1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/swap.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/perf_event.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/security.h> 47 #include <linux/syscalls.h> 48 #include <linux/tsacct_kern.h> 49 #include <linux/cn_proc.h> 50 #include <linux/audit.h> 51 #include <linux/tracehook.h> 52 #include <linux/kmod.h> 53 #include <linux/fsnotify.h> 54 #include <linux/fs_struct.h> 55 #include <linux/pipe_fs_i.h> 56 #include <linux/oom.h> 57 #include <linux/compat.h> 58 59 #include <asm/uaccess.h> 60 #include <asm/mmu_context.h> 61 #include <asm/tlb.h> 62 63 #include <trace/events/task.h> 64 #include "internal.h" 65 #include "coredump.h" 66 67 #include <trace/events/sched.h> 68 69 int suid_dumpable = 0; 70 71 static LIST_HEAD(formats); 72 static DEFINE_RWLOCK(binfmt_lock); 73 74 void __register_binfmt(struct linux_binfmt * fmt, int insert) 75 { 76 BUG_ON(!fmt); 77 write_lock(&binfmt_lock); 78 insert ? list_add(&fmt->lh, &formats) : 79 list_add_tail(&fmt->lh, &formats); 80 write_unlock(&binfmt_lock); 81 } 82 83 EXPORT_SYMBOL(__register_binfmt); 84 85 void unregister_binfmt(struct linux_binfmt * fmt) 86 { 87 write_lock(&binfmt_lock); 88 list_del(&fmt->lh); 89 write_unlock(&binfmt_lock); 90 } 91 92 EXPORT_SYMBOL(unregister_binfmt); 93 94 static inline void put_binfmt(struct linux_binfmt * fmt) 95 { 96 module_put(fmt->module); 97 } 98 99 /* 100 * Note that a shared library must be both readable and executable due to 101 * security reasons. 102 * 103 * Also note that we take the address to load from from the file itself. 104 */ 105 SYSCALL_DEFINE1(uselib, const char __user *, library) 106 { 107 struct file *file; 108 struct filename *tmp = getname(library); 109 int error = PTR_ERR(tmp); 110 static const struct open_flags uselib_flags = { 111 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 112 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, 113 .intent = LOOKUP_OPEN 114 }; 115 116 if (IS_ERR(tmp)) 117 goto out; 118 119 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW); 120 putname(tmp); 121 error = PTR_ERR(file); 122 if (IS_ERR(file)) 123 goto out; 124 125 error = -EINVAL; 126 if (!S_ISREG(file_inode(file)->i_mode)) 127 goto exit; 128 129 error = -EACCES; 130 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 131 goto exit; 132 133 fsnotify_open(file); 134 135 error = -ENOEXEC; 136 if(file->f_op) { 137 struct linux_binfmt * fmt; 138 139 read_lock(&binfmt_lock); 140 list_for_each_entry(fmt, &formats, lh) { 141 if (!fmt->load_shlib) 142 continue; 143 if (!try_module_get(fmt->module)) 144 continue; 145 read_unlock(&binfmt_lock); 146 error = fmt->load_shlib(file); 147 read_lock(&binfmt_lock); 148 put_binfmt(fmt); 149 if (error != -ENOEXEC) 150 break; 151 } 152 read_unlock(&binfmt_lock); 153 } 154 exit: 155 fput(file); 156 out: 157 return error; 158 } 159 160 #ifdef CONFIG_MMU 161 /* 162 * The nascent bprm->mm is not visible until exec_mmap() but it can 163 * use a lot of memory, account these pages in current->mm temporary 164 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 165 * change the counter back via acct_arg_size(0). 166 */ 167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 168 { 169 struct mm_struct *mm = current->mm; 170 long diff = (long)(pages - bprm->vma_pages); 171 172 if (!mm || !diff) 173 return; 174 175 bprm->vma_pages = pages; 176 add_mm_counter(mm, MM_ANONPAGES, diff); 177 } 178 179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 180 int write) 181 { 182 struct page *page; 183 int ret; 184 185 #ifdef CONFIG_STACK_GROWSUP 186 if (write) { 187 ret = expand_downwards(bprm->vma, pos); 188 if (ret < 0) 189 return NULL; 190 } 191 #endif 192 ret = get_user_pages(current, bprm->mm, pos, 193 1, write, 1, &page, NULL); 194 if (ret <= 0) 195 return NULL; 196 197 if (write) { 198 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 199 struct rlimit *rlim; 200 201 acct_arg_size(bprm, size / PAGE_SIZE); 202 203 /* 204 * We've historically supported up to 32 pages (ARG_MAX) 205 * of argument strings even with small stacks 206 */ 207 if (size <= ARG_MAX) 208 return page; 209 210 /* 211 * Limit to 1/4-th the stack size for the argv+env strings. 212 * This ensures that: 213 * - the remaining binfmt code will not run out of stack space, 214 * - the program will have a reasonable amount of stack left 215 * to work from. 216 */ 217 rlim = current->signal->rlim; 218 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 219 put_page(page); 220 return NULL; 221 } 222 } 223 224 return page; 225 } 226 227 static void put_arg_page(struct page *page) 228 { 229 put_page(page); 230 } 231 232 static void free_arg_page(struct linux_binprm *bprm, int i) 233 { 234 } 235 236 static void free_arg_pages(struct linux_binprm *bprm) 237 { 238 } 239 240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 241 struct page *page) 242 { 243 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 244 } 245 246 static int __bprm_mm_init(struct linux_binprm *bprm) 247 { 248 int err; 249 struct vm_area_struct *vma = NULL; 250 struct mm_struct *mm = bprm->mm; 251 252 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 253 if (!vma) 254 return -ENOMEM; 255 256 down_write(&mm->mmap_sem); 257 vma->vm_mm = mm; 258 259 /* 260 * Place the stack at the largest stack address the architecture 261 * supports. Later, we'll move this to an appropriate place. We don't 262 * use STACK_TOP because that