1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 #include <linux/user_events.h> 69 #include <linux/rseq.h> 70 #include <linux/ksm.h> 71 72 #include <linux/uaccess.h> 73 #include <asm/mmu_context.h> 74 #include <asm/tlb.h> 75 76 #include <trace/events/task.h> 77 #include "internal.h" 78 79 #include <trace/events/sched.h> 80 81 static int bprm_creds_from_file(struct linux_binprm *bprm); 82 83 int suid_dumpable = 0; 84 85 static LIST_HEAD(formats); 86 static DEFINE_RWLOCK(binfmt_lock); 87 88 void __register_binfmt(struct linux_binfmt * fmt, int insert) 89 { 90 write_lock(&binfmt_lock); 91 insert ? list_add(&fmt->lh, &formats) : 92 list_add_tail(&fmt->lh, &formats); 93 write_unlock(&binfmt_lock); 94 } 95 96 EXPORT_SYMBOL(__register_binfmt); 97 98 void unregister_binfmt(struct linux_binfmt * fmt) 99 { 100 write_lock(&binfmt_lock); 101 list_del(&fmt->lh); 102 write_unlock(&binfmt_lock); 103 } 104 105 EXPORT_SYMBOL(unregister_binfmt); 106 107 static inline void put_binfmt(struct linux_binfmt * fmt) 108 { 109 module_put(fmt->module); 110 } 111 112 bool path_noexec(const struct path *path) 113 { 114 return (path->mnt->mnt_flags & MNT_NOEXEC) || 115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 116 } 117 118 #ifdef CONFIG_USELIB 119 /* 120 * Note that a shared library must be both readable and executable due to 121 * security reasons. 122 * 123 * Also note that we take the address to load from the file itself. 124 */ 125 SYSCALL_DEFINE1(uselib, const char __user *, library) 126 { 127 struct linux_binfmt *fmt; 128 struct file *file; 129 struct filename *tmp = getname(library); 130 int error = PTR_ERR(tmp); 131 static const struct open_flags uselib_flags = { 132 .open_flag = O_LARGEFILE | O_RDONLY, 133 .acc_mode = MAY_READ | MAY_EXEC, 134 .intent = LOOKUP_OPEN, 135 .lookup_flags = LOOKUP_FOLLOW, 136 }; 137 138 if (IS_ERR(tmp)) 139 goto out; 140 141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 142 putname(tmp); 143 error = PTR_ERR(file); 144 if (IS_ERR(file)) 145 goto out; 146 147 /* 148 * Check do_open_execat() for an explanation. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 152 path_noexec(&file->f_path)) 153 goto exit; 154 155 error = -ENOEXEC; 156 157 read_lock(&binfmt_lock); 158 list_for_each_entry(fmt, &formats, lh) { 159 if (!fmt->load_shlib) 160 continue; 161 if (!try_module_get(fmt->module)) 162 continue; 163 read_unlock(&binfmt_lock); 164 error = fmt->load_shlib(file); 165 read_lock(&binfmt_lock); 166 put_binfmt(fmt); 167 if (error != -ENOEXEC) 168 break; 169 } 170 read_unlock(&binfmt_lock); 171 exit: 172 fput(file); 173 out: 174 return error; 175 } 176 #endif /* #ifdef CONFIG_USELIB */ 177 178 #ifdef CONFIG_MMU 179 /* 180 * The nascent bprm->mm is not visible until exec_mmap() but it can 181 * use a lot of memory, account these pages in current->mm temporary 182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 183 * change the counter back via acct_arg_size(0). 184 */ 185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 186 { 187 struct mm_struct *mm = current->mm; 188 long diff = (long)(pages - bprm->vma_pages); 189 190 if (!mm || !diff) 191 return; 192 193 bprm->vma_pages = pages; 194 add_mm_counter(mm, MM_ANONPAGES, diff); 195 } 196 197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 198 int write) 199 { 200 struct page *page; 201 struct vm_area_struct *vma = bprm->vma; 202 struct mm_struct *mm = bprm->mm; 203 int ret; 204 205 /* 206 * Avoid relying on expanding the stack down in GUP (which 207 * does not work for STACK_GROWSUP anyway), and just do it 208 * by hand ahead of time. 209 */ 210 if (write && pos < vma->vm_start) { 211 mmap_write_lock(mm); 212 ret = expand_downwards(vma, pos); 213 if (unlikely(ret < 0)) { 214 mmap_write_unlock(mm); 215 return NULL; 216 } 217 mmap_write_downgrade(mm); 218 } else 219 mmap_read_lock(mm); 220 221 /* 222 * We are doing an exec(). 'current' is the process 223 * doing the exec and 'mm' is the new process's mm. 224 */ 225 ret = get_user_pages_remote(mm, pos, 1, 226 write ? FOLL_WRITE : 0, 227 &page, NULL); 228 mmap_read_unlock(mm); 229 if (ret <= 0) 230 return NULL; 231 232 if (write) 233 acct_arg_size(bprm, vma_pages(vma)); 234 235 return page; 236 } 237 238 static void put_arg_page(struct page *page) 239 { 240 put_page(page); 241 } 242 243 static void free_arg_pages(struct linux_binprm *bprm) 244 { 245 } 246 247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 248 struct page *page) 249 { 250 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 251 } 252 253 static int __bprm_mm_init(struct linux_binprm *bprm) 254 { 255 int err; 256 struct vm_area_struct *vma = NULL; 257 struct mm_struct *mm = bprm->mm; 258 259 bprm->vma = vma = vm_area_alloc(mm); 260 if (!vma) 261 return -ENOMEM; 262 vma_set_anonymous(vma); 263 264 if (mmap_write_lock_killable(mm)) { 265 err = -EINTR; 266 goto err_free; 267 } 268 269 /* 270 * Need to be called with mmap write lock 271 * held, to avoid race with ksmd. 272 */ 273 err = ksm_execve(mm); 274 if (err) 275 goto err_ksm; 276 277 /* 278 * Place the stack at the largest stack address the architecture 279 * supports. Later, we'll move this to an appropriate place. We don't 280 * use STACK_TOP because that can depend on attributes which aren't 281 * configured yet. 282 */ 283 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 284 vma->vm_end = STACK_TOP_MAX; 285 vma->vm_start = vma->vm_end - PAGE_SIZE; 286 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP); 287 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 288 289 err = insert_vm_struct(mm, vma); 290 if (err) 291 goto err; 292 293 mm->stack_vm = mm->total_vm = 1; 294 mmap_write_unlock(mm); 295 bprm->p = vma->vm_end - sizeof(void *); 296 return 0; 297 err: 298 ksm_exit(mm); 299 err_ksm: 300 mmap_write_unlock(mm); 301 err_free: 302 bprm->vma = NULL; 303 vm_area_free(vma); 304 return err; 305 } 306 307 static bool valid_arg_len(struct linux_binprm *bprm, long len) 308 { 309 return len <= MAX_ARG_STRLEN; 310 } 311 312 #else 313 314 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 315 { 316 } 317 318 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 319 int write) 320 { 321 struct page *page; 322 323 page = bprm->page[pos / PAGE_SIZE]; 324 if (!page && write) { 325 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 326 if (!page) 327 return NULL; 328 bprm->page[pos / PAGE_SIZE] = page; 329 } 330 331 return page; 332 } 333 334 static void put_arg_page(struct page *page) 335 { 336 } 337 338 static void free_arg_page(struct linux_binprm *bprm, int i) 339 { 340 if (bprm->page[i]) { 341 __free_page(bprm->page[i]); 342 bprm->page[i] = NULL; 343 } 344 } 345 346 static void free_arg_pages(struct linux_binprm *bprm) 347 { 348 int i; 349 350 for (i = 0; i < MAX_ARG_PAGES; i++) 351 free_arg_page(bprm, i); 352 } 353 354 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 355 struct page *page) 356 { 357 } 358 359 static int __bprm_mm_init(struct linux_binprm *bprm) 360 { 361 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 362 return 0; 363 } 364 365 static bool valid_arg_len(struct linux_binprm *bprm, long len) 366 { 367 return len <= bprm->p; 368 } 369 370 #endif /* CONFIG_MMU */ 371 372 /* 373 * Create a new mm_struct and populate it with a temporary stack 374 * vm_area_struct. We don't have enough context at this point to set the stack 375 * flags, permissions, and offset, so we use temporary values. We'll update 376 * them later in setup_arg_pages(). 