xref: /linux/fs/exec.c (revision 6d729e44a55547c009d7a87ea66bff21a8e0afea)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/ima.h>
50 #include <linux/syscalls.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 #include <linux/tracehook.h>
55 #include <linux/kmod.h>
56 #include <linux/fsnotify.h>
57 #include <linux/fs_struct.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 int suid_dumpable = 0;
67 
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69 
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72 
73 int __register_binfmt(struct linux_binfmt * fmt, int insert)
74 {
75 	if (!fmt)
76 		return -EINVAL;
77 	write_lock(&binfmt_lock);
78 	insert ? list_add(&fmt->lh, &formats) :
79 		 list_add_tail(&fmt->lh, &formats);
80 	write_unlock(&binfmt_lock);
81 	return 0;
82 }
83 
84 EXPORT_SYMBOL(__register_binfmt);
85 
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88 	write_lock(&binfmt_lock);
89 	list_del(&fmt->lh);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(unregister_binfmt);
94 
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97 	module_put(fmt->module);
98 }
99 
100 /*
101  * Note that a shared library must be both readable and executable due to
102  * security reasons.
103  *
104  * Also note that we take the address to load from from the file itself.
105  */
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
107 {
108 	struct file *file;
109 	char *tmp = getname(library);
110 	int error = PTR_ERR(tmp);
111 
112 	if (IS_ERR(tmp))
113 		goto out;
114 
115 	file = do_filp_open(AT_FDCWD, tmp,
116 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
117 				MAY_READ | MAY_EXEC | MAY_OPEN);
118 	putname(tmp);
119 	error = PTR_ERR(file);
120 	if (IS_ERR(file))
121 		goto out;
122 
123 	error = -EINVAL;
124 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
125 		goto exit;
126 
127 	error = -EACCES;
128 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
129 		goto exit;
130 
131 	fsnotify_open(file->f_path.dentry);
132 
133 	error = -ENOEXEC;
134 	if(file->f_op) {
135 		struct linux_binfmt * fmt;
136 
137 		read_lock(&binfmt_lock);
138 		list_for_each_entry(fmt, &formats, lh) {
139 			if (!fmt->load_shlib)
140 				continue;
141 			if (!try_module_get(fmt->module))
142 				continue;
143 			read_unlock(&binfmt_lock);
144 			error = fmt->load_shlib(file);
145 			read_lock(&binfmt_lock);
146 			put_binfmt(fmt);
147 			if (error != -ENOEXEC)
148 				break;
149 		}
150 		read_unlock(&binfmt_lock);
151 	}
152 exit:
153 	fput(file);
154 out:
155   	return error;
156 }
157 
158 #ifdef CONFIG_MMU
159 
160 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
161 		int write)
162 {
163 	struct page *page;
164 	int ret;
165 
166 #ifdef CONFIG_STACK_GROWSUP
167 	if (write) {
168 		ret = expand_stack_downwards(bprm->vma, pos);
169 		if (ret < 0)
170 			return NULL;
171 	}
172 #endif
173 	ret = get_user_pages(current, bprm->mm, pos,
174 			1, write, 1, &page, NULL);
175 	if (ret <= 0)
176 		return NULL;
177 
178 	if (write) {
179 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
180 		struct rlimit *rlim;
181 
182 		/*
183 		 * We've historically supported up to 32 pages (ARG_MAX)
184 		 * of argument strings even with small stacks
185 		 */
186 		if (size <= ARG_MAX)
187 			return page;
188 
189 		/*
190 		 * Limit to 1/4-th the stack size for the argv+env strings.
191 		 * This ensures that:
192 		 *  - the remaining binfmt code will not run out of stack space,
193 		 *  - the program will have a reasonable amount of stack left
194 		 *    to work from.
195 		 */
196 		rlim = current->signal->rlim;
197 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
198 			put_page(page);
199 			return NULL;
200 		}
201 	}
202 
203 	return page;
204 }
205 
206 static void put_arg_page(struct page *page)
207 {
208 	put_page(page);
209 }
210 
211 static void free_arg_page(struct linux_binprm *bprm, int i)
212 {
213 }
214 
215 static void free_arg_pages(struct linux_binprm *bprm)
216 {
217 }
218 
219 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
220 		struct page *page)
221 {
222 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
223 }
224 
225 static int __bprm_mm_init(struct linux_binprm *bprm)
226 {
227 	int err;
228 	struct vm_area_struct *vma = NULL;
229 	struct mm_struct *mm = bprm->mm;
230 
231 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
232 	if (!vma)
233 		return -ENOMEM;
234 
235 	down_write(&mm->mmap_sem);
236 	vma->vm_mm = mm;
237 
238 	/*
239 	 * Place the stack at the largest stack address the architecture
240 	 * supports. Later, we'll move this to an appropriate place. We don't
241 	 * use STACK_TOP because that can depend on attributes which aren't
242 	 * configured yet.
243 	 */
244 	vma->vm_end = STACK_TOP_MAX;
245 	vma->vm_start = vma->vm_end - PAGE_SIZE;
246 	vma->vm_flags = VM_STACK_FLAGS;
247 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
248 	err = insert_vm_struct(mm, vma);
249 	if (err)
250 		goto err;
251 
252 	mm->stack_vm = mm->total_vm = 1;
253 	up_write(&mm->mmap_sem);
254 	bprm->p = vma->vm_end - sizeof(void *);
255 	return 0;
256 err:
257 	up_write(&mm->mmap_sem);
258 	bprm->vma = NULL;
259 	kmem_cache_free(vm_area_cachep, vma);
260 	return err;
261 }
262 
263 static bool valid_arg_len(struct linux_binprm *bprm, long len)
264 {
265 	return len <= MAX_ARG_STRLEN;
266 }
267 
268 #else
269 
270 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
271 		int write)
272 {
273 	struct page *page;
274 
275 	page = bprm->page[pos / PAGE_SIZE];
276 	if (!page && write) {
277 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
278 		if (!page)
279 			return NULL;
280 		bprm->page[pos / PAGE_SIZE] = page;
281 	}
282 
283 	return page;
284 }
285 
286 static void put_arg_page(struct page *page)
287 {
288 }
289 
290 static void free_arg_page(struct linux_binprm *bprm, int i)
291 {
292 	if (bprm->page[i]) {
293 		__free_page(bprm->page[i]);
294 		bprm->page[i] = NULL;
295 	}
296 }
297 
298 static void free_arg_pages(struct linux_binprm *bprm)
299 {
300 	int i;
301 
302 	for (i = 0; i < MAX_ARG_PAGES; i++)
303 		free_arg_page(bprm, i);
304 }
305 
306 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
307 		struct page *page)
308 {
309 }
310 
311 static int __bprm_mm_init(struct linux_binprm *bprm)
312 {
313 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
314 	return 0;
315 }
316 
317 static bool valid_arg_len(struct linux_binprm *bprm, long len)
318 {
319 	return len <= bprm->p;
320 }
321 
322 #endif /* CONFIG_MMU */
323 
324 /*
325  * Create a new mm_struct and populate it with a temporary stack
326  * vm_area_struct.  We don't have enough context at this point to set the stack
327  * flags, permissions, and offset, so we use temporary values.  We'll update
328  * them later in setup_arg_pages().
