1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 #include <linux/user_events.h> 69 #include <linux/rseq.h> 70 #include <linux/ksm.h> 71 72 #include <linux/uaccess.h> 73 #include <asm/mmu_context.h> 74 #include <asm/tlb.h> 75 76 #include <trace/events/task.h> 77 #include "internal.h" 78 79 #include <trace/events/sched.h> 80 81 static int bprm_creds_from_file(struct linux_binprm *bprm); 82 83 int suid_dumpable = 0; 84 85 static LIST_HEAD(formats); 86 static DEFINE_RWLOCK(binfmt_lock); 87 88 void __register_binfmt(struct linux_binfmt * fmt, int insert) 89 { 90 write_lock(&binfmt_lock); 91 insert ? list_add(&fmt->lh, &formats) : 92 list_add_tail(&fmt->lh, &formats); 93 write_unlock(&binfmt_lock); 94 } 95 96 EXPORT_SYMBOL(__register_binfmt); 97 98 void unregister_binfmt(struct linux_binfmt * fmt) 99 { 100 write_lock(&binfmt_lock); 101 list_del(&fmt->lh); 102 write_unlock(&binfmt_lock); 103 } 104 105 EXPORT_SYMBOL(unregister_binfmt); 106 107 static inline void put_binfmt(struct linux_binfmt * fmt) 108 { 109 module_put(fmt->module); 110 } 111 112 bool path_noexec(const struct path *path) 113 { 114 return (path->mnt->mnt_flags & MNT_NOEXEC) || 115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 116 } 117 118 #ifdef CONFIG_USELIB 119 /* 120 * Note that a shared library must be both readable and executable due to 121 * security reasons. 122 * 123 * Also note that we take the address to load from the file itself. 124 */ 125 SYSCALL_DEFINE1(uselib, const char __user *, library) 126 { 127 struct linux_binfmt *fmt; 128 struct file *file; 129 struct filename *tmp = getname(library); 130 int error = PTR_ERR(tmp); 131 static const struct open_flags uselib_flags = { 132 .open_flag = O_LARGEFILE | O_RDONLY, 133 .acc_mode = MAY_READ | MAY_EXEC, 134 .intent = LOOKUP_OPEN, 135 .lookup_flags = LOOKUP_FOLLOW, 136 }; 137 138 if (IS_ERR(tmp)) 139 goto out; 140 141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 142 putname(tmp); 143 error = PTR_ERR(file); 144 if (IS_ERR(file)) 145 goto out; 146 147 /* 148 * may_open() has already checked for this, so it should be 149 * impossible to trip now. But we need to be extra cautious 150 * and check again at the very end too. 151 */ 152 error = -EACCES; 153 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 154 path_noexec(&file->f_path))) 155 goto exit; 156 157 error = -ENOEXEC; 158 159 read_lock(&binfmt_lock); 160 list_for_each_entry(fmt, &formats, lh) { 161 if (!fmt->load_shlib) 162 continue; 163 if (!try_module_get(fmt->module)) 164 continue; 165 read_unlock(&binfmt_lock); 166 error = fmt->load_shlib(file); 167 read_lock(&binfmt_lock); 168 put_binfmt(fmt); 169 if (error != -ENOEXEC) 170 break; 171 } 172 read_unlock(&binfmt_lock); 173 exit: 174 fput(file); 175 out: 176 return error; 177 } 178 #endif /* #ifdef CONFIG_USELIB */ 179 180 #ifdef CONFIG_MMU 181 /* 182 * The nascent bprm->mm is not visible until exec_mmap() but it can 183 * use a lot of memory, account these pages in current->mm temporary 184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 185 * change the counter back via acct_arg_size(0). 186 */ 187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 188 { 189 struct mm_struct *mm = current->mm; 190 long diff = (long)(pages - bprm->vma_pages); 191 192 if (!mm || !diff) 193 return; 194 195 bprm->vma_pages = pages; 196 add_mm_counter(mm, MM_ANONPAGES, diff); 197 } 198 199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 200 int write) 201 { 202 struct page *page; 203 struct vm_area_struct *vma = bprm->vma; 204 struct mm_struct *mm = bprm->mm; 205 int ret; 206 207 /* 208 * Avoid relying on expanding the stack down in GUP (which 209 * does not work for STACK_GROWSUP anyway), and just do it 210 * by hand ahead of time. 211 */ 212 if (write && pos < vma->vm_start) { 213 mmap_write_lock(mm); 214 ret = expand_downwards(vma, pos); 215 if (unlikely(ret < 0)) { 216 mmap_write_unlock(mm); 217 return NULL; 218 } 219 mmap_write_downgrade(mm); 220 } else 221 mmap_read_lock(mm); 222 223 /* 224 * We are doing an exec(). 'current' is the process 225 * doing the exec and 'mm' is the new process's mm. 226 */ 227 ret = get_user_pages_remote(mm, pos, 1, 228 write ? FOLL_WRITE : 0, 229 &page, NULL); 230 mmap_read_unlock(mm); 231 if (ret <= 0) 232 return NULL; 233 234 if (write) 235 acct_arg_size(bprm, vma_pages(vma)); 236 237 return page; 238 } 239 240 static void put_arg_page(struct page *page) 241 { 242 put_page(page); 243 } 244 245 static void free_arg_pages(struct linux_binprm *bprm) 246 { 247 } 248 249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 250 struct page *page) 251 { 252 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 253 } 254 255 static int __bprm_mm_init(struct linux_binprm *bprm) 256 { 257 int err; 258 struct vm_area_struct *vma = NULL; 259 struct mm_struct *mm = bprm->mm; 260 261 bprm->vma = vma = vm_area_alloc(mm); 262 if (!vma) 263 return -ENOMEM; 264 vma_set_anonymous(vma); 265 266 if (mmap_write_lock_killable(mm)) { 267 err = -EINTR; 268 goto err_free; 269 } 270 271 /* 272 * Need to be called with mmap write lock 273 * held, to avoid race with ksmd. 274 */ 275 err = ksm_execve(mm); 276 if (err) 277 goto err_ksm; 278 279 /* 280 * Place the stack at the largest stack address the architecture 281 * supports. Later, we'll move this to an appropriate place. We don't 282 * use STACK_TOP because that can depend on attributes which aren't 283 * configured yet. 284 */ 285 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 286 vma->vm_end = STACK_TOP_MAX; 287 vma->vm_start = vma->vm_end - PAGE_SIZE; 288 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP); 289 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 290 291 err = insert_vm_struct(mm, vma); 292 if (err) 293 goto err; 294 295 mm->stack_vm = mm->total_vm = 1; 296 mmap_write_unlock(mm); 297 bprm->p = vma->vm_end - sizeof(void *); 298 return 0; 299 err: 300 ksm_exit(mm); 301 err_ksm: 302 mmap_write_unlock(mm); 303 err_free: 304 bprm->vma = NULL; 305 vm_area_free(vma); 306 return err; 307 } 308 309 static bool valid_arg_len(struct linux_binprm *bprm, long len) 310 { 311 return len <= MAX_ARG_STRLEN; 312 } 313 314 #else 315 316 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 317 { 318 } 319 320 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 321 int write) 322 { 323 struct page *page; 324 325 page = bprm->page[pos / PAGE_SIZE]; 326 if (!page && write) { 327 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 328 if (!page) 329 return NULL; 330 bprm->page[pos / PAGE_SIZE] = page; 331 } 332 333 return page; 334 } 335 336 static void put_arg_page(struct page *page) 337 { 338 } 339 340 static void free_arg_page(struct linux_binprm *bprm, int i) 341 { 342 if (bprm->page[i]) { 343 __free_page(bprm->page[i]); 344 bprm->page[i] = NULL; 345 } 346 } 347 348 static void free_arg_pages(struct linux_binprm *bprm) 349 { 350 int i; 351 352 for (i = 0; i < MAX_ARG_PAGES; i++) 353 free_arg_page(bprm, i); 354 } 355 356 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 357 struct page *page) 358 { 359 } 360 361 static int __bprm_mm_init(struct linux_binprm *bprm) 362 { 363 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 364 return 0; 365 } 366 367 static bool valid_arg_len(struct linux_binprm *bprm, long len) 368 { 369 return len <= bprm->p; 370 } 371 372 #endif /* CONFIG_MMU */ 373 374 /* 375 * Create a new mm_struct and populate it with a temporary stack 376 * vm_area_struct. We don't have enough context at this point to set the stack 377 * flags, permissions, and offset, so we use temporary values. We'll update 378 * them later in setup_arg_pages(). 