 * - the caller must hold current->cred_guard_mutex to protect against 1072 * PTRACE_ATTACH 1073 */ 1074 int check_unsafe_exec(struct linux_binprm *bprm) 1075 { 1076 struct task_struct *p = current, *t; 1077 unsigned n_fs; 1078 int res = 0; 1079 1080 bprm->unsafe = tracehook_unsafe_exec(p); 1081 1082 n_fs = 1; 1083 write_lock(&p->fs->lock); 1084 rcu_read_lock(); 1085 for (t = next_thread(p); t != p; t = next_thread(t)) { 1086 if (t->fs == p->fs) 1087 n_fs++; 1088 } 1089 rcu_read_unlock(); 1090 1091 if (p->fs->users > n_fs) { 1092 bprm->unsafe |= LSM_UNSAFE_SHARE; 1093 } else { 1094 res = -EAGAIN; 1095 if (!p->fs->in_exec) { 1096 p->fs->in_exec = 1; 1097 res = 1; 1098 } 1099 } 1100 write_unlock(&p->fs->lock); 1101 1102 return res; 1103 } 1104 1105 /* 1106 * Fill the binprm structure from the inode. 1107 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1108 * 1109 * This may be called multiple times for binary chains (scripts for example). 1110 */ 1111 int prepare_binprm(struct linux_binprm *bprm) 1112 { 1113 umode_t mode; 1114 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1115 int retval; 1116 1117 mode = inode->i_mode; 1118 if (bprm->file->f_op == NULL) 1119 return -EACCES; 1120 1121 /* clear any previous set[ug]id data from a previous binary */ 1122 bprm->cred->euid = current_euid(); 1123 bprm->cred->egid = current_egid(); 1124 1125 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1126 /* Set-uid? */ 1127 if (mode & S_ISUID) { 1128 bprm->per_clear |= PER_CLEAR_ON_SETID; 1129 bprm->cred->euid = inode->i_uid; 1130 } 1131 1132 /* Set-gid? */ 1133 /* 1134 * If setgid is set but no group execute bit then this 1135 * is a candidate for mandatory locking, not a setgid 1136 * executable. 1137 */ 1138 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1139 bprm->per_clear |= PER_CLEAR_ON_SETID; 1140 bprm->cred->egid = inode->i_gid; 1141 } 1142 } 1143 1144 /* fill in binprm security blob */ 1145 retval = security_bprm_set_creds(bprm); 1146 if (retval) 1147 return retval; 1148 bprm->cred_prepared = 1; 1149 1150 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1151 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1152 } 1153 1154 EXPORT_SYMBOL(prepare_binprm); 1155 1156 /* 1157 * Arguments are '\0' separated strings found at the location bprm->p 1158 * points to; chop off the first by relocating brpm->p to right after 1159 * the first '\0' encountered. 1160 */ 1161 int remove_arg_zero(struct linux_binprm *bprm) 1162 { 1163 int ret = 0; 1164 unsigned long offset; 1165 char *kaddr; 1166 struct page *page; 1167 1168 if (!bprm->argc) 1169 return 0; 1170 1171 do { 1172 offset = bprm->p & ~PAGE_MASK; 1173 page = get_arg_page(bprm, bprm->p, 0); 1174 if (!page) { 1175 ret = -EFAULT; 1176 goto out; 1177 } 1178 kaddr = kmap_atomic(page, KM_USER0); 1179 1180 for (; offset < PAGE_SIZE && kaddr[offset]; 1181 offset++, bprm->p++) 1182 ; 1183 1184 kunmap_atomic(kaddr, KM_USER0); 1185 put_arg_page(page); 1186 1187 if (offset == PAGE_SIZE) 1188 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1189 } while (offset == PAGE_SIZE); 1190 1191 bprm->p++; 1192 bprm->argc--; 1193 ret = 0; 1194 1195 out: 1196 return ret; 1197 } 1198 EXPORT_SYMBOL(remove_arg_zero); 1199 1200 /* 1201 * cycle the list of binary formats handler, until one recognizes the image 1202 */ 1203 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1204 { 1205 unsigned int depth = bprm->recursion_depth; 1206 int try,retval; 1207 struct linux_binfmt *fmt; 1208 1209 retval = security_bprm_check(bprm); 1210 if (retval) 1211 return retval; 1212 retval = ima_bprm_check(bprm); 1213 if (retval) 1214 return retval; 1215 1216 /* kernel module loader fixup */ 1217 /* so we don't try to load run modprobe in kernel space. */ 1218 set_fs(USER_DS); 1219 1220 retval = audit_bprm(bprm); 1221 if (retval) 1222 return retval; 1223 1224 retval = -ENOENT; 1225 for (try=0; try<2; try++) { 1226 read_lock(&binfmt_lock); 1227 list_for_each_entry(fmt, &formats, lh) { 1228 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1229 if (!fn) 1230 continue; 1231 if (!try_module_get(fmt->module)) 1232 continue; 1233 read_unlock(&binfmt_lock); 1234 retval = fn(bprm, regs); 1235 /* 1236 * Restore the depth counter to its starting value 1237 * in this call, so we don't have to rely on every 1238 * load_binary function to restore it on return. 1239 */ 1240 bprm->recursion_depth = depth; 1241 if (retval >= 0) { 1242 if (depth == 0) 1243 tracehook_report_exec(fmt, bprm, regs); 1244 put_binfmt(fmt); 1245 allow_write_access(bprm->file); 1246 if (bprm->file) 1247 fput(bprm->file); 1248 bprm->file = NULL; 1249 current->did_exec = 1; 1250 proc_exec_connector(current); 1251 return retval; 1252 } 1253 read_lock(&binfmt_lock); 1254 put_binfmt(fmt); 1255 if (retval != -ENOEXEC || bprm->mm == NULL) 1256 break; 1257 if (!bprm->file) { 1258 read_unlock(&binfmt_lock); 1259 return retval; 1260 } 1261 } 1262 read_unlock(&binfmt_lock); 1263 if (retval != -ENOEXEC || bprm->mm == NULL) { 1264 break; 1265 #ifdef CONFIG_MODULES 1266 } else { 1267 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1268 if (printable(bprm->buf[0]) && 1269 printable(bprm->buf[1]) && 1270 printable(bprm->buf[2]) && 1271 printable(bprm->buf[3])) 1272 break; /* -ENOEXEC */ 1273 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1274 #endif 1275 } 1276 } 1277 return retval; 1278 } 1279 1280 EXPORT_SYMBOL(search_binary_handler); 1281 1282 /* 1283 * sys_execve() executes a new program. 1284 */ 1285 int do_execve(char * filename, 1286 char __user *__user *argv, 1287 char __user *__user *envp, 1288 struct pt_regs * regs) 1289 { 1290 struct linux_binprm *bprm; 1291 struct file *file; 1292 struct files_struct *displaced; 1293 bool clear_in_exec; 1294 int retval; 1295 1296 retval = unshare_files(&displaced); 1297 if (retval) 1298 goto out_ret; 1299 1300 retval = -ENOMEM; 1301 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1302 if (!bprm) 1303 goto out_files; 1304 1305 retval = prepare_bprm_creds(bprm); 1306 if (retval) 1307 goto out_free; 1308 1309 retval = check_unsafe_exec(bprm); 1310 if (retval < 0) 1311 goto out_free; 1312 clear_in_exec = retval; 1313 current->in_execve = 1; 1314 1315 file = open_exec(filename); 1316 retval = PTR_ERR(file); 1317 if (IS_ERR(file)) 1318 goto out_unmark; 1319 1320 sched_exec(); 1321 1322 bprm->file = file; 1323 bprm->filename = filename; 1324 bprm->interp = filename; 1325 1326 retval = bprm_mm_init(bprm); 1327 if (retval) 1328 goto out_file; 1329 1330 bprm->argc = count(argv, MAX_ARG_STRINGS); 1331 if ((retval = bprm->argc) < 0) 1332 goto out; 1333 1334 bprm->envc = count(envp, MAX_ARG_STRINGS); 1335 if ((retval = bprm->envc) < 0) 1336 goto out; 1337 1338 retval = prepare_binprm(bprm); 1339 if (retval < 0) 1340 goto out; 1341 1342 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1343 if (retval < 0) 1344 goto out; 1345 1346 bprm->exec = bprm->p; 1347 retval = copy_strings(bprm->envc, envp, bprm); 1348 if (retval < 0) 1349 goto out; 1350 1351 retval = copy_strings(bprm->argc, argv, bprm); 1352 if (retval < 0) 1353 goto out; 1354 1355 current->flags &= ~PF_KTHREAD; 1356 retval = search_binary_handler(bprm,regs); 1357 if (retval < 0) 1358 goto out; 1359 1360 