xref: /linux/fs/exec.c (revision 63870295de9adb365cd121dab94379b8cfdf986a)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
56 #include <asm/tlb.h>
57 
58 #ifdef CONFIG_KMOD
59 #include <linux/kmod.h>
60 #endif
61 
62 #ifdef __alpha__
63 /* for /sbin/loader handling in search_binary_handler() */
64 #include <linux/a.out.h>
65 #endif
66 
67 int core_uses_pid;
68 char core_pattern[CORENAME_MAX_SIZE] = "core";
69 int suid_dumpable = 0;
70 
71 /* The maximal length of core_pattern is also specified in sysctl.c */
72 
73 static LIST_HEAD(formats);
74 static DEFINE_RWLOCK(binfmt_lock);
75 
76 int register_binfmt(struct linux_binfmt * fmt)
77 {
78 	if (!fmt)
79 		return -EINVAL;
80 	write_lock(&binfmt_lock);
81 	list_add(&fmt->lh, &formats);
82 	write_unlock(&binfmt_lock);
83 	return 0;
84 }
85 
86 EXPORT_SYMBOL(register_binfmt);
87 
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 	write_lock(&binfmt_lock);
91 	list_del(&fmt->lh);
92 	write_unlock(&binfmt_lock);
93 }
94 
95 EXPORT_SYMBOL(unregister_binfmt);
96 
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 	module_put(fmt->module);
100 }
101 
102 /*
103  * Note that a shared library must be both readable and executable due to
104  * security reasons.
105  *
106  * Also note that we take the address to load from from the file itself.
107  */
108 asmlinkage long sys_uselib(const char __user * library)
109 {
110 	struct file *file;
111 	struct nameidata nd;
112 	char *tmp = getname(library);
113 	int error = PTR_ERR(tmp);
114 
115 	if (!IS_ERR(tmp)) {
116 		error = path_lookup_open(AT_FDCWD, tmp,
117 					 LOOKUP_FOLLOW, &nd,
118 					 FMODE_READ|FMODE_EXEC);
119 		putname(tmp);
120 	}
121 	if (error)
122 		goto out;
123 
124 	error = -EINVAL;
125 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
126 		goto exit;
127 
128 	error = -EACCES;
129 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
130 		goto exit;
131 
132 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN);
133 	if (error)
134 		goto exit;
135 
136 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
137 	error = PTR_ERR(file);
138 	if (IS_ERR(file))
139 		goto out;
140 
141 	error = -ENOEXEC;
142 	if(file->f_op) {
143 		struct linux_binfmt * fmt;
144 
145 		read_lock(&binfmt_lock);
146 		list_for_each_entry(fmt, &formats, lh) {
147 			if (!fmt->load_shlib)
148 				continue;
149 			if (!try_module_get(fmt->module))
150 				continue;
151 			read_unlock(&binfmt_lock);
152 			error = fmt->load_shlib(file);
153 			read_lock(&binfmt_lock);
154 			put_binfmt(fmt);
155 			if (error != -ENOEXEC)
156 				break;
157 		}
158 		read_unlock(&binfmt_lock);
159 	}
160 	fput(file);
161 out:
162   	return error;
163 exit:
164 	release_open_intent(&nd);
165 	path_put(&nd.path);
166 	goto out;
167 }
168 
169 #ifdef CONFIG_MMU
170 
171 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
172 		int write)
173 {
174 	struct page *page;
175 	int ret;
176 
177 #ifdef CONFIG_STACK_GROWSUP
178 	if (write) {
179 		ret = expand_stack_downwards(bprm->vma, pos);
180 		if (ret < 0)
181 			return NULL;
182 	}
183 #endif
184 	ret = get_user_pages(current, bprm->mm, pos,
185 			1, write, 1, &page, NULL);
186 	if (ret <= 0)
187 		return NULL;
188 
189 	if (write) {
190 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
191 		struct rlimit *rlim;
192 
193 		/*
194 		 * We've historically supported up to 32 pages (ARG_MAX)
195 		 * of argument strings even with small stacks
196 		 */
197 		if (size <= ARG_MAX)
198 			return page;
199 
200 		/*
201 		 * Limit to 1/4-th the stack size for the argv+env strings.
202 		 * This ensures that:
203 		 *  - the remaining binfmt code will not run out of stack space,
204 		 *  - the program will have a reasonable amount of stack left
205 		 *    to work from.
206 		 */
207 		rlim = current->signal->rlim;
208 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
209 			put_page(page);
210 			return NULL;
211 		}
212 	}
213 
214 	return page;
215 }
216 
217 static void put_arg_page(struct page *page)
218 {
219 	put_page(page);
220 }
221 
222 static void free_arg_page(struct linux_binprm *bprm, int i)
223 {
224 }
225 
226 static void free_arg_pages(struct linux_binprm *bprm)
227 {
228 }
229 
230 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
231 		struct page *page)
232 {
233 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
234 }
235 
236 static int __bprm_mm_init(struct linux_binprm *bprm)
237 {
238 	int err = -ENOMEM;
239 	struct vm_area_struct *vma = NULL;
240 	struct mm_struct *mm = bprm->mm;
241 
242 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
243 	if (!vma)
244 		goto err;
245 
246 	down_write(&mm->mmap_sem);
247 	vma->vm_mm = mm;
248 
249 	/*
250 	 * Place the stack at the largest stack address the architecture
251 	 * supports. Later, we'll move this to an appropriate place. We don't
252 	 * use STACK_TOP because that can depend on attributes which aren't
253 	 * configured yet.
254 	 */
255 	vma->vm_end = STACK_TOP_MAX;
256 	vma->vm_start = vma->vm_end - PAGE_SIZE;
257 
258 	vma->vm_flags = VM_STACK_FLAGS;
259 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
260 	err = insert_vm_struct(mm, vma);
261 	if (err) {
262 		up_write(&mm->mmap_sem);
263 		goto err;
264 	}
265 
266 	mm->stack_vm = mm->total_vm = 1;
267 	up_write(&mm->mmap_sem);
268 
269 	bprm->p = vma->vm_end - sizeof(void *);
270 
271 	return 0;
272 
273 err:
274 	if (vma) {
275 		bprm->vma = NULL;
276 		kmem_cache_free(vm_area_cachep, vma);
277 	}
278 
279 	return err;
280 }
281 
282 static bool valid_arg_len(struct linux_binprm *bprm, long len)
283 {
284 	return len <= MAX_ARG_STRLEN;
285 }
286 
287 #else
288 
289 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
290 		int write)
291 {
292 	struct page *page;
293 
294 	page = bprm->page[pos / PAGE_SIZE];
295 	if (!page && write) {
296 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
297 		if (!page)
298 			return NULL;
299 		bprm->page[pos / PAGE_SIZE] = page;
300 	}
301 
302 	return page;
303 }
304 
305 static void put_arg_page(struct page *page)
306 {
307 }
308 
309 static void free_arg_page(struct linux_binprm *bprm, int i)
310 {
311 	if (bprm->page[i]) {
312 		__free_page(bprm->page[i]);
313 		bprm->page[i] = NULL;
314 	}
315 }
316 
317 static void free_arg_pages(struct linux_binprm *bprm)
318 {
319 	int i;
320 
321 	for (i = 0; i < MAX_ARG_PAGES; i++)
322 		free_arg_page(bprm, i);
323 }
324 
325 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
326 		struct page *page)
327 {
328 }
329 
330 static int __bprm_mm_init(struct linux_binprm *bprm)
331 {
332 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
333 	return 0;
334 }
335 
336 static bool valid_arg_len(struct linux_binprm *bprm, long len)
337 {
338 	return len <= bprm->p;
339 }
340 
341 #endif /* CONFIG_MMU */
342 
343 /*
344  * Create a new mm_struct and populate it with a temporary stack
345  * vm_area_struct.  We don't have enough context at this point to set the stack
346  * flags, permissions, and offset, so we use temporary values.  We'll update
347  * them later in setup_arg_pages().