379 */ 380 static int bprm_mm_init(struct linux_binprm *bprm) 381 { 382 int err; 383 struct mm_struct *mm = NULL; 384 385 bprm->mm = mm = mm_alloc(); 386 err = -ENOMEM; 387 if (!mm) 388 goto err; 389 390 /* Save current stack limit for all calculations made during exec. */ 391 task_lock(current->group_leader); 392 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 393 task_unlock(current->group_leader); 394 395 err = __bprm_mm_init(bprm); 396 if (err) 397 goto err; 398 399 return 0; 400 401 err: 402 if (mm) { 403 bprm->mm = NULL; 404 mmdrop(mm); 405 } 406 407 return err; 408 } 409 410 struct user_arg_ptr { 411 #ifdef CONFIG_COMPAT 412 bool is_compat; 413 #endif 414 union { 415 const char __user *const __user *native; 416 #ifdef CONFIG_COMPAT 417 const compat_uptr_t __user *compat; 418 #endif 419 } ptr; 420 }; 421 422 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 423 { 424 const char __user *native; 425 426 #ifdef CONFIG_COMPAT 427 if (unlikely(argv.is_compat)) { 428 compat_uptr_t compat; 429 430 if (get_user(compat, argv.ptr.compat + nr)) 431 return ERR_PTR(-EFAULT); 432 433 return compat_ptr(compat); 434 } 435 #endif 436 437 if (get_user(native, argv.ptr.native + nr)) 438 return ERR_PTR(-EFAULT); 439 440 return native; 441 } 442 443 /* 444 * count() counts the number of strings in array ARGV. 445 */ 446 static int count(struct user_arg_ptr argv, int max) 447 { 448 int i = 0; 449 450 if (argv.ptr.native != NULL) { 451 for (;;) { 452 const char __user *p = get_user_arg_ptr(argv, i); 453 454 if (!p) 455 break; 456 457 if (IS_ERR(p)) 458 return -EFAULT; 459 460 if (i >= max) 461 return -E2BIG; 462 ++i; 463 464 if (fatal_signal_pending(current)) 465 return -ERESTARTNOHAND; 466 cond_resched(); 467 } 468 } 469 return i; 470 } 471 472 static int count_strings_kernel(const char *const *argv) 473 { 474 int i; 475 476 if (!argv) 477 return 0; 478 479 for (i = 0; argv[i]; ++i) { 480 if (i >= MAX_ARG_STRINGS) 481 return -E2BIG; 482 if (fatal_signal_pending(current)) 483 return -ERESTARTNOHAND; 484 cond_resched(); 485 } 486 return i; 487 } 488 489 static inline int bprm_set_stack_limit(struct linux_binprm *bprm, 490 unsigned long limit) 491 { 492 #ifdef CONFIG_MMU 493 /* Avoid a pathological bprm->p. */ 494 if (bprm->p < limit) 495 return -E2BIG; 496 bprm->argmin = bprm->p - limit; 497 #endif 498 return 0; 499 } 500 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm) 501 { 502 #ifdef CONFIG_MMU 503 return bprm->p < bprm->argmin; 504 #else 505 return false; 506 #endif 507 } 508 509 /* 510 * Calculate bprm->argmin from: 511 * - _STK_LIM 512 * - ARG_MAX 513 * - bprm->rlim_stack.rlim_cur 514 * - bprm->argc 515 * - bprm->envc 516 * - bprm->p 517 */ 518 static int bprm_stack_limits(struct linux_binprm *bprm) 519 { 520 unsigned long limit, ptr_size; 521 522 /* 523 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 524 * (whichever is smaller) for the argv+env strings. 525 * This ensures that: 526 * - the remaining binfmt code will not run out of stack space, 527 * - the program will have a reasonable amount of stack left 528 * to work from. 529 */ 530 limit = _STK_LIM / 4 * 3; 531 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 532 /* 533 * We've historically supported up to 32 pages (ARG_MAX) 534 * of argument strings even with small stacks 535 */ 536 limit = max_t(unsigned long, limit, ARG_MAX); 537 /* Reject totally pathological counts. */ 538 if (bprm->argc < 0 || bprm->envc < 0) 539 return -E2BIG; 540 /* 541 * We must account for the size of all the argv and envp pointers to 542 * the argv and envp strings, since they will also take up space in 543 * the stack. They aren't stored until much later when we can't 544 * signal to the parent that the child has run out of stack space. 545 * Instead, calculate it here so it's possible to fail gracefully. 546 * 547 * In the case of argc = 0, make sure there is space for adding a 548 * empty string (which will bump argc to 1), to ensure confused 549 * userspace programs don't start processing from argv[1], thinking 550 * argc can never be 0, to keep them from walking envp by accident. 551 * See do_execveat_common(). 552 */ 553 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) || 554 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size)) 555 return -E2BIG; 556 if (limit <= ptr_size) 557 return -E2BIG; 558 limit -= ptr_size; 559 560 return bprm_set_stack_limit(bprm, limit); 561 } 562 563 /* 564 * 'copy_strings()' copies argument/environment strings from the old 565 * processes's memory to the new process's stack. The call to get_user_pages() 566 * ensures the destination page is created and not swapped out. 567 */ 568 static int copy_strings(int argc, struct user_arg_ptr argv, 569 struct linux_binprm *bprm) 570 { 571 struct page *kmapped_page = NULL; 572 char *kaddr = NULL; 573 unsigned long kpos = 0; 574 int ret; 575 576 while (argc-- > 0) { 577 const char __user *str; 578 int len; 579 unsigned long pos; 580 581 ret = -EFAULT; 582 str = get_user_arg_ptr(argv, argc); 583 if (IS_ERR(str)) 584 goto out; 585 586 len = strnlen_user(str, MAX_ARG_STRLEN); 587 if (!len) 588 goto out; 589 590 ret = -E2BIG; 591 if (!valid_arg_len(bprm, len)) 592 goto out; 593 594 /* We're going to work our way backwards. */ 595 pos = bprm->p; 596 str += len; 597 bprm->p -= len; 598 if (bprm_hit_stack_limit(bprm)) 599 goto out; 600 601 while (len > 0) { 602 int offset, bytes_to_copy; 603 604 if (fatal_signal_pending(current)) { 605 ret = -ERESTARTNOHAND; 606 goto out; 607 } 608 cond_resched(); 609 610 offset = pos % PAGE_SIZE; 611 if (offset == 0) 612 offset = PAGE_SIZE; 613 614 bytes_to_copy = offset; 615 if (bytes_to_copy > len) 616 bytes_to_copy = len; 617 618 offset -= bytes_to_copy; 619 pos -= bytes_to_copy; 620 str -= bytes_to_copy; 621 len -= bytes_to_copy; 622 623 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 624 struct page *page; 625 626 page = get_arg_page(bprm, pos, 1); 627 if (!page) { 628 ret = -E2BIG; 629 goto out; 630 } 631 632 if (kmapped_page) { 633 flush_dcache_page(kmapped_page); 634 kunmap_local(kaddr); 635 put_arg_page(kmapped_page); 636 } 637 kmapped_page = page; 638 kaddr = kmap_local_page(kmapped_page); 639 kpos = pos & PAGE_MASK; 640 flush_arg_page(bprm, kpos, kmapped_page); 641 } 642 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 643 ret = -EFAULT; 644 goto out; 645 } 646 } 647 } 648 ret = 0; 649 out: 650 if (kmapped_page) { 651 flush_dcache_page(kmapped_page); 652 kunmap_local(kaddr); 653 put_arg_page(kmapped_page); 654 } 655 return ret; 656 } 657 658 /* 659 * Copy and argument/environment string from the kernel to the processes stack. 