329  */
330 int bprm_mm_init(struct linux_binprm *bprm)
331 {
332 	int err;
333 	struct mm_struct *mm = NULL;
334 
335 	bprm->mm = mm = mm_alloc();
336 	err = -ENOMEM;
337 	if (!mm)
338 		goto err;
339 
340 	err = init_new_context(current, mm);
341 	if (err)
342 		goto err;
343 
344 	err = __bprm_mm_init(bprm);
345 	if (err)
346 		goto err;
347 
348 	return 0;
349 
350 err:
351 	if (mm) {
352 		bprm->mm = NULL;
353 		mmdrop(mm);
354 	}
355 
356 	return err;
357 }
358 
359 /*
360  * count() counts the number of strings in array ARGV.
361  */
362 static int count(char __user * __user * argv, int max)
363 {
364 	int i = 0;
365 
366 	if (argv != NULL) {
367 		for (;;) {
368 			char __user * p;
369 
370 			if (get_user(p, argv))
371 				return -EFAULT;
372 			if (!p)
373 				break;
374 			argv++;
375 			if (i++ >= max)
376 				return -E2BIG;
377 			cond_resched();
378 		}
379 	}
380 	return i;
381 }
382 
383 /*
384  * 'copy_strings()' copies argument/environment strings from the old
385  * processes's memory to the new process's stack.  The call to get_user_pages()
386  * ensures the destination page is created and not swapped out.
387  */
388 static int copy_strings(int argc, char __user * __user * argv,
389 			struct linux_binprm *bprm)
390 {
391 	struct page *kmapped_page = NULL;
392 	char *kaddr = NULL;
393 	unsigned long kpos = 0;
394 	int ret;
395 
396 	while (argc-- > 0) {
397 		char __user *str;
398 		int len;
399 		unsigned long pos;
400 
401 		if (get_user(str, argv+argc) ||
402 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
403 			ret = -EFAULT;
404 			goto out;
405 		}
406 
407 		if (!valid_arg_len(bprm, len)) {
408 			ret = -E2BIG;
409 			goto out;
410 		}
411 
412 		/* We're going to work our way backwords. */
413 		pos = bprm->p;
414 		str += len;
415 		bprm->p -= len;
416 
417 		while (len > 0) {
418 			int offset, bytes_to_copy;
419 
420 			offset = pos % PAGE_SIZE;
421 			if (offset == 0)
422 				offset = PAGE_SIZE;
423 
424 			bytes_to_copy = offset;
425 			if (bytes_to_copy > len)
426 				bytes_to_copy = len;
427 
428 			offset -= bytes_to_copy;
429 			pos -= bytes_to_copy;
430 			str -= bytes_to_copy;
431 			len -= bytes_to_copy;
432 
433 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
434 				struct page *page;
435 
436 				page = get_arg_page(bprm, pos, 1);
437 				if (!page) {
438 					ret = -E2BIG;
439 					goto out;
440 				}
441 
442 				if (kmapped_page) {
443 					flush_kernel_dcache_page(kmapped_page);
444 					kunmap(kmapped_page);
445 					put_arg_page(kmapped_page);
446 				}
447 				kmapped_page = page;
448 				kaddr = kmap(kmapped_page);
449 				kpos = pos & PAGE_MASK;
450 				flush_arg_page(bprm, kpos, kmapped_page);
451 			}
452 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
453 				ret = -EFAULT;
454 				goto out;
455 			}
456 		}
457 	}
458 	ret = 0;
459 out:
460 	if (kmapped_page) {
461 		flush_kernel_dcache_page(kmapped_page);
462 		kunmap(kmapped_page);
463 		put_arg_page(kmapped_page);
464 	}
465 	return ret;
466 }
467 
468 /*
469  * Like copy_strings, but get argv and its values from kernel memory.
470  */
471 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
472 {
473 	int r;
474 	mm_segment_t oldfs = get_fs();
475 	set_fs(KERNEL_DS);
476 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
477 	set_fs(oldfs);
478 	return r;
479 }
480 EXPORT_SYMBOL(copy_strings_kernel);
481 
482 #ifdef CONFIG_MMU
483 
484 /*
485  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
486  * the binfmt code determines where the new stack should reside, we shift it to
487  * its final location.  The process proceeds as follows:
488  *
489  * 1) Use shift to calculate the new vma endpoints.
490  * 2) Extend vma to cover both the old and new ranges.  This ensures the
491  *    arguments passed to subsequent functions are consistent.
492  * 3) Move vma's page tables to the new range.
493  * 4) Free up any cleared pgd range.
494  * 5) Shrink the vma to cover only the new range.
495  */
496 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
497 {
498 	struct mm_struct *mm = vma->vm_mm;
499 	unsigned long old_start = vma->vm_start;
500 	unsigned long old_end = vma->vm_end;
501 	unsigned long length = old_end - old_start;
502 	unsigned long new_start = old_start - shift;
503 	unsigned long new_end = old_end - shift;
504 	struct mmu_gather *tlb;
505 
506 	BUG_ON(new_start > new_end);
507 
508 	/*
509 	 * ensure there are no vmas between where we want to go
510 	 * and where we are
511 	 */
512 	if (vma != find_vma(mm, new_start))
513 		return -EFAULT;
514 
515 	/*
516 	 * cover the whole range: [new_start, old_end)
517 	 */
518 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
519 
520 	/*
521 	 * move the page tables downwards, on failure we rely on
522 	 * process cleanup to remove whatever mess we made.
523 	 */
524 	if (length != move_page_tables(vma, old_start,
525 				       vma, new_start, length))
526 		return -ENOMEM;
527 
528 	lru_add_drain();
529 	tlb = tlb_gather_mmu(mm, 0);
530 	if (new_end > old_start) {
531 		/*
532 		 * when the old and new regions overlap clear from new_end.
533 		 */
534 		free_pgd_range(tlb, new_end, old_end, new_end,
535 			vma->vm_next ? vma->vm_next->vm_start : 0);
536 	} else {
537 		/*
538 		 * otherwise, clean from old_start; this is done to not touch
539 		 * the address space in [new_end, old_start) some architectures
540 		 * have constraints on va-space that make this illegal (IA64) -
541 		 * for the others its just a little faster.
542 		 */
543 		free_pgd_range(tlb, old_start, old_end, new_end,
544 			vma->vm_next ? vma->vm_next->vm_start : 0);
545 	}
546 	tlb_finish_mmu(tlb, new_end, old_end);
547 
548 	/*
549 	 * shrink the vma to just the new range.
550 	 */
551 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
552 
553 	return 0;
554 }
555 
556 #define EXTRA_STACK_VM_PAGES	20	/* random */
557 
558 /*
559  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
560  * the stack is optionally relocated, and some extra space is added.