348  */
349 int bprm_mm_init(struct linux_binprm *bprm)
350 {
351 	int err;
352 	struct mm_struct *mm = NULL;
353 
354 	bprm->mm = mm = mm_alloc();
355 	err = -ENOMEM;
356 	if (!mm)
357 		goto err;
358 
359 	err = init_new_context(current, mm);
360 	if (err)
361 		goto err;
362 
363 	err = __bprm_mm_init(bprm);
364 	if (err)
365 		goto err;
366 
367 	return 0;
368 
369 err:
370 	if (mm) {
371 		bprm->mm = NULL;
372 		mmdrop(mm);
373 	}
374 
375 	return err;
376 }
377 
378 /*
379  * count() counts the number of strings in array ARGV.
380  */
381 static int count(char __user * __user * argv, int max)
382 {
383 	int i = 0;
384 
385 	if (argv != NULL) {
386 		for (;;) {
387 			char __user * p;
388 
389 			if (get_user(p, argv))
390 				return -EFAULT;
391 			if (!p)
392 				break;
393 			argv++;
394 			if(++i > max)
395 				return -E2BIG;
396 			cond_resched();
397 		}
398 	}
399 	return i;
400 }
401 
402 /*
403  * 'copy_strings()' copies argument/environment strings from the old
404  * processes's memory to the new process's stack.  The call to get_user_pages()
405  * ensures the destination page is created and not swapped out.
406  */
407 static int copy_strings(int argc, char __user * __user * argv,
408 			struct linux_binprm *bprm)
409 {
410 	struct page *kmapped_page = NULL;
411 	char *kaddr = NULL;
412 	unsigned long kpos = 0;
413 	int ret;
414 
415 	while (argc-- > 0) {
416 		char __user *str;
417 		int len;
418 		unsigned long pos;
419 
420 		if (get_user(str, argv+argc) ||
421 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
422 			ret = -EFAULT;
423 			goto out;
424 		}
425 
426 		if (!valid_arg_len(bprm, len)) {
427 			ret = -E2BIG;
428 			goto out;
429 		}
430 
431 		/* We're going to work our way backwords. */
432 		pos = bprm->p;
433 		str += len;
434 		bprm->p -= len;
435 
436 		while (len > 0) {
437 			int offset, bytes_to_copy;
438 
439 			offset = pos % PAGE_SIZE;
440 			if (offset == 0)
441 				offset = PAGE_SIZE;
442 
443 			bytes_to_copy = offset;
444 			if (bytes_to_copy > len)
445 				bytes_to_copy = len;
446 
447 			offset -= bytes_to_copy;
448 			pos -= bytes_to_copy;
449 			str -= bytes_to_copy;
450 			len -= bytes_to_copy;
451 
452 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
453 				struct page *page;
454 
455 				page = get_arg_page(bprm, pos, 1);
456 				if (!page) {
457 					ret = -E2BIG;
458 					goto out;
459 				}
460 
461 				if (kmapped_page) {
462 					flush_kernel_dcache_page(kmapped_page);
463 					kunmap(kmapped_page);
464 					put_arg_page(kmapped_page);
465 				}
466 				kmapped_page = page;
467 				kaddr = kmap(kmapped_page);
468 				kpos = pos & PAGE_MASK;
469 				flush_arg_page(bprm, kpos, kmapped_page);
470 			}
471 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
472 				ret = -EFAULT;
473 				goto out;
474 			}
475 		}
476 	}
477 	ret = 0;
478 out:
479 	if (kmapped_page) {
480 		flush_kernel_dcache_page(kmapped_page);
481 		kunmap(kmapped_page);
482 		put_arg_page(kmapped_page);
483 	}
484 	return ret;
485 }
486 
487 /*
488  * Like copy_strings, but get argv and its values from kernel memory.
489  */
490 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
491 {
492 	int r;
493 	mm_segment_t oldfs = get_fs();
494 	set_fs(KERNEL_DS);
495 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
496 	set_fs(oldfs);
497 	return r;
498 }
499 EXPORT_SYMBOL(copy_strings_kernel);
500 
501 #ifdef CONFIG_MMU
502 
503 /*
504  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
505  * the binfmt code determines where the new stack should reside, we shift it to
506  * its final location.  The process proceeds as follows:
507  *
508  * 1) Use shift to calculate the new vma endpoints.
509  * 2) Extend vma to cover both the old and new ranges.  This ensures the
510  *    arguments passed to subsequent functions are consistent.
511  * 3) Move vma's page tables to the new range.
512  * 4) Free up any cleared pgd range.
513  * 5) Shrink the vma to cover only the new range.
514  */
515 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
516 {
517 	struct mm_struct *mm = vma->vm_mm;
518 	unsigned long old_start = vma->vm_start;
519 	unsigned long old_end = vma->vm_end;
520 	unsigned long length = old_end - old_start;
521 	unsigned long new_start = old_start - shift;
522 	unsigned long new_end = old_end - shift;
523 	struct mmu_gather *tlb;
524 
525 	BUG_ON(new_start > new_end);
526 
527 	/*
528 	 * ensure there are no vmas between where we want to go
529 	 * and where we are
530 	 */
531 	if (vma != find_vma(mm, new_start))
532 		return -EFAULT;
533 
534 	/*
535 	 * cover the whole range: [new_start, old_end)
536 	 */
537 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
538 
539 	/*
540 	 * move the page tables downwards, on failure we rely on
541 	 * process cleanup to remove whatever mess we made.
542 	 */
543 	if (length != move_page_tables(vma, old_start,
544 				       vma, new_start, length))
545 		return -ENOMEM;
546 
547 	lru_add_drain();
548 	tlb = tlb_gather_mmu(mm, 0);
549 	if (new_end > old_start) {
550 		/*
551 		 * when the old and new regions overlap clear from new_end.
552 		 */
553 		free_pgd_range(tlb, new_end, old_end, new_end,
554 			vma->vm_next ? vma->vm_next->vm_start : 0);
555 	} else {
556 		/*
557 		 * otherwise, clean from old_start; this is done to not touch
558 		 * the address space in [new_end, old_start) some architectures
559 		 * have constraints on va-space that make this illegal (IA64) -
560 		 * for the others its just a little faster.