can depend on attributes which aren't 263 * configured yet. 264 */ 265 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 266 vma->vm_end = STACK_TOP_MAX; 267 vma->vm_start = vma->vm_end - PAGE_SIZE; 268 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 269 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 270 INIT_LIST_HEAD(&vma->anon_vma_chain); 271 272 err = insert_vm_struct(mm, vma); 273 if (err) 274 goto err; 275 276 mm->stack_vm = mm->total_vm = 1; 277 up_write(&mm->mmap_sem); 278 bprm->p = vma->vm_end - sizeof(void *); 279 return 0; 280 err: 281 up_write(&mm->mmap_sem); 282 bprm->vma = NULL; 283 kmem_cache_free(vm_area_cachep, vma); 284 return err; 285 } 286 287 static bool valid_arg_len(struct linux_binprm *bprm, long len) 288 { 289 return len <= MAX_ARG_STRLEN; 290 } 291 292 #else 293 294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 295 { 296 } 297 298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 299 int write) 300 { 301 struct page *page; 302 303 page = bprm->page[pos / PAGE_SIZE]; 304 if (!page && write) { 305 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 306 if (!page) 307 return NULL; 308 bprm->page[pos / PAGE_SIZE] = page; 309 } 310 311 return page; 312 } 313 314 static void put_arg_page(struct page *page) 315 { 316 } 317 318 static void free_arg_page(struct linux_binprm *bprm, int i) 319 { 320 if (bprm->page[i]) { 321 __free_page(bprm->page[i]); 322 bprm->page[i] = NULL; 323 } 324 } 325 326 static void free_arg_pages(struct linux_binprm *bprm) 327 { 328 int i; 329 330 for (i = 0; i < MAX_ARG_PAGES; i++) 331 free_arg_page(bprm, i); 332 } 333 334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 335 struct page *page) 336 { 337 } 338 339 static int __bprm_mm_init(struct linux_binprm *bprm) 340 { 341 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 342 return 0; 343 } 344 345 static bool valid_arg_len(struct linux_binprm *bprm, long len) 346 { 347 return len <= bprm->p; 348 } 349 350 #endif /* CONFIG_MMU */ 351 352 /* 353 * Create a new mm_struct and populate it with a temporary stack 354 * vm_area_struct. We don't have enough context at this point to set the stack 355 * flags, permissions, and offset, so we use temporary values. We'll update 356 * them later in setup_arg_pages(). 357 */ 358 static int bprm_mm_init(struct linux_binprm *bprm) 359 { 360 int err; 361 struct mm_struct *mm = NULL; 362 363 bprm->mm = mm = mm_alloc(); 364 err = -ENOMEM; 365 if (!mm) 366 goto err; 367 368 err = init_new_context(current, mm); 369 if (err) 370 goto err; 371 372 err = __bprm_mm_init(bprm); 373 if (err) 374 goto err; 375 376 return 0; 377 378 err: 379 if (mm) { 380 bprm->mm = NULL; 381 mmdrop(mm); 382 } 383 384 return err; 385 } 386 387 struct user_arg_ptr { 388 #ifdef CONFIG_COMPAT 389 bool is_compat; 390 #endif 391 union { 392 const char __user *const __user *native; 393 #ifdef CONFIG_COMPAT 394 const compat_uptr_t __user *compat; 395 #endif 396 } ptr; 397 }; 398 399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 400 { 401 const char __user *native; 402 403 #ifdef CONFIG_COMPAT 404 if (unlikely(argv.is_compat)) { 405 compat_uptr_t compat; 406 407 if (get_user(compat, argv.ptr.compat + nr)) 408 return ERR_PTR(-EFAULT); 409 410 return compat_ptr(compat); 411 } 412 #endif 413 414 if (get_user(native, argv.ptr.native + nr)) 415 return ERR_PTR(-EFAULT); 416 417 return native; 418 } 419 420 /* 421 * count() counts the number of strings in array ARGV. 422 */ 423 static int count(struct user_arg_ptr argv, int max) 424 { 425 int i = 0; 426 427 if (argv.ptr.native != NULL) { 428 for (;;) { 429 const char __user *p = get_user_arg_ptr(argv, i); 430 431 if (!p) 432 break; 433 434 if (IS_ERR(p)) 435 return -EFAULT; 436 437 if (i >= max) 438 return -E2BIG; 439 ++i; 440 441 if (fatal_signal_pending(current)) 442 return -ERESTARTNOHAND; 443 cond_resched(); 444 } 445 } 446 return i; 447 } 448 449 /* 450 * 'copy_strings()' copies argument/environment strings from the old 451 * processes's memory to the new process's stack. The call to get_user_pages() 452 * ensures the destination page is created and not swapped out. 453 */ 454 static int copy_strings(int argc, struct user_arg_ptr argv, 455 struct linux_binprm *bprm) 456 { 457 struct page *kmapped_page = NULL; 458 char *kaddr = NULL; 459 unsigned long kpos = 0; 460 int ret; 461 462 while (argc-- > 0) { 463 const char __user *str; 464 int len; 465 unsigned long pos; 466 467 ret = -EFAULT; 468 str = get_user_arg_ptr(argv, argc); 469 if (IS_ERR(str)) 470 goto out; 471 472 len = strnlen_user(str, MAX_ARG_STRLEN); 473 if (!len) 474 goto out; 475 476 ret = -E2BIG; 477 if (!valid_arg_len(bprm, len)) 478 goto out; 479 480 /* We're going to work our way backwords. */ 481 pos = bprm->p; 482 str += len; 483 bprm->p -= len; 484 485 while (len > 0) { 486 int offset, bytes_to_copy; 487 488 if (fatal_signal_pending(current)) { 489 ret = -ERESTARTNOHAND; 490 goto out; 491 } 492 cond_resched(); 493 494 offset = pos % PAGE_SIZE; 495 if (offset == 0) 496 offset = PAGE_SIZE; 497 498 bytes_to_copy = offset; 499 if (bytes_to_copy > len) 500 bytes_to_copy = len; 501 502 offset -= bytes_to_copy; 503 pos -= bytes_to_copy; 504 str -= bytes_to_copy; 505 len -= bytes_to_copy; 506 507 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 508 struct page *page; 509 510 page = get_arg_page(bprm, pos, 1); 511 if (!page) { 512 ret = -E2BIG; 513 goto out; 514 } 515 516 if (kmapped_page) { 517 flush_kernel_dcache_page(kmapped_page); 518 kunmap(kmapped_page); 519 put_arg_page(kmapped_page); 520 } 521 kmapped_page = page; 522 kaddr = kmap(kmapped_page); 523 kpos = pos & PAGE_MASK; 524 flush_arg_page(bprm, kpos, kmapped_page); 525 } 526 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 527 ret = -EFAULT; 528 goto out; 529 } 530 } 531 } 532 ret = 0; 533 out: 534 if (kmapped_page) { 535 flush_kernel_dcache_page(kmapped_page); 536 kunmap(kmapped_page); 537 put_arg_page(kmapped_page); 538 } 539 return ret; 540 } 541 542 /* 543 * Like copy_strings, but get argv and its values from kernel memory. 