660 */ 661 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 662 { 663 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 664 unsigned long pos = bprm->p; 665 666 if (len == 0) 667 return -EFAULT; 668 if (!valid_arg_len(bprm, len)) 669 return -E2BIG; 670 671 /* We're going to work our way backwards. */ 672 arg += len; 673 bprm->p -= len; 674 if (bprm_hit_stack_limit(bprm)) 675 return -E2BIG; 676 677 while (len > 0) { 678 unsigned int bytes_to_copy = min_t(unsigned int, len, 679 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 680 struct page *page; 681 682 pos -= bytes_to_copy; 683 arg -= bytes_to_copy; 684 len -= bytes_to_copy; 685 686 page = get_arg_page(bprm, pos, 1); 687 if (!page) 688 return -E2BIG; 689 flush_arg_page(bprm, pos & PAGE_MASK, page); 690 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 691 put_arg_page(page); 692 } 693 694 return 0; 695 } 696 EXPORT_SYMBOL(copy_string_kernel); 697 698 static int copy_strings_kernel(int argc, const char *const *argv, 699 struct linux_binprm *bprm) 700 { 701 while (argc-- > 0) { 702 int ret = copy_string_kernel(argv[argc], bprm); 703 if (ret < 0) 704 return ret; 705 if (fatal_signal_pending(current)) 706 return -ERESTARTNOHAND; 707 cond_resched(); 708 } 709 return 0; 710 } 711 712 #ifdef CONFIG_MMU 713 714 /* 715 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 716 * the binfmt code determines where the new stack should reside, we shift it to 717 * its final location. The process proceeds as follows: 718 * 719 * 1) Use shift to calculate the new vma endpoints. 720 * 2) Extend vma to cover both the old and new ranges. This ensures the 721 * arguments passed to subsequent functions are consistent. 722 * 3) Move vma's page tables to the new range. 723 * 4) Free up any cleared pgd range. 724 * 5) Shrink the vma to cover only the new range. 725 */ 726 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 727 { 728 struct mm_struct *mm = vma->vm_mm; 729 unsigned long old_start = vma->vm_start; 730 unsigned long old_end = vma->vm_end; 731 unsigned long length = old_end - old_start; 732 unsigned long new_start = old_start - shift; 733 unsigned long new_end = old_end - shift; 734 VMA_ITERATOR(vmi, mm, new_start); 735 struct vm_area_struct *next; 736 struct mmu_gather tlb; 737 738 BUG_ON(new_start > new_end); 739 740 /* 741 * ensure there are no vmas between where we want to go 742 * and where we are 743 */ 744 if (vma != vma_next(&vmi)) 745 return -EFAULT; 746 747 vma_iter_prev_range(&vmi); 748 /* 749 * cover the whole range: [new_start, old_end) 750 */ 751 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL)) 752 return -ENOMEM; 753 754 /* 755 * move the page tables downwards, on failure we rely on 756 * process cleanup to remove whatever mess we made. 757 */ 758 if (length != move_page_tables(vma, old_start, 759 vma, new_start, length, false, true)) 760 return -ENOMEM; 761 762 lru_add_drain(); 763 tlb_gather_mmu(&tlb, mm); 764 next = vma_next(&vmi); 765 if (new_end > old_start) { 766 /* 767 * when the old and new regions overlap clear from new_end. 768 */ 769 free_pgd_range(&tlb, new_end, old_end, new_end, 770 next ? next->vm_start : USER_PGTABLES_CEILING); 771 } else { 772 /* 773 * otherwise, clean from old_start; this is done to not touch 774 * the address space in [new_end, old_start) some architectures 775 * have constraints on va-space that make this illegal (IA64) - 776 * for the others its just a little faster. 777 */ 778 free_pgd_range(&tlb, old_start, old_end, new_end, 779 next ? next->vm_start : USER_PGTABLES_CEILING); 780 } 781 tlb_finish_mmu(&tlb); 782 783 vma_prev(&vmi); 784 /* Shrink the vma to just the new range */ 785 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff); 786 } 787 788 /* 789 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 790 * the stack is optionally relocated, and some extra space is added. 791 */ 792 int setup_arg_pages(struct linux_binprm *bprm, 793 unsigned long stack_top, 794 int executable_stack) 795 { 796 unsigned long ret; 797 unsigned long stack_shift; 798 struct mm_struct *mm = current->mm; 799 struct vm_area_struct *vma = bprm->vma; 800 struct vm_area_struct *prev = NULL; 801 unsigned long vm_flags; 802 unsigned long stack_base; 803 unsigned long stack_size; 804 unsigned long stack_expand; 805 unsigned long rlim_stack; 806 struct mmu_gather tlb; 807 struct vma_iterator vmi; 808 809 #ifdef CONFIG_STACK_GROWSUP 810 /* Limit stack size */ 811 stack_base = bprm->rlim_stack.rlim_max; 812 813 stack_base = calc_max_stack_size(stack_base); 814 815 /* Add space for stack randomization. */ 816 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 817 818 /* Make sure we didn't let the argument array grow too large. */ 819 if (vma->vm_end - vma->vm_start > stack_base) 820 return -ENOMEM; 821 822 stack_base = PAGE_ALIGN(stack_top - stack_base); 823 824 stack_shift = vma->vm_start - stack_base; 825 mm->arg_start = bprm->p - stack_shift; 826 bprm->p = vma->vm_end - stack_shift; 827 #else 828 stack_top = arch_align_stack(stack_top); 829 stack_top = PAGE_ALIGN(stack_top); 830 831 if (unlikely(stack_top < mmap_min_addr) || 832 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 833 return -ENOMEM; 834 835 stack_shift = vma->vm_end - stack_top; 836 837 bprm->p -= stack_shift; 838 mm->arg_start = bprm->p; 839 #endif 840 841 if (bprm->loader) 842 bprm->loader -= stack_shift; 843 bprm->exec -= stack_shift; 844 845 if (mmap_write_lock_killable(mm)) 846 return -EINTR; 847 848 vm_flags = VM_STACK_FLAGS; 849 850 /* 851 * Adjust stack execute permissions; explicitly enable for 852 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 853 * (arch default) otherwise. 854 */ 855 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 856 vm_flags |= VM_EXEC; 857 else if (executable_stack == EXSTACK_DISABLE_X) 858 vm_flags &= ~VM_EXEC; 859 vm_flags |= mm->def_flags; 860 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 861 862 vma_iter_init(&vmi, mm, vma->vm_start); 863 864 tlb_gather_mmu(&tlb, mm); 865 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end, 866 vm_flags); 867 tlb_finish_mmu(&tlb); 868 869 if (ret) 870 goto out_unlock; 871 BUG_ON(prev != vma); 872 873 if (unlikely(vm_flags & VM_EXEC)) { 874 pr_warn_once("process '%pD4' started with executable stack\n", 875 bprm->file); 876 } 877 878 /* Move stack pages down in memory. */ 879 if (stack_shift) { 880 ret = shift_arg_pages(vma, stack_shift); 881 if (ret) 882 goto out_unlock; 883 } 884 885 /* mprotect_fixup is overkill to remove the temporary stack flags */ 886 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); 887 888 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 889 stack_size = vma->vm_end - vma->vm_start; 890 /* 891 * Align this down to a page boundary as expand_stack 892 * will align it up. 893 */ 894 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 895 896 stack_expand = min(rlim_stack, stack_size + stack_expand); 897 898 #ifdef CONFIG_STACK_GROWSUP 899 stack_base = vma->vm_start + stack_expand; 900 #else 901 stack_base = vma->vm_end - stack_expand; 902 #endif 903 current->mm->start_stack = bprm->p; 904 ret = expand_stack_locked(vma, stack_base); 905 if (ret) 906 ret = -EFAULT; 907 908 out_unlock: 909 mmap_write_unlock(mm); 910 return ret; 911 } 912 EXPORT_SYMBOL(setup_arg_pages); 913 914 #else 915 916 /* 917 * Transfer the program arguments and environment from the holding pages 918 * onto the stack. The provided stack pointer is adjusted accordingly. 