561 		 */
562 		free_pgd_range(tlb, old_start, old_end, new_end,
563 			vma->vm_next ? vma->vm_next->vm_start : 0);
564 	}
565 	tlb_finish_mmu(tlb, new_end, old_end);
566 
567 	/*
568 	 * shrink the vma to just the new range.
569 	 */
570 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
571 
572 	return 0;
573 }
574 
575 #define EXTRA_STACK_VM_PAGES	20	/* random */
576 
577 /*
578  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
579  * the stack is optionally relocated, and some extra space is added.
580  */
581 int setup_arg_pages(struct linux_binprm *bprm,
582 		    unsigned long stack_top,
583 		    int executable_stack)
584 {
585 	unsigned long ret;
586 	unsigned long stack_shift;
587 	struct mm_struct *mm = current->mm;
588 	struct vm_area_struct *vma = bprm->vma;
589 	struct vm_area_struct *prev = NULL;
590 	unsigned long vm_flags;
591 	unsigned long stack_base;
592 
593 #ifdef CONFIG_STACK_GROWSUP
594 	/* Limit stack size to 1GB */
595 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
596 	if (stack_base > (1 << 30))
597 		stack_base = 1 << 30;
598 
599 	/* Make sure we didn't let the argument array grow too large. */
600 	if (vma->vm_end - vma->vm_start > stack_base)
601 		return -ENOMEM;
602 
603 	stack_base = PAGE_ALIGN(stack_top - stack_base);
604 
605 	stack_shift = vma->vm_start - stack_base;
606 	mm->arg_start = bprm->p - stack_shift;
607 	bprm->p = vma->vm_end - stack_shift;
608 #else
609 	stack_top = arch_align_stack(stack_top);
610 	stack_top = PAGE_ALIGN(stack_top);
611 	stack_shift = vma->vm_end - stack_top;
612 
613 	bprm->p -= stack_shift;
614 	mm->arg_start = bprm->p;
615 #endif
616 
617 	if (bprm->loader)
618 		bprm->loader -= stack_shift;
619 	bprm->exec -= stack_shift;
620 
621 	down_write(&mm->mmap_sem);
622 	vm_flags = VM_STACK_FLAGS;
623 
624 	/*
625 	 * Adjust stack execute permissions; explicitly enable for
626 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
627 	 * (arch default) otherwise.
628 	 */
629 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
630 		vm_flags |= VM_EXEC;
631 	else if (executable_stack == EXSTACK_DISABLE_X)
632 		vm_flags &= ~VM_EXEC;
633 	vm_flags |= mm->def_flags;
634 
635 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
636 			vm_flags);
637 	if (ret)
638 		goto out_unlock;
639 	BUG_ON(prev != vma);
640 
641 	/* Move stack pages down in memory. */
642 	if (stack_shift) {
643 		ret = shift_arg_pages(vma, stack_shift);
644 		if (ret) {
645 			up_write(&mm->mmap_sem);
646 			return ret;
647 		}
648 	}
649 
650 #ifdef CONFIG_STACK_GROWSUP
651 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
652 #else
653 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
654 #endif
655 	ret = expand_stack(vma, stack_base);
656 	if (ret)
657 		ret = -EFAULT;
658 
659 out_unlock:
660 	up_write(&mm->mmap_sem);
661 	return 0;
662 }
663 EXPORT_SYMBOL(setup_arg_pages);
664 
665 #endif /* CONFIG_MMU */
666 
667 struct file *open_exec(const char *name)
668 {
669 	struct nameidata nd;
670 	struct file *file;
671 	int err;
672 
673 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
674 				FMODE_READ|FMODE_EXEC);
675 	if (err)
676 		goto out;
677 
678 	err = -EACCES;
679 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
680 		goto out_path_put;
681 
682 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
683 		goto out_path_put;
684 
685 	err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN);
686 	if (err)
687 		goto out_path_put;
688 
689 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
690 	if (IS_ERR(file))
691 		return file;
692 
693 	err = deny_write_access(file);
694 	if (err) {
695 		fput(file);
696 		goto out;
697 	}
698 
699 	return file;
700 
701  out_path_put:
702 	release_open_intent(&nd);
703 	path_put(&nd.path);
704  out:
705 	return ERR_PTR(err);
706 }
707 EXPORT_SYMBOL(open_exec);
708 
709 int kernel_read(struct file *file, unsigned long offset,
710 	char *addr, unsigned long count)
711 {
712 	mm_segment_t old_fs;
713 	loff_t pos = offset;
714 	int result;
715 
716 	old_fs = get_fs();
717 	set_fs(get_ds());
718 	/* The cast to a user pointer is valid due to the set_fs() */
719 	result = vfs_read(file, (void __user *)addr, count, &pos);
720 	set_fs(old_fs);
721 	return result;
722 }
723 
724 EXPORT_SYMBOL(kernel_read);
725 
726 static int exec_mmap(struct mm_struct *mm)
727 {
728 	struct task_struct *tsk;
729 	struct mm_struct * old_mm, *active_mm;
730 
731 	/* Notify parent that we're no longer interested in the old VM */
732 	tsk = current;
733 	old_mm = current->mm;
734 	mm_release(tsk, old_mm);
735 
736 	if (old_mm) {
737 		/*
738 		 * Make sure that if there is a core dump in progress
739 		 * for the old mm, we get out and die instead of going
740 		 * through with the exec.  We must hold mmap_sem around
741 		 * checking core_state and changing tsk->mm.
742 		 */
743 		down_read(&old_mm->mmap_sem);
744 		if (unlikely(old_mm->core_state)) {
745 			up_read(&old_mm->mmap_sem);
746 			return -EINTR;
747 		}
748 	}
749 	task_lock(tsk);
750 	active_mm = tsk->active_mm;
751 	tsk->mm = mm;
752 	tsk->active_mm = mm;
753 	activate_mm(active_mm, mm);
754 	task_unlock(tsk);
755 	mm_update_next_owner(old_mm);
756 	arch_pick_mmap_layout(mm);
757 	if (old_mm) {
758 		up_read(&old_mm->mmap_sem);
759 		BUG_ON(active_mm != old_mm);
760 		mmput(old_mm);
761 		return 0;
762 	}
763 	mmdrop(active_mm);
764 	return 0;
765 }
766 
767 /*
768  * This function makes sure the current process has its own signal table,
769  * so that flush_signal_handlers can later reset the handlers without
770  * disturbing other processes.  (Other processes might share the signal
771  * table via the CLONE_SIGHAND option to clone().)
772  */
773 static int de_thread(struct task_struct *tsk)
774 {
775 	struct signal_struct *sig = tsk->signal;
776 	struct sighand_struct *oldsighand = tsk->sighand;
777 	spinlock_t *lock = &oldsighand->siglock;
778 	struct task_struct *leader = NULL;
779 	int count;
780 
781 	if (thread_group_empty(tsk))
782 		goto no_thread_group;
783 
784 	/*
785 	 * Kill all other threads in the thread group.