561  */
562 int setup_arg_pages(struct linux_binprm *bprm,
563 		    unsigned long stack_top,
564 		    int executable_stack)
565 {
566 	unsigned long ret;
567 	unsigned long stack_shift;
568 	struct mm_struct *mm = current->mm;
569 	struct vm_area_struct *vma = bprm->vma;
570 	struct vm_area_struct *prev = NULL;
571 	unsigned long vm_flags;
572 	unsigned long stack_base;
573 
574 #ifdef CONFIG_STACK_GROWSUP
575 	/* Limit stack size to 1GB */
576 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
577 	if (stack_base > (1 << 30))
578 		stack_base = 1 << 30;
579 
580 	/* Make sure we didn't let the argument array grow too large. */
581 	if (vma->vm_end - vma->vm_start > stack_base)
582 		return -ENOMEM;
583 
584 	stack_base = PAGE_ALIGN(stack_top - stack_base);
585 
586 	stack_shift = vma->vm_start - stack_base;
587 	mm->arg_start = bprm->p - stack_shift;
588 	bprm->p = vma->vm_end - stack_shift;
589 #else
590 	stack_top = arch_align_stack(stack_top);
591 	stack_top = PAGE_ALIGN(stack_top);
592 	stack_shift = vma->vm_end - stack_top;
593 
594 	bprm->p -= stack_shift;
595 	mm->arg_start = bprm->p;
596 #endif
597 
598 	if (bprm->loader)
599 		bprm->loader -= stack_shift;
600 	bprm->exec -= stack_shift;
601 
602 	down_write(&mm->mmap_sem);
603 	vm_flags = VM_STACK_FLAGS;
604 
605 	/*
606 	 * Adjust stack execute permissions; explicitly enable for
607 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
608 	 * (arch default) otherwise.
609 	 */
610 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
611 		vm_flags |= VM_EXEC;
612 	else if (executable_stack == EXSTACK_DISABLE_X)
613 		vm_flags &= ~VM_EXEC;
614 	vm_flags |= mm->def_flags;
615 
616 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
617 			vm_flags);
618 	if (ret)
619 		goto out_unlock;
620 	BUG_ON(prev != vma);
621 
622 	/* Move stack pages down in memory. */
623 	if (stack_shift) {
624 		ret = shift_arg_pages(vma, stack_shift);
625 		if (ret) {
626 			up_write(&mm->mmap_sem);
627 			return ret;
628 		}
629 	}
630 
631 #ifdef CONFIG_STACK_GROWSUP
632 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
633 #else
634 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
635 #endif
636 	ret = expand_stack(vma, stack_base);
637 	if (ret)
638 		ret = -EFAULT;
639 
640 out_unlock:
641 	up_write(&mm->mmap_sem);
642 	return 0;
643 }
644 EXPORT_SYMBOL(setup_arg_pages);
645 
646 #endif /* CONFIG_MMU */
647 
648 struct file *open_exec(const char *name)
649 {
650 	struct file *file;
651 	int err;
652 
653 	file = do_filp_open(AT_FDCWD, name,
654 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
655 				MAY_EXEC | MAY_OPEN);
656 	if (IS_ERR(file))
657 		goto out;
658 
659 	err = -EACCES;
660 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
661 		goto exit;
662 
663 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
664 		goto exit;
665 
666 	fsnotify_open(file->f_path.dentry);
667 
668 	err = deny_write_access(file);
669 	if (err)
670 		goto exit;
671 
672 out:
673 	return file;
674 
675 exit:
676 	fput(file);
677 	return ERR_PTR(err);
678 }
679 EXPORT_SYMBOL(open_exec);
680 
681 int kernel_read(struct file *file, loff_t offset,
682 		char *addr, unsigned long count)
683 {
684 	mm_segment_t old_fs;
685 	loff_t pos = offset;
686 	int result;
687 
688 	old_fs = get_fs();
689 	set_fs(get_ds());
690 	/* The cast to a user pointer is valid due to the set_fs() */
691 	result = vfs_read(file, (void __user *)addr, count, &pos);
692 	set_fs(old_fs);
693 	return result;
694 }
695 
696 EXPORT_SYMBOL(kernel_read);
697 
698 static int exec_mmap(struct mm_struct *mm)
699 {
700 	struct task_struct *tsk;
701 	struct mm_struct * old_mm, *active_mm;
702 
703 	/* Notify parent that we're no longer interested in the old VM */
704 	tsk = current;
705 	old_mm = current->mm;
706 	mm_release(tsk, old_mm);
707 
708 	if (old_mm) {
709 		/*
710 		 * Make sure that if there is a core dump in progress
711 		 * for the old mm, we get out and die instead of going
712 		 * through with the exec.  We must hold mmap_sem around
713 		 * checking core_state and changing tsk->mm.
714 		 */
715 		down_read(&old_mm->mmap_sem);
716 		if (unlikely(old_mm->core_state)) {
717 			up_read(&old_mm->mmap_sem);
718 			return -EINTR;
719 		}
720 	}
721 	task_lock(tsk);
722 	active_mm = tsk->active_mm;
723 	tsk->mm = mm;
724 	tsk->active_mm = mm;
725 	activate_mm(active_mm, mm);
726 	task_unlock(tsk);
727 	arch_pick_mmap_layout(mm);
728 	if (old_mm) {
729 		up_read(&old_mm->mmap_sem);
730 		BUG_ON(active_mm != old_mm);
731 		mm_update_next_owner(old_mm);
732 		mmput(old_mm);
733 		return 0;
734 	}
735 	mmdrop(active_mm);
736 	return 0;
737 }
738 
739 /*
740  * This function makes sure the current process has its own signal table,
741  * so that flush_signal_handlers can later reset the handlers without
742  * disturbing other processes.  (Other processes might share the signal
743  * table via the CLONE_SIGHAND option to clone().)
744  */
745 static int de_thread(struct task_struct *tsk)
746 {
747 	struct signal_struct *sig = tsk->signal;
748 	struct sighand_struct *oldsighand = tsk->sighand;
749 	spinlock_t *lock = &oldsighand->siglock;
750 	int count;
751 
752 	if (thread_group_empty(tsk))
753 		goto no_thread_group;
754 
755 	/*
756 	 * Kill all other threads in the thread group.
757 	 */
758 	spin_lock_irq(lock);
759 	if (signal_group_exit(sig)) {
760 		/*
761 		 * Another group action in progress, just
762 		 * return so that the signal is processed.
763 		 */
764 		spin_unlock_irq(lock);
765 		return -EAGAIN;
766 	}
767 	sig->group_exit_task = tsk;
768 	zap_other_threads(tsk);
769 
770 	/* Account for the thread group leader hanging around: */
771 	count = thread_group_leader(tsk) ? 1 : 2;
772 	sig->notify_count = count;
773 	while (atomic_read(&sig->count) > count) {
774 		__set_current_state(TASK_UNINTERRUPTIBLE);
775 		spin_unlock_irq(lock);
776 		schedule();
777 		spin_lock_irq(lock);
778 	}
779 	spin_unlock_irq(lock);
780 
781 	/*
782 	 * At this point all other threads have exited, all we have to
783 	 * do is to wait for the thread group leader to become inactive,
784 	 * and to assume its PID:
785 	 */
786 	if (!thread_group_leader(tsk)) {
787 		struct task_struct *leader = tsk->group_leader;
788 
789 		sig->notify_count = -1;	/* for exit_notify() */
790 		for (;;) {
791 			write_lock_irq(&tasklist_lock);
792 			if (likely(leader->exit_state))
793 				break;
794 			__set_current_state(TASK_UNINTERRUPTIBLE);
795 			write_unlock_irq(&tasklist_lock);
796 			schedule();
797 		}
798 
799 		/*
800 		 * The only record we have of the real-time age of a
801 		 * process, regardless of execs it's done, is start_time.