current->stack_start = current->mm->start_stack; 1361 1362 /* execve succeeded */ 1363 current->fs->in_exec = 0; 1364 current->in_execve = 0; 1365 acct_update_integrals(current); 1366 free_bprm(bprm); 1367 if (displaced) 1368 put_files_struct(displaced); 1369 return retval; 1370 1371 out: 1372 if (bprm->mm) 1373 mmput (bprm->mm); 1374 1375 out_file: 1376 if (bprm->file) { 1377 allow_write_access(bprm->file); 1378 fput(bprm->file); 1379 } 1380 1381 out_unmark: 1382 if (clear_in_exec) 1383 current->fs->in_exec = 0; 1384 current->in_execve = 0; 1385 1386 out_free: 1387 free_bprm(bprm); 1388 1389 out_files: 1390 if (displaced) 1391 reset_files_struct(displaced); 1392 out_ret: 1393 return retval; 1394 } 1395 1396 int set_binfmt(struct linux_binfmt *new) 1397 { 1398 struct linux_binfmt *old = current->binfmt; 1399 1400 if (new) { 1401 if (!try_module_get(new->module)) 1402 return -1; 1403 } 1404 current->binfmt = new; 1405 if (old) 1406 module_put(old->module); 1407 return 0; 1408 } 1409 1410 EXPORT_SYMBOL(set_binfmt); 1411 1412 /* format_corename will inspect the pattern parameter, and output a 1413 * name into corename, which must have space for at least 1414 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1415 */ 1416 static int format_corename(char *corename, long signr) 1417 { 1418 const struct cred *cred = current_cred(); 1419 const char *pat_ptr = core_pattern; 1420 int ispipe = (*pat_ptr == '|'); 1421 char *out_ptr = corename; 1422 char *const out_end = corename + CORENAME_MAX_SIZE; 1423 int rc; 1424 int pid_in_pattern = 0; 1425 1426 /* Repeat as long as we have more pattern to process and more output 1427 space */ 1428 while (*pat_ptr) { 1429 if (*pat_ptr != '%') { 1430 if (out_ptr == out_end) 1431 goto out; 1432 *out_ptr++ = *pat_ptr++; 1433 } else { 1434 switch (*++pat_ptr) { 1435 case 0: 1436 goto out; 1437 /* Double percent, output one percent */ 1438 case '%': 1439 if (out_ptr == out_end) 1440 goto out; 1441 *out_ptr++ = '%'; 1442 break; 1443 /* pid */ 1444 case 'p': 1445 pid_in_pattern = 1; 1446 rc = snprintf(out_ptr, out_end - out_ptr, 1447 "%d", task_tgid_vnr(current)); 1448 if (rc > out_end - out_ptr) 1449 goto out; 1450 out_ptr += rc; 1451 break; 1452 /* uid */ 1453 case 'u': 1454 rc = snprintf(out_ptr, out_end - out_ptr, 1455 "%d", cred->uid); 1456 if (rc > out_end - out_ptr) 1457 goto out; 1458 out_ptr += rc; 1459 break; 1460 /* gid */ 1461 case 'g': 1462 rc = snprintf(out_ptr, out_end - out_ptr, 1463 "%d", cred->gid); 1464 if (rc > out_end - out_ptr) 1465 goto out; 1466 out_ptr += rc; 1467 break; 1468 /* signal that caused the coredump */ 1469 case 's': 1470 rc = snprintf(out_ptr, out_end - out_ptr, 1471 "%ld", signr); 1472 if (rc > out_end - out_ptr) 1473 goto out; 1474 out_ptr += rc; 1475 break; 1476 /* UNIX time of coredump */ 1477 case 't': { 1478 struct timeval tv; 1479 do_gettimeofday(&tv); 1480 rc = snprintf(out_ptr, out_end - out_ptr, 1481 "%lu", tv.tv_sec); 1482 if (rc > out_end - out_ptr) 1483 goto out; 1484 out_ptr += rc; 1485 break; 1486 } 1487 /* hostname */ 1488 case 'h': 1489 down_read(&uts_sem); 1490 rc = snprintf(out_ptr, out_end - out_ptr, 1491 "%s", utsname()->nodename); 1492 up_read(&uts_sem); 1493 if (rc > out_end - out_ptr) 1494 goto out; 1495 out_ptr += rc; 1496 break; 1497 /* executable */ 1498 case 'e': 1499 rc = snprintf(out_ptr, out_end - out_ptr, 1500 "%s", current->comm); 1501 if (rc > out_end - out_ptr) 1502 goto out; 1503 out_ptr += rc; 1504 break; 1505 /* core limit size */ 1506 case 'c': 1507 rc = snprintf(out_ptr, out_end - out_ptr, 1508 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1509 if (rc > out_end - out_ptr) 1510 goto out; 1511 out_ptr += rc; 1512 break; 1513 default: 1514 break; 1515 } 1516 ++pat_ptr; 1517 } 1518 } 1519 /* Backward compatibility with core_uses_pid: 1520 * 1521 * If core_pattern does not include a %p (as is the default) 1522 * and core_uses_pid is set, then .