786 	 */
787 	spin_lock_irq(lock);
788 	if (signal_group_exit(sig)) {
789 		/*
790 		 * Another group action in progress, just
791 		 * return so that the signal is processed.
792 		 */
793 		spin_unlock_irq(lock);
794 		return -EAGAIN;
795 	}
796 	sig->group_exit_task = tsk;
797 	zap_other_threads(tsk);
798 
799 	/* Account for the thread group leader hanging around: */
800 	count = thread_group_leader(tsk) ? 1 : 2;
801 	sig->notify_count = count;
802 	while (atomic_read(&sig->count) > count) {
803 		__set_current_state(TASK_UNINTERRUPTIBLE);
804 		spin_unlock_irq(lock);
805 		schedule();
806 		spin_lock_irq(lock);
807 	}
808 	spin_unlock_irq(lock);
809 
810 	/*
811 	 * At this point all other threads have exited, all we have to
812 	 * do is to wait for the thread group leader to become inactive,
813 	 * and to assume its PID:
814 	 */
815 	if (!thread_group_leader(tsk)) {
816 		leader = tsk->group_leader;
817 
818 		sig->notify_count = -1;	/* for exit_notify() */
819 		for (;;) {
820 			write_lock_irq(&tasklist_lock);
821 			if (likely(leader->exit_state))
822 				break;
823 			__set_current_state(TASK_UNINTERRUPTIBLE);
824 			write_unlock_irq(&tasklist_lock);
825 			schedule();
826 		}
827 
828 		if (unlikely(task_child_reaper(tsk) == leader))
829 			task_active_pid_ns(tsk)->child_reaper = tsk;
830 		/*
831 		 * The only record we have of the real-time age of a
832 		 * process, regardless of execs it's done, is start_time.
833 		 * All the past CPU time is accumulated in signal_struct
834 		 * from sister threads now dead.  But in this non-leader
835 		 * exec, nothing survives from the original leader thread,
836 		 * whose birth marks the true age of this process now.
837 		 * When we take on its identity by switching to its PID, we
838 		 * also take its birthdate (always earlier than our own).
839 		 */
840 		tsk->start_time = leader->start_time;
841 
842 		BUG_ON(!same_thread_group(leader, tsk));
843 		BUG_ON(has_group_leader_pid(tsk));
844 		/*
845 		 * An exec() starts a new thread group with the
846 		 * TGID of the previous thread group. Rehash the
847 		 * two threads with a switched PID, and release
848 		 * the former thread group leader:
849 		 */
850 
851 		/* Become a process group leader with the old leader's pid.
852 		 * The old leader becomes a thread of the this thread group.
853 		 * Note: The old leader also uses this pid until release_task
854 		 *       is called.  Odd but simple and correct.
855 		 */
856 		detach_pid(tsk, PIDTYPE_PID);
857 		tsk->pid = leader->pid;
858 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
859 		transfer_pid(leader, tsk, PIDTYPE_PGID);
860 		transfer_pid(leader, tsk, PIDTYPE_SID);
861 		list_replace_rcu(&leader->tasks, &tsk->tasks);
862 
863 		tsk->group_leader = tsk;
864 		leader->group_leader = tsk;
865 
866 		tsk->exit_signal = SIGCHLD;
867 
868 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
869 		leader->exit_state = EXIT_DEAD;
870 
871 		write_unlock_irq(&tasklist_lock);
872 	}
873 
874 	sig->group_exit_task = NULL;
875 	sig->notify_count = 0;
876 
877 no_thread_group:
878 	exit_itimers(sig);
879 	flush_itimer_signals();
880 	if (leader)
881 		release_task(leader);
882 
883 	if (atomic_read(&oldsighand->count) != 1) {
884 		struct sighand_struct *newsighand;
885 		/*
886 		 * This ->sighand is shared with the CLONE_SIGHAND
887 		 * but not CLONE_THREAD task, switch to the new one.
888 		 */
889 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
890 		if (!newsighand)
891 			return -ENOMEM;
892 
893 		atomic_set(&newsighand->count, 1);
894 		memcpy(newsighand->action, oldsighand->action,
895 		       sizeof(newsighand->action));
896 
897 		write_lock_irq(&tasklist_lock);
898 		spin_lock(&oldsighand->siglock);
899 		rcu_assign_pointer(tsk->sighand, newsighand);
900 		spin_unlock(&oldsighand->siglock);
901 		write_unlock_irq(&tasklist_lock);
902 
903 		__cleanup_sighand(oldsighand);
904 	}
905 
906 	BUG_ON(!thread_group_leader(tsk));
907 	return 0;
908 }
909 
910 /*
911  * These functions flushes out all traces of the currently running executable
912  * so that a new one can be started
913  */
914 static void flush_old_files(struct files_struct * files)
915 {
916 	long j = -1;
917 	struct fdtable *fdt;
918 
919 	spin_lock(&files->file_lock);
920 	for (;;) {
921 		unsigned long set, i;
922 
923 		j++;
924 		i = j * __NFDBITS;
925 		fdt = files_fdtable(files);
926 		if (i >= fdt->max_fds)
927 			break;
928 		set = fdt->close_on_exec->fds_bits[j];
929 		if (!set)
930 			continue;
931 		fdt->close_on_exec->fds_bits[j] = 0;
932 		spin_unlock(&files->file_lock);
933 		for ( ; set ; i++,set >>= 1) {
934 			if (set & 1) {
935 				sys_close(i);
936 			}
937 		}
938 		spin_lock(&files->file_lock);
939 
940 	}
941 	spin_unlock(&files->file_lock);
942 }
943 
944 char *get_task_comm(char *buf, struct task_struct *tsk)
945 {
946 	/* buf must be at least sizeof(tsk->comm) in size */
947 	task_lock(tsk);
948 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
949 	task_unlock(tsk);
950 	return buf;
951 }
952 
953 void set_task_comm(struct task_struct *tsk, char *buf)
954 {
955 	task_lock(tsk);
956 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
957 	task_unlock(tsk);
958 }
959 
960 int flush_old_exec(struct linux_binprm * bprm)
961 {
962 	char * name;
963 	int i, ch, retval;
964 	char tcomm[sizeof(current->comm)];
965 
966 	/*
967 	 * Make sure we have a private signal table and that
968 	 * we are unassociated from the previous thread group.