544 */ 545 int copy_strings_kernel(int argc, const char *const *__argv, 546 struct linux_binprm *bprm) 547 { 548 int r; 549 mm_segment_t oldfs = get_fs(); 550 struct user_arg_ptr argv = { 551 .ptr.native = (const char __user *const __user *)__argv, 552 }; 553 554 set_fs(KERNEL_DS); 555 r = copy_strings(argc, argv, bprm); 556 set_fs(oldfs); 557 558 return r; 559 } 560 EXPORT_SYMBOL(copy_strings_kernel); 561 562 #ifdef CONFIG_MMU 563 564 /* 565 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 566 * the binfmt code determines where the new stack should reside, we shift it to 567 * its final location. The process proceeds as follows: 568 * 569 * 1) Use shift to calculate the new vma endpoints. 570 * 2) Extend vma to cover both the old and new ranges. This ensures the 571 * arguments passed to subsequent functions are consistent. 572 * 3) Move vma's page tables to the new range. 573 * 4) Free up any cleared pgd range. 574 * 5) Shrink the vma to cover only the new range. 575 */ 576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 577 { 578 struct mm_struct *mm = vma->vm_mm; 579 unsigned long old_start = vma->vm_start; 580 unsigned long old_end = vma->vm_end; 581 unsigned long length = old_end - old_start; 582 unsigned long new_start = old_start - shift; 583 unsigned long new_end = old_end - shift; 584 struct mmu_gather tlb; 585 586 BUG_ON(new_start > new_end); 587 588 /* 589 * ensure there are no vmas between where we want to go 590 * and where we are 591 */ 592 if (vma != find_vma(mm, new_start)) 593 return -EFAULT; 594 595 /* 596 * cover the whole range: [new_start, old_end) 597 */ 598 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 599 return -ENOMEM; 600 601 /* 602 * move the page tables downwards, on failure we rely on 603 * process cleanup to remove whatever mess we made. 604 */ 605 if (length != move_page_tables(vma, old_start, 606 vma, new_start, length, false)) 607 return -ENOMEM; 608 609 lru_add_drain(); 610 tlb_gather_mmu(&tlb, mm, 0); 611 if (new_end > old_start) { 612 /* 613 * when the old and new regions overlap clear from new_end. 614 */ 615 free_pgd_range(&tlb, new_end, old_end, new_end, 616 vma->vm_next ? vma->vm_next->vm_start : 0); 617 } else { 618 /* 619 * otherwise, clean from old_start; this is done to not touch 620 * the address space in [new_end, old_start) some architectures 621 * have constraints on va-space that make this illegal (IA64) - 622 * for the others its just a little faster. 623 */ 624 free_pgd_range(&tlb, old_start, old_end, new_end, 625 vma->vm_next ? vma->vm_next->vm_start : 0); 626 } 627 tlb_finish_mmu(&tlb, new_end, old_end); 628 629 /* 630 * Shrink the vma to just the new range. Always succeeds. 631 */ 632 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 633 634 return 0; 635 } 636 637 /* 638 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 639 * the stack is optionally relocated, and some extra space is added. 640 */ 641 int setup_arg_pages(struct linux_binprm *bprm, 642 unsigned long stack_top, 643 int executable_stack) 644 { 645 unsigned long ret; 646 unsigned long stack_shift; 647 struct mm_struct *mm = current->mm; 648 struct vm_area_struct *vma = bprm->vma; 649 struct vm_area_struct *prev = NULL; 650 unsigned long vm_flags; 651 unsigned long stack_base; 652 unsigned long stack_size; 653 unsigned long stack_expand; 654 unsigned long rlim_stack; 655 656 #ifdef CONFIG_STACK_GROWSUP 657 /* Limit stack size to 1GB */ 658 stack_base = rlimit_max(RLIMIT_STACK); 659 if (stack_base > (1 << 30)) 660 stack_base = 1 << 30; 661 662 /* Make sure we didn't let the argument array grow too large. */ 663 if (vma->vm_end - vma->vm_start > stack_base) 664 return -ENOMEM; 665 666 stack_base = PAGE_ALIGN(stack_top - stack_base); 667 668 stack_shift = vma->vm_start - stack_base; 669 mm->arg_start = bprm->p - stack_shift; 670 bprm->p = vma->vm_end - stack_shift; 671 #else 672 stack_top = arch_align_stack(stack_top); 673 stack_top = PAGE_ALIGN(stack_top); 674 675 if (unlikely(stack_top < mmap_min_addr) || 676 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 677 return -ENOMEM; 678 679 stack_shift = vma->vm_end - stack_top; 680 681 bprm->p -= stack_shift; 682 mm->arg_start = bprm->p; 683 #endif 684 685 if (bprm->loader) 686 bprm->loader -= stack_shift; 687 bprm->exec -= stack_shift; 688 689 down_write(&mm->mmap_sem); 690 vm_flags = VM_STACK_FLAGS; 691 692 /* 693 * Adjust stack execute permissions; explicitly enable for 694 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 695 * (arch default) otherwise. 