919 */ 920 int transfer_args_to_stack(struct linux_binprm *bprm, 921 unsigned long *sp_location) 922 { 923 unsigned long index, stop, sp; 924 int ret = 0; 925 926 stop = bprm->p >> PAGE_SHIFT; 927 sp = *sp_location; 928 929 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 930 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 931 char *src = kmap_local_page(bprm->page[index]) + offset; 932 sp -= PAGE_SIZE - offset; 933 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 934 ret = -EFAULT; 935 kunmap_local(src); 936 if (ret) 937 goto out; 938 } 939 940 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE; 941 *sp_location = sp; 942 943 out: 944 return ret; 945 } 946 EXPORT_SYMBOL(transfer_args_to_stack); 947 948 #endif /* CONFIG_MMU */ 949 950 /* 951 * On success, caller must call do_close_execat() on the returned 952 * struct file to close it. 953 */ 954 static struct file *do_open_execat(int fd, struct filename *name, int flags) 955 { 956 struct file *file; 957 int err; 958 struct open_flags open_exec_flags = { 959 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 960 .acc_mode = MAY_EXEC, 961 .intent = LOOKUP_OPEN, 962 .lookup_flags = LOOKUP_FOLLOW, 963 }; 964 965 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 966 return ERR_PTR(-EINVAL); 967 if (flags & AT_SYMLINK_NOFOLLOW) 968 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 969 if (flags & AT_EMPTY_PATH) 970 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 971 972 file = do_filp_open(fd, name, &open_exec_flags); 973 if (IS_ERR(file)) 974 goto out; 975 976 /* 977 * may_open() has already checked for this, so it should be 978 * impossible to trip now. But we need to be extra cautious 979 * and check again at the very end too. 980 */ 981 err = -EACCES; 982 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 983 path_noexec(&file->f_path))) 984 goto exit; 985 986 out: 987 return file; 988 989 exit: 990 fput(file); 991 return ERR_PTR(err); 992 } 993 994 /** 995 * open_exec - Open a path name for execution 996 * 997 * @name: path name to open with the intent of executing it. 998 * 999 * Returns ERR_PTR on failure or allocated struct file on success. 1000 * 1001 * As this is a wrapper for the internal do_open_execat(). Also see 1002 * do_close_execat(). 1003 */ 1004 struct file *open_exec(const char *name) 1005 { 1006 struct filename *filename = getname_kernel(name); 1007 struct file *f = ERR_CAST(filename); 1008 1009 if (!IS_ERR(filename)) { 1010 f = do_open_execat(AT_FDCWD, filename, 0); 1011 putname(filename); 1012 } 1013 return f; 1014 } 1015 EXPORT_SYMBOL(open_exec); 1016 1017 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 1018 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 1019 { 1020 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 1021 if (res > 0) 1022 flush_icache_user_range(addr, addr + len); 1023 return res; 1024 } 1025 EXPORT_SYMBOL(read_code); 1026 #endif 1027 1028 /* 1029 * Maps the mm_struct mm into the current task struct. 1030 * On success, this function returns with exec_update_lock 1031 * held for writing. 1032 */ 1033 static int exec_mmap(struct mm_struct *mm) 1034 { 1035 struct task_struct *tsk; 1036 struct mm_struct *old_mm, *active_mm; 1037 int ret; 1038 1039 /* Notify parent that we're no longer interested in the old VM */ 1040 tsk = current; 1041 old_mm = current->mm; 1042 exec_mm_release(tsk, old_mm); 1043 1044 ret = down_write_killable(&tsk->signal->exec_update_lock); 1045 if (ret) 1046 return ret; 1047 1048 if (old_mm) { 1049 /* 1050 * If there is a pending fatal signal perhaps a signal 1051 * whose default action is to create a coredump get 1052 * out and die instead of going through with the exec. 1053 */ 1054 ret = mmap_read_lock_killable(old_mm); 1055 if (ret) { 1056 up_write(&tsk->signal->exec_update_lock); 1057 return ret; 1058 } 1059 } 1060 1061 task_lock(tsk); 1062 membarrier_exec_mmap(mm); 1063 1064 local_irq_disable(); 1065 active_mm = tsk->active_mm; 1066 tsk->active_mm = mm; 1067 tsk->mm = mm; 1068 mm_init_cid(mm); 1069 /* 1070 * This prevents preemption while active_mm is being loaded and 1071 * it and mm are being updated, which could cause problems for 1072 * lazy tlb mm refcounting when these are updated by context 1073 * switches. Not all architectures can handle irqs off over 1074 * activate_mm yet. 1075 */ 1076 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1077 local_irq_enable(); 1078 activate_mm(active_mm, mm); 1079 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1080 local_irq_enable(); 1081 lru_gen_add_mm(mm); 1082 task_unlock(tsk); 1083 lru_gen_use_mm(mm); 1084 if (old_mm) { 1085 mmap_read_unlock(old_mm); 1086 BUG_ON(active_mm != old_mm); 1087 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1088 mm_update_next_owner(old_mm); 1089 mmput(old_mm); 1090 return 0; 1091 } 1092 mmdrop_lazy_tlb(active_mm); 1093 return 0; 1094 } 1095 1096 static int de_thread(struct task_struct *tsk) 1097 { 1098 struct signal_struct *sig = tsk->signal; 1099 struct sighand_struct *oldsighand = tsk->sighand; 1100 spinlock_t *lock = &oldsighand->siglock; 1101 1102 if (thread_group_empty(tsk)) 1103 goto no_thread_group; 1104 1105 /* 1106 * Kill all other threads in the thread group. 1107 */ 1108 spin_lock_irq(lock); 1109 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1110 /* 1111 * Another group action in progress, just 1112 * return so that the signal is processed. 1113 */ 1114 spin_unlock_irq(lock); 1115 return -EAGAIN; 1116 } 1117 1118 sig->group_exec_task = tsk; 1119 sig->notify_count = zap_other_threads(tsk); 1120 if (!thread_group_leader(tsk)) 1121 sig->notify_count--; 1122 1123 while (sig->notify_count) { 1124 __set_current_state(TASK_KILLABLE); 1125 spin_unlock_irq(lock); 1126 schedule(); 1127 if (__fatal_signal_pending(tsk)) 1128 goto killed; 1129 spin_lock_irq(lock); 1130 } 1131 spin_unlock_irq(lock); 1132 1133 /* 1134 * At this point all other threads have exited, all we have to 1135 * do is to wait for the thread group leader to become inactive, 1136 * and to assume its PID: 1137 */ 1138 if (!thread_group_leader(tsk)) { 1139 struct task_struct *leader = tsk->group_leader; 1140 1141 for (;;) { 1142 cgroup_threadgroup_change_begin(tsk); 1143 write_lock_irq(&tasklist_lock); 1144 /* 1145 * Do this under tasklist_lock to ensure that 1146 * exit_notify() can't miss ->group_exec_task 1147 */ 1148 sig->notify_count = -1; 1149 if (likely(leader->exit_state)) 1150 break; 1151 __set_current_state(TASK_KILLABLE); 1152 write_unlock_irq(&tasklist_lock); 1153 cgroup_threadgroup_change_end(tsk); 1154 schedule(); 1155 if (__fatal_signal_pending(tsk)) 1156 goto killed; 1157 } 1158 1159 /* 1160 * The only record we have of the real-time age of a 1161 * process, regardless of execs it's done, is start_time. 1162 * All the past CPU time is accumulated in signal_struct 1163 * from sister threads now dead. But in this non-leader 1164 * exec, nothing survives from the original leader thread, 1165 * whose birth marks the true age of this process now. 1166 * When we take on its identity by switching to its PID, we 1167 * also take its birthdate (always earlier than our own). 1168 */ 1169 tsk->start_time = leader->start_time; 1170 tsk->start_boottime = leader->start_boottime; 1171 1172 BUG_ON(!same_thread_group(leader, tsk)); 1173 /* 1174 * An exec() starts a new thread group with the 1175 * TGID of the previous thread group. Rehash the 1176 * two threads with a switched PID, and release 1177 * the former thread group leader: 1178 */ 1179 1180 /* Become a process group leader with the old leader's pid. 1181 * The old leader becomes a thread of the this thread group. 