969 	 */
970 	retval = de_thread(current);
971 	if (retval)
972 		goto out;
973 
974 	set_mm_exe_file(bprm->mm, bprm->file);
975 
976 	/*
977 	 * Release all of the old mmap stuff
978 	 */
979 	retval = exec_mmap(bprm->mm);
980 	if (retval)
981 		goto out;
982 
983 	bprm->mm = NULL;		/* We're using it now */
984 
985 	/* This is the point of no return */
986 	current->sas_ss_sp = current->sas_ss_size = 0;
987 
988 	if (current->euid == current->uid && current->egid == current->gid)
989 		set_dumpable(current->mm, 1);
990 	else
991 		set_dumpable(current->mm, suid_dumpable);
992 
993 	name = bprm->filename;
994 
995 	/* Copies the binary name from after last slash */
996 	for (i=0; (ch = *(name++)) != '\0';) {
997 		if (ch == '/')
998 			i = 0; /* overwrite what we wrote */
999 		else
1000 			if (i < (sizeof(tcomm) - 1))
1001 				tcomm[i++] = ch;
1002 	}
1003 	tcomm[i] = '\0';
1004 	set_task_comm(current, tcomm);
1005 
1006 	current->flags &= ~PF_RANDOMIZE;
1007 	flush_thread();
1008 
1009 	/* Set the new mm task size. We have to do that late because it may
1010 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1011 	 * some architectures like powerpc
1012 	 */
1013 	current->mm->task_size = TASK_SIZE;
1014 
1015 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1016 		suid_keys(current);
1017 		set_dumpable(current->mm, suid_dumpable);
1018 		current->pdeath_signal = 0;
1019 	} else if (file_permission(bprm->file, MAY_READ) ||
1020 			(bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1021 		suid_keys(current);
1022 		set_dumpable(current->mm, suid_dumpable);
1023 	}
1024 
1025 	/* An exec changes our domain. We are no longer part of the thread
1026 	   group */
1027 
1028 	current->self_exec_id++;
1029 
1030 	flush_signal_handlers(current, 0);
1031 	flush_old_files(current->files);
1032 
1033 	return 0;
1034 
1035 out:
1036 	return retval;
1037 }
1038 
1039 EXPORT_SYMBOL(flush_old_exec);
1040 
1041 /*
1042  * Fill the binprm structure from the inode.
1043  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1044  */
1045 int prepare_binprm(struct linux_binprm *bprm)
1046 {
1047 	int mode;
1048 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1049 	int retval;
1050 
1051 	mode = inode->i_mode;
1052 	if (bprm->file->f_op == NULL)
1053 		return -EACCES;
1054 
1055 	bprm->e_uid = current->euid;
1056 	bprm->e_gid = current->egid;
1057 
1058 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1059 		/* Set-uid? */
1060 		if (mode & S_ISUID) {
1061 			current->personality &= ~PER_CLEAR_ON_SETID;
1062 			bprm->e_uid = inode->i_uid;
1063 		}
1064 
1065 		/* Set-gid? */
1066 		/*
1067 		 * If setgid is set but no group execute bit then this
1068 		 * is a candidate for mandatory locking, not a setgid
1069 		 * executable.
1070 		 */
1071 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1072 			current->personality &= ~PER_CLEAR_ON_SETID;
1073 			bprm->e_gid = inode->i_gid;
1074 		}
1075 	}
1076 
1077 	/* fill in binprm security blob */
1078 	retval = security_bprm_set(bprm);
1079 	if (retval)
1080 		return retval;
1081 
1082 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
1083 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1084 }
1085 
1086 EXPORT_SYMBOL(prepare_binprm);
1087 
1088 static int unsafe_exec(struct task_struct *p)
1089 {
1090 	int unsafe = tracehook_unsafe_exec(p);
1091 
1092 	if (atomic_read(&p->fs->count) > 1 ||
1093 	    atomic_read(&p->files->count) > 1 ||
1094 	    atomic_read(&p->sighand->count) > 1)
1095 		unsafe |= LSM_UNSAFE_SHARE;
1096 
1097 	return unsafe;
1098 }
1099 
1100 void compute_creds(struct linux_binprm *bprm)
1101 {
1102 	int unsafe;
1103 
1104 	if (bprm->e_uid != current->uid) {
1105 		suid_keys(current);
1106 		current->pdeath_signal = 0;
1107 	}
1108 	exec_keys(current);
1109 
1110 	task_lock(current);
1111 	unsafe = unsafe_exec(current);
1112 	security_bprm_apply_creds(bprm, unsafe);
1113 	task_unlock(current);
1114 	security_bprm_post_apply_creds(bprm);
1115 }
1116 EXPORT_SYMBOL(compute_creds);
1117 
1118 /*
1119  * Arguments are '\0' separated strings found at the location bprm->p
1120  * points to; chop off the first by relocating brpm->p to right after
1121  * the first '\0' encountered.
1122  */
1123 int remove_arg_zero(struct linux_binprm *bprm)
1124 {
1125 	int ret = 0;
1126 	unsigned long offset;
1127 	char *kaddr;
1128 	struct page *page;
1129 
1130 	if (!bprm->argc)
1131 		return 0;
1132 
1133 	do {
1134 		offset = bprm->p & ~PAGE_MASK;
1135 		page = get_arg_page(bprm, bprm->p, 0);
1136 		if (!page) {
1137 			ret = -EFAULT;
1138 			goto out;
1139 		}
1140 		kaddr = kmap_atomic(page, KM_USER0);
1141 
1142 		for (; offset < PAGE_SIZE && kaddr[offset];
1143 				offset++, bprm->p++)
1144 			;
1145 
1146 		kunmap_atomic(kaddr, KM_USER0);
1147 		put_arg_page(page);
1148 
1149 		if (offset == PAGE_SIZE)
1150 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1151 	} while (offset == PAGE_SIZE);
1152 
1153 	bprm->p++;
1154 	bprm->argc--;
1155 	ret = 0;
1156 
1157 out:
1158 	return ret;
1159 }
1160 EXPORT_SYMBOL(remove_arg_zero);
1161 
1162 /*
1163  * cycle the list of binary formats handler, until one recognizes the image
1164  */
1165 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1166 {
1167 	int try,retval;
1168 	struct linux_binfmt *fmt;
1169 #ifdef __alpha__
1170 	/* handle /sbin/loader.. */
1171 	{
1172 	    struct exec * eh = (struct exec *) bprm->buf;
1173 
1174 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1175 		(eh->fh.f_flags & 0x3000) == 0x3000)
1176 	    {
1177 		struct file * file;
1178 		unsigned long loader;
1179 
1180 		allow_write_access(bprm->file);
1181 		fput(bprm->file);
1182 		bprm->file = NULL;
1183 
1184 		loader = bprm->vma->vm_end - sizeof(void *);
1185 
1186 		file = open_exec("/sbin/loader");
1187 		retval = PTR_ERR(file);
1188 		if (IS_ERR(file))
1189 			return retval;
1190 
1191 		/* Remember if the application is TASO.  */
1192 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1193 
1194 		bprm->file = file;
1195 		bprm->loader = loader;
1196 		retval = prepare_binprm(bprm);
1197 		if (retval<0)
1198 			return retval;
1199 		/* should call search_binary_handler recursively here,
1200 		   but it does not matter */