696 */ 697 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 698 vm_flags |= VM_EXEC; 699 else if (executable_stack == EXSTACK_DISABLE_X) 700 vm_flags &= ~VM_EXEC; 701 vm_flags |= mm->def_flags; 702 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 703 704 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 705 vm_flags); 706 if (ret) 707 goto out_unlock; 708 BUG_ON(prev != vma); 709 710 /* Move stack pages down in memory. */ 711 if (stack_shift) { 712 ret = shift_arg_pages(vma, stack_shift); 713 if (ret) 714 goto out_unlock; 715 } 716 717 /* mprotect_fixup is overkill to remove the temporary stack flags */ 718 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 719 720 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 721 stack_size = vma->vm_end - vma->vm_start; 722 /* 723 * Align this down to a page boundary as expand_stack 724 * will align it up. 725 */ 726 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 727 #ifdef CONFIG_STACK_GROWSUP 728 if (stack_size + stack_expand > rlim_stack) 729 stack_base = vma->vm_start + rlim_stack; 730 else 731 stack_base = vma->vm_end + stack_expand; 732 #else 733 if (stack_size + stack_expand > rlim_stack) 734 stack_base = vma->vm_end - rlim_stack; 735 else 736 stack_base = vma->vm_start - stack_expand; 737 #endif 738 current->mm->start_stack = bprm->p; 739 ret = expand_stack(vma, stack_base); 740 if (ret) 741 ret = -EFAULT; 742 743 out_unlock: 744 up_write(&mm->mmap_sem); 745 return ret; 746 } 747 EXPORT_SYMBOL(setup_arg_pages); 748 749 #endif /* CONFIG_MMU */ 750 751 struct file *open_exec(const char *name) 752 { 753 struct file *file; 754 int err; 755 struct filename tmp = { .name = name }; 756 static const struct open_flags open_exec_flags = { 757 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 758 .acc_mode = MAY_EXEC | MAY_OPEN, 759 .intent = LOOKUP_OPEN 760 }; 761 762 file = do_filp_open(AT_FDCWD, &tmp, &open_exec_flags, LOOKUP_FOLLOW); 763 if (IS_ERR(file)) 764 goto out; 765 766 err = -EACCES; 767 if (!S_ISREG(file_inode(file)->i_mode)) 768 goto exit; 769 770 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 771 goto exit; 772 773 fsnotify_open(file); 774 775 err = deny_write_access(file); 776 if (err) 777 goto exit; 778 779 out: 780 return file; 781 782 exit: 783 fput(file); 784 return ERR_PTR(err); 785 } 786 EXPORT_SYMBOL(open_exec); 787 788 int kernel_read(struct file *file, loff_t offset, 789 char *addr, unsigned long count) 790 { 791 mm_segment_t old_fs; 792 loff_t pos = offset; 793 int result; 794 795 old_fs = get_fs(); 796 set_fs(get_ds()); 797 /* The cast to a user pointer is valid due to the set_fs() */ 798 result = vfs_read(file, (void __user *)addr, count, &pos); 799 set_fs(old_fs); 800 return result; 801 } 802 803 EXPORT_SYMBOL(kernel_read); 804 805 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 806 { 807 ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos); 808 if (res > 0) 809 flush_icache_range(addr, addr + len); 810 return res; 811 } 812 EXPORT_SYMBOL(read_code); 813 814 static int exec_mmap(struct mm_struct *mm) 815 { 816 struct task_struct *tsk; 817 struct mm_struct * old_mm, *active_mm; 818 819 /* Notify parent that we're no longer interested in the old VM */ 820 tsk = current; 821 old_mm = current->mm; 822 mm_release(tsk, old_mm); 823 824 if (old_mm) { 825 sync_mm_rss(old_mm); 826 /* 827 * Make sure that if there is a core dump in progress 828 * for the old mm, we get out and die instead of going 829 * through with the exec. We must hold mmap_sem around 830 * checking core_state and changing tsk->mm. 831 */ 832 down_read(&old_mm->mmap_sem); 833 if (unlikely(old_mm->core_state)) { 834 up_read(&old_mm->mmap_sem); 835 return -EINTR; 836 } 837 } 838 task_lock(tsk); 839 active_mm = tsk->active_mm; 840 tsk->mm = mm; 841 tsk->active_mm = mm; 842 activate_mm(active_mm, mm); 843 task_unlock(tsk); 844 arch_pick_mmap_layout(mm); 845 if (old_mm) { 846 up_read(&old_mm->mmap_sem); 847 BUG_ON(active_mm != old_mm); 848 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 849 mm_update_next_owner(old_mm); 850 mmput(old_mm); 851 return 0; 852 } 853 mmdrop(active_mm); 854 return 0; 855 } 856 857 /* 858 * This function makes sure the current process has its own signal table, 859 * so that flush_signal_handlers can later reset the handlers without 860 * disturbing other processes. (Other processes might share the signal 861 * table via the CLONE_SIGHAND option to clone().) 862 */ 863 static int de_thread(struct task_struct *tsk) 864 { 865 struct signal_struct *sig = tsk->signal; 866 struct sighand_struct *oldsighand = tsk->sighand; 867 spinlock_t *lock = &oldsighand->siglock; 868 869 if (thread_group_empty(tsk)) 870 goto no_thread_group; 871 872 /* 873 * Kill all other threads in the thread group. 874 */ 875 spin_lock_irq(lock); 876 if (signal_group_exit(sig)) { 877 /* 878 * Another group action in progress, just 879 * return so that the signal is processed. 880 */ 881 spin_unlock_irq(lock); 882 return -EAGAIN; 883 } 884 885 sig->group_exit_task = tsk; 886 sig->notify_count = zap_other_threads(tsk); 887 if (!thread_group_leader(tsk)) 888 sig->notify_count--; 889 890 while (sig->notify_count) { 891 __set_current_state(TASK_KILLABLE); 892 spin_unlock_irq(lock); 893 schedule(); 894 if (unlikely(__fatal_signal_pending(tsk))) 895 goto killed; 896 spin_lock_irq(lock); 897 } 898 spin_unlock_irq(lock); 899 900 /* 901 * At this point all other threads have exited, all we have to 902 * do is to wait for the thread group leader to become inactive, 903 * and to assume its PID: 904 */ 905 if (!thread_group_leader(tsk)) { 906 struct task_struct *leader = tsk->group_leader; 907 908 sig->notify_count = -1; /* for exit_notify() */ 909 for (;;) { 910 write_lock_irq(&tasklist_lock); 911 if (likely(leader->exit_state)) 912 break; 913 __set_current_state(TASK_KILLABLE); 914 write_unlock_irq(&tasklist_lock); 915 schedule(); 916 if (unlikely(__fatal_signal_pending(tsk))) 917 goto killed; 918 } 919 920 /* 921 * The only record we have of the real-time age of a 922 * process, regardless of execs it's done, is start_time. 923 * All the past CPU time is accumulated in signal_struct 924 * from sister threads now dead. But in this non-leader 925 * exec, nothing survives from the original leader thread, 926 * whose birth marks the true age of this process now. 927 * When we take on its identity by switching to its PID, we 928 * also take its birthdate (always earlier than our own). 