377 */ 378 static int bprm_mm_init(struct linux_binprm *bprm) 379 { 380 int err; 381 struct mm_struct *mm = NULL; 382 383 bprm->mm = mm = mm_alloc(); 384 err = -ENOMEM; 385 if (!mm) 386 goto err; 387 388 /* Save current stack limit for all calculations made during exec. */ 389 task_lock(current->group_leader); 390 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 391 task_unlock(current->group_leader); 392 393 err = __bprm_mm_init(bprm); 394 if (err) 395 goto err; 396 397 return 0; 398 399 err: 400 if (mm) { 401 bprm->mm = NULL; 402 mmdrop(mm); 403 } 404 405 return err; 406 } 407 408 struct user_arg_ptr { 409 #ifdef CONFIG_COMPAT 410 bool is_compat; 411 #endif 412 union { 413 const char __user *const __user *native; 414 #ifdef CONFIG_COMPAT 415 const compat_uptr_t __user *compat; 416 #endif 417 } ptr; 418 }; 419 420 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 421 { 422 const char __user *native; 423 424 #ifdef CONFIG_COMPAT 425 if (unlikely(argv.is_compat)) { 426 compat_uptr_t compat; 427 428 if (get_user(compat, argv.ptr.compat + nr)) 429 return ERR_PTR(-EFAULT); 430 431 return compat_ptr(compat); 432 } 433 #endif 434 435 if (get_user(native, argv.ptr.native + nr)) 436 return ERR_PTR(-EFAULT); 437 438 return native; 439 } 440 441 /* 442 * count() counts the number of strings in array ARGV. 443 */ 444 static int count(struct user_arg_ptr argv, int max) 445 { 446 int i = 0; 447 448 if (argv.ptr.native != NULL) { 449 for (;;) { 450 const char __user *p = get_user_arg_ptr(argv, i); 451 452 if (!p) 453 break; 454 455 if (IS_ERR(p)) 456 return -EFAULT; 457 458 if (i >= max) 459 return -E2BIG; 460 ++i; 461 462 if (fatal_signal_pending(current)) 463 return -ERESTARTNOHAND; 464 cond_resched(); 465 } 466 } 467 return i; 468 } 469 470 static int count_strings_kernel(const char *const *argv) 471 { 472 int i; 473 474 if (!argv) 475 return 0; 476 477 for (i = 0; argv[i]; ++i) { 478 if (i >= MAX_ARG_STRINGS) 479 return -E2BIG; 480 if (fatal_signal_pending(current)) 481 return -ERESTARTNOHAND; 482 cond_resched(); 483 } 484 return i; 485 } 486 487 static inline int bprm_set_stack_limit(struct linux_binprm *bprm, 488 unsigned long limit) 489 { 490 #ifdef CONFIG_MMU 491 /* Avoid a pathological bprm->p. */ 492 if (bprm->p < limit) 493 return -E2BIG; 494 bprm->argmin = bprm->p - limit; 495 #endif 496 return 0; 497 } 498 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm) 499 { 500 #ifdef CONFIG_MMU 501 return bprm->p < bprm->argmin; 502 #else 503 return false; 504 #endif 505 } 506 507 /* 508 * Calculate bprm->argmin from: 509 * - _STK_LIM 510 * - ARG_MAX 511 * - bprm->rlim_stack.rlim_cur 512 * - bprm->argc 513 * - bprm->envc 514 * - bprm->p 515 */ 516 static int bprm_stack_limits(struct linux_binprm *bprm) 517 { 518 unsigned long limit, ptr_size; 519 520 /* 521 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 522 * (whichever is smaller) for the argv+env strings. 523 * This ensures that: 524 * - the remaining binfmt code will not run out of stack space, 525 * - the program will have a reasonable amount of stack left 526 * to work from. 527 */ 528 limit = _STK_LIM / 4 * 3; 529 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 530 /* 531 * We've historically supported up to 32 pages (ARG_MAX) 532 * of argument strings even with small stacks 533 */ 534 limit = max_t(unsigned long, limit, ARG_MAX); 535 /* Reject totally pathological counts. */ 536 if (bprm->argc < 0 || bprm->envc < 0) 537 return -E2BIG; 538 /* 539 * We must account for the size of all the argv and envp pointers to 540 * the argv and envp strings, since they will also take up space in 541 * the stack. They aren't stored until much later when we can't 542 * signal to the parent that the child has run out of stack space. 543 * Instead, calculate it here so it's possible to fail gracefully. 544 * 545 * In the case of argc = 0, make sure there is space for adding a 546 * empty string (which will bump argc to 1), to ensure confused 547 * userspace programs don't start processing from argv[1], thinking 548 * argc can never be 0, to keep them from walking envp by accident. 549 * See do_execveat_common(). 550 */ 551 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) || 552 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size)) 553 return -E2BIG; 554 if (limit <= ptr_size) 555 return -E2BIG; 556 limit -= ptr_size; 557 558 return bprm_set_stack_limit(bprm, limit); 559 } 560 561 /* 562 * 'copy_strings()' copies argument/environment strings from the old 563 * processes's memory to the new process's stack. The call to get_user_pages() 564 * ensures the destination page is created and not swapped out. 565 */ 566 static int copy_strings(int argc, struct user_arg_ptr argv, 567 struct linux_binprm *bprm) 568 { 569 struct page *kmapped_page = NULL; 570 char *kaddr = NULL; 571 unsigned long kpos = 0; 572 int ret; 573 574 while (argc-- > 0) { 575 const char __user *str; 576 int len; 577 unsigned long pos; 578 579 ret = -EFAULT; 580 str = get_user_arg_ptr(argv, argc); 581 if (IS_ERR(str)) 582 goto out; 583 584 len = strnlen_user(str, MAX_ARG_STRLEN); 585 if (!len) 586 goto out; 587 588 ret = -E2BIG; 589 if (!valid_arg_len(bprm, len)) 590 goto out; 591 592 /* We're going to work our way backwards. */ 593 pos = bprm->p; 594 str += len; 595 bprm->p -= len; 596 if (bprm_hit_stack_limit(bprm)) 597 goto out; 598 599 while (len > 0) { 600 int offset, bytes_to_copy; 601 602 if (fatal_signal_pending(current)) { 603 ret = -ERESTARTNOHAND; 604 goto out; 605 } 606 cond_resched(); 607 608 offset = pos % PAGE_SIZE; 609 if (offset == 0) 610 offset = PAGE_SIZE; 611 612 bytes_to_copy = offset; 613 if (bytes_to_copy > len) 614 bytes_to_copy = len; 615 616 offset -= bytes_to_copy; 617 pos -= bytes_to_copy; 618 str -= bytes_to_copy; 619 len -= bytes_to_copy; 620 621 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 622 struct page *page; 623 624 page = get_arg_page(bprm, pos, 1); 625 if (!page) { 626 ret = -E2BIG; 627 goto out; 628 } 629 630 if (kmapped_page) { 631 flush_dcache_page(kmapped_page); 632 kunmap_local(kaddr); 633 put_arg_page(kmapped_page); 634 } 635 kmapped_page = page; 636 kaddr = kmap_local_page(kmapped_page); 637 kpos = pos & PAGE_MASK; 638 flush_arg_page(bprm, kpos, kmapped_page); 639 } 640 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 641 ret = -EFAULT; 642 goto out; 643 } 644 } 645 } 646 ret = 0; 647 out: 648 if (kmapped_page) { 649 flush_dcache_page(kmapped_page); 650 kunmap_local(kaddr); 651 put_arg_page(kmapped_page); 652 } 653 return ret; 654 } 655 656 /* 657 * Copy and argument/environment string from the kernel to the processes stack. 