1201 	    }
1202 	}
1203 #endif
1204 	retval = security_bprm_check(bprm);
1205 	if (retval)
1206 		return retval;
1207 
1208 	/* kernel module loader fixup */
1209 	/* so we don't try to load run modprobe in kernel space. */
1210 	set_fs(USER_DS);
1211 
1212 	retval = audit_bprm(bprm);
1213 	if (retval)
1214 		return retval;
1215 
1216 	retval = -ENOENT;
1217 	for (try=0; try<2; try++) {
1218 		read_lock(&binfmt_lock);
1219 		list_for_each_entry(fmt, &formats, lh) {
1220 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1221 			if (!fn)
1222 				continue;
1223 			if (!try_module_get(fmt->module))
1224 				continue;
1225 			read_unlock(&binfmt_lock);
1226 			retval = fn(bprm, regs);
1227 			if (retval >= 0) {
1228 				tracehook_report_exec(fmt, bprm, regs);
1229 				put_binfmt(fmt);
1230 				allow_write_access(bprm->file);
1231 				if (bprm->file)
1232 					fput(bprm->file);
1233 				bprm->file = NULL;
1234 				current->did_exec = 1;
1235 				proc_exec_connector(current);
1236 				return retval;
1237 			}
1238 			read_lock(&binfmt_lock);
1239 			put_binfmt(fmt);
1240 			if (retval != -ENOEXEC || bprm->mm == NULL)
1241 				break;
1242 			if (!bprm->file) {
1243 				read_unlock(&binfmt_lock);
1244 				return retval;
1245 			}
1246 		}
1247 		read_unlock(&binfmt_lock);
1248 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1249 			break;
1250 #ifdef CONFIG_KMOD
1251 		}else{
1252 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1253 			if (printable(bprm->buf[0]) &&
1254 			    printable(bprm->buf[1]) &&
1255 			    printable(bprm->buf[2]) &&
1256 			    printable(bprm->buf[3]))
1257 				break; /* -ENOEXEC */
1258 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1259 #endif
1260 		}
1261 	}
1262 	return retval;
1263 }
1264 
1265 EXPORT_SYMBOL(search_binary_handler);
1266 
1267 void free_bprm(struct linux_binprm *bprm)
1268 {
1269 	free_arg_pages(bprm);
1270 	kfree(bprm);
1271 }
1272 
1273 /*
1274  * sys_execve() executes a new program.
1275  */
1276 int do_execve(char * filename,
1277 	char __user *__user *argv,
1278 	char __user *__user *envp,
1279 	struct pt_regs * regs)
1280 {
1281 	struct linux_binprm *bprm;
1282 	struct file *file;
1283 	struct files_struct *displaced;
1284 	int retval;
1285 
1286 	retval = unshare_files(&displaced);
1287 	if (retval)
1288 		goto out_ret;
1289 
1290 	retval = -ENOMEM;
1291 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1292 	if (!bprm)
1293 		goto out_files;
1294 
1295 	file = open_exec(filename);
1296 	retval = PTR_ERR(file);
1297 	if (IS_ERR(file))
1298 		goto out_kfree;
1299 
1300 	sched_exec();
1301 
1302 	bprm->file = file;
1303 	bprm->filename = filename;
1304 	bprm->interp = filename;
1305 
1306 	retval = bprm_mm_init(bprm);
1307 	if (retval)
1308 		goto out_file;
1309 
1310 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1311 	if ((retval = bprm->argc) < 0)
1312 		goto out_mm;
1313 
1314 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1315 	if ((retval = bprm->envc) < 0)
1316 		goto out_mm;
1317 
1318 	retval = security_bprm_alloc(bprm);
1319 	if (retval)
1320 		goto out;
1321 
1322 	retval = prepare_binprm(bprm);
1323 	if (retval < 0)
1324 		goto out;
1325 
1326 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1327 	if (retval < 0)
1328 		goto out;
1329 
1330 	bprm->exec = bprm->p;
1331 	retval = copy_strings(bprm->envc, envp, bprm);
1332 	if (retval < 0)
1333 		goto out;
1334 
1335 	retval = copy_strings(bprm->argc, argv, bprm);
1336 	if (retval < 0)
1337 		goto out;
1338 
1339 	current->flags &= ~PF_KTHREAD;
1340 	retval = search_binary_handler(bprm,regs);
1341 	if (retval >= 0) {
1342 		/* execve success */
1343 		security_bprm_free(bprm);
1344 		acct_update_integrals(current);
1345 		free_bprm(bprm);
1346 		if (displaced)
1347 			put_files_struct(displaced);
1348 		return retval;
1349 	}
1350 
1351 out:
1352 	if (bprm->security)
1353 		security_bprm_free(bprm);
1354 
1355 out_mm:
1356 	if (bprm->mm)
1357 		mmput (bprm->mm);
1358 
1359 out_file:
1360 	if (bprm->file) {
1361 		allow_write_access(bprm->file);
1362 		fput(bprm->file);
1363 	}
1364 out_kfree:
1365 	free_bprm(bprm);
1366 
1367 out_files:
1368 	if (displaced)
1369 		reset_files_struct(displaced);
1370 out_ret:
1371 	return retval;
1372 }
1373 
1374 int set_binfmt(struct linux_binfmt *new)
1375 {
1376 	struct linux_binfmt *old = current->binfmt;
1377 
1378 	if (new) {
1379 		if (!try_module_get(new->module))
1380 			return -1;
1381 	}
1382 	current->binfmt = new;
1383 	if (old)
1384 		module_put(old->module);
1385 	return 0;
1386 }
1387 
1388 EXPORT_SYMBOL(set_binfmt);
1389 
1390 /* format_corename will inspect the pattern parameter, and output a
1391  * name into corename, which must have space for at least
1392  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1393  */
1394 static int format_corename(char *corename, int nr_threads, long signr)
1395 {
1396 	const char *pat_ptr = core_pattern;
1397 	int ispipe = (*pat_ptr == '|');
1398 	char *out_ptr = corename;
1399 	char *const out_end = corename + CORENAME_MAX_SIZE;
1400 	int rc;
1401 	int pid_in_pattern = 0;
1402 
1403 	/* Repeat as long as we have more pattern to process and more output
1404 	   space */
1405 	while (*pat_ptr) {
1406 		if (*pat_ptr != '%') {
1407 			if (out_ptr == out_end)
1408 				goto out;
1409 			*out_ptr++ = *pat_ptr++;
1410 		} else {
1411 			switch (*++pat_ptr) {
1412 			case 0:
1413 				goto out;
1414 			/* Double percent, output one percent */
1415 			case '%':
1416 				if (out_ptr == out_end)
1417 					goto out;
1418 				*out_ptr++ = '%';
1419 				break;
1420 			/* pid */
1421 			case 'p':
1422 				pid_in_pattern = 1;
1423 				rc = snprintf(out_ptr, out_end - out_ptr,
1424 					      "%d", task_tgid_vnr(current));
1425 				if (rc > out_end - out_ptr)
1426 					goto out;
1427 				out_ptr += rc;
1428 				break;
1429 			/* uid */
1430 			case 'u':
1431 				rc = snprintf(out_ptr, out_end - out_ptr,
1432 					      "%d", current->uid);
1433 				if (rc > out_end - out_ptr)
1434 					goto out;
1435 				out_ptr += rc;
1436 				break;
1437 			/* gid */
1438 			case 'g':
1439 				rc = snprintf(out_ptr, out_end - out_ptr,
1440 					      "%d", current->gid);
1441 				if (rc > out_end - out_ptr)