1182 */ 1183 exchange_tids(tsk, leader); 1184 transfer_pid(leader, tsk, PIDTYPE_TGID); 1185 transfer_pid(leader, tsk, PIDTYPE_PGID); 1186 transfer_pid(leader, tsk, PIDTYPE_SID); 1187 1188 list_replace_rcu(&leader->tasks, &tsk->tasks); 1189 list_replace_init(&leader->sibling, &tsk->sibling); 1190 1191 tsk->group_leader = tsk; 1192 leader->group_leader = tsk; 1193 1194 tsk->exit_signal = SIGCHLD; 1195 leader->exit_signal = -1; 1196 1197 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1198 leader->exit_state = EXIT_DEAD; 1199 /* 1200 * We are going to release_task()->ptrace_unlink() silently, 1201 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1202 * the tracer won't block again waiting for this thread. 1203 */ 1204 if (unlikely(leader->ptrace)) 1205 __wake_up_parent(leader, leader->parent); 1206 write_unlock_irq(&tasklist_lock); 1207 cgroup_threadgroup_change_end(tsk); 1208 1209 release_task(leader); 1210 } 1211 1212 sig->group_exec_task = NULL; 1213 sig->notify_count = 0; 1214 1215 no_thread_group: 1216 /* we have changed execution domain */ 1217 tsk->exit_signal = SIGCHLD; 1218 1219 BUG_ON(!thread_group_leader(tsk)); 1220 return 0; 1221 1222 killed: 1223 /* protects against exit_notify() and __exit_signal() */ 1224 read_lock(&tasklist_lock); 1225 sig->group_exec_task = NULL; 1226 sig->notify_count = 0; 1227 read_unlock(&tasklist_lock); 1228 return -EAGAIN; 1229 } 1230 1231 1232 /* 1233 * This function makes sure the current process has its own signal table, 1234 * so that flush_signal_handlers can later reset the handlers without 1235 * disturbing other processes. (Other processes might share the signal 1236 * table via the CLONE_SIGHAND option to clone().) 1237 */ 1238 static int unshare_sighand(struct task_struct *me) 1239 { 1240 struct sighand_struct *oldsighand = me->sighand; 1241 1242 if (refcount_read(&oldsighand->count) != 1) { 1243 struct sighand_struct *newsighand; 1244 /* 1245 * This ->sighand is shared with the CLONE_SIGHAND 1246 * but not CLONE_THREAD task, switch to the new one. 1247 */ 1248 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1249 if (!newsighand) 1250 return -ENOMEM; 1251 1252 refcount_set(&newsighand->count, 1); 1253 1254 write_lock_irq(&tasklist_lock); 1255 spin_lock(&oldsighand->siglock); 1256 memcpy(newsighand->action, oldsighand->action, 1257 sizeof(newsighand->action)); 1258 rcu_assign_pointer(me->sighand, newsighand); 1259 spin_unlock(&oldsighand->siglock); 1260 write_unlock_irq(&tasklist_lock); 1261 1262 __cleanup_sighand(oldsighand); 1263 } 1264 return 0; 1265 } 1266 1267 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1268 { 1269 task_lock(tsk); 1270 /* Always NUL terminated and zero-padded */ 1271 strscpy_pad(buf, tsk->comm, buf_size); 1272 task_unlock(tsk); 1273 return buf; 1274 } 1275 EXPORT_SYMBOL_GPL(__get_task_comm); 1276 1277 /* 1278 * These functions flushes out all traces of the currently running executable 1279 * so that a new one can be started 1280 */ 1281 1282 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1283 { 1284 task_lock(tsk); 1285 trace_task_rename(tsk, buf); 1286 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1287 task_unlock(tsk); 1288 perf_event_comm(tsk, exec); 1289 } 1290 1291 /* 1292 * Calling this is the point of no return. None of the failures will be 1293 * seen by userspace since either the process is already taking a fatal 1294 * signal (via de_thread() or coredump), or will have SEGV raised 1295 * (after exec_mmap()) by search_binary_handler (see below). 1296 */ 1297 int begin_new_exec(struct linux_binprm * bprm) 1298 { 1299 struct task_struct *me = current; 1300 int retval; 1301 1302 /* Once we are committed compute the creds */ 1303 retval = bprm_creds_from_file(bprm); 1304 if (retval) 1305 return retval; 1306 1307 /* 1308 * This tracepoint marks the point before flushing the old exec where 1309 * the current task is still unchanged, but errors are fatal (point of 1310 * no return). The later "sched_process_exec" tracepoint is called after 1311 * the current task has successfully switched to the new exec. 1312 */ 1313 trace_sched_prepare_exec(current, bprm); 1314 1315 /* 1316 * Ensure all future errors are fatal. 1317 */ 1318 bprm->point_of_no_return = true; 1319 1320 /* 1321 * Make this the only thread in the thread group. 1322 */ 1323 retval = de_thread(me); 1324 if (retval) 1325 goto out; 1326 1327 /* 1328 * Cancel any io_uring activity across execve 1329 */ 1330 io_uring_task_cancel(); 1331 1332 /* Ensure the files table is not shared. */ 1333 retval = unshare_files(); 1334 if (retval) 1335 goto out; 1336 1337 /* 1338 * Must be called _before_ exec_mmap() as bprm->mm is 1339 * not visible until then. Doing it here also ensures 1340 * we don't race against replace_mm_exe_file(). 1341 */ 1342 retval = set_mm_exe_file(bprm->mm, bprm->file); 1343 if (retval) 1344 goto out; 1345 1346 /* If the binary is not readable then enforce mm->dumpable=0 */ 1347 would_dump(bprm, bprm->file); 1348 if (bprm->have_execfd) 1349 would_dump(bprm, bprm->executable); 1350 1351 /* 1352 * Release all of the old mmap stuff 1353 */ 1354 acct_arg_size(bprm, 0); 1355 retval = exec_mmap(bprm->mm); 1356 if (retval) 1357 goto out; 1358 1359 bprm->mm = NULL; 1360 1361 retval = exec_task_namespaces(); 1362 if (retval) 1363 goto out_unlock; 1364 1365 #ifdef CONFIG_POSIX_TIMERS 1366 spin_lock_irq(&me->sighand->siglock); 1367 posix_cpu_timers_exit(me); 1368 spin_unlock_irq(&me->sighand->siglock); 1369 exit_itimers(me); 1370 flush_itimer_signals(); 1371 #endif 1372 1373 /* 1374 * Make the signal table private. 1375 */ 1376 retval = unshare_sighand(me); 1377 if (retval) 1378 goto out_unlock; 1379 1380 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1381 PF_NOFREEZE | PF_NO_SETAFFINITY); 1382 flush_thread(); 1383 me->personality &= ~bprm->per_clear; 1384 1385 clear_syscall_work_syscall_user_dispatch(me); 1386 1387 /* 1388 * We have to apply CLOEXEC before we change whether the process is 1389 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1390 * trying to access the should-be-closed file descriptors of a process 1391 * undergoing exec(2). 1392 */ 1393 do_close_on_exec(me->files); 1394 1395 if (bprm->secureexec) { 1396 /* Make sure parent cannot signal privileged process. */ 1397 me->pdeath_signal = 0; 1398 1399 /* 1400 * For secureexec, reset the stack limit to sane default to 1401 * avoid bad behavior from the prior rlimits. This has to 1402 * happen before arch_pick_mmap_layout(), which examines 1403 * RLIMIT_STACK, but after the point of no return to avoid 1404 * needing to clean up the change on failure. 1405 */ 1406 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1407 bprm->rlim_stack.rlim_cur = _STK_LIM; 1408 } 1409 1410 me->sas_ss_sp = me->sas_ss_size = 0; 1411 1412 /* 1413 * Figure out dumpability. Note that this checking only of current 1414 * is wrong, but userspace depends on it. This should be testing 1415 * bprm->secureexec instead. 1416 */ 1417 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1418 !