%pid will be appended to 1523 * the filename. Do not do this for piped commands. */ 1524 if (!ispipe && !pid_in_pattern && core_uses_pid) { 1525 rc = snprintf(out_ptr, out_end - out_ptr, 1526 ".%d", task_tgid_vnr(current)); 1527 if (rc > out_end - out_ptr) 1528 goto out; 1529 out_ptr += rc; 1530 } 1531 out: 1532 *out_ptr = 0; 1533 return ispipe; 1534 } 1535 1536 static int zap_process(struct task_struct *start) 1537 { 1538 struct task_struct *t; 1539 int nr = 0; 1540 1541 start->signal->flags = SIGNAL_GROUP_EXIT; 1542 start->signal->group_stop_count = 0; 1543 1544 t = start; 1545 do { 1546 if (t != current && t->mm) { 1547 sigaddset(&t->pending.signal, SIGKILL); 1548 signal_wake_up(t, 1); 1549 nr++; 1550 } 1551 } while_each_thread(start, t); 1552 1553 return nr; 1554 } 1555 1556 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1557 struct core_state *core_state, int exit_code) 1558 { 1559 struct task_struct *g, *p; 1560 unsigned long flags; 1561 int nr = -EAGAIN; 1562 1563 spin_lock_irq(&tsk->sighand->siglock); 1564 if (!signal_group_exit(tsk->signal)) { 1565 mm->core_state = core_state; 1566 tsk->signal->group_exit_code = exit_code; 1567 nr = zap_process(tsk); 1568 } 1569 spin_unlock_irq(&tsk->sighand->siglock); 1570 if (unlikely(nr < 0)) 1571 return nr; 1572 1573 if (atomic_read(&mm->mm_users) == nr + 1) 1574 goto done; 1575 /* 1576 * We should find and kill all tasks which use this mm, and we should 1577 * count them correctly into ->nr_threads. We don't take tasklist 1578 * lock, but this is safe wrt: 1579 * 1580 * fork: 1581 * None of sub-threads can fork after zap_process(leader). All 1582 * processes which were created before this point should be 1583 * visible to zap_threads() because copy_process() adds the new 1584 * process to the tail of init_task.tasks list, and lock/unlock 1585 * of ->siglock provides a memory barrier. 1586 * 1587 * do_exit: 1588 * The caller holds mm->mmap_sem. This means that the task which 1589 * uses this mm can't pass exit_mm(), so it can't exit or clear 1590 * its ->mm. 1591 * 1592 * de_thread: 1593 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1594 * we must see either old or new leader, this does not matter. 1595 * However, it can change p->sighand, so lock_task_sighand(p) 1596 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1597 * it can't fail. 1598 * 1599 * Note also that "g" can be the old leader with ->mm == NULL 1600 * and already unhashed and thus removed from ->thread_group. 1601 * This is OK, __unhash_process()->list_del_rcu() does not 1602 * clear the ->next pointer, we will find the new leader via 1603 * next_thread(). 1604 */ 1605 rcu_read_lock(); 1606 for_each_process(g) { 1607 if (g == tsk->group_leader) 1608 continue; 1609 if (g->flags & PF_KTHREAD) 1610 continue; 1611 p = g; 1612 do { 1613 if (p->mm) { 1614 if (unlikely(p->mm == mm)) { 1615 lock_task_sighand(p, &flags); 1616 nr += zap_process(p); 1617 unlock_task_sighand(p, &flags); 1618 } 1619 break; 1620 } 1621 } while_each_thread(g, p); 1622 } 1623 rcu_read_unlock(); 1624 done: 1625 atomic_set(&core_state->nr_threads, nr); 1626 return nr; 1627 } 1628 1629 static int coredump_wait(int exit_code, struct core_state *core_state) 1630 { 1631 struct task_struct *tsk = current; 1632 struct mm_struct *mm = tsk->mm; 1633 struct