658 */ 659 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 660 { 661 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 662 unsigned long pos = bprm->p; 663 664 if (len == 0) 665 return -EFAULT; 666 if (!valid_arg_len(bprm, len)) 667 return -E2BIG; 668 669 /* We're going to work our way backwards. */ 670 arg += len; 671 bprm->p -= len; 672 if (bprm_hit_stack_limit(bprm)) 673 return -E2BIG; 674 675 while (len > 0) { 676 unsigned int bytes_to_copy = min_t(unsigned int, len, 677 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 678 struct page *page; 679 680 pos -= bytes_to_copy; 681 arg -= bytes_to_copy; 682 len -= bytes_to_copy; 683 684 page = get_arg_page(bprm, pos, 1); 685 if (!page) 686 return -E2BIG; 687 flush_arg_page(bprm, pos & PAGE_MASK, page); 688 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 689 put_arg_page(page); 690 } 691 692 return 0; 693 } 694 EXPORT_SYMBOL(copy_string_kernel); 695 696 static int copy_strings_kernel(int argc, const char *const *argv, 697 struct linux_binprm *bprm) 698 { 699 while (argc-- > 0) { 700 int ret = copy_string_kernel(argv[argc], bprm); 701 if (ret < 0) 702 return ret; 703 if (fatal_signal_pending(current)) 704 return -ERESTARTNOHAND; 705 cond_resched(); 706 } 707 return 0; 708 } 709 710 #ifdef CONFIG_MMU 711 712 /* 713 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 714 * the stack is optionally relocated, and some extra space is added. 715 */ 716 int setup_arg_pages(struct linux_binprm *bprm, 717 unsigned long stack_top, 718 int executable_stack) 719 { 720 unsigned long ret; 721 unsigned long stack_shift; 722 struct mm_struct *mm = current->mm; 723 struct vm_area_struct *vma = bprm->vma; 724 struct vm_area_struct *prev = NULL; 725 unsigned long vm_flags; 726 unsigned long stack_base; 727 unsigned long stack_size; 728 unsigned long stack_expand; 729 unsigned long rlim_stack; 730 struct mmu_gather tlb; 731 struct vma_iterator vmi; 732 733 #ifdef CONFIG_STACK_GROWSUP 734 /* Limit stack size */ 735 stack_base = bprm->rlim_stack.rlim_max; 736 737 stack_base = calc_max_stack_size(stack_base); 738 739 /* Add space for stack randomization. */ 740 if (current->flags & PF_RANDOMIZE) 741 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 742 743 /* Make sure we didn't let the argument array grow too large. */ 744 if (vma->vm_end - vma->vm_start > stack_base) 745 return -ENOMEM; 746 747 stack_base = PAGE_ALIGN(stack_top - stack_base); 748 749 stack_shift = vma->vm_start - stack_base; 750 mm->arg_start = bprm->p - stack_shift; 751 bprm->p = vma->vm_end - stack_shift; 752 #else 753 stack_top = arch_align_stack(stack_top); 754 stack_top = PAGE_ALIGN(stack_top); 755 756 if (unlikely(stack_top < mmap_min_addr) || 757 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 758 return -ENOMEM; 759 760 stack_shift = vma->vm_end - stack_top; 761 762 bprm->p -= stack_shift; 763 mm->arg_start = bprm->p; 764 #endif 765 766 if (bprm->loader) 767 bprm->loader -= stack_shift; 768 bprm->exec -= stack_shift; 769 770 if (mmap_write_lock_killable(mm)) 771 return -EINTR; 772 773 vm_flags = VM_STACK_FLAGS; 774 775 /* 776 * Adjust stack execute permissions; explicitly enable for 777 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 778 * (arch default) otherwise. 779 */ 780 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 781 vm_flags |= VM_EXEC; 782 else if (executable_stack == EXSTACK_DISABLE_X) 783 vm_flags &= ~VM_EXEC; 784 vm_flags |= mm->def_flags; 785 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 786 787 vma_iter_init(&vmi, mm, vma->vm_start); 788 789 tlb_gather_mmu(&tlb, mm); 790 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end, 791 vm_flags); 792 tlb_finish_mmu(&tlb); 793 794 if (ret) 795 goto out_unlock; 796 BUG_ON(prev != vma); 797 798 if (unlikely(vm_flags & VM_EXEC)) { 799 pr_warn_once("process '%pD4' started with executable stack\n", 800 bprm->file); 801 } 802 803 /* Move stack pages down in memory. */ 804 if (stack_shift) { 805 /* 806 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 807 * the binfmt code determines where the new stack should reside, we shift it to 808 * its final location. 809 */ 810 ret = relocate_vma_down(vma, stack_shift); 811 if (ret) 812 goto out_unlock; 813 } 814 815 /* mprotect_fixup is overkill to remove the temporary stack flags */ 816 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); 817 818 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 819 stack_size = vma->vm_end - vma->vm_start; 820 /* 821 * Align this down to a page boundary as expand_stack 822 * will align it up. 823 */ 824 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 825 826 stack_expand = min(rlim_stack, stack_size + stack_expand); 827 828 #ifdef CONFIG_STACK_GROWSUP 829 stack_base = vma->vm_start + stack_expand; 830 #else 831 stack_base = vma->vm_end - stack_expand; 832 #endif 833 current->mm->start_stack = bprm->p; 834 ret = expand_stack_locked(vma, stack_base); 835 if (ret) 836 ret = -EFAULT; 837 838 out_unlock: 839 mmap_write_unlock(mm); 840 return ret; 841 } 842 EXPORT_SYMBOL(setup_arg_pages); 843 844 #else 845 846 /* 847 * Transfer the program arguments and environment from the holding pages 848 * onto the stack. The provided stack pointer is adjusted accordingly. 849 */ 850 int transfer_args_to_stack(struct linux_binprm *bprm, 851 unsigned long *sp_location) 852 { 853 unsigned long index, stop, sp; 854 int ret = 0; 855 856 stop = bprm->p >> PAGE_SHIFT; 857 sp = *sp_location; 858 859 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 860 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 861 char *src = kmap_local_page(bprm->page[index]) + offset; 862 sp -= PAGE_SIZE - offset; 863 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 864 ret = -EFAULT; 865 kunmap_local(src); 866 if (ret) 867 goto out; 868 } 869 870 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE; 871 *sp_location = sp; 872 873 out: 874 return ret; 875 } 876 EXPORT_SYMBOL(transfer_args_to_stack); 877 878 #endif /* CONFIG_MMU */ 879 880 /* 881 * On success, caller must call do_close_execat() on the returned 882 * struct file to close it. 883 */ 884 static struct file *do_open_execat(int fd, struct filename *name, int flags) 885 { 886 int err; 887 struct file *file __free(fput) = NULL; 888 struct open_flags open_exec_flags = { 889 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 890 .acc_mode = MAY_EXEC, 891 .intent = LOOKUP_OPEN, 892 .lookup_flags = LOOKUP_FOLLOW, 893 }; 894 895 if ((flags & 896 ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH | AT_EXECVE_CHECK)) != 0) 897 return ERR_PTR(-EINVAL); 898 if (flags & AT_SYMLINK_NOFOLLOW) 899 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 900 if (flags & AT_EMPTY_PATH) 901 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 902 903 file = do_filp_open(fd, name, &open_exec_flags); 904 if (IS_ERR(file)) 905 return file; 906 907 /* 908 * In the past the regular type check was here. It moved to may_open() in 909 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is 910 * an invariant that all non-regular files error out before we get here. 911 */ 912 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 913 path_noexec(&file->f_path)) 914 return ERR_PTR(-EACCES); 915 916 err = exe_file_deny_write_access(file); 917 if (err) 918 return ERR_PTR(err); 919 920 return no_free_ptr(file); 921 } 922 923 /** 924 * open_exec - Open a path name for execution 925 * 926 * @name: path name to open with the intent of executing it. 927 * 928 * Returns ERR_PTR on failure or allocated struct file on success. 