929 */ 930 tsk->start_time = leader->start_time; 931 932 BUG_ON(!same_thread_group(leader, tsk)); 933 BUG_ON(has_group_leader_pid(tsk)); 934 /* 935 * An exec() starts a new thread group with the 936 * TGID of the previous thread group. Rehash the 937 * two threads with a switched PID, and release 938 * the former thread group leader: 939 */ 940 941 /* Become a process group leader with the old leader's pid. 942 * The old leader becomes a thread of the this thread group. 943 * Note: The old leader also uses this pid until release_task 944 * is called. Odd but simple and correct. 945 */ 946 detach_pid(tsk, PIDTYPE_PID); 947 tsk->pid = leader->pid; 948 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 949 transfer_pid(leader, tsk, PIDTYPE_PGID); 950 transfer_pid(leader, tsk, PIDTYPE_SID); 951 952 list_replace_rcu(&leader->tasks, &tsk->tasks); 953 list_replace_init(&leader->sibling, &tsk->sibling); 954 955 tsk->group_leader = tsk; 956 leader->group_leader = tsk; 957 958 tsk->exit_signal = SIGCHLD; 959 leader->exit_signal = -1; 960 961 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 962 leader->exit_state = EXIT_DEAD; 963 964 /* 965 * We are going to release_task()->ptrace_unlink() silently, 966 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 967 * the tracer wont't block again waiting for this thread. 968 */ 969 if (unlikely(leader->ptrace)) 970 __wake_up_parent(leader, leader->parent); 971 write_unlock_irq(&tasklist_lock); 972 973 release_task(leader); 974 } 975 976 sig->group_exit_task = NULL; 977 sig->notify_count = 0; 978 979 no_thread_group: 980 /* we have changed execution domain */ 981 tsk->exit_signal = SIGCHLD; 982 983 exit_itimers(sig); 984 flush_itimer_signals(); 985 986 if (atomic_read(&oldsighand->count) != 1) { 987 struct sighand_struct *newsighand; 988 /* 989 * This ->sighand is shared with the CLONE_SIGHAND 990 * but not CLONE_THREAD task, switch to the new one. 991 */ 992 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 993 if (!newsighand) 994 return -ENOMEM; 995 996 atomic_set(&newsighand->count, 1); 997 memcpy(newsighand->action, oldsighand->action, 998 sizeof(newsighand->action)); 999 1000 write_lock_irq(&tasklist_lock); 1001 spin_lock(&oldsighand->siglock); 1002 rcu_assign_pointer(tsk->sighand, newsighand); 1003 spin_unlock(&oldsighand->siglock); 1004 write_unlock_irq(&tasklist_lock); 1005 1006 __cleanup_sighand(oldsighand); 1007 } 1008 1009 BUG_ON(!thread_group_leader(tsk)); 1010 return 0; 1011 1012 killed: 1013 /* protects against exit_notify() and __exit_signal() */ 1014 read_lock(&tasklist_lock); 1015 sig->group_exit_task = NULL; 1016 sig->notify_count = 0; 1017 read_unlock(&tasklist_lock); 1018 return -EAGAIN; 1019 } 1020 1021 char *get_task_comm(char *buf, struct task_struct *tsk) 1022 { 1023 /* buf must be at least sizeof(tsk->comm) in size */ 1024 task_lock(tsk); 1025 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1026 task_unlock(tsk); 1027 return buf; 1028 } 1029 EXPORT_SYMBOL_GPL(get_task_comm); 1030 1031 /* 1032 * These functions flushes out all traces of the currently running executable 1033 * so that a new one can be started 1034 */ 1035 1036 void set_task_comm(struct task_struct *tsk, char *buf) 1037 { 1038 task_lock(tsk); 1039 1040 trace_task_rename(tsk, buf); 1041 1042 /* 1043 * Threads may access current->comm without holding 1044 * the task lock, so write the string carefully. 1045 * Readers without a lock may see incomplete new 1046 * names but are safe from non-terminating string reads. 1047 */ 1048 memset(tsk->comm, 0, TASK_COMM_LEN); 1049 wmb(); 1050 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1051 task_unlock(tsk); 1052 perf_event_comm(tsk); 1053 } 1054 1055 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len) 1056 { 1057 int i, ch; 1058 1059 /* Copies the binary name from after last slash */ 1060 for (i = 0; (ch = *(fn++)) != '\0';) { 1061 if (ch == '/') 1062 i = 0; /* overwrite what we wrote */ 1063 else 1064 if (i < len - 1) 1065 tcomm[i++] = ch; 1066 } 1067 tcomm[i] = '\0'; 1068 } 1069 1070 int flush_old_exec(struct linux_binprm * bprm) 1071 { 1072 int retval; 1073 1074 /* 1075 * Make sure we have a private signal table and that 1076 * we are unassociated from the previous thread group. 