802 		 * All the past CPU time is accumulated in signal_struct
803 		 * from sister threads now dead.  But in this non-leader
804 		 * exec, nothing survives from the original leader thread,
805 		 * whose birth marks the true age of this process now.
806 		 * When we take on its identity by switching to its PID, we
807 		 * also take its birthdate (always earlier than our own).
808 		 */
809 		tsk->start_time = leader->start_time;
810 
811 		BUG_ON(!same_thread_group(leader, tsk));
812 		BUG_ON(has_group_leader_pid(tsk));
813 		/*
814 		 * An exec() starts a new thread group with the
815 		 * TGID of the previous thread group. Rehash the
816 		 * two threads with a switched PID, and release
817 		 * the former thread group leader:
818 		 */
819 
820 		/* Become a process group leader with the old leader's pid.
821 		 * The old leader becomes a thread of the this thread group.
822 		 * Note: The old leader also uses this pid until release_task
823 		 *       is called.  Odd but simple and correct.
824 		 */
825 		detach_pid(tsk, PIDTYPE_PID);
826 		tsk->pid = leader->pid;
827 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
828 		transfer_pid(leader, tsk, PIDTYPE_PGID);
829 		transfer_pid(leader, tsk, PIDTYPE_SID);
830 		list_replace_rcu(&leader->tasks, &tsk->tasks);
831 
832 		tsk->group_leader = tsk;
833 		leader->group_leader = tsk;
834 
835 		tsk->exit_signal = SIGCHLD;
836 
837 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
838 		leader->exit_state = EXIT_DEAD;
839 		write_unlock_irq(&tasklist_lock);
840 
841 		release_task(leader);
842 	}
843 
844 	sig->group_exit_task = NULL;
845 	sig->notify_count = 0;
846 
847 no_thread_group:
848 	if (current->mm)
849 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
850 
851 	exit_itimers(sig);
852 	flush_itimer_signals();
853 
854 	if (atomic_read(&oldsighand->count) != 1) {
855 		struct sighand_struct *newsighand;
856 		/*
857 		 * This ->sighand is shared with the CLONE_SIGHAND
858 		 * but not CLONE_THREAD task, switch to the new one.
859 		 */
860 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
861 		if (!newsighand)
862 			return -ENOMEM;
863 
864 		atomic_set(&newsighand->count, 1);
865 		memcpy(newsighand->action, oldsighand->action,
866 		       sizeof(newsighand->action));
867 
868 		write_lock_irq(&tasklist_lock);
869 		spin_lock(&oldsighand->siglock);
870 		rcu_assign_pointer(tsk->sighand, newsighand);
871 		spin_unlock(&oldsighand->siglock);
872 		write_unlock_irq(&tasklist_lock);
873 
874 		__cleanup_sighand(oldsighand);
875 	}
876 
877 	BUG_ON(!thread_group_leader(tsk));
878 	return 0;
879 }
880 
881 /*
882  * These functions flushes out all traces of the currently running executable
883  * so that a new one can be started
884  */
885 static void flush_old_files(struct files_struct * files)
886 {
887 	long j = -1;
888 	struct fdtable *fdt;
889 
890 	spin_lock(&files->file_lock);
891 	for (;;) {
892 		unsigned long set, i;
893 
894 		j++;
895 		i = j * __NFDBITS;
896 		fdt = files_fdtable(files);
897 		if (i >= fdt->max_fds)
898 			break;
899 		set = fdt->close_on_exec->fds_bits[j];
900 		if (!set)
901 			continue;
902 		fdt->close_on_exec->fds_bits[j] = 0;
903 		spin_unlock(&files->file_lock);
904 		for ( ; set ; i++,set >>= 1) {
905 			if (set & 1) {
906 				sys_close(i);
907 			}
908 		}
909 		spin_lock(&files->file_lock);
910 
911 	}
912 	spin_unlock(&files->file_lock);
913 }
914 
915 char *get_task_comm(char *buf, struct task_struct *tsk)
916 {
917 	/* buf must be at least sizeof(tsk->comm) in size */
918 	task_lock(tsk);
919 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
920 	task_unlock(tsk);
921 	return buf;
922 }
923 
924 void set_task_comm(struct task_struct *tsk, char *buf)
925 {
926 	task_lock(tsk);
927 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
928 	task_unlock(tsk);
929 	perf_event_comm(tsk);
930 }
931 
932 int flush_old_exec(struct linux_binprm * bprm)
933 {
934 	char * name;
935 	int i, ch, retval;
936 	char tcomm[sizeof(current->comm)];
937 
938 	/*
939 	 * Make sure we have a private signal table and that
940 	 * we are unassociated from the previous thread group.
941 	 */
942 	retval = de_thread(current);
943 	if (retval)
944 		goto out;
945 
946 	set_mm_exe_file(bprm->mm, bprm->file);
947 
948 	/*
949 	 * Release all of the old mmap stuff
950 	 */
951 	retval = exec_mmap(bprm->mm);
952 	if (retval)
953 		goto out;
954 
955 	bprm->mm = NULL;		/* We're using it now */
956 
957 	/* This is the point of no return */
958 	current->sas_ss_sp = current->sas_ss_size = 0;
959 
960 	if (current_euid() == current_uid() && current_egid() == current_gid())
961 		set_dumpable(current->mm, 1);
962 	else
963 		set_dumpable(current->mm, suid_dumpable);
964 
965 	name = bprm->filename;
966 
967 	/* Copies the binary name from after last slash */
968 	for (i=0; (ch = *(name++)) != '\0';) {
969 		if (ch == '/')
970 			i = 0; /* overwrite what we wrote */
971 		else
972 			if (i < (sizeof(tcomm) - 1))
973 				tcomm[i++] = ch;
974 	}
975 	tcomm[i] = '\0';
976 	set_task_comm(current, tcomm);
977 
978 	current->flags &= ~PF_RANDOMIZE;
979 	flush_thread();
980 
981 	/* Set the new mm task size. We have to do that late because it may
982 	 * depend on TIF_32BIT which is only updated in flush_thread() on
983 	 * some architectures like powerpc
984 	 */
985 	current->mm->task_size = TASK_SIZE;
986 
987 	/* install the new credentials */
988 	if (bprm->cred->uid != current_euid() ||
989 	    bprm->cred->gid != current_egid()) {
990 		current->pdeath_signal = 0;
991 	} else if (file_permission(bprm->file, MAY_READ) ||
992 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
993 		set_dumpable(current->mm, suid_dumpable);
994 	}
995 
996 	current->personality &= ~bprm->per_clear;
997 
998 	/*
999 	 * Flush performance counters when crossing a
1000 	 * security domain:
1001 	 */
1002 	if (!get_dumpable(current->mm))
1003 		perf_event_exit_task(current);
1004 
1005 	/* An exec changes our domain. We are no longer part of the thread
1006 	   group */
1007 
1008 	current->self_exec_id++;
1009 
1010 	flush_signal_handlers(current, 0);
1011 	flush_old_files(current->files);
1012 
1013 	return 0;
1014 
1015 out:
1016 	return retval;
1017 }
1018 
1019 EXPORT_SYMBOL(flush_old_exec);
1020 
1021 /*
1022  * Prepare credentials and lock ->cred_guard_mutex.