929 * 930 * As this is a wrapper for the internal do_open_execat(), callers 931 * must call exe_file_allow_write_access() before fput() on release. Also see 932 * do_close_execat(). 933 */ 934 struct file *open_exec(const char *name) 935 { 936 struct filename *filename = getname_kernel(name); 937 struct file *f = ERR_CAST(filename); 938 939 if (!IS_ERR(filename)) { 940 f = do_open_execat(AT_FDCWD, filename, 0); 941 putname(filename); 942 } 943 return f; 944 } 945 EXPORT_SYMBOL(open_exec); 946 947 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 948 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 949 { 950 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 951 if (res > 0) 952 flush_icache_user_range(addr, addr + len); 953 return res; 954 } 955 EXPORT_SYMBOL(read_code); 956 #endif 957 958 /* 959 * Maps the mm_struct mm into the current task struct. 960 * On success, this function returns with exec_update_lock 961 * held for writing. 962 */ 963 static int exec_mmap(struct mm_struct *mm) 964 { 965 struct task_struct *tsk; 966 struct mm_struct *old_mm, *active_mm; 967 int ret; 968 969 /* Notify parent that we're no longer interested in the old VM */ 970 tsk = current; 971 old_mm = current->mm; 972 exec_mm_release(tsk, old_mm); 973 974 ret = down_write_killable(&tsk->signal->exec_update_lock); 975 if (ret) 976 return ret; 977 978 if (old_mm) { 979 /* 980 * If there is a pending fatal signal perhaps a signal 981 * whose default action is to create a coredump get 982 * out and die instead of going through with the exec. 983 */ 984 ret = mmap_read_lock_killable(old_mm); 985 if (ret) { 986 up_write(&tsk->signal->exec_update_lock); 987 return ret; 988 } 989 } 990 991 task_lock(tsk); 992 membarrier_exec_mmap(mm); 993 994 local_irq_disable(); 995 active_mm = tsk->active_mm; 996 tsk->active_mm = mm; 997 tsk->mm = mm; 998 mm_init_cid(mm, tsk); 999 /* 1000 * This prevents preemption while active_mm is being loaded and 1001 * it and mm are being updated, which could cause problems for 1002 * lazy tlb mm refcounting when these are updated by context 1003 * switches. Not all architectures can handle irqs off over 1004 * activate_mm yet. 1005 */ 1006 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1007 local_irq_enable(); 1008 activate_mm(active_mm, mm); 1009 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1010 local_irq_enable(); 1011 lru_gen_add_mm(mm); 1012 task_unlock(tsk); 1013 lru_gen_use_mm(mm); 1014 if (old_mm) { 1015 mmap_read_unlock(old_mm); 1016 BUG_ON(active_mm != old_mm); 1017 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1018 mm_update_next_owner(old_mm); 1019 mmput(old_mm); 1020 return 0; 1021 } 1022 mmdrop_lazy_tlb(active_mm); 1023 return 0; 1024 } 1025 1026 static int de_thread(struct task_struct *tsk) 1027 { 1028 struct signal_struct *sig = tsk->signal; 1029 struct sighand_struct *oldsighand = tsk->sighand; 1030 spinlock_t *lock = &oldsighand->siglock; 1031 1032 if (thread_group_empty(tsk)) 1033 goto no_thread_group; 1034 1035 /* 1036 * Kill all other threads in the thread group. 1037 */ 1038 spin_lock_irq(lock); 1039 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1040 /* 1041 * Another group action in progress, just 1042 * return so that the signal is processed. 1043 */ 1044 spin_unlock_irq(lock); 1045 return -EAGAIN; 1046 } 1047 1048 sig->group_exec_task = tsk; 1049 sig->notify_count = zap_other_threads(tsk); 1050 if (!thread_group_leader(tsk)) 1051 sig->notify_count--; 1052 1053 while (sig->notify_count) { 1054 __set_current_state(TASK_KILLABLE); 1055 spin_unlock_irq(lock); 1056 schedule(); 1057 if (__fatal_signal_pending(tsk)) 1058 goto killed; 1059 spin_lock_irq(lock); 1060 } 1061 spin_unlock_irq(lock); 1062 1063 /* 1064 * At this point all other threads have exited, all we have to 1065 * do is to wait for the thread group leader to become inactive, 1066 * and to assume its PID: 1067 */ 1068 if (!thread_group_leader(tsk)) { 1069 struct task_struct *leader = tsk->group_leader; 1070 1071 for (;;) { 1072 cgroup_threadgroup_change_begin(tsk); 1073 write_lock_irq(&tasklist_lock); 1074 /* 1075 * Do this under tasklist_lock to ensure that 1076 * exit_notify() can't miss ->group_exec_task 1077 */ 1078 sig->notify_count = -1; 1079 if (likely(leader->exit_state)) 1080 break; 1081 __set_current_state(TASK_KILLABLE); 1082 write_unlock_irq(&tasklist_lock); 1083 cgroup_threadgroup_change_end(tsk); 1084 schedule(); 1085 if (__fatal_signal_pending(tsk)) 1086 goto killed; 1087 } 1088 1089 /* 1090 * The only record we have of the real-time age of a 1091 * process, regardless of execs it's done, is start_time. 1092 * All the past CPU time is accumulated in signal_struct 1093 * from sister threads now dead. But in this non-leader 1094 * exec, nothing survives from the original leader thread, 1095 * whose birth marks the true age of this process now. 1096 * When we take on its identity by switching to its PID, we 1097 * also take its birthdate (always earlier than our own). 1098 */ 1099 tsk->start_time = leader->start_time; 1100 tsk->start_boottime = leader->start_boottime; 1101 1102 BUG_ON(!same_thread_group(leader, tsk)); 1103 /* 1104 * An exec() starts a new thread group with the 1105 * TGID of the previous thread group. Rehash the 1106 * two threads with a switched PID, and release 1107 * the former thread group leader: 1108 */ 1109 1110 /* Become a process group leader with the old leader's pid. 1111 * The old leader becomes a thread of the this thread group. 1112 */ 1113 exchange_tids(tsk, leader); 1114 transfer_pid(leader, tsk, PIDTYPE_TGID); 1115 transfer_pid(leader, tsk, PIDTYPE_PGID); 1116 transfer_pid(leader, tsk, PIDTYPE_SID); 1117 1118 list_replace_rcu(&leader->tasks, &tsk->tasks); 1119 list_replace_init(&leader->sibling, &tsk->sibling); 1120 1121 tsk->group_leader = tsk; 1122 leader->group_leader = tsk; 1123 1124 tsk->exit_signal = SIGCHLD; 1125 leader->exit_signal = -1; 1126 1127 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1128 leader->exit_state = EXIT_DEAD; 1129 /* 1130 * We are going to release_task()->ptrace_unlink() silently, 1131 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1132 * the tracer won't block again waiting for this thread. 1133 */ 1134 if (unlikely(leader->ptrace)) 1135 __wake_up_parent(leader, leader->parent); 1136 write_unlock_irq(&tasklist_lock); 1137 cgroup_threadgroup_change_end(tsk); 1138 1139 release_task(leader); 1140 } 1141 1142 sig->group_exec_task = NULL; 1143 sig->notify_count = 0; 1144 1145 no_thread_group: 1146 /* we have changed execution domain */ 1147 tsk->exit_signal = SIGCHLD; 1148 1149 BUG_ON(!thread_group_leader(tsk)); 1150 return 0; 1151 1152 killed: 1153 /* protects against exit_notify() and __exit_signal() */ 1154 read_lock(&tasklist_lock); 1155 sig->group_exec_task = NULL; 1156 sig->notify_count = 0; 1157 read_unlock(&tasklist_lock); 1158 return -EAGAIN; 1159 } 1160 1161 1162 /* 1163 * This function makes sure the current process has its own signal table, 1164 * so that flush_signal_handlers can later reset the handlers without 1165 * disturbing other processes. (Other processes might share the signal 1166 * table via the CLONE_SIGHAND option to clone().) 