1442 					goto out;
1443 				out_ptr += rc;
1444 				break;
1445 			/* signal that caused the coredump */
1446 			case 's':
1447 				rc = snprintf(out_ptr, out_end - out_ptr,
1448 					      "%ld", signr);
1449 				if (rc > out_end - out_ptr)
1450 					goto out;
1451 				out_ptr += rc;
1452 				break;
1453 			/* UNIX time of coredump */
1454 			case 't': {
1455 				struct timeval tv;
1456 				do_gettimeofday(&tv);
1457 				rc = snprintf(out_ptr, out_end - out_ptr,
1458 					      "%lu", tv.tv_sec);
1459 				if (rc > out_end - out_ptr)
1460 					goto out;
1461 				out_ptr += rc;
1462 				break;
1463 			}
1464 			/* hostname */
1465 			case 'h':
1466 				down_read(&uts_sem);
1467 				rc = snprintf(out_ptr, out_end - out_ptr,
1468 					      "%s", utsname()->nodename);
1469 				up_read(&uts_sem);
1470 				if (rc > out_end - out_ptr)
1471 					goto out;
1472 				out_ptr += rc;
1473 				break;
1474 			/* executable */
1475 			case 'e':
1476 				rc = snprintf(out_ptr, out_end - out_ptr,
1477 					      "%s", current->comm);
1478 				if (rc > out_end - out_ptr)
1479 					goto out;
1480 				out_ptr += rc;
1481 				break;
1482 			/* core limit size */
1483 			case 'c':
1484 				rc = snprintf(out_ptr, out_end - out_ptr,
1485 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1486 				if (rc > out_end - out_ptr)
1487 					goto out;
1488 				out_ptr += rc;
1489 				break;
1490 			default:
1491 				break;
1492 			}
1493 			++pat_ptr;
1494 		}
1495 	}
1496 	/* Backward compatibility with core_uses_pid:
1497 	 *
1498 	 * If core_pattern does not include a %p (as is the default)
1499 	 * and core_uses_pid is set, then .%pid will be appended to
1500 	 * the filename. Do not do this for piped commands. */
1501 	if (!ispipe && !pid_in_pattern
1502 	    && (core_uses_pid || nr_threads)) {
1503 		rc = snprintf(out_ptr, out_end - out_ptr,
1504 			      ".%d", task_tgid_vnr(current));
1505 		if (rc > out_end - out_ptr)
1506 			goto out;
1507 		out_ptr += rc;
1508 	}
1509 out:
1510 	*out_ptr = 0;
1511 	return ispipe;
1512 }
1513 
1514 static int zap_process(struct task_struct *start)
1515 {
1516 	struct task_struct *t;
1517 	int nr = 0;
1518 
1519 	start->signal->flags = SIGNAL_GROUP_EXIT;
1520 	start->signal->group_stop_count = 0;
1521 
1522 	t = start;
1523 	do {
1524 		if (t != current && t->mm) {
1525 			sigaddset(&t->pending.signal, SIGKILL);
1526 			signal_wake_up(t, 1);
1527 			nr++;
1528 		}
1529 	} while_each_thread(start, t);
1530 
1531 	return nr;
1532 }
1533 
1534 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1535 				struct core_state *core_state, int exit_code)
1536 {
1537 	struct task_struct *g, *p;
1538 	unsigned long flags;
1539 	int nr = -EAGAIN;
1540 
1541 	spin_lock_irq(&tsk->sighand->siglock);
1542 	if (!signal_group_exit(tsk->signal)) {
1543 		mm->core_state = core_state;
1544 		tsk->signal->group_exit_code = exit_code;
1545 		nr = zap_process(tsk);
1546 	}
1547 	spin_unlock_irq(&tsk->sighand->siglock);
1548 	if (unlikely(nr < 0))
1549 		return nr;
1550 
1551 	if (atomic_read(&mm->mm_users) == nr + 1)
1552 		goto done;
1553 	/*
1554 	 * We should find and kill all tasks which use this mm, and we should
1555 	 * count them correctly into ->nr_threads. We don't take tasklist
1556 	 * lock, but this is safe wrt:
1557 	 *
1558 	 * fork:
1559 	 *	None of sub-threads can fork after zap_process(leader). All
1560 	 *	processes which were created before this point should be
1561 	 *	visible to zap_threads() because copy_process() adds the new
1562 	 *	process to the tail of init_task.tasks list, and lock/unlock
1563 	 *	of ->siglock provides a memory barrier.
1564 	 *
1565 	 * do_exit:
1566 	 *	The caller holds mm->mmap_sem. This means that the task which
1567 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1568 	 *	its ->mm.
1569 	 *
1570 	 * de_thread:
1571 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1572 	 *	we must see either old or new leader, this does not matter.
1573 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1574 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1575 	 *	it can't fail.
1576 	 *
1577 	 *	Note also that "g" can be the old leader with ->mm == NULL
1578 	 *	and already unhashed and thus removed from ->thread_group.
1579 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1580 	 *	clear the ->next pointer, we will find the new leader via
1581 	 *	next_thread().
1582 	 */
1583 	rcu_read_lock();
1584 	for_each_process(g) {
1585 		if (g == tsk->group_leader)
1586 			continue;
1587 		if (g->flags & PF_KTHREAD)
1588 			continue;
1589 		p = g;
1590 		do {
1591 			if (p->mm) {
1592 				if (unlikely(p->mm == mm)) {
1593 					lock_task_sighand(p, &flags);
1594 					nr += zap_process(p);
1595 					unlock_task_sighand(p, &flags);
1596 				}
1597 				break;
1598 			}
1599 		} while_each_thread(g, p);
1600 	}
1601 	rcu_read_unlock();
1602 done:
1603 	atomic_set(&core_state->nr_threads, nr);
1604 	return nr;
1605 }
1606 
1607 static int coredump_wait(int exit_code, struct core_state *core_state)
1608 {
1609 	struct task_struct *tsk = current;
1610 	struct mm_struct *mm = tsk->mm;
1611 	struct completion *vfork_done;
1612 	int core_waiters;
1613 
1614 	init_completion(&core_state->startup);
1615 	core_state->dumper.task = tsk;
1616 	core_state->dumper.next = NULL;
1617 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1618 	up_write(&mm->mmap_sem);
1619 
1620 	if (unlikely(core_waiters < 0))
1621 		goto fail;
1622 
1623 	/*
1624 	 * Make sure nobody is waiting for us to release the VM,
1625 	 * otherwise we can deadlock when we wait on each other
1626 	 */
1627 	vfork_done = tsk->vfork_done;
1628 	if (vfork_done) {
1629 		tsk->vfork_done = NULL;
1630 		complete(vfork_done);
1631 	}
1632 
1633 	if (core_waiters)
1634 		wait_for_completion(&core_state->startup);
1635 fail:
1636 	return core_waiters;
1637 }
1638 
1639 static void coredump_finish(struct mm_struct *mm)
1640 {
1641 	struct core_thread *curr, *next;
1642 	struct task_struct *task;
1643 
1644 	next = mm->core_state->dumper.next;
1645 	while ((curr = next) != NULL) {
1646 		next = curr->next;
1647 		task = curr->task;
1648 		/*
1649 		 * see exit_mm(), curr->task must not see
1650 		 * ->task == NULL before we read ->next.