1023  * install_exec_creds() commits the new creds and drops the lock.
1024  * Or, if exec fails before, free_bprm() should release ->cred and
1025  * and unlock.
1026  */
1027 int prepare_bprm_creds(struct linux_binprm *bprm)
1028 {
1029 	if (mutex_lock_interruptible(&current->cred_guard_mutex))
1030 		return -ERESTARTNOINTR;
1031 
1032 	bprm->cred = prepare_exec_creds();
1033 	if (likely(bprm->cred))
1034 		return 0;
1035 
1036 	mutex_unlock(&current->cred_guard_mutex);
1037 	return -ENOMEM;
1038 }
1039 
1040 void free_bprm(struct linux_binprm *bprm)
1041 {
1042 	free_arg_pages(bprm);
1043 	if (bprm->cred) {
1044 		mutex_unlock(&current->cred_guard_mutex);
1045 		abort_creds(bprm->cred);
1046 	}
1047 	kfree(bprm);
1048 }
1049 
1050 /*
1051  * install the new credentials for this executable
1052  */
1053 void install_exec_creds(struct linux_binprm *bprm)
1054 {
1055 	security_bprm_committing_creds(bprm);
1056 
1057 	commit_creds(bprm->cred);
1058 	bprm->cred = NULL;
1059 	/*
1060 	 * cred_guard_mutex must be held at least to this point to prevent
1061 	 * ptrace_attach() from altering our determination of the task's
1062 	 * credentials; any time after this it may be unlocked.
1063 	 */
1064 	security_bprm_committed_creds(bprm);
1065 	mutex_unlock(&current->cred_guard_mutex);
1066 }
1067 EXPORT_SYMBOL(install_exec_creds);
1068 
1069 /*
1070  * determine how safe it is to execute the proposed program
1071  * - the caller must hold current->cred_guard_mutex to protect against
1072  *   PTRACE_ATTACH
1073  */
1074 int check_unsafe_exec(struct linux_binprm *bprm)
1075 {
1076 	struct task_struct *p = current, *t;
1077 	unsigned n_fs;
1078 	int res = 0;
1079 
1080 	bprm->unsafe = tracehook_unsafe_exec(p);
1081 
1082 	n_fs = 1;
1083 	write_lock(&p->fs->lock);
1084 	rcu_read_lock();
1085 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1086 		if (t->fs == p->fs)
1087 			n_fs++;
1088 	}
1089 	rcu_read_unlock();
1090 
1091 	if (p->fs->users > n_fs) {
1092 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1093 	} else {
1094 		res = -EAGAIN;
1095 		if (!p->fs->in_exec) {
1096 			p->fs->in_exec = 1;
1097 			res = 1;
1098 		}
1099 	}
1100 	write_unlock(&p->fs->lock);
1101 
1102 	return res;
1103 }
1104 
1105 /*
1106  * Fill the binprm structure from the inode.
1107  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1108  *
1109  * This may be called multiple times for binary chains (scripts for example).
1110  */
1111 int prepare_binprm(struct linux_binprm *bprm)
1112 {
1113 	umode_t mode;
1114 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1115 	int retval;
1116 
1117 	mode = inode->i_mode;
1118 	if (bprm->file->f_op == NULL)
1119 		return -EACCES;
1120 
1121 	/* clear any previous set[ug]id data from a previous binary */
1122 	bprm->cred->euid = current_euid();
1123 	bprm->cred->egid = current_egid();
1124 
1125 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1126 		/* Set-uid? */
1127 		if (mode & S_ISUID) {
1128 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1129 			bprm->cred->euid = inode->i_uid;
1130 		}
1131 
1132 		/* Set-gid? */
1133 		/*
1134 		 * If setgid is set but no group execute bit then this
1135 		 * is a candidate for mandatory locking, not a setgid
1136 		 * executable.
1137 		 */
1138 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1139 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1140 			bprm->cred->egid = inode->i_gid;
1141 		}
1142 	}
1143 
1144 	/* fill in binprm security blob */
1145 	retval = security_bprm_set_creds(bprm);
1146 	if (retval)
1147 		return retval;
1148 	bprm->cred_prepared = 1;
1149 
1150 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1151 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1152 }
1153 
1154 EXPORT_SYMBOL(prepare_binprm);
1155 
1156 /*
1157  * Arguments are '\0' separated strings found at the location bprm->p
1158  * points to; chop off the first by relocating brpm->p to right after
1159  * the first '\0' encountered.
1160  */
1161 int remove_arg_zero(struct linux_binprm *bprm)
1162 {
1163 	int ret = 0;
1164 	unsigned long offset;
1165 	char *kaddr;
1166 	struct page *page;
1167 
1168 	if (!bprm->argc)
1169 		return 0;
1170 
1171 	do {
1172 		offset = bprm->p & ~PAGE_MASK;
1173 		page = get_arg_page(bprm, bprm->p, 0);
1174 		if (!page) {
1175 			ret = -EFAULT;
1176 			goto out;
1177 		}
1178 		kaddr = kmap_atomic(page, KM_USER0);
1179 
1180 		for (; offset < PAGE_SIZE && kaddr[offset];
1181 				offset++, bprm->p++)
1182 			;
1183 
1184 		kunmap_atomic(kaddr, KM_USER0);
1185 		put_arg_page(page);
1186 
1187 		if (offset == PAGE_SIZE)
1188 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1189 	} while (offset == PAGE_SIZE);
1190 
1191 	bprm->p++;
1192 	bprm->argc--;
1193 	ret = 0;
1194 
1195 out:
1196 	return ret;
1197 }
1198 EXPORT_SYMBOL(remove_arg_zero);
1199 
1200 /*
1201  * cycle the list of binary formats handler, until one recognizes the image
1202  */
1203 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1204 {
1205 	unsigned int depth = bprm->recursion_depth;
1206 	int try,retval;
1207 	struct linux_binfmt *fmt;
1208 
1209 	retval = security_bprm_check(bprm);
1210 	if (retval)
1211 		return retval;
1212 	retval = ima_bprm_check(bprm);
1213 	if (retval)
1214 		return retval;
1215 
1216 	/* kernel module loader fixup */
1217 	/* so we don't try to load run modprobe in kernel space. */
1218 	set_fs(USER_DS);
1219 
1220 	retval = audit_bprm(bprm);
1221 	if (retval)
1222 		return retval;
1223 
1224 	retval = -ENOENT;
1225 	for (try=0; try<2; try++) {
1226 		read_lock(&binfmt_lock);
1227 		list_for_each_entry(fmt, &formats, lh) {
1228 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1229 			if (!fn)
1230 				continue;
1231 			if (!try_module_get(fmt->module))
1232 				continue;
1233 			read_unlock(&binfmt_lock);
1234 			retval = fn(bprm, regs);
1235 			/*
1236 			 * Restore the depth counter to its starting value
1237 			 * in this call, so we don't have to rely on every
1238 			 * load_binary function to restore it on return.