completion *vfork_done; 1634 int core_waiters; 1635 1636 init_completion(&core_state->startup); 1637 core_state->dumper.task = tsk; 1638 core_state->dumper.next = NULL; 1639 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1640 up_write(&mm->mmap_sem); 1641 1642 if (unlikely(core_waiters < 0)) 1643 goto fail; 1644 1645 /* 1646 * Make sure nobody is waiting for us to release the VM, 1647 * otherwise we can deadlock when we wait on each other 1648 */ 1649 vfork_done = tsk->vfork_done; 1650 if (vfork_done) { 1651 tsk->vfork_done = NULL; 1652 complete(vfork_done); 1653 } 1654 1655 if (core_waiters) 1656 wait_for_completion(&core_state->startup); 1657 fail: 1658 return core_waiters; 1659 } 1660 1661 static void coredump_finish(struct mm_struct *mm) 1662 { 1663 struct core_thread *curr, *next; 1664 struct task_struct *task; 1665 1666 next = mm->core_state->dumper.next; 1667 while ((curr = next) != NULL) { 1668 next = curr->next; 1669 task = curr->task; 1670 /* 1671 * see exit_mm(), curr->task must not see 1672 * ->task == NULL before we read ->next. 1673 */ 1674 smp_mb(); 1675 curr->task = NULL; 1676 wake_up_process(task); 1677 } 1678 1679 mm->core_state = NULL; 1680 } 1681 1682 /* 1683 * set_dumpable converts traditional three-value dumpable to two flags and 1684 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1685 * these bits are not changed atomically. So get_dumpable can observe the 1686 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1687 * return either old dumpable or new one by paying attention to the order of 1688 * modifying the bits. 1689 * 1690 * dumpable | mm->flags (binary) 1691 * old new | initial interim final 1692 * ---------+----------------------- 1693 * 0 1 | 00 01 01 1694 * 0 2 | 00 10(*) 11 1695 * 1 0 | 01 00 00 1696 * 1 2 | 01 11 11 1697 * 2 0 | 11 10(*) 00 1698 * 2 1 | 11 11 01 1699 * 1700 * (*) get_dumpable regards interim value of 10 as 11. 1701 */ 1702 void set_dumpable(struct mm_struct *mm, int value) 1703 { 1704 switch (value) { 1705 case 0: 1706 clear_bit(MMF_DUMPABLE, &mm->flags); 1707 smp_wmb(); 1708 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1709 break; 1710 case 1: 1711 set_bit(MMF_DUMPABLE, &mm->flags); 1712 smp_wmb(); 1713 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1714 break; 1715 case 2: 1716 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1717 smp_wmb(); 1718 set_bit(MMF_DUMPABLE, &mm->flags); 1719 break; 1720 } 1721 } 1722 1723 int get_dumpable(struct mm_struct *mm) 1724 { 1725 int ret; 1726 1727 ret = mm->flags & 0x3; 1728 return (ret >= 2) ? 2 : ret; 1729 } 1730 1731 void do_coredump(long signr, int exit_code, struct pt_regs *regs) 1732 { 1733 struct core_state core_state; 1734 char corename[CORENAME_MAX_SIZE + 1]; 1735 struct mm_struct *mm = current->mm; 1736 struct linux_binfmt * binfmt; 1737 struct inode * inode; 1738 struct file * file; 1739 const struct cred *old_cred; 1740 struct cred *cred; 1741 int retval = 0; 1742 int flag = 0; 1743 int ispipe = 0; 1744 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; 1745 char **helper_argv = NULL; 1746 int helper_argc = 0; 1747 char *delimit; 1748 1749 audit_core_dumps(signr); 1750 1751 binfmt = current->binfmt; 1752 if (!binfmt || !binfmt->core_dump) 1753 goto fail; 1754 1755 cred = prepare_creds(); 1756 if (!cred) { 1757 retval = -ENOMEM; 1758 goto fail; 1759 } 1760 1761 down_write(&mm->mmap_sem); 1762 /* 1763 * If another thread got here first, or we are not dumpable, bail out. 1764 */ 1765 if (mm->core_state || !get_dumpable(mm)) { 1766 up_write(&mm->mmap_sem); 1767 put_cred(cred); 1768 goto fail; 1769 } 1770 1771 /* 1772 * We cannot trust fsuid as being the "true" uid of the 1773 * process nor do we know its entire history. We only know it 1774 * was tainted so we dump it as root in mode 2. 