1651 		 */
1652 		smp_mb();
1653 		curr->task = NULL;
1654 		wake_up_process(task);
1655 	}
1656 
1657 	mm->core_state = NULL;
1658 }
1659 
1660 /*
1661  * set_dumpable converts traditional three-value dumpable to two flags and
1662  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1663  * these bits are not changed atomically.  So get_dumpable can observe the
1664  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1665  * return either old dumpable or new one by paying attention to the order of
1666  * modifying the bits.
1667  *
1668  * dumpable |   mm->flags (binary)
1669  * old  new | initial interim  final
1670  * ---------+-----------------------
1671  *  0    1  |   00      01      01
1672  *  0    2  |   00      10(*)   11
1673  *  1    0  |   01      00      00
1674  *  1    2  |   01      11      11
1675  *  2    0  |   11      10(*)   00
1676  *  2    1  |   11      11      01
1677  *
1678  * (*) get_dumpable regards interim value of 10 as 11.
1679  */
1680 void set_dumpable(struct mm_struct *mm, int value)
1681 {
1682 	switch (value) {
1683 	case 0:
1684 		clear_bit(MMF_DUMPABLE, &mm->flags);
1685 		smp_wmb();
1686 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1687 		break;
1688 	case 1:
1689 		set_bit(MMF_DUMPABLE, &mm->flags);
1690 		smp_wmb();
1691 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1692 		break;
1693 	case 2:
1694 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1695 		smp_wmb();
1696 		set_bit(MMF_DUMPABLE, &mm->flags);
1697 		break;
1698 	}
1699 }
1700 
1701 int get_dumpable(struct mm_struct *mm)
1702 {
1703 	int ret;
1704 
1705 	ret = mm->flags & 0x3;
1706 	return (ret >= 2) ? 2 : ret;
1707 }
1708 
1709 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1710 {
1711 	struct core_state core_state;
1712 	char corename[CORENAME_MAX_SIZE + 1];
1713 	struct mm_struct *mm = current->mm;
1714 	struct linux_binfmt * binfmt;
1715 	struct inode * inode;
1716 	struct file * file;
1717 	int retval = 0;
1718 	int fsuid = current->fsuid;
1719 	int flag = 0;
1720 	int ispipe = 0;
1721 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1722 	char **helper_argv = NULL;
1723 	int helper_argc = 0;
1724 	char *delimit;
1725 
1726 	audit_core_dumps(signr);
1727 
1728 	binfmt = current->binfmt;
1729 	if (!binfmt || !binfmt->core_dump)
1730 		goto fail;
1731 	down_write(&mm->mmap_sem);
1732 	/*
1733 	 * If another thread got here first, or we are not dumpable, bail out.
1734 	 */
1735 	if (mm->core_state || !get_dumpable(mm)) {
1736 		up_write(&mm->mmap_sem);
1737 		goto fail;
1738 	}
1739 
1740 	/*
1741 	 *	We cannot trust fsuid as being the "true" uid of the
1742 	 *	process nor do we know its entire history. We only know it
1743 	 *	was tainted so we dump it as root in mode 2.
1744 	 */
1745 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1746 		flag = O_EXCL;		/* Stop rewrite attacks */
1747 		current->fsuid = 0;	/* Dump root private */
1748 	}
1749 
1750 	retval = coredump_wait(exit_code, &core_state);
1751 	if (retval < 0)
1752 		goto fail;
1753 
1754 	/*
1755 	 * Clear any false indication of pending signals that might
1756 	 * be seen by the filesystem code called to write the core file.
1757 	 */
1758 	clear_thread_flag(TIF_SIGPENDING);
1759 
1760 	/*
1761 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1762 	 * uses lock_kernel()
1763 	 */
1764  	lock_kernel();
1765 	ispipe = format_corename(corename, retval, signr);
1766 	unlock_kernel();
1767 	/*
1768 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1769 	 * to a pipe.  Since we're not writing directly to the filesystem
1770 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1771 	 * created unless the pipe reader choses to write out the core file
1772 	 * at which point file size limits and permissions will be imposed
1773 	 * as it does with any other process
1774 	 */
1775 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1776 		goto fail_unlock;
1777 
1778  	if (ispipe) {
1779 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1780 		/* Terminate the string before the first option */
1781 		delimit = strchr(corename, ' ');
1782 		if (delimit)
1783 			*delimit = '\0';
1784 		delimit = strrchr(helper_argv[0], '/');
1785 		if (delimit)
1786 			delimit++;
1787 		else
1788 			delimit = helper_argv[0];
1789 		if (!strcmp(delimit, current->comm)) {
1790 			printk(KERN_NOTICE "Recursive core dump detected, "
1791 					"aborting\n");
1792 			goto fail_unlock;
1793 		}
1794 
1795 		core_limit = RLIM_INFINITY;
1796 
1797 		/* SIGPIPE can happen, but it's just never processed */
1798  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1799 				&file)) {
1800  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1801 			       corename);
1802  			goto fail_unlock;
1803  		}
1804  	} else
1805  		file = filp_open(corename,
1806 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1807 				 0600);
1808 	if (IS_ERR(file))
1809 		goto fail_unlock;
1810 	inode = file->f_path.dentry->d_inode;
1811 	if (inode->i_nlink > 1)
1812 		goto close_fail;	/* multiple links - don't dump */
1813 	if (!ispipe && d_unhashed(file->f_path.dentry))
1814 		goto close_fail;
1815 
1816 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1817 	   but keep the previous behaviour for now. */
1818 	if (!ispipe && !S_ISREG(inode->i_mode))
1819 		goto close_fail;
1820 	/*
1821 	 * Dont allow local users get cute and trick others to coredump
1822 	 * into their pre-created files:
1823 	 */
1824 	if (inode->i_uid != current->fsuid)
1825 		goto close_fail;
1826 	if (!file->f_op)
1827 		goto close_fail;
1828 	if (!file->f_op->write)
1829 		goto close_fail;
1830 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1831 		goto close_fail;
1832 
1833 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1834 
1835 	if (retval)
1836 		current->signal->group_exit_code |= 0x80;
1837 close_fail:
1838 	filp_close(file, NULL);
1839 fail_unlock:
1840 	if (helper_argv)
1841 		argv_free(helper_argv);
1842 
1843 	current->fsuid = fsuid;
1844 	coredump_finish(mm);
1845 fail:
1846 	return retval;
1847 }
1848