1239 			 */
1240 			bprm->recursion_depth = depth;
1241 			if (retval >= 0) {
1242 				if (depth == 0)
1243 					tracehook_report_exec(fmt, bprm, regs);
1244 				put_binfmt(fmt);
1245 				allow_write_access(bprm->file);
1246 				if (bprm->file)
1247 					fput(bprm->file);
1248 				bprm->file = NULL;
1249 				current->did_exec = 1;
1250 				proc_exec_connector(current);
1251 				return retval;
1252 			}
1253 			read_lock(&binfmt_lock);
1254 			put_binfmt(fmt);
1255 			if (retval != -ENOEXEC || bprm->mm == NULL)
1256 				break;
1257 			if (!bprm->file) {
1258 				read_unlock(&binfmt_lock);
1259 				return retval;
1260 			}
1261 		}
1262 		read_unlock(&binfmt_lock);
1263 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1264 			break;
1265 #ifdef CONFIG_MODULES
1266 		} else {
1267 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1268 			if (printable(bprm->buf[0]) &&
1269 			    printable(bprm->buf[1]) &&
1270 			    printable(bprm->buf[2]) &&
1271 			    printable(bprm->buf[3]))
1272 				break; /* -ENOEXEC */
1273 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1274 #endif
1275 		}
1276 	}
1277 	return retval;
1278 }
1279 
1280 EXPORT_SYMBOL(search_binary_handler);
1281 
1282 /*
1283  * sys_execve() executes a new program.
1284  */
1285 int do_execve(char * filename,
1286 	char __user *__user *argv,
1287 	char __user *__user *envp,
1288 	struct pt_regs * regs)
1289 {
1290 	struct linux_binprm *bprm;
1291 	struct file *file;
1292 	struct files_struct *displaced;
1293 	bool clear_in_exec;
1294 	int retval;
1295 
1296 	retval = unshare_files(&displaced);
1297 	if (retval)
1298 		goto out_ret;
1299 
1300 	retval = -ENOMEM;
1301 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1302 	if (!bprm)
1303 		goto out_files;
1304 
1305 	retval = prepare_bprm_creds(bprm);
1306 	if (retval)
1307 		goto out_free;
1308 
1309 	retval = check_unsafe_exec(bprm);
1310 	if (retval < 0)
1311 		goto out_free;
1312 	clear_in_exec = retval;
1313 	current->in_execve = 1;
1314 
1315 	file = open_exec(filename);
1316 	retval = PTR_ERR(file);
1317 	if (IS_ERR(file))
1318 		goto out_unmark;
1319 
1320 	sched_exec();
1321 
1322 	bprm->file = file;
1323 	bprm->filename = filename;
1324 	bprm->interp = filename;
1325 
1326 	retval = bprm_mm_init(bprm);
1327 	if (retval)
1328 		goto out_file;
1329 
1330 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1331 	if ((retval = bprm->argc) < 0)
1332 		goto out;
1333 
1334 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1335 	if ((retval = bprm->envc) < 0)
1336 		goto out;
1337 
1338 	retval = prepare_binprm(bprm);
1339 	if (retval < 0)
1340 		goto out;
1341 
1342 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1343 	if (retval < 0)
1344 		goto out;
1345 
1346 	bprm->exec = bprm->p;
1347 	retval = copy_strings(bprm->envc, envp, bprm);
1348 	if (retval < 0)
1349 		goto out;
1350 
1351 	retval = copy_strings(bprm->argc, argv, bprm);
1352 	if (retval < 0)
1353 		goto out;
1354 
1355 	current->flags &= ~PF_KTHREAD;
1356 	retval = search_binary_handler(bprm,regs);
1357 	if (retval < 0)
1358 		goto out;
1359 
1360 	current->stack_start = current->mm->start_stack;
1361 
1362 	/* execve succeeded */
1363 	current->fs->in_exec = 0;
1364 	current->in_execve = 0;
1365 	acct_update_integrals(current);
1366 	free_bprm(bprm);
1367 	if (displaced)
1368 		put_files_struct(displaced);
1369 	return retval;
1370 
1371 out:
1372 	if (bprm->mm)
1373 		mmput (bprm->mm);
1374 
1375 out_file:
1376 	if (bprm->file) {
1377 		allow_write_access(bprm->file);
1378 		fput(bprm->file);
1379 	}
1380 
1381 out_unmark:
1382 	if (clear_in_exec)
1383 		current->fs->in_exec = 0;
1384 	current->in_execve = 0;
1385 
1386 out_free:
1387 	free_bprm(bprm);
1388 
1389 out_files:
1390 	if (displaced)
1391 		reset_files_struct(displaced);
1392 out_ret:
1393 	return retval;
1394 }
1395 
1396 int set_binfmt(struct linux_binfmt *new)
1397 {
1398 	struct linux_binfmt *old = current->binfmt;
1399 
1400 	if (new) {
1401 		if (!try_module_get(new->module))
1402 			return -1;
1403 	}
1404 	current->binfmt = new;
1405 	if (old)
1406 		module_put(old->module);
1407 	return 0;
1408 }
1409 
1410 EXPORT_SYMBOL(set_binfmt);
1411 
1412 /* format_corename will inspect the pattern parameter, and output a
1413  * name into corename, which must have space for at least
1414  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1415  */
1416 static int format_corename(char *corename, long signr)
1417 {
1418 	const struct cred *cred = current_cred();
1419 	const char *pat_ptr = core_pattern;
1420 	int ispipe = (*pat_ptr == '|');
1421 	char *out_ptr = corename;
1422 	char *const out_end = corename + CORENAME_MAX_SIZE;
1423 	int rc;
1424 	int pid_in_pattern = 0;
1425 
1426 	/* Repeat as long as we have more pattern to process and more output
1427 	   space */
1428 	while (*pat_ptr) {
1429 		if (*pat_ptr != '%') {
1430 			if (out_ptr == out_end)
1431 				goto out;
1432 			*out_ptr++ = *pat_ptr++;
1433 		} else {
1434 			switch (*++pat_ptr) {
1435 			case 0:
1436 				goto out;
1437 			/* Double percent, output one percent */
1438 			case '%':
1439 				if (out_ptr == out_end)
1440 					goto out;
1441 				*out_ptr++ = '%';
1442 				break;
1443 			/* pid */
1444 			case 'p':
1445 				pid_in_pattern = 1;
1446 				rc = snprintf(out_ptr, out_end - out_ptr,
1447 					      "%d", task_tgid_vnr(current));
1448 				if (rc > out_end - out_ptr)
1449 					goto out;
1450 				out_ptr += rc;
1451 				break;
1452 			/* uid */
1453 			case 'u':
1454 				rc = snprintf(out_ptr, out_end - out_ptr,
1455 					      "%d", cred->uid);
1456 				if (rc > out_end - out_ptr)
1457 					goto out;
1458 				out_ptr += rc;
1459 				break;
1460 			/* gid */
1461 			case 'g':
1462 				rc = snprintf(out_ptr, out_end - out_ptr,
1463 					      "%d", cred->gid);
1464 				if (rc > out_end - out_ptr)
1465 					goto out;
1466 				out_ptr += rc;
1467 				break;
1468 			/* signal that caused the coredump */
1469 			case 's':
1470 				rc = snprintf(out_ptr, out_end - out_ptr,