(uid_eq(current_euid(), current_uid()) && 1419 gid_eq(current_egid(), current_gid()))) 1420 set_dumpable(current->mm, suid_dumpable); 1421 else 1422 set_dumpable(current->mm, SUID_DUMP_USER); 1423 1424 perf_event_exec(); 1425 __set_task_comm(me, kbasename(bprm->filename), true); 1426 1427 /* An exec changes our domain. We are no longer part of the thread 1428 group */ 1429 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1430 flush_signal_handlers(me, 0); 1431 1432 retval = set_cred_ucounts(bprm->cred); 1433 if (retval < 0) 1434 goto out_unlock; 1435 1436 /* 1437 * install the new credentials for this executable 1438 */ 1439 security_bprm_committing_creds(bprm); 1440 1441 commit_creds(bprm->cred); 1442 bprm->cred = NULL; 1443 1444 /* 1445 * Disable monitoring for regular users 1446 * when executing setuid binaries. Must 1447 * wait until new credentials are committed 1448 * by commit_creds() above 1449 */ 1450 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1451 perf_event_exit_task(me); 1452 /* 1453 * cred_guard_mutex must be held at least to this point to prevent 1454 * ptrace_attach() from altering our determination of the task's 1455 * credentials; any time after this it may be unlocked. 1456 */ 1457 security_bprm_committed_creds(bprm); 1458 1459 /* Pass the opened binary to the interpreter. */ 1460 if (bprm->have_execfd) { 1461 retval = get_unused_fd_flags(0); 1462 if (retval < 0) 1463 goto out_unlock; 1464 fd_install(retval, bprm->executable); 1465 bprm->executable = NULL; 1466 bprm->execfd = retval; 1467 } 1468 return 0; 1469 1470 out_unlock: 1471 up_write(&me->signal->exec_update_lock); 1472 if (!bprm->cred) 1473 mutex_unlock(&me->signal->cred_guard_mutex); 1474 1475 out: 1476 return retval; 1477 } 1478 EXPORT_SYMBOL(begin_new_exec); 1479 1480 void would_dump(struct linux_binprm *bprm, struct file *file) 1481 { 1482 struct inode *inode = file_inode(file); 1483 struct mnt_idmap *idmap = file_mnt_idmap(file); 1484 if (inode_permission(idmap, inode, MAY_READ) < 0) { 1485 struct user_namespace *old, *user_ns; 1486 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1487 1488 /* Ensure mm->user_ns contains the executable */ 1489 user_ns = old = bprm->mm->user_ns; 1490 while ((user_ns != &init_user_ns) && 1491 !privileged_wrt_inode_uidgid(user_ns, idmap, inode)) 1492 user_ns = user_ns->parent; 1493 1494 if (old != user_ns) { 1495 bprm->mm->user_ns = get_user_ns(user_ns); 1496 put_user_ns(old); 1497 } 1498 } 1499 } 1500 EXPORT_SYMBOL(would_dump); 1501 1502 void setup_new_exec(struct linux_binprm * bprm) 1503 { 1504 /* Setup things that can depend upon the personality */ 1505 struct task_struct *me = current; 1506 1507 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1508 1509 arch_setup_new_exec(); 1510 1511 /* Set the new mm task size. We have to do that late because it may 1512 * depend on TIF_32BIT which is only updated in flush_thread() on 1513 * some architectures like powerpc 1514 */ 1515 me->mm->task_size = TASK_SIZE; 1516 up_write(&me->signal->exec_update_lock); 1517 mutex_unlock(&me->signal->cred_guard_mutex); 1518 } 1519 EXPORT_SYMBOL(setup_new_exec); 1520 1521 /* Runs immediately before start_thread() takes over. */ 1522 void finalize_exec(struct linux_binprm *bprm) 1523 { 1524 /* Store any stack rlimit changes before starting thread. */ 1525 task_lock(current->group_leader); 1526 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1527 task_unlock(current->group_leader); 1528 } 1529 EXPORT_SYMBOL(finalize_exec); 1530 1531 /* 1532 * Prepare credentials and lock ->cred_guard_mutex. 1533 * setup_new_exec() commits the new creds and drops the lock. 1534 * Or, if exec fails before, free_bprm() should release ->cred 1535 * and unlock. 1536 */ 1537 static int prepare_bprm_creds(struct linux_binprm *bprm) 1538 { 1539 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1540 return -ERESTARTNOINTR; 1541 1542 bprm->cred = prepare_exec_creds(); 1543 if (likely(bprm->cred)) 1544 return 0; 1545 1546 mutex_unlock(¤t->signal->cred_guard_mutex); 1547 return -ENOMEM; 1548 } 1549 1550 /* Matches do_open_execat() */ 1551 static void do_close_execat(struct file *file) 1552 { 1553 if (file) 1554 fput(file); 1555 } 1556 1557 static void free_bprm(struct linux_binprm *bprm) 1558 { 1559 if (bprm->mm) { 1560 acct_arg_size(bprm, 0); 1561 mmput(bprm->mm); 1562 } 1563 free_arg_pages(bprm); 1564 if (bprm->cred) { 1565 mutex_unlock(¤t->signal->cred_guard_mutex); 1566 abort_creds(bprm->cred); 1567 } 1568 do_close_execat(bprm->file); 1569 if (bprm->executable) 1570 fput(bprm->executable); 1571 /* If a binfmt changed the interp, free it. */ 1572 if (bprm->interp != bprm->filename) 1573 kfree(bprm->interp); 1574 kfree(bprm->fdpath); 1575 kfree(bprm); 1576 } 1577 1578 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags) 1579 { 1580 struct linux_binprm *bprm; 1581 struct file *file; 1582 int retval = -ENOMEM; 1583 1584 file = do_open_execat(fd, filename, flags); 1585 if (IS_ERR(file)) 1586 return ERR_CAST(file); 1587 1588 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1589 if (!bprm) { 1590 do_close_execat(file); 1591 return ERR_PTR(-ENOMEM); 1592 } 1593 1594 bprm->file = file; 1595 1596 if (fd == AT_FDCWD || filename->name[0] == '/') { 1597 bprm->filename = filename->name; 1598 } else { 1599 if (filename->name[0] == '\0') 1600 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1601 else 1602 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1603 fd, filename->name); 1604 if (!bprm->fdpath) 1605 goto out_free; 1606 1607 /* 1608 * Record that a name derived from an O_CLOEXEC fd will be 1609 * inaccessible after exec. This allows the code in exec to 1610 * choose to fail when the executable is not mmaped into the 1611 * interpreter and an open file descriptor is not passed to 1612 * the interpreter. This makes for a better user experience 1613 * than having the interpreter start and then immediately fail 1614 * when it finds the executable is inaccessible. 1615 */ 1616 if (get_close_on_exec(fd)) 1617 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1618 1619 bprm->filename = bprm->fdpath; 1620 } 1621 bprm->interp = bprm->filename; 1622 1623 retval = bprm_mm_init(bprm); 1624 if (!retval) 1625 return bprm; 1626 1627 out_free: 1628 free_bprm(bprm); 1629 return ERR_PTR(retval); 1630 } 1631 1632 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1633 { 1634 /* If a binfmt changed the interp, free it first. */ 1635 if (bprm->interp != bprm->filename) 1636 kfree(bprm->interp); 1637 bprm->interp = kstrdup(interp, GFP_KERNEL); 1638 if (!bprm->interp) 1639 return -ENOMEM; 1640 return 0; 1641 } 1642 EXPORT_SYMBOL(bprm_change_interp); 1643 1644 /* 1645 * determine how safe it is to execute the proposed program 1646 * - the caller must hold ->cred_guard_mutex to protect against 1647 * PTRACE_ATTACH or seccomp thread-sync 1648 */ 1649 static void check_unsafe_exec(struct linux_binprm *bprm) 1650 { 1651 struct task_struct *p = current, *t; 1652 unsigned n_fs; 1653 1654 if (p->ptrace) 1655 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1656 1657 /* 1658 * This isn't strictly necessary, but it makes it harder for LSMs to 1659 * mess up. 1660 */ 1661 if (task_no_new_privs(current)) 1662 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1663 1664 /* 1665 * If another task is sharing our fs, we cannot safely 1666 * suid exec because the differently privileged task 1667 * will be able to manipulate the current directory, etc. 1668 * It would be nice to force an unshare instead... 