1077 */ 1078 retval = de_thread(current); 1079 if (retval) 1080 goto out; 1081 1082 set_mm_exe_file(bprm->mm, bprm->file); 1083 1084 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm)); 1085 /* 1086 * Release all of the old mmap stuff 1087 */ 1088 acct_arg_size(bprm, 0); 1089 retval = exec_mmap(bprm->mm); 1090 if (retval) 1091 goto out; 1092 1093 bprm->mm = NULL; /* We're using it now */ 1094 1095 set_fs(USER_DS); 1096 current->flags &= 1097 ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | PF_NOFREEZE); 1098 flush_thread(); 1099 current->personality &= ~bprm->per_clear; 1100 1101 return 0; 1102 1103 out: 1104 return retval; 1105 } 1106 EXPORT_SYMBOL(flush_old_exec); 1107 1108 void would_dump(struct linux_binprm *bprm, struct file *file) 1109 { 1110 if (inode_permission(file_inode(file), MAY_READ) < 0) 1111 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1112 } 1113 EXPORT_SYMBOL(would_dump); 1114 1115 void setup_new_exec(struct linux_binprm * bprm) 1116 { 1117 arch_pick_mmap_layout(current->mm); 1118 1119 /* This is the point of no return */ 1120 current->sas_ss_sp = current->sas_ss_size = 0; 1121 1122 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) 1123 set_dumpable(current->mm, SUID_DUMP_USER); 1124 else 1125 set_dumpable(current->mm, suid_dumpable); 1126 1127 set_task_comm(current, bprm->tcomm); 1128 1129 /* Set the new mm task size. We have to do that late because it may 1130 * depend on TIF_32BIT which is only updated in flush_thread() on 1131 * some architectures like powerpc 1132 */ 1133 current->mm->task_size = TASK_SIZE; 1134 1135 /* install the new credentials */ 1136 if (!uid_eq(bprm->cred->uid, current_euid()) || 1137 !gid_eq(bprm->cred->gid, current_egid())) { 1138 current->pdeath_signal = 0; 1139 } else { 1140 would_dump(bprm, bprm->file); 1141 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1142 set_dumpable(current->mm, suid_dumpable); 1143 } 1144 1145 /* 1146 * Flush performance counters when crossing a 1147 * security domain: 1148 */ 1149 if (!get_dumpable(current->mm)) 1150 perf_event_exit_task(current); 1151 1152 /* An exec changes our domain. We are no longer part of the thread 1153 group */ 1154 1155 current->self_exec_id++; 1156 1157 flush_signal_handlers(current, 0); 1158 do_close_on_exec(current->files); 1159 } 1160 EXPORT_SYMBOL(setup_new_exec); 1161 1162 /* 1163 * Prepare credentials and lock ->cred_guard_mutex. 1164 * install_exec_creds() commits the new creds and drops the lock. 1165 * Or, if exec fails before, free_bprm() should release ->cred and 1166 * and unlock. 1167 */ 1168 int prepare_bprm_creds(struct linux_binprm *bprm) 1169 { 1170 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1171 return -ERESTARTNOINTR; 1172 1173 bprm->cred = prepare_exec_creds(); 1174 if (likely(bprm->cred)) 1175 return 0; 1176 1177 mutex_unlock(¤t->signal->cred_guard_mutex); 1178 return -ENOMEM; 1179 } 1180 1181 void free_bprm(struct linux_binprm *bprm) 1182 { 1183 free_arg_pages(bprm); 1184 if (bprm->cred) { 1185 mutex_unlock(¤t->signal->cred_guard_mutex); 1186 abort_creds(bprm->cred); 1187 } 1188 /* If a binfmt changed the interp, free it. */ 1189 if (bprm->interp != bprm->filename) 1190 kfree(bprm->interp); 1191 kfree(bprm); 1192 } 1193 1194 int bprm_change_interp(char *interp, struct linux_binprm *bprm) 1195 { 1196 /* If a binfmt changed the interp, free it first. */ 1197 if (bprm->interp != bprm->filename) 1198 kfree(bprm->interp); 1199 bprm->interp = kstrdup(interp, GFP_KERNEL); 1200 if (!bprm->interp) 1201 return -ENOMEM; 1202 return 0; 1203 } 1204 EXPORT_SYMBOL(bprm_change_interp); 1205 1206 /* 1207 * install the new credentials for this executable 1208 */ 1209 void install_exec_creds(struct linux_binprm *bprm) 1210 { 1211 security_bprm_committing_creds(bprm); 1212 1213 commit_creds(bprm->cred); 1214 bprm->cred = NULL; 1215 /* 1216 * cred_guard_mutex must be held at least to this point to prevent 1217 * ptrace_attach() from altering our determination of the task's 1218 * credentials; any time after this it may be unlocked. 1219 */ 1220 security_bprm_committed_creds(bprm); 1221 mutex_unlock(¤t->signal->cred_guard_mutex); 1222 } 1223 EXPORT_SYMBOL(install_exec_creds); 1224 1225 /* 1226 * determine how safe it is to execute the proposed program 1227 * - the caller must hold ->cred_guard_mutex to protect against 1228 * PTRACE_ATTACH 1229 */ 1230 static int check_unsafe_exec(struct linux_binprm *bprm) 1231 { 1232 struct task_struct *p = current, *t; 1233 unsigned n_fs; 1234 int res = 0; 1235 1236 if (p->ptrace) { 1237 if (p->ptrace & PT_PTRACE_CAP) 1238 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP; 1239 else 1240 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1241 } 1242 1243 /* 1244 * This isn't strictly necessary, but it makes it harder for LSMs to 1245 * mess up. 1246 */ 1247 if (current->no_new_privs) 1248 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1249 1250 n_fs = 1; 1251 spin_lock(&p->fs->lock); 1252 rcu_read_lock(); 1253 for (t = next_thread(p); t != p; t = next_thread(t)) { 1254 if (t->fs == p->fs) 1255 n_fs++; 1256 } 1257 rcu_read_unlock(); 1258 1259 if (p->fs->users > n_fs) { 1260 bprm->unsafe |= LSM_UNSAFE_SHARE; 1261 } else { 1262 res = -EAGAIN; 1263 if (!p->fs->in_exec) { 1264 p->fs->in_exec = 1; 1265 res = 1; 1266 } 1267 } 1268 spin_unlock(&p->fs->lock); 1269 1270 return res; 1271 } 1272 1273 /* 1274 * Fill the binprm structure from the inode. 1275 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1276 * 1277 * This may be called multiple times for binary chains (scripts for example). 