1471 					      "%ld", signr);
1472 				if (rc > out_end - out_ptr)
1473 					goto out;
1474 				out_ptr += rc;
1475 				break;
1476 			/* UNIX time of coredump */
1477 			case 't': {
1478 				struct timeval tv;
1479 				do_gettimeofday(&tv);
1480 				rc = snprintf(out_ptr, out_end - out_ptr,
1481 					      "%lu", tv.tv_sec);
1482 				if (rc > out_end - out_ptr)
1483 					goto out;
1484 				out_ptr += rc;
1485 				break;
1486 			}
1487 			/* hostname */
1488 			case 'h':
1489 				down_read(&uts_sem);
1490 				rc = snprintf(out_ptr, out_end - out_ptr,
1491 					      "%s", utsname()->nodename);
1492 				up_read(&uts_sem);
1493 				if (rc > out_end - out_ptr)
1494 					goto out;
1495 				out_ptr += rc;
1496 				break;
1497 			/* executable */
1498 			case 'e':
1499 				rc = snprintf(out_ptr, out_end - out_ptr,
1500 					      "%s", current->comm);
1501 				if (rc > out_end - out_ptr)
1502 					goto out;
1503 				out_ptr += rc;
1504 				break;
1505 			/* core limit size */
1506 			case 'c':
1507 				rc = snprintf(out_ptr, out_end - out_ptr,
1508 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1509 				if (rc > out_end - out_ptr)
1510 					goto out;
1511 				out_ptr += rc;
1512 				break;
1513 			default:
1514 				break;
1515 			}
1516 			++pat_ptr;
1517 		}
1518 	}
1519 	/* Backward compatibility with core_uses_pid:
1520 	 *
1521 	 * If core_pattern does not include a %p (as is the default)
1522 	 * and core_uses_pid is set, then .%pid will be appended to
1523 	 * the filename. Do not do this for piped commands. */
1524 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1525 		rc = snprintf(out_ptr, out_end - out_ptr,
1526 			      ".%d", task_tgid_vnr(current));
1527 		if (rc > out_end - out_ptr)
1528 			goto out;
1529 		out_ptr += rc;
1530 	}
1531 out:
1532 	*out_ptr = 0;
1533 	return ispipe;
1534 }
1535 
1536 static int zap_process(struct task_struct *start)
1537 {
1538 	struct task_struct *t;
1539 	int nr = 0;
1540 
1541 	start->signal->flags = SIGNAL_GROUP_EXIT;
1542 	start->signal->group_stop_count = 0;
1543 
1544 	t = start;
1545 	do {
1546 		if (t != current && t->mm) {
1547 			sigaddset(&t->pending.signal, SIGKILL);
1548 			signal_wake_up(t, 1);
1549 			nr++;
1550 		}
1551 	} while_each_thread(start, t);
1552 
1553 	return nr;
1554 }
1555 
1556 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1557 				struct core_state *core_state, int exit_code)
1558 {
1559 	struct task_struct *g, *p;
1560 	unsigned long flags;
1561 	int nr = -EAGAIN;
1562 
1563 	spin_lock_irq(&tsk->sighand->siglock);
1564 	if (!signal_group_exit(tsk->signal)) {
1565 		mm->core_state = core_state;
1566 		tsk->signal->group_exit_code = exit_code;
1567 		nr = zap_process(tsk);
1568 	}
1569 	spin_unlock_irq(&tsk->sighand->siglock);
1570 	if (unlikely(nr < 0))
1571 		return nr;
1572 
1573 	if (atomic_read(&mm->mm_users) == nr + 1)
1574 		goto done;
1575 	/*
1576 	 * We should find and kill all tasks which use this mm, and we should
1577 	 * count them correctly into ->nr_threads. We don't take tasklist
1578 	 * lock, but this is safe wrt:
1579 	 *
1580 	 * fork:
1581 	 *	None of sub-threads can fork after zap_process(leader). All
1582 	 *	processes which were created before this point should be
1583 	 *	visible to zap_threads() because copy_process() adds the new
1584 	 *	process to the tail of init_task.tasks list, and lock/unlock
1585 	 *	of ->siglock provides a memory barrier.
1586 	 *
1587 	 * do_exit:
1588 	 *	The caller holds mm->mmap_sem. This means that the task which
1589 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1590 	 *	its ->mm.
1591 	 *
1592 	 * de_thread:
1593 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1594 	 *	we must see either old or new leader, this does not matter.
1595 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1596 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1597 	 *	it can't fail.
1598 	 *
1599 	 *	Note also that "g" can be the old leader with ->mm == NULL
1600 	 *	and already unhashed and thus removed from ->thread_group.
1601 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1602 	 *	clear the ->next pointer, we will find the new leader via
1603 	 *	next_thread().
1604 	 */
1605 	rcu_read_lock();
1606 	for_each_process(g) {
1607 		if (g == tsk->group_leader)
1608 			continue;
1609 		if (g->flags & PF_KTHREAD)
1610 			continue;
1611 		p = g;
1612 		do {
1613 			if (p->mm) {
1614 				if (unlikely(p->mm == mm)) {
1615 					lock_task_sighand(p, &flags);
1616 					nr += zap_process(p);
1617 					unlock_task_sighand(p, &flags);
1618 				}
1619 				break;
1620 			}
1621 		} while_each_thread(g, p);
1622 	}
1623 	rcu_read_unlock();
1624 done:
1625 	atomic_set(&core_state->nr_threads, nr);
1626 	return nr;
1627 }
1628 
1629 static int coredump_wait(int exit_code, struct core_state *core_state)
1630 {
1631 	struct task_struct *tsk = current;
1632 	struct mm_struct *mm = tsk->mm;
1633 	struct completion *vfork_done;
1634 	int core_waiters;
1635 
1636 	init_completion(&core_state->startup);
1637 	core_state->dumper.task = tsk;
1638 	core_state->dumper.next = NULL;
1639 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1640 	up_write(&mm->mmap_sem);
1641 
1642 	if (unlikely(core_waiters < 0))
1643 		goto fail;
1644 
1645 	/*
1646 	 * Make sure nobody is waiting for us to release the VM,
1647 	 * otherwise we can deadlock when we wait on each other
1648 	 */
1649 	vfork_done = tsk->vfork_done;
1650 	if (vfork_done) {
1651 		tsk->vfork_done = NULL;
1652 		complete(vfork_done);
1653 	}
1654 
1655 	if (core_waiters)
1656 		wait_for_completion(&core_state->startup);
1657 fail:
1658 	return core_waiters;
1659 }
1660 
1661 static void coredump_finish(struct mm_struct *mm)
1662 {
1663 	struct core_thread *curr, *next;
1664 	struct task_struct *task;
1665 
1666 	next = mm->core_state->dumper.next;
1667 	while ((curr = next) != NULL) {
1668 		next = curr->next;
1669 		task = curr->task;
1670 		/*
1671 		 * see exit_mm(), curr->task must not see
1672 		 * ->task == NULL before we read ->next.