1669 */ 1670 n_fs = 1; 1671 spin_lock(&p->fs->lock); 1672 rcu_read_lock(); 1673 for_other_threads(p, t) { 1674 if (t->fs == p->fs) 1675 n_fs++; 1676 } 1677 rcu_read_unlock(); 1678 1679 /* "users" and "in_exec" locked for copy_fs() */ 1680 if (p->fs->users > n_fs) 1681 bprm->unsafe |= LSM_UNSAFE_SHARE; 1682 else 1683 p->fs->in_exec = 1; 1684 spin_unlock(&p->fs->lock); 1685 } 1686 1687 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1688 { 1689 /* Handle suid and sgid on files */ 1690 struct mnt_idmap *idmap; 1691 struct inode *inode = file_inode(file); 1692 unsigned int mode; 1693 vfsuid_t vfsuid; 1694 vfsgid_t vfsgid; 1695 1696 if (!mnt_may_suid(file->f_path.mnt)) 1697 return; 1698 1699 if (task_no_new_privs(current)) 1700 return; 1701 1702 mode = READ_ONCE(inode->i_mode); 1703 if (!(mode & (S_ISUID|S_ISGID))) 1704 return; 1705 1706 idmap = file_mnt_idmap(file); 1707 1708 /* Be careful if suid/sgid is set */ 1709 inode_lock(inode); 1710 1711 /* reload atomically mode/uid/gid now that lock held */ 1712 mode = inode->i_mode; 1713 vfsuid = i_uid_into_vfsuid(idmap, inode); 1714 vfsgid = i_gid_into_vfsgid(idmap, inode); 1715 inode_unlock(inode); 1716 1717 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1718 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1719 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1720 return; 1721 1722 if (mode & S_ISUID) { 1723 bprm->per_clear |= PER_CLEAR_ON_SETID; 1724 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1725 } 1726 1727 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1728 bprm->per_clear |= PER_CLEAR_ON_SETID; 1729 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1730 } 1731 } 1732 1733 /* 1734 * Compute brpm->cred based upon the final binary. 1735 */ 1736 static int bprm_creds_from_file(struct linux_binprm *bprm) 1737 { 1738 /* Compute creds based on which file? */ 1739 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1740 1741 bprm_fill_uid(bprm, file); 1742 return security_bprm_creds_from_file(bprm, file); 1743 } 1744 1745 /* 1746 * Fill the binprm structure from the inode. 1747 * Read the first BINPRM_BUF_SIZE bytes 1748 * 1749 * This may be called multiple times for binary chains (scripts for example). 1750 */ 1751 static int prepare_binprm(struct linux_binprm *bprm) 1752 { 1753 loff_t pos = 0; 1754 1755 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1756 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1757 } 1758 1759 /* 1760 * Arguments are '\0' separated strings found at the location bprm->p 1761 * points to; chop off the first by relocating brpm->p to right after 1762 * the first '\0' encountered. 1763 */ 1764 int remove_arg_zero(struct linux_binprm *bprm) 1765 { 1766 unsigned long offset; 1767 char *kaddr; 1768 struct page *page; 1769 1770 if (!bprm->argc) 1771 return 0; 1772 1773 do { 1774 offset = bprm->p & ~PAGE_MASK; 1775 page = get_arg_page(bprm, bprm->p, 0); 1776 if (!page) 1777 return -EFAULT; 1778 kaddr = kmap_local_page(page); 1779 1780 for (; offset < PAGE_SIZE && kaddr[offset]; 1781 offset++, bprm->p++) 1782 ; 1783 1784 kunmap_local(kaddr); 1785 put_arg_page(page); 1786 } while (offset == PAGE_SIZE); 1787 1788 bprm->p++; 1789 bprm->argc--; 1790 1791 return 0; 1792 } 1793 EXPORT_SYMBOL(remove_arg_zero); 1794 1795 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1796 /* 1797 * cycle the list of binary formats handler, until one recognizes the image 1798 */ 1799 static int search_binary_handler(struct linux_binprm *bprm) 1800 { 1801 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1802 struct linux_binfmt *fmt; 1803 int retval; 1804 1805 retval = prepare_binprm(bprm); 1806 if (retval < 0) 1807 return retval; 1808 1809 retval = security_bprm_check(bprm); 1810 if (retval) 1811 return retval; 1812 1813 retval = -ENOENT; 1814 retry: 1815 read_lock(&binfmt_lock); 1816 list_for_each_entry(fmt, &formats, lh) { 1817 if (!try_module_get(fmt->module)) 1818 continue; 1819 read_unlock(&binfmt_lock); 1820 1821 retval = fmt->load_binary(bprm); 1822 1823 read_lock(&binfmt_lock); 1824 put_binfmt(fmt); 1825 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1826 read_unlock(&binfmt_lock); 1827 return retval; 1828 } 1829 } 1830 read_unlock(&binfmt_lock); 1831 1832 if (need_retry) { 1833 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1834 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1835 return retval; 1836 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1837 return retval; 1838 need_retry = false; 1839 goto retry; 1840 } 1841 1842 return retval; 1843 } 1844 1845 /* binfmt handlers will call back into begin_new_exec() on success. */ 1846 static int exec_binprm(struct linux_binprm *bprm) 1847 { 1848 pid_t old_pid, old_vpid; 1849 int ret, depth; 1850 1851 /* Need to fetch pid before load_binary changes it */ 1852 old_pid = current->pid; 1853 rcu_read_lock(); 1854 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1855 rcu_read_unlock(); 1856 1857 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1858 for (depth = 0;; depth++) { 1859 struct file *exec; 1860 if (depth > 5) 1861 return -ELOOP; 1862 1863 ret = search_binary_handler(bprm); 1864 if (ret < 0) 1865 return ret; 1866 if (!bprm->interpreter) 1867 break; 1868 1869 exec = bprm->file; 1870 bprm->file = bprm->interpreter; 1871 bprm->interpreter = NULL; 1872 1873 if (unlikely(bprm->have_execfd)) { 1874 if (bprm->executable) { 1875 fput(exec); 1876 return -ENOEXEC; 1877 } 1878 bprm->executable = exec; 1879 } else 1880 fput(exec); 1881 } 1882 1883 audit_bprm(bprm); 1884 trace_sched_process_exec(current, old_pid, bprm); 1885 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1886 proc_exec_connector(current); 1887 return 0; 1888 } 1889 1890 static int bprm_execve(struct linux_binprm *bprm) 1891 { 1892 int retval; 1893 1894 retval = prepare_bprm_creds(bprm); 1895 if (retval) 1896 return retval; 1897 1898 /* 1899 * Check for unsafe execution states before exec_binprm(), which 1900 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1901 * where setuid-ness is evaluated. 1902 */ 1903 check_unsafe_exec(bprm); 1904 current->in_execve = 1; 1905 sched_mm_cid_before_execve(current); 1906 1907 sched_exec(); 1908 1909 /* Set the unchanging part of bprm->cred */ 1910 retval = security_bprm_creds_for_exec(bprm); 1911 if (retval) 1912 goto out; 1913 1914 retval = exec_binprm(bprm); 1915 if (retval < 0) 1916 goto out; 1917 1918 sched_mm_cid_after_execve(current); 1919 /* execve succeeded */ 1920 current->fs->in_exec = 0; 1921 current->in_execve = 0; 1922 rseq_execve(current); 1923 user_events_execve(current); 1924 acct_update_integrals(current); 1925 task_numa_free(current, false); 1926 return retval; 1927 1928 out: 1929 /* 1930 * If past the point of no return ensure the code never 1931 * returns to the userspace process. Use an existing fatal 1932 * signal if present otherwise terminate the process with 1933 * SIGSEGV. 1934 */ 1935 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1936 force_fatal_sig(SIGSEGV); 1937 1938 sched_mm_cid_after_execve(current); 1939 current->fs->in_exec = 0; 1940 current->in_execve = 0; 1941 1942 return retval; 1943 } 1944 1945 static int do_execveat_common(int fd, struct filename *filename, 1946 struct user_arg_ptr argv, 1947 struct user_arg_ptr envp, 1948 int flags) 1949 { 1950 struct linux_binprm *bprm; 1951 int retval; 1952 1953 if (IS_ERR(filename)) 1954 return PTR_ERR(filename); 1955 1956 /* 1957 * We move the actual failure in case of RLIMIT_NPROC excess from 1958 * set*uid() to execve() because too many poorly written programs 1959 * don't check setuid() return code. Here we additionally recheck 1960 * whether NPROC limit is still exceeded. 