1167 */ 1168 static int unshare_sighand(struct task_struct *me) 1169 { 1170 struct sighand_struct *oldsighand = me->sighand; 1171 1172 if (refcount_read(&oldsighand->count) != 1) { 1173 struct sighand_struct *newsighand; 1174 /* 1175 * This ->sighand is shared with the CLONE_SIGHAND 1176 * but not CLONE_THREAD task, switch to the new one. 1177 */ 1178 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1179 if (!newsighand) 1180 return -ENOMEM; 1181 1182 refcount_set(&newsighand->count, 1); 1183 1184 write_lock_irq(&tasklist_lock); 1185 spin_lock(&oldsighand->siglock); 1186 memcpy(newsighand->action, oldsighand->action, 1187 sizeof(newsighand->action)); 1188 rcu_assign_pointer(me->sighand, newsighand); 1189 spin_unlock(&oldsighand->siglock); 1190 write_unlock_irq(&tasklist_lock); 1191 1192 __cleanup_sighand(oldsighand); 1193 } 1194 return 0; 1195 } 1196 1197 /* 1198 * This is unlocked -- the string will always be NUL-terminated, but 1199 * may show overlapping contents if racing concurrent reads. 1200 */ 1201 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1202 { 1203 size_t len = min(strlen(buf), sizeof(tsk->comm) - 1); 1204 1205 trace_task_rename(tsk, buf); 1206 memcpy(tsk->comm, buf, len); 1207 memset(&tsk->comm[len], 0, sizeof(tsk->comm) - len); 1208 perf_event_comm(tsk, exec); 1209 } 1210 1211 /* 1212 * Calling this is the point of no return. None of the failures will be 1213 * seen by userspace since either the process is already taking a fatal 1214 * signal (via de_thread() or coredump), or will have SEGV raised 1215 * (after exec_mmap()) by search_binary_handler (see below). 1216 */ 1217 int begin_new_exec(struct linux_binprm * bprm) 1218 { 1219 struct task_struct *me = current; 1220 int retval; 1221 1222 /* Once we are committed compute the creds */ 1223 retval = bprm_creds_from_file(bprm); 1224 if (retval) 1225 return retval; 1226 1227 /* 1228 * This tracepoint marks the point before flushing the old exec where 1229 * the current task is still unchanged, but errors are fatal (point of 1230 * no return). The later "sched_process_exec" tracepoint is called after 1231 * the current task has successfully switched to the new exec. 1232 */ 1233 trace_sched_prepare_exec(current, bprm); 1234 1235 /* 1236 * Ensure all future errors are fatal. 1237 */ 1238 bprm->point_of_no_return = true; 1239 1240 /* 1241 * Make this the only thread in the thread group. 1242 */ 1243 retval = de_thread(me); 1244 if (retval) 1245 goto out; 1246 1247 /* 1248 * Cancel any io_uring activity across execve 1249 */ 1250 io_uring_task_cancel(); 1251 1252 /* Ensure the files table is not shared. */ 1253 retval = unshare_files(); 1254 if (retval) 1255 goto out; 1256 1257 /* 1258 * Must be called _before_ exec_mmap() as bprm->mm is 1259 * not visible until then. Doing it here also ensures 1260 * we don't race against replace_mm_exe_file(). 1261 */ 1262 retval = set_mm_exe_file(bprm->mm, bprm->file); 1263 if (retval) 1264 goto out; 1265 1266 /* If the binary is not readable then enforce mm->dumpable=0 */ 1267 would_dump(bprm, bprm->file); 1268 if (bprm->have_execfd) 1269 would_dump(bprm, bprm->executable); 1270 1271 /* 1272 * Release all of the old mmap stuff 1273 */ 1274 acct_arg_size(bprm, 0); 1275 retval = exec_mmap(bprm->mm); 1276 if (retval) 1277 goto out; 1278 1279 bprm->mm = NULL; 1280 1281 retval = exec_task_namespaces(); 1282 if (retval) 1283 goto out_unlock; 1284 1285 #ifdef CONFIG_POSIX_TIMERS 1286 spin_lock_irq(&me->sighand->siglock); 1287 posix_cpu_timers_exit(me); 1288 spin_unlock_irq(&me->sighand->siglock); 1289 exit_itimers(me); 1290 flush_itimer_signals(); 1291 #endif 1292 1293 /* 1294 * Make the signal table private. 1295 */ 1296 retval = unshare_sighand(me); 1297 if (retval) 1298 goto out_unlock; 1299 1300 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1301 PF_NOFREEZE | PF_NO_SETAFFINITY); 1302 flush_thread(); 1303 me->personality &= ~bprm->per_clear; 1304 1305 clear_syscall_work_syscall_user_dispatch(me); 1306 1307 /* 1308 * We have to apply CLOEXEC before we change whether the process is 1309 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1310 * trying to access the should-be-closed file descriptors of a process 1311 * undergoing exec(2). 1312 */ 1313 do_close_on_exec(me->files); 1314 1315 if (bprm->secureexec) { 1316 /* Make sure parent cannot signal privileged process. */ 1317 me->pdeath_signal = 0; 1318 1319 /* 1320 * For secureexec, reset the stack limit to sane default to 1321 * avoid bad behavior from the prior rlimits. This has to 1322 * happen before arch_pick_mmap_layout(), which examines 1323 * RLIMIT_STACK, but after the point of no return to avoid 1324 * needing to clean up the change on failure. 1325 */ 1326 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1327 bprm->rlim_stack.rlim_cur = _STK_LIM; 1328 } 1329 1330 me->sas_ss_sp = me->sas_ss_size = 0; 1331 1332 /* 1333 * Figure out dumpability. Note that this checking only of current 1334 * is wrong, but userspace depends on it. This should be testing 1335 * bprm->secureexec instead. 1336 */ 1337 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1338 !(uid_eq(current_euid(), current_uid()) && 1339 gid_eq(current_egid(), current_gid()))) 1340 set_dumpable(current->mm, suid_dumpable); 1341 else 1342 set_dumpable(current->mm, SUID_DUMP_USER); 1343 1344 perf_event_exec(); 1345 1346 /* 1347 * If the original filename was empty, alloc_bprm() made up a path 1348 * that will probably not be useful to admins running ps or similar. 1349 * Let's fix it up to be something reasonable. 1350 */ 1351 if (bprm->comm_from_dentry) { 1352 /* 1353 * Hold RCU lock to keep the name from being freed behind our back. 1354 * Use acquire semantics to make sure the terminating NUL from 1355 * __d_alloc() is seen. 1356 * 1357 * Note, we're deliberately sloppy here. We don't need to care about 1358 * detecting a concurrent rename and just want a terminated name. 1359 */ 1360 rcu_read_lock(); 1361 __set_task_comm(me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name), 1362 true); 1363 rcu_read_unlock(); 1364 } else { 1365 __set_task_comm(me, kbasename(bprm->filename), true); 1366 } 1367 1368 /* An exec changes our domain. We are no longer part of the thread 1369 group */ 1370 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1371 flush_signal_handlers(me, 0); 1372 1373 retval = set_cred_ucounts(bprm->cred); 1374 if (retval < 0) 1375 goto out_unlock; 1376 1377 /* 1378 * install the new credentials for this executable 1379 */ 1380 security_bprm_committing_creds(bprm); 1381 1382 commit_creds(bprm->cred); 1383 bprm->cred = NULL; 1384 1385 /* 1386 * Disable monitoring for regular users 1387 * when executing setuid binaries. Must 1388 * wait until new credentials are committed 1389 * by commit_creds() above 1390 */ 1391 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1392 perf_event_exit_task(me); 1393 /* 1394 * cred_guard_mutex must be held at least to this point to prevent 1395 * ptrace_attach() from altering our determination of the task's 1396 * credentials; any time after this it may be unlocked. 