1673 		 */
1674 		smp_mb();
1675 		curr->task = NULL;
1676 		wake_up_process(task);
1677 	}
1678 
1679 	mm->core_state = NULL;
1680 }
1681 
1682 /*
1683  * set_dumpable converts traditional three-value dumpable to two flags and
1684  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1685  * these bits are not changed atomically.  So get_dumpable can observe the
1686  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1687  * return either old dumpable or new one by paying attention to the order of
1688  * modifying the bits.
1689  *
1690  * dumpable |   mm->flags (binary)
1691  * old  new | initial interim  final
1692  * ---------+-----------------------
1693  *  0    1  |   00      01      01
1694  *  0    2  |   00      10(*)   11
1695  *  1    0  |   01      00      00
1696  *  1    2  |   01      11      11
1697  *  2    0  |   11      10(*)   00
1698  *  2    1  |   11      11      01
1699  *
1700  * (*) get_dumpable regards interim value of 10 as 11.
1701  */
1702 void set_dumpable(struct mm_struct *mm, int value)
1703 {
1704 	switch (value) {
1705 	case 0:
1706 		clear_bit(MMF_DUMPABLE, &mm->flags);
1707 		smp_wmb();
1708 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1709 		break;
1710 	case 1:
1711 		set_bit(MMF_DUMPABLE, &mm->flags);
1712 		smp_wmb();
1713 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1714 		break;
1715 	case 2:
1716 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1717 		smp_wmb();
1718 		set_bit(MMF_DUMPABLE, &mm->flags);
1719 		break;
1720 	}
1721 }
1722 
1723 int get_dumpable(struct mm_struct *mm)
1724 {
1725 	int ret;
1726 
1727 	ret = mm->flags & 0x3;
1728 	return (ret >= 2) ? 2 : ret;
1729 }
1730 
1731 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1732 {
1733 	struct core_state core_state;
1734 	char corename[CORENAME_MAX_SIZE + 1];
1735 	struct mm_struct *mm = current->mm;
1736 	struct linux_binfmt * binfmt;
1737 	struct inode * inode;
1738 	struct file * file;
1739 	const struct cred *old_cred;
1740 	struct cred *cred;
1741 	int retval = 0;
1742 	int flag = 0;
1743 	int ispipe = 0;
1744 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1745 	char **helper_argv = NULL;
1746 	int helper_argc = 0;
1747 	char *delimit;
1748 
1749 	audit_core_dumps(signr);
1750 
1751 	binfmt = current->binfmt;
1752 	if (!binfmt || !binfmt->core_dump)
1753 		goto fail;
1754 
1755 	cred = prepare_creds();
1756 	if (!cred) {
1757 		retval = -ENOMEM;
1758 		goto fail;
1759 	}
1760 
1761 	down_write(&mm->mmap_sem);
1762 	/*
1763 	 * If another thread got here first, or we are not dumpable, bail out.
1764 	 */
1765 	if (mm->core_state || !get_dumpable(mm)) {
1766 		up_write(&mm->mmap_sem);
1767 		put_cred(cred);
1768 		goto fail;
1769 	}
1770 
1771 	/*
1772 	 *	We cannot trust fsuid as being the "true" uid of the
1773 	 *	process nor do we know its entire history. We only know it
1774 	 *	was tainted so we dump it as root in mode 2.
1775 	 */
1776 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1777 		flag = O_EXCL;		/* Stop rewrite attacks */
1778 		cred->fsuid = 0;	/* Dump root private */
1779 	}
1780 
1781 	retval = coredump_wait(exit_code, &core_state);
1782 	if (retval < 0) {
1783 		put_cred(cred);
1784 		goto fail;
1785 	}
1786 
1787 	old_cred = override_creds(cred);
1788 
1789 	/*
1790 	 * Clear any false indication of pending signals that might
1791 	 * be seen by the filesystem code called to write the core file.
1792 	 */
1793 	clear_thread_flag(TIF_SIGPENDING);
1794 
1795 	/*
1796 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1797 	 * uses lock_kernel()
1798 	 */
1799  	lock_kernel();
1800 	ispipe = format_corename(corename, signr);
1801 	unlock_kernel();
1802 	/*
1803 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1804 	 * to a pipe.  Since we're not writing directly to the filesystem
1805 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1806 	 * created unless the pipe reader choses to write out the core file
1807 	 * at which point file size limits and permissions will be imposed
1808 	 * as it does with any other process
1809 	 */
1810 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1811 		goto fail_unlock;
1812 
1813  	if (ispipe) {
1814 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1815 		if (!helper_argv) {
1816 			printk(KERN_WARNING "%s failed to allocate memory\n",
1817 			       __func__);
1818 			goto fail_unlock;
1819 		}
1820 		/* Terminate the string before the first option */
1821 		delimit = strchr(corename, ' ');
1822 		if (delimit)
1823 			*delimit = '\0';
1824 		delimit = strrchr(helper_argv[0], '/');
1825 		if (delimit)
1826 			delimit++;
1827 		else
1828 			delimit = helper_argv[0];
1829 		if (!strcmp(delimit, current->comm)) {
1830 			printk(KERN_NOTICE "Recursive core dump detected, "
1831 					"aborting\n");
1832 			goto fail_unlock;
1833 		}
1834 
1835 		core_limit = RLIM_INFINITY;
1836 
1837 		/* SIGPIPE can happen, but it's just never processed */
1838  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1839 				&file)) {
1840  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1841 			       corename);
1842  			goto fail_unlock;
1843  		}
1844  	} else
1845  		file = filp_open(corename,
1846 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1847 				 0600);
1848 	if (IS_ERR(file))
1849 		goto fail_unlock;
1850 	inode = file->f_path.dentry->d_inode;
1851 	if (inode->i_nlink > 1)
1852 		goto close_fail;	/* multiple links - don't dump */
1853 	if (!ispipe && d_unhashed(file->f_path.dentry))
1854 		goto close_fail;
1855 
1856 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1857 	   but keep the previous behaviour for now. */
1858 	if (!ispipe && !S_ISREG(inode->i_mode))
1859 		goto close_fail;
1860 	/*
1861 	 * Dont allow local users get cute and trick others to coredump
1862 	 * into their pre-created files:
1863 	 */
1864 	if (inode->i_uid != current_fsuid())
1865 		goto close_fail;
1866 	if (!file->f_op)
1867 		goto close_fail;
1868 	if (!file->f_op->write)
1869 		goto close_fail;
1870 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1871 		goto close_fail;
1872 
1873 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1874 
1875 	if (retval)
1876 		current->signal->group_exit_code |= 0x80;
1877 close_fail:
1878 	filp_close(file, NULL);
1879 fail_unlock:
1880 	if (helper_argv)
1881 		argv_free(helper_argv);
1882 
1883 	revert_creds(old_cred);
1884 	put_cred(cred);
1885 	coredump_finish(mm);
1886 fail:
1887 	return;
1888 }
1889