1278 */ 1279 int prepare_binprm(struct linux_binprm *bprm) 1280 { 1281 umode_t mode; 1282 struct inode * inode = file_inode(bprm->file); 1283 int retval; 1284 1285 mode = inode->i_mode; 1286 if (bprm->file->f_op == NULL) 1287 return -EACCES; 1288 1289 /* clear any previous set[ug]id data from a previous binary */ 1290 bprm->cred->euid = current_euid(); 1291 bprm->cred->egid = current_egid(); 1292 1293 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) && 1294 !current->no_new_privs && 1295 kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) && 1296 kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) { 1297 /* Set-uid? */ 1298 if (mode & S_ISUID) { 1299 bprm->per_clear |= PER_CLEAR_ON_SETID; 1300 bprm->cred->euid = inode->i_uid; 1301 } 1302 1303 /* Set-gid? */ 1304 /* 1305 * If setgid is set but no group execute bit then this 1306 * is a candidate for mandatory locking, not a setgid 1307 * executable. 1308 */ 1309 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1310 bprm->per_clear |= PER_CLEAR_ON_SETID; 1311 bprm->cred->egid = inode->i_gid; 1312 } 1313 } 1314 1315 /* fill in binprm security blob */ 1316 retval = security_bprm_set_creds(bprm); 1317 if (retval) 1318 return retval; 1319 bprm->cred_prepared = 1; 1320 1321 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1322 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1323 } 1324 1325 EXPORT_SYMBOL(prepare_binprm); 1326 1327 /* 1328 * Arguments are '\0' separated strings found at the location bprm->p 1329 * points to; chop off the first by relocating brpm->p to right after 1330 * the first '\0' encountered. 1331 */ 1332 int remove_arg_zero(struct linux_binprm *bprm) 1333 { 1334 int ret = 0; 1335 unsigned long offset; 1336 char *kaddr; 1337 struct page *page; 1338 1339 if (!bprm->argc) 1340 return 0; 1341 1342 do { 1343 offset = bprm->p & ~PAGE_MASK; 1344 page = get_arg_page(bprm, bprm->p, 0); 1345 if (!page) { 1346 ret = -EFAULT; 1347 goto out; 1348 } 1349 kaddr = kmap_atomic(page); 1350 1351 for (; offset < PAGE_SIZE && kaddr[offset]; 1352 offset++, bprm->p++) 1353 ; 1354 1355 kunmap_atomic(kaddr); 1356 put_arg_page(page); 1357 1358 if (offset == PAGE_SIZE) 1359 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1360 } while (offset == PAGE_SIZE); 1361 1362 bprm->p++; 1363 bprm->argc--; 1364 ret = 0; 1365 1366 out: 1367 return ret; 1368 } 1369 EXPORT_SYMBOL(remove_arg_zero); 1370 1371 /* 1372 * cycle the list of binary formats handler, until one recognizes the image 1373 */ 1374 int search_binary_handler(struct linux_binprm *bprm) 1375 { 1376 unsigned int depth = bprm->recursion_depth; 1377 int try,retval; 1378 struct linux_binfmt *fmt; 1379 pid_t old_pid, old_vpid; 1380 1381 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1382 if (depth > 5) 1383 return -ELOOP; 1384 1385 retval = security_bprm_check(bprm); 1386 if (retval) 1387 return retval; 1388 1389 retval = audit_bprm(bprm); 1390 if (retval) 1391 return retval; 1392 1393 /* Need to fetch pid before load_binary changes it */ 1394 old_pid = current->pid; 1395 rcu_read_lock(); 1396 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1397 rcu_read_unlock(); 1398 1399 retval = -ENOENT; 1400 for (try=0; try<2; try++) { 1401 read_lock(&binfmt_lock); 1402 list_for_each_entry(fmt, &formats, lh) { 1403 int (*fn)(struct linux_binprm *) = fmt->load_binary; 1404 if (!fn) 1405 continue; 1406 if (!try_module_get(fmt->module)) 1407 continue; 1408 read_unlock(&binfmt_lock); 1409 bprm->recursion_depth = depth + 1; 1410 retval = fn(bprm); 1411 bprm->recursion_depth = depth; 1412 if (retval >= 0) { 1413 if (depth == 0) { 1414 trace_sched_process_exec(current, old_pid, bprm); 1415 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1416 } 1417 put_binfmt(fmt); 1418 allow_write_access(bprm->file); 1419 if (bprm->file) 1420 fput(bprm->file); 1421 bprm->file = NULL; 1422 current->did_exec = 1; 1423 proc_exec_connector(current); 1424 return retval; 1425 } 1426 read_lock(&binfmt_lock); 1427 put_binfmt(fmt); 1428 if (retval != -ENOEXEC || bprm->mm == NULL) 1429 break; 1430 if (!bprm->file) { 1431 read_unlock(&binfmt_lock); 1432 return retval; 1433 } 1434 } 1435 read_unlock(&binfmt_lock); 1436 #ifdef CONFIG_MODULES 1437 if (retval != -ENOEXEC || bprm->mm == NULL) { 1438 break; 1439 } else { 1440 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1441 if (printable(bprm->buf[0]) && 1442 printable(bprm->buf[1]) && 1443 printable(bprm->buf[2]) && 1444 printable(bprm->buf[3])) 1445 break; /* -ENOEXEC */ 1446 if (try) 1447 break; /* -ENOEXEC */ 1448 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1449 } 1450 #else 1451 break; 1452 #endif 1453 } 1454 return retval; 1455 } 1456 1457 EXPORT_SYMBOL(search_binary_handler); 1458 1459 /* 1460 * sys_execve() executes a new program. 1461 */ 1462 static int do_execve_common(const char *filename, 1463 struct user_arg_ptr argv, 1464 struct user_arg_ptr envp) 1465 { 1466 struct linux_binprm *bprm; 1467 struct file *file; 1468 struct files_struct *displaced; 1469 bool clear_in_exec; 1470 int retval; 1471 const struct cred *cred = current_cred(); 1472 1473 /* 1474 * We move the actual failure in case of RLIMIT_NPROC excess from 1475 * set*uid() to execve() because too many poorly written programs 1476 * don't check setuid() return code. Here we additionally recheck 1477 * whether NPROC limit is still exceeded. 