1397 */ 1398 security_bprm_committed_creds(bprm); 1399 1400 /* Pass the opened binary to the interpreter. */ 1401 if (bprm->have_execfd) { 1402 retval = get_unused_fd_flags(0); 1403 if (retval < 0) 1404 goto out_unlock; 1405 fd_install(retval, bprm->executable); 1406 bprm->executable = NULL; 1407 bprm->execfd = retval; 1408 } 1409 return 0; 1410 1411 out_unlock: 1412 up_write(&me->signal->exec_update_lock); 1413 if (!bprm->cred) 1414 mutex_unlock(&me->signal->cred_guard_mutex); 1415 1416 out: 1417 return retval; 1418 } 1419 EXPORT_SYMBOL(begin_new_exec); 1420 1421 void would_dump(struct linux_binprm *bprm, struct file *file) 1422 { 1423 struct inode *inode = file_inode(file); 1424 struct mnt_idmap *idmap = file_mnt_idmap(file); 1425 if (inode_permission(idmap, inode, MAY_READ) < 0) { 1426 struct user_namespace *old, *user_ns; 1427 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1428 1429 /* Ensure mm->user_ns contains the executable */ 1430 user_ns = old = bprm->mm->user_ns; 1431 while ((user_ns != &init_user_ns) && 1432 !privileged_wrt_inode_uidgid(user_ns, idmap, inode)) 1433 user_ns = user_ns->parent; 1434 1435 if (old != user_ns) { 1436 bprm->mm->user_ns = get_user_ns(user_ns); 1437 put_user_ns(old); 1438 } 1439 } 1440 } 1441 EXPORT_SYMBOL(would_dump); 1442 1443 void setup_new_exec(struct linux_binprm * bprm) 1444 { 1445 /* Setup things that can depend upon the personality */ 1446 struct task_struct *me = current; 1447 1448 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1449 1450 arch_setup_new_exec(); 1451 1452 /* Set the new mm task size. We have to do that late because it may 1453 * depend on TIF_32BIT which is only updated in flush_thread() on 1454 * some architectures like powerpc 1455 */ 1456 me->mm->task_size = TASK_SIZE; 1457 up_write(&me->signal->exec_update_lock); 1458 mutex_unlock(&me->signal->cred_guard_mutex); 1459 } 1460 EXPORT_SYMBOL(setup_new_exec); 1461 1462 /* Runs immediately before start_thread() takes over. */ 1463 void finalize_exec(struct linux_binprm *bprm) 1464 { 1465 /* Store any stack rlimit changes before starting thread. */ 1466 task_lock(current->group_leader); 1467 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1468 task_unlock(current->group_leader); 1469 } 1470 EXPORT_SYMBOL(finalize_exec); 1471 1472 /* 1473 * Prepare credentials and lock ->cred_guard_mutex. 1474 * setup_new_exec() commits the new creds and drops the lock. 1475 * Or, if exec fails before, free_bprm() should release ->cred 1476 * and unlock. 1477 */ 1478 static int prepare_bprm_creds(struct linux_binprm *bprm) 1479 { 1480 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1481 return -ERESTARTNOINTR; 1482 1483 bprm->cred = prepare_exec_creds(); 1484 if (likely(bprm->cred)) 1485 return 0; 1486 1487 mutex_unlock(¤t->signal->cred_guard_mutex); 1488 return -ENOMEM; 1489 } 1490 1491 /* Matches do_open_execat() */ 1492 static void do_close_execat(struct file *file) 1493 { 1494 if (!file) 1495 return; 1496 exe_file_allow_write_access(file); 1497 fput(file); 1498 } 1499 1500 static void free_bprm(struct linux_binprm *bprm) 1501 { 1502 if (bprm->mm) { 1503 acct_arg_size(bprm, 0); 1504 mmput(bprm->mm); 1505 } 1506 free_arg_pages(bprm); 1507 if (bprm->cred) { 1508 mutex_unlock(¤t->signal->cred_guard_mutex); 1509 abort_creds(bprm->cred); 1510 } 1511 do_close_execat(bprm->file); 1512 if (bprm->executable) 1513 fput(bprm->executable); 1514 /* If a binfmt changed the interp, free it. */ 1515 if (bprm->interp != bprm->filename) 1516 kfree(bprm->interp); 1517 kfree(bprm->fdpath); 1518 kfree(bprm); 1519 } 1520 1521 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags) 1522 { 1523 struct linux_binprm *bprm; 1524 struct file *file; 1525 int retval = -ENOMEM; 1526 1527 file = do_open_execat(fd, filename, flags); 1528 if (IS_ERR(file)) 1529 return ERR_CAST(file); 1530 1531 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1532 if (!bprm) { 1533 do_close_execat(file); 1534 return ERR_PTR(-ENOMEM); 1535 } 1536 1537 bprm->file = file; 1538 1539 if (fd == AT_FDCWD || filename->name[0] == '/') { 1540 bprm->filename = filename->name; 1541 } else { 1542 if (filename->name[0] == '\0') { 1543 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1544 bprm->comm_from_dentry = 1; 1545 } else { 1546 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1547 fd, filename->name); 1548 } 1549 if (!bprm->fdpath) 1550 goto out_free; 1551 1552 /* 1553 * Record that a name derived from an O_CLOEXEC fd will be 1554 * inaccessible after exec. This allows the code in exec to 1555 * choose to fail when the executable is not mmaped into the 1556 * interpreter and an open file descriptor is not passed to 1557 * the interpreter. This makes for a better user experience 1558 * than having the interpreter start and then immediately fail 1559 * when it finds the executable is inaccessible. 1560 */ 1561 if (get_close_on_exec(fd)) 1562 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1563 1564 bprm->filename = bprm->fdpath; 1565 } 1566 bprm->interp = bprm->filename; 1567 1568 /* 1569 * At this point, security_file_open() has already been called (with 1570 * __FMODE_EXEC) and access control checks for AT_EXECVE_CHECK will 1571 * stop just after the security_bprm_creds_for_exec() call in 1572 * bprm_execve(). Indeed, the kernel should not try to parse the 1573 * content of the file with exec_binprm() nor change the calling 1574 * thread, which means that the following security functions will not 1575 * be called: 1576 * - security_bprm_check() 1577 * - security_bprm_creds_from_file() 1578 * - security_bprm_committing_creds() 1579 * - security_bprm_committed_creds() 1580 */ 1581 bprm->is_check = !!(flags & AT_EXECVE_CHECK); 1582 1583 retval = bprm_mm_init(bprm); 1584 if (!retval) 1585 return bprm; 1586 1587 out_free: 1588 free_bprm(bprm); 1589 return ERR_PTR(retval); 1590 } 1591 1592 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1593 { 1594 /* If a binfmt changed the interp, free it first. */ 1595 if (bprm->interp != bprm->filename) 1596 kfree(bprm->interp); 1597 bprm->interp = kstrdup(interp, GFP_KERNEL); 1598 if (!bprm->interp) 1599 return -ENOMEM; 1600 return 0; 1601 } 1602 EXPORT_SYMBOL(bprm_change_interp); 1603 1604 /* 1605 * determine how safe it is to execute the proposed program 1606 * - the caller must hold ->cred_guard_mutex to protect against 1607 * PTRACE_ATTACH or seccomp thread-sync 1608 */ 1609 static void check_unsafe_exec(struct linux_binprm *bprm) 1610 { 1611 struct task_struct *p = current, *t; 1612 unsigned n_fs; 1613 1614 if (p->ptrace) 1615 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1616 1617 /* 1618 * This isn't strictly necessary, but it makes it harder for LSMs to 1619 * mess up. 1620 */ 1621 if (task_no_new_privs(current)) 1622 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1623 1624 /* 1625 * If another task is sharing our fs, we cannot safely 1626 * suid exec because the differently privileged task 1627 * will be able to manipulate the current directory, etc. 1628 * It would be nice to force an unshare instead... 