1775 */ 1776 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1777 flag = O_EXCL; /* Stop rewrite attacks */ 1778 cred->fsuid = 0; /* Dump root private */ 1779 } 1780 1781 retval = coredump_wait(exit_code, &core_state); 1782 if (retval < 0) { 1783 put_cred(cred); 1784 goto fail; 1785 } 1786 1787 old_cred = override_creds(cred); 1788 1789 /* 1790 * Clear any false indication of pending signals that might 1791 * be seen by the filesystem code called to write the core file. 1792 */ 1793 clear_thread_flag(TIF_SIGPENDING); 1794 1795 /* 1796 * lock_kernel() because format_corename() is controlled by sysctl, which 1797 * uses lock_kernel() 1798 */ 1799 lock_kernel(); 1800 ispipe = format_corename(corename, signr); 1801 unlock_kernel(); 1802 /* 1803 * Don't bother to check the RLIMIT_CORE value if core_pattern points 1804 * to a pipe. Since we're not writing directly to the filesystem 1805 * RLIMIT_CORE doesn't really apply, as no actual core file will be 1806 * created unless the pipe reader choses to write out the core file 1807 * at which point file size limits and permissions will be imposed 1808 * as it does with any other process 1809 */ 1810 if ((!ispipe) && (core_limit < binfmt->min_coredump)) 1811 goto fail_unlock; 1812 1813 if (ispipe) { 1814 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1815 if (!helper_argv) { 1816 printk(KERN_WARNING "%s failed to allocate memory\n", 1817 __func__); 1818 goto fail_unlock; 1819 } 1820 /* Terminate the string before the first option */ 1821 delimit = strchr(corename, ' '); 1822 if (delimit) 1823 *delimit = '\0'; 1824 delimit = strrchr(helper_argv[0], '/'); 1825 if (delimit) 1826 delimit++; 1827 else 1828 delimit = helper_argv[0]; 1829 if (!strcmp(delimit, current->comm)) { 1830 printk(KERN_NOTICE "Recursive core dump detected, " 1831 "aborting\n"); 1832 goto fail_unlock; 1833 } 1834 1835 core_limit = RLIM_INFINITY; 1836 1837 /* SIGPIPE can happen, but it's just never processed */ 1838 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, 1839 &file)) { 1840 printk(KERN_INFO "Core dump to %s pipe failed\n", 1841 corename); 1842 goto fail_unlock; 1843 } 1844 } else 1845 file = filp_open(corename, 1846 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1847 0600); 1848 if (IS_ERR(file)) 1849 goto fail_unlock; 1850 inode = file->f_path.dentry->d_inode; 1851 if (inode->i_nlink > 1) 1852 goto close_fail; /* multiple links - don't dump */ 1853 if (!ispipe && d_unhashed(file->f_path.dentry)) 1854 goto close_fail; 1855 1856 /* AK: actually i see no reason to not allow this for named pipes etc., 1857 but keep the previous behaviour for now. */ 1858 if (!ispipe && !S_ISREG(inode->i_mode)) 1859 goto close_fail; 1860 /* 1861 * Dont allow local users get cute and trick others to coredump 1862 * into their pre-created files: 1863 */ 1864 if (inode->i_uid != current_fsuid()) 1865 goto close_fail; 1866 if (!file->f_op) 1867 goto close_fail; 1868 if (!file->f_op->write) 1869 goto close_fail; 1870 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1871 goto close_fail; 1872 1873 retval = binfmt->core_dump(signr, regs, file, core_limit); 1874 1875 if (retval) 1876 current->signal->group_exit_code |= 0x80; 1877 close_fail: 1878 filp_close(file, NULL); 1879 fail_unlock: 1880 if (helper_argv) 1881 argv_free(helper_argv); 1882 1883 revert_creds(old_cred); 1884 put_cred(cred); 1885 coredump_finish(mm); 1886 fail: 1887 return; 1888 } 1889