1478 */ 1479 if ((current->flags & PF_NPROC_EXCEEDED) && 1480 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) { 1481 retval = -EAGAIN; 1482 goto out_ret; 1483 } 1484 1485 /* We're below the limit (still or again), so we don't want to make 1486 * further execve() calls fail. */ 1487 current->flags &= ~PF_NPROC_EXCEEDED; 1488 1489 retval = unshare_files(&displaced); 1490 if (retval) 1491 goto out_ret; 1492 1493 retval = -ENOMEM; 1494 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1495 if (!bprm) 1496 goto out_files; 1497 1498 retval = prepare_bprm_creds(bprm); 1499 if (retval) 1500 goto out_free; 1501 1502 retval = check_unsafe_exec(bprm); 1503 if (retval < 0) 1504 goto out_free; 1505 clear_in_exec = retval; 1506 current->in_execve = 1; 1507 1508 file = open_exec(filename); 1509 retval = PTR_ERR(file); 1510 if (IS_ERR(file)) 1511 goto out_unmark; 1512 1513 sched_exec(); 1514 1515 bprm->file = file; 1516 bprm->filename = filename; 1517 bprm->interp = filename; 1518 1519 retval = bprm_mm_init(bprm); 1520 if (retval) 1521 goto out_file; 1522 1523 bprm->argc = count(argv, MAX_ARG_STRINGS); 1524 if ((retval = bprm->argc) < 0) 1525 goto out; 1526 1527 bprm->envc = count(envp, MAX_ARG_STRINGS); 1528 if ((retval = bprm->envc) < 0) 1529 goto out; 1530 1531 retval = prepare_binprm(bprm); 1532 if (retval < 0) 1533 goto out; 1534 1535 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1536 if (retval < 0) 1537 goto out; 1538 1539 bprm->exec = bprm->p; 1540 retval = copy_strings(bprm->envc, envp, bprm); 1541 if (retval < 0) 1542 goto out; 1543 1544 retval = copy_strings(bprm->argc, argv, bprm); 1545 if (retval < 0) 1546 goto out; 1547 1548 retval = search_binary_handler(bprm); 1549 if (retval < 0) 1550 goto out; 1551 1552 /* execve succeeded */ 1553 current->fs->in_exec = 0; 1554 current->in_execve = 0; 1555 acct_update_integrals(current); 1556 free_bprm(bprm); 1557 if (displaced) 1558 put_files_struct(displaced); 1559 return retval; 1560 1561 out: 1562 if (bprm->mm) { 1563 acct_arg_size(bprm, 0); 1564 mmput(bprm->mm); 1565 } 1566 1567 out_file: 1568 if (bprm->file) { 1569 allow_write_access(bprm->file); 1570 fput(bprm->file); 1571 } 1572 1573 out_unmark: 1574 if (clear_in_exec) 1575 current->fs->in_exec = 0; 1576 current->in_execve = 0; 1577 1578 out_free: 1579 free_bprm(bprm); 1580 1581 out_files: 1582 if (displaced) 1583 reset_files_struct(displaced); 1584 out_ret: 1585 return retval; 1586 } 1587 1588 int do_execve(const char *filename, 1589 const char __user *const __user *__argv, 1590 const char __user *const __user *__envp) 1591 { 1592 struct user_arg_ptr argv = { .ptr.native = __argv }; 1593 struct user_arg_ptr envp = { .ptr.native = __envp }; 1594 return do_execve_common(filename, argv, envp); 1595 } 1596 1597 #ifdef CONFIG_COMPAT 1598 static int compat_do_execve(const char *filename, 1599 const compat_uptr_t __user *__argv, 1600 const compat_uptr_t __user *__envp) 1601 { 1602 struct user_arg_ptr argv = { 1603 .is_compat = true, 1604 .ptr.compat = __argv, 1605 }; 1606 struct user_arg_ptr envp = { 1607 .is_compat = true, 1608 .ptr.compat = __envp, 1609 }; 1610 return do_execve_common(filename, argv, envp); 1611 } 1612 #endif 1613 1614 void set_binfmt(struct linux_binfmt *new) 1615 { 1616 struct mm_struct *mm = current->mm; 1617 1618 if (mm->binfmt) 1619 module_put(mm->binfmt->module); 1620 1621 mm->binfmt = new; 1622 if (new) 1623 __module_get(new->module); 1624 } 1625 1626 EXPORT_SYMBOL(set_binfmt); 1627 1628 /* 1629 * set_dumpable converts traditional three-value dumpable to two flags and 1630 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1631 * these bits are not changed atomically. So get_dumpable can observe the 1632 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1633 * return either old dumpable or new one by paying attention to the order of 1634 * modifying the bits. 1635 * 1636 * dumpable | mm->flags (binary) 1637 * old new | initial interim final 1638 * ---------+----------------------- 1639 * 0 1 | 00 01 01 1640 * 0 2 | 00 10(*) 11 1641 * 1 0 | 01 00 00 1642 * 1 2 | 01 11 11 1643 * 2 0 | 11 10(*) 00 1644 * 2 1 | 11 11 01 1645 * 1646 * (*) get_dumpable regards interim value of 10 as 11. 1647 */ 1648 void set_dumpable(struct mm_struct *mm, int value) 1649 { 1650 switch (value) { 1651 case SUID_DUMP_DISABLE: 1652 clear_bit(MMF_DUMPABLE, &mm->flags); 1653 smp_wmb(); 1654 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1655 break; 1656 case SUID_DUMP_USER: 1657 set_bit(MMF_DUMPABLE, &mm->flags); 1658 smp_wmb(); 1659 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1660 break; 1661 case SUID_DUMP_ROOT: 1662 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1663 smp_wmb(); 1664 set_bit(MMF_DUMPABLE, &mm->flags); 1665 break; 1666 } 1667 } 1668 1669 int __get_dumpable(unsigned long mm_flags) 1670 { 1671 int ret; 1672 1673 ret = mm_flags & MMF_DUMPABLE_MASK; 1674 return (ret > SUID_DUMP_USER) ? SUID_DUMP_ROOT : ret; 1675 } 1676 1677 int get_dumpable(struct mm_struct *mm) 1678 { 1679 return __get_dumpable(mm->flags); 1680 } 1681 1682 SYSCALL_DEFINE3(execve, 1683 const char __user *, filename, 1684 const char __user *const __user *, argv, 1685 const char __user *const __user *, envp) 1686 { 1687 struct filename *path = getname(filename); 1688 int error = PTR_ERR(path); 1689 if (!IS_ERR(path)) { 1690 error = do_execve(path->name, argv, envp); 1691 putname(path); 1692 } 1693 return error; 1694 } 1695 #ifdef CONFIG_COMPAT 1696 asmlinkage long compat_sys_execve(const char __user * filename, 1697 const compat_uptr_t __user * argv, 1698 const compat_uptr_t __user * envp) 1699 { 1700 struct filename *path = getname(filename); 1701 int error = PTR_ERR(path); 1702 if (!IS_ERR(path)) { 1703 error = compat_do_execve(path->name, argv, envp); 1704 putname(path); 1705 } 1706 return error; 1707 } 1708 #endif 1709