1629 */ 1630 n_fs = 1; 1631 spin_lock(&p->fs->lock); 1632 rcu_read_lock(); 1633 for_other_threads(p, t) { 1634 if (t->fs == p->fs) 1635 n_fs++; 1636 } 1637 rcu_read_unlock(); 1638 1639 /* "users" and "in_exec" locked for copy_fs() */ 1640 if (p->fs->users > n_fs) 1641 bprm->unsafe |= LSM_UNSAFE_SHARE; 1642 else 1643 p->fs->in_exec = 1; 1644 spin_unlock(&p->fs->lock); 1645 } 1646 1647 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1648 { 1649 /* Handle suid and sgid on files */ 1650 struct mnt_idmap *idmap; 1651 struct inode *inode = file_inode(file); 1652 unsigned int mode; 1653 vfsuid_t vfsuid; 1654 vfsgid_t vfsgid; 1655 int err; 1656 1657 if (!mnt_may_suid(file->f_path.mnt)) 1658 return; 1659 1660 if (task_no_new_privs(current)) 1661 return; 1662 1663 mode = READ_ONCE(inode->i_mode); 1664 if (!(mode & (S_ISUID|S_ISGID))) 1665 return; 1666 1667 idmap = file_mnt_idmap(file); 1668 1669 /* Be careful if suid/sgid is set */ 1670 inode_lock(inode); 1671 1672 /* Atomically reload and check mode/uid/gid now that lock held. */ 1673 mode = inode->i_mode; 1674 vfsuid = i_uid_into_vfsuid(idmap, inode); 1675 vfsgid = i_gid_into_vfsgid(idmap, inode); 1676 err = inode_permission(idmap, inode, MAY_EXEC); 1677 inode_unlock(inode); 1678 1679 /* Did the exec bit vanish out from under us? Give up. */ 1680 if (err) 1681 return; 1682 1683 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1684 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1685 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1686 return; 1687 1688 if (mode & S_ISUID) { 1689 bprm->per_clear |= PER_CLEAR_ON_SETID; 1690 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1691 } 1692 1693 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1694 bprm->per_clear |= PER_CLEAR_ON_SETID; 1695 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1696 } 1697 } 1698 1699 /* 1700 * Compute brpm->cred based upon the final binary. 1701 */ 1702 static int bprm_creds_from_file(struct linux_binprm *bprm) 1703 { 1704 /* Compute creds based on which file? */ 1705 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1706 1707 bprm_fill_uid(bprm, file); 1708 return security_bprm_creds_from_file(bprm, file); 1709 } 1710 1711 /* 1712 * Fill the binprm structure from the inode. 1713 * Read the first BINPRM_BUF_SIZE bytes 1714 * 1715 * This may be called multiple times for binary chains (scripts for example). 1716 */ 1717 static int prepare_binprm(struct linux_binprm *bprm) 1718 { 1719 loff_t pos = 0; 1720 1721 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1722 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1723 } 1724 1725 /* 1726 * Arguments are '\0' separated strings found at the location bprm->p 1727 * points to; chop off the first by relocating brpm->p to right after 1728 * the first '\0' encountered. 1729 */ 1730 int remove_arg_zero(struct linux_binprm *bprm) 1731 { 1732 unsigned long offset; 1733 char *kaddr; 1734 struct page *page; 1735 1736 if (!bprm->argc) 1737 return 0; 1738 1739 do { 1740 offset = bprm->p & ~PAGE_MASK; 1741 page = get_arg_page(bprm, bprm->p, 0); 1742 if (!page) 1743 return -EFAULT; 1744 kaddr = kmap_local_page(page); 1745 1746 for (; offset < PAGE_SIZE && kaddr[offset]; 1747 offset++, bprm->p++) 1748 ; 1749 1750 kunmap_local(kaddr); 1751 put_arg_page(page); 1752 } while (offset == PAGE_SIZE); 1753 1754 bprm->p++; 1755 bprm->argc--; 1756 1757 return 0; 1758 } 1759 EXPORT_SYMBOL(remove_arg_zero); 1760 1761 /* 1762 * cycle the list of binary formats handler, until one recognizes the image 1763 */ 1764 static int search_binary_handler(struct linux_binprm *bprm) 1765 { 1766 struct linux_binfmt *fmt; 1767 int retval; 1768 1769 retval = prepare_binprm(bprm); 1770 if (retval < 0) 1771 return retval; 1772 1773 retval = security_bprm_check(bprm); 1774 if (retval) 1775 return retval; 1776 1777 read_lock(&binfmt_lock); 1778 list_for_each_entry(fmt, &formats, lh) { 1779 if (!try_module_get(fmt->module)) 1780 continue; 1781 read_unlock(&binfmt_lock); 1782 1783 retval = fmt->load_binary(bprm); 1784 1785 read_lock(&binfmt_lock); 1786 put_binfmt(fmt); 1787 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1788 read_unlock(&binfmt_lock); 1789 return retval; 1790 } 1791 } 1792 read_unlock(&binfmt_lock); 1793 1794 return -ENOEXEC; 1795 } 1796 1797 /* binfmt handlers will call back into begin_new_exec() on success. */ 1798 static int exec_binprm(struct linux_binprm *bprm) 1799 { 1800 pid_t old_pid, old_vpid; 1801 int ret, depth; 1802 1803 /* Need to fetch pid before load_binary changes it */ 1804 old_pid = current->pid; 1805 rcu_read_lock(); 1806 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1807 rcu_read_unlock(); 1808 1809 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1810 for (depth = 0;; depth++) { 1811 struct file *exec; 1812 if (depth > 5) 1813 return -ELOOP; 1814 1815 ret = search_binary_handler(bprm); 1816 if (ret < 0) 1817 return ret; 1818 if (!bprm->interpreter) 1819 break; 1820 1821 exec = bprm->file; 1822 bprm->file = bprm->interpreter; 1823 bprm->interpreter = NULL; 1824 1825 exe_file_allow_write_access(exec); 1826 if (unlikely(bprm->have_execfd)) { 1827 if (bprm->executable) { 1828 fput(exec); 1829 return -ENOEXEC; 1830 } 1831 bprm->executable = exec; 1832 } else 1833 fput(exec); 1834 } 1835 1836 audit_bprm(bprm); 1837 trace_sched_process_exec(current, old_pid, bprm); 1838 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1839 proc_exec_connector(current); 1840 return 0; 1841 } 1842 1843 static int bprm_execve(struct linux_binprm *bprm) 1844 { 1845 int retval; 1846 1847 retval = prepare_bprm_creds(bprm); 1848 if (retval) 1849 return retval; 1850 1851 /* 1852 * Check for unsafe execution states before exec_binprm(), which 1853 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1854 * where setuid-ness is evaluated. 1855 */ 1856 check_unsafe_exec(bprm); 1857 current->in_execve = 1; 1858 sched_mm_cid_before_execve(current); 1859 1860 sched_exec(); 1861 1862 /* Set the unchanging part of bprm->cred */ 1863 retval = security_bprm_creds_for_exec(bprm); 1864 if (retval || bprm->is_check) 1865 goto out; 1866 1867 retval = exec_binprm(bprm); 1868 if (retval < 0) 1869 goto out; 1870 1871 sched_mm_cid_after_execve(current); 1872 /* execve succeeded */ 1873 current->fs->in_exec = 0; 1874 current->in_execve = 0; 1875 rseq_execve(current); 1876 user_events_execve(current); 1877 acct_update_integrals(current); 1878 task_numa_free(current, false); 1879 return retval; 1880 1881 out: 1882 /* 1883 * If past the point of no return ensure the code never 1884 * returns to the userspace process. Use an existing fatal 1885 * signal if present otherwise terminate the process with 1886 * SIGSEGV. 1887 */ 1888 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1889 force_fatal_sig(SIGSEGV); 1890 1891 sched_mm_cid_after_execve(current); 1892 current->fs->in_exec = 0; 1893 current->in_execve = 0; 1894 1895 return retval; 1896 } 1897 1898 static int do_execveat_common(int fd, struct filename *filename, 1899 struct user_arg_ptr argv, 1900 struct user_arg_ptr envp, 1901 int flags) 1902 { 1903 struct linux_binprm *bprm; 1904 int retval; 1905 1906 if (IS_ERR(filename)) 1907 return PTR_ERR(filename); 1908 1909 /* 1910 * We move the actual failure in case of RLIMIT_NPROC excess from 1911 * set*uid() to execve() because too many poorly written programs 1912 * don't check setuid() return code. Here we additionally recheck 1913 * whether NPROC limit is still exceeded. 