1961 */ 1962 if ((current->flags & PF_NPROC_EXCEEDED) && 1963 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1964 retval = -EAGAIN; 1965 goto out_ret; 1966 } 1967 1968 /* We're below the limit (still or again), so we don't want to make 1969 * further execve() calls fail. */ 1970 current->flags &= ~PF_NPROC_EXCEEDED; 1971 1972 bprm = alloc_bprm(fd, filename, flags); 1973 if (IS_ERR(bprm)) { 1974 retval = PTR_ERR(bprm); 1975 goto out_ret; 1976 } 1977 1978 retval = count(argv, MAX_ARG_STRINGS); 1979 if (retval == 0) 1980 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1981 current->comm, bprm->filename); 1982 if (retval < 0) 1983 goto out_free; 1984 bprm->argc = retval; 1985 1986 retval = count(envp, MAX_ARG_STRINGS); 1987 if (retval < 0) 1988 goto out_free; 1989 bprm->envc = retval; 1990 1991 retval = bprm_stack_limits(bprm); 1992 if (retval < 0) 1993 goto out_free; 1994 1995 retval = copy_string_kernel(bprm->filename, bprm); 1996 if (retval < 0) 1997 goto out_free; 1998 bprm->exec = bprm->p; 1999 2000 retval = copy_strings(bprm->envc, envp, bprm); 2001 if (retval < 0) 2002 goto out_free; 2003 2004 retval = copy_strings(bprm->argc, argv, bprm); 2005 if (retval < 0) 2006 goto out_free; 2007 2008 /* 2009 * When argv is empty, add an empty string ("") as argv[0] to 2010 * ensure confused userspace programs that start processing 2011 * from argv[1] won't end up walking envp. See also 2012 * bprm_stack_limits(). 2013 */ 2014 if (bprm->argc == 0) { 2015 retval = copy_string_kernel("", bprm); 2016 if (retval < 0) 2017 goto out_free; 2018 bprm->argc = 1; 2019 } 2020 2021 retval = bprm_execve(bprm); 2022 out_free: 2023 free_bprm(bprm); 2024 2025 out_ret: 2026 putname(filename); 2027 return retval; 2028 } 2029 2030 int kernel_execve(const char *kernel_filename, 2031 const char *const *argv, const char *const *envp) 2032 { 2033 struct filename *filename; 2034 struct linux_binprm *bprm; 2035 int fd = AT_FDCWD; 2036 int retval; 2037 2038 /* It is non-sense for kernel threads to call execve */ 2039 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 2040 return -EINVAL; 2041 2042 filename = getname_kernel(kernel_filename); 2043 if (IS_ERR(filename)) 2044 return PTR_ERR(filename); 2045 2046 bprm = alloc_bprm(fd, filename, 0); 2047 if (IS_ERR(bprm)) { 2048 retval = PTR_ERR(bprm); 2049 goto out_ret; 2050 } 2051 2052 retval = count_strings_kernel(argv); 2053 if (WARN_ON_ONCE(retval == 0)) 2054 retval = -EINVAL; 2055 if (retval < 0) 2056 goto out_free; 2057 bprm->argc = retval; 2058 2059 retval = count_strings_kernel(envp); 2060 if (retval < 0) 2061 goto out_free; 2062 bprm->envc = retval; 2063 2064 retval = bprm_stack_limits(bprm); 2065 if (retval < 0) 2066 goto out_free; 2067 2068 retval = copy_string_kernel(bprm->filename, bprm); 2069 if (retval < 0) 2070 goto out_free; 2071 bprm->exec = bprm->p; 2072 2073 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2074 if (retval < 0) 2075 goto out_free; 2076 2077 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2078 if (retval < 0) 2079 goto out_free; 2080 2081 retval = bprm_execve(bprm); 2082 out_free: 2083 free_bprm(bprm); 2084 out_ret: 2085 putname(filename); 2086 return retval; 2087 } 2088 2089 static int do_execve(struct filename *filename, 2090 const char __user *const __user *__argv, 2091 const char __user *const __user *__envp) 2092 { 2093 struct user_arg_ptr argv = { .ptr.native = __argv }; 2094 struct user_arg_ptr envp = { .ptr.native = __envp }; 2095 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2096 } 2097 2098 static int do_execveat(int fd, struct filename *filename, 2099 const char __user *const __user *__argv, 2100 const char __user *const __user *__envp, 2101 int flags) 2102 { 2103 struct user_arg_ptr argv = { .ptr.native = __argv }; 2104 struct user_arg_ptr envp = { .ptr.native = __envp }; 2105 2106 return do_execveat_common(fd, filename, argv, envp, flags); 2107 } 2108 2109 #ifdef CONFIG_COMPAT 2110 static int compat_do_execve(struct filename *filename, 2111 const compat_uptr_t __user *__argv, 2112 const compat_uptr_t __user *__envp) 2113 { 2114 struct user_arg_ptr argv = { 2115 .is_compat = true, 2116 .ptr.compat = __argv, 2117 }; 2118 struct user_arg_ptr envp = { 2119 .is_compat = true, 2120 .ptr.compat = __envp, 2121 }; 2122 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2123 } 2124 2125 static int compat_do_execveat(int fd, struct filename *filename, 2126 const compat_uptr_t __user *__argv, 2127 const compat_uptr_t __user *__envp, 2128 int flags) 2129 { 2130 struct user_arg_ptr argv = { 2131 .is_compat = true, 2132 .ptr.compat = __argv, 2133 }; 2134 struct user_arg_ptr envp = { 2135 .is_compat = true, 2136 .ptr.compat = __envp, 2137 }; 2138 return do_execveat_common(fd, filename, argv, envp, flags); 2139 } 2140 #endif 2141 2142 void set_binfmt(struct linux_binfmt *new) 2143 { 2144 struct mm_struct *mm = current->mm; 2145 2146 if (mm->binfmt) 2147 module_put(mm->binfmt->module); 2148 2149 mm->binfmt = new; 2150 if (new) 2151 __module_get(new->module); 2152 } 2153 EXPORT_SYMBOL(set_binfmt); 2154 2155 /* 2156 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2157 */ 2158 void set_dumpable(struct mm_struct *mm, int value) 2159 { 2160 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2161 return; 2162 2163 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2164 } 2165 2166 SYSCALL_DEFINE3(execve, 2167 const char __user *, filename, 2168 const char __user *const __user *, argv, 2169 const char __user *const __user *, envp) 2170 { 2171 return do_execve(getname(filename), argv, envp); 2172 } 2173 2174 SYSCALL_DEFINE5(execveat, 2175 int, fd, const char __user *, filename, 2176 const char __user *const __user *, argv, 2177 const char __user *const __user *, envp, 2178 int, flags) 2179 { 2180 return do_execveat(fd, 2181 getname_uflags(filename, flags), 2182 argv, envp, flags); 2183 } 2184 2185 #ifdef CONFIG_COMPAT 2186 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2187 const compat_uptr_t __user *, argv, 2188 const compat_uptr_t __user *, envp) 2189 { 2190 return compat_do_execve(getname(filename), argv, envp); 2191 } 2192 2193 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2194 const char __user *, filename, 2195 const compat_uptr_t __user *, argv, 2196 const compat_uptr_t __user *, envp, 2197 int, flags) 2198 { 2199 return compat_do_execveat(fd, 2200 getname_uflags(filename, flags), 2201 argv, envp, flags); 2202 } 2203 #endif 2204 2205 #ifdef CONFIG_SYSCTL 2206 2207 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write, 2208 void *buffer, size_t *lenp, loff_t *ppos) 2209 { 2210 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2211 2212 if (!error) 2213 validate_coredump_safety(); 2214 return error; 2215 } 2216 2217 static struct ctl_table fs_exec_sysctls[] = { 2218 { 2219 .procname = "suid_dumpable", 2220 .data = &suid_dumpable, 2221 .maxlen = sizeof(int), 2222 .mode = 0644, 2223 .proc_handler = proc_dointvec_minmax_coredump, 2224 .extra1 = SYSCTL_ZERO, 2225 .extra2 = SYSCTL_TWO, 2226 }, 2227 }; 2228 2229 static int __init init_fs_exec_sysctls(void) 2230 { 2231 register_sysctl_init("fs", fs_exec_sysctls); 2232 return 0; 2233 } 2234 2235 fs_initcall(init_fs_exec_sysctls); 2236 #endif /* CONFIG_SYSCTL */ 2237 2238 #ifdef CONFIG_EXEC_KUNIT_TEST 2239 #include "tests/exec_kunit.c" 2240 #endif 2241