1914 */ 1915 if ((current->flags & PF_NPROC_EXCEEDED) && 1916 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1917 retval = -EAGAIN; 1918 goto out_ret; 1919 } 1920 1921 /* We're below the limit (still or again), so we don't want to make 1922 * further execve() calls fail. */ 1923 current->flags &= ~PF_NPROC_EXCEEDED; 1924 1925 bprm = alloc_bprm(fd, filename, flags); 1926 if (IS_ERR(bprm)) { 1927 retval = PTR_ERR(bprm); 1928 goto out_ret; 1929 } 1930 1931 retval = count(argv, MAX_ARG_STRINGS); 1932 if (retval < 0) 1933 goto out_free; 1934 bprm->argc = retval; 1935 1936 retval = count(envp, MAX_ARG_STRINGS); 1937 if (retval < 0) 1938 goto out_free; 1939 bprm->envc = retval; 1940 1941 retval = bprm_stack_limits(bprm); 1942 if (retval < 0) 1943 goto out_free; 1944 1945 retval = copy_string_kernel(bprm->filename, bprm); 1946 if (retval < 0) 1947 goto out_free; 1948 bprm->exec = bprm->p; 1949 1950 retval = copy_strings(bprm->envc, envp, bprm); 1951 if (retval < 0) 1952 goto out_free; 1953 1954 retval = copy_strings(bprm->argc, argv, bprm); 1955 if (retval < 0) 1956 goto out_free; 1957 1958 /* 1959 * When argv is empty, add an empty string ("") as argv[0] to 1960 * ensure confused userspace programs that start processing 1961 * from argv[1] won't end up walking envp. See also 1962 * bprm_stack_limits(). 1963 */ 1964 if (bprm->argc == 0) { 1965 retval = copy_string_kernel("", bprm); 1966 if (retval < 0) 1967 goto out_free; 1968 bprm->argc = 1; 1969 1970 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1971 current->comm, bprm->filename); 1972 } 1973 1974 retval = bprm_execve(bprm); 1975 out_free: 1976 free_bprm(bprm); 1977 1978 out_ret: 1979 putname(filename); 1980 return retval; 1981 } 1982 1983 int kernel_execve(const char *kernel_filename, 1984 const char *const *argv, const char *const *envp) 1985 { 1986 struct filename *filename; 1987 struct linux_binprm *bprm; 1988 int fd = AT_FDCWD; 1989 int retval; 1990 1991 /* It is non-sense for kernel threads to call execve */ 1992 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1993 return -EINVAL; 1994 1995 filename = getname_kernel(kernel_filename); 1996 if (IS_ERR(filename)) 1997 return PTR_ERR(filename); 1998 1999 bprm = alloc_bprm(fd, filename, 0); 2000 if (IS_ERR(bprm)) { 2001 retval = PTR_ERR(bprm); 2002 goto out_ret; 2003 } 2004 2005 retval = count_strings_kernel(argv); 2006 if (WARN_ON_ONCE(retval == 0)) 2007 retval = -EINVAL; 2008 if (retval < 0) 2009 goto out_free; 2010 bprm->argc = retval; 2011 2012 retval = count_strings_kernel(envp); 2013 if (retval < 0) 2014 goto out_free; 2015 bprm->envc = retval; 2016 2017 retval = bprm_stack_limits(bprm); 2018 if (retval < 0) 2019 goto out_free; 2020 2021 retval = copy_string_kernel(bprm->filename, bprm); 2022 if (retval < 0) 2023 goto out_free; 2024 bprm->exec = bprm->p; 2025 2026 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2027 if (retval < 0) 2028 goto out_free; 2029 2030 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2031 if (retval < 0) 2032 goto out_free; 2033 2034 retval = bprm_execve(bprm); 2035 out_free: 2036 free_bprm(bprm); 2037 out_ret: 2038 putname(filename); 2039 return retval; 2040 } 2041 2042 static int do_execve(struct filename *filename, 2043 const char __user *const __user *__argv, 2044 const char __user *const __user *__envp) 2045 { 2046 struct user_arg_ptr argv = { .ptr.native = __argv }; 2047 struct user_arg_ptr envp = { .ptr.native = __envp }; 2048 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2049 } 2050 2051 static int do_execveat(int fd, struct filename *filename, 2052 const char __user *const __user *__argv, 2053 const char __user *const __user *__envp, 2054 int flags) 2055 { 2056 struct user_arg_ptr argv = { .ptr.native = __argv }; 2057 struct user_arg_ptr envp = { .ptr.native = __envp }; 2058 2059 return do_execveat_common(fd, filename, argv, envp, flags); 2060 } 2061 2062 #ifdef CONFIG_COMPAT 2063 static int compat_do_execve(struct filename *filename, 2064 const compat_uptr_t __user *__argv, 2065 const compat_uptr_t __user *__envp) 2066 { 2067 struct user_arg_ptr argv = { 2068 .is_compat = true, 2069 .ptr.compat = __argv, 2070 }; 2071 struct user_arg_ptr envp = { 2072 .is_compat = true, 2073 .ptr.compat = __envp, 2074 }; 2075 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2076 } 2077 2078 static int compat_do_execveat(int fd, struct filename *filename, 2079 const compat_uptr_t __user *__argv, 2080 const compat_uptr_t __user *__envp, 2081 int flags) 2082 { 2083 struct user_arg_ptr argv = { 2084 .is_compat = true, 2085 .ptr.compat = __argv, 2086 }; 2087 struct user_arg_ptr envp = { 2088 .is_compat = true, 2089 .ptr.compat = __envp, 2090 }; 2091 return do_execveat_common(fd, filename, argv, envp, flags); 2092 } 2093 #endif 2094 2095 void set_binfmt(struct linux_binfmt *new) 2096 { 2097 struct mm_struct *mm = current->mm; 2098 2099 if (mm->binfmt) 2100 module_put(mm->binfmt->module); 2101 2102 mm->binfmt = new; 2103 if (new) 2104 __module_get(new->module); 2105 } 2106 EXPORT_SYMBOL(set_binfmt); 2107 2108 /* 2109 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2110 */ 2111 void set_dumpable(struct mm_struct *mm, int value) 2112 { 2113 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2114 return; 2115 2116 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2117 } 2118 2119 SYSCALL_DEFINE3(execve, 2120 const char __user *, filename, 2121 const char __user *const __user *, argv, 2122 const char __user *const __user *, envp) 2123 { 2124 return do_execve(getname(filename), argv, envp); 2125 } 2126 2127 SYSCALL_DEFINE5(execveat, 2128 int, fd, const char __user *, filename, 2129 const char __user *const __user *, argv, 2130 const char __user *const __user *, envp, 2131 int, flags) 2132 { 2133 return do_execveat(fd, 2134 getname_uflags(filename, flags), 2135 argv, envp, flags); 2136 } 2137 2138 #ifdef CONFIG_COMPAT 2139 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2140 const compat_uptr_t __user *, argv, 2141 const compat_uptr_t __user *, envp) 2142 { 2143 return compat_do_execve(getname(filename), argv, envp); 2144 } 2145 2146 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2147 const char __user *, filename, 2148 const compat_uptr_t __user *, argv, 2149 const compat_uptr_t __user *, envp, 2150 int, flags) 2151 { 2152 return compat_do_execveat(fd, 2153 getname_uflags(filename, flags), 2154 argv, envp, flags); 2155 } 2156 #endif 2157 2158 #ifdef CONFIG_SYSCTL 2159 2160 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write, 2161 void *buffer, size_t *lenp, loff_t *ppos) 2162 { 2163 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2164 2165 if (!error) 2166 validate_coredump_safety(); 2167 return error; 2168 } 2169 2170 static struct ctl_table fs_exec_sysctls[] = { 2171 { 2172 .procname = "suid_dumpable", 2173 .data = &suid_dumpable, 2174 .maxlen = sizeof(int), 2175 .mode = 0644, 2176 .proc_handler = proc_dointvec_minmax_coredump, 2177 .extra1 = SYSCTL_ZERO, 2178 .extra2 = SYSCTL_TWO, 2179 }, 2180 }; 2181 2182 static int __init init_fs_exec_sysctls(void) 2183 { 2184 register_sysctl_init("fs", fs_exec_sysctls); 2185 return 0; 2186 } 2187 2188 fs_initcall(init_fs_exec_sysctls); 2189 #endif /* CONFIG_SYSCTL */ 2190 2191 #ifdef CONFIG_EXEC_KUNIT_TEST 2192 #include "tests/exec_kunit.c" 2193 #endif 2194