1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/pagemap.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 #include <linux/tracehook.h> 53 54 #include <asm/uaccess.h> 55 #include <asm/mmu_context.h> 56 #include <asm/tlb.h> 57 58 #ifdef CONFIG_KMOD 59 #include <linux/kmod.h> 60 #endif 61 62 #ifdef __alpha__ 63 /* for /sbin/loader handling in search_binary_handler() */ 64 #include <linux/a.out.h> 65 #endif 66 67 int core_uses_pid; 68 char core_pattern[CORENAME_MAX_SIZE] = "core"; 69 int suid_dumpable = 0; 70 71 /* The maximal length of core_pattern is also specified in sysctl.c */ 72 73 static LIST_HEAD(formats); 74 static DEFINE_RWLOCK(binfmt_lock); 75 76 int register_binfmt(struct linux_binfmt * fmt) 77 { 78 if (!fmt) 79 return -EINVAL; 80 write_lock(&binfmt_lock); 81 list_add(&fmt->lh, &formats); 82 write_unlock(&binfmt_lock); 83 return 0; 84 } 85 86 EXPORT_SYMBOL(register_binfmt); 87 88 void unregister_binfmt(struct linux_binfmt * fmt) 89 { 90 write_lock(&binfmt_lock); 91 list_del(&fmt->lh); 92 write_unlock(&binfmt_lock); 93 } 94 95 EXPORT_SYMBOL(unregister_binfmt); 96 97 static inline void put_binfmt(struct linux_binfmt * fmt) 98 { 99 module_put(fmt->module); 100 } 101 102 /* 103 * Note that a shared library must be both readable and executable due to 104 * security reasons. 105 * 106 * Also note that we take the address to load from from the file itself. 107 */ 108 asmlinkage long sys_uselib(const char __user * library) 109 { 110 struct file *file; 111 struct nameidata nd; 112 char *tmp = getname(library); 113 int error = PTR_ERR(tmp); 114 115 if (!IS_ERR(tmp)) { 116 error = path_lookup_open(AT_FDCWD, tmp, 117 LOOKUP_FOLLOW, &nd, 118 FMODE_READ|FMODE_EXEC); 119 putname(tmp); 120 } 121 if (error) 122 goto out; 123 124 error = -EINVAL; 125 if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) 126 goto exit; 127 128 error = -EACCES; 129 if (nd.path.mnt->mnt_flags & MNT_NOEXEC) 130 goto exit; 131 132 error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN); 133 if (error) 134 goto exit; 135 136 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); 137 error = PTR_ERR(file); 138 if (IS_ERR(file)) 139 goto out; 140 141 error = -ENOEXEC; 142 if(file->f_op) { 143 struct linux_binfmt * fmt; 144 145 read_lock(&binfmt_lock); 146 list_for_each_entry(fmt, &formats, lh) { 147 if (!fmt->load_shlib) 148 continue; 149 if (!try_module_get(fmt->module)) 150 continue; 151 read_unlock(&binfmt_lock); 152 error = fmt->load_shlib(file); 153 read_lock(&binfmt_lock); 154 put_binfmt(fmt); 155 if (error != -ENOEXEC) 156 break; 157 } 158 read_unlock(&binfmt_lock); 159 } 160 fput(file); 161 out: 162 return error; 163 exit: 164 release_open_intent(&nd); 165 path_put(&nd.path); 166 goto out; 167 } 168 169 #ifdef CONFIG_MMU 170 171 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 172 int write) 173 { 174 struct page *page; 175 int ret; 176 177 #ifdef CONFIG_STACK_GROWSUP 178 if (write) { 179 ret = expand_stack_downwards(bprm->vma, pos); 180 if (ret < 0) 181 return NULL; 182 } 183 #endif 184 ret = get_user_pages(current, bprm->mm, pos, 185 1, write, 1, &page, NULL); 186 if (ret <= 0) 187 return NULL; 188 189 if (write) { 190 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 191 struct rlimit *rlim; 192 193 /* 194 * We've historically supported up to 32 pages (ARG_MAX) 195 * of argument strings even with small stacks 196 */ 197 if (size <= ARG_MAX) 198 return page; 199 200 /* 201 * Limit to 1/4-th the stack size for the argv+env strings. 202 * This ensures that: 203 * - the remaining binfmt code will not run out of stack space, 204 * - the program will have a reasonable amount of stack left 205 * to work from. 206 */ 207 rlim = current->signal->rlim; 208 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 209 put_page(page); 210 return NULL; 211 } 212 } 213 214 return page; 215 } 216 217 static void put_arg_page(struct page *page) 218 { 219 put_page(page); 220 } 221 222 static void free_arg_page(struct linux_binprm *bprm, int i) 223 { 224 } 225 226 static void free_arg_pages(struct linux_binprm *bprm) 227 { 228 } 229 230 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 231 struct page *page) 232 { 233 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 234 } 235 236 static int __bprm_mm_init(struct linux_binprm *bprm) 237 { 238 int err = -ENOMEM; 239 struct vm_area_struct *vma = NULL; 240 struct mm_struct *mm = bprm->mm; 241 242 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 243 if (!vma) 244 goto err; 245 246 down_write(&mm->mmap_sem); 247 vma->vm_mm = mm; 248 249 /* 250 * Place the stack at the largest stack address the architecture 251 * supports. Later, we'll move this to an appropriate place. We don't 252 * use STACK_TOP because that can depend on attributes which aren't 253 * configured yet. 254 */ 255 vma->vm_end = STACK_TOP_MAX; 256 vma->vm_start = vma->vm_end - PAGE_SIZE; 257 258 vma->vm_flags = VM_STACK_FLAGS; 259 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 260 err = insert_vm_struct(mm, vma); 261 if (err) { 262 up_write(&mm->mmap_sem); 263 goto err; 264 } 265 266 mm->stack_vm = mm->total_vm = 1; 267 up_write(&mm->mmap_sem); 268 269 bprm->p = vma->vm_end - sizeof(void *); 270 271 return 0; 272 273 err: 274 if (vma) { 275 bprm->vma = NULL; 276 kmem_cache_free(vm_area_cachep, vma); 277 } 278 279 return err; 280 } 281 282 static bool valid_arg_len(struct linux_binprm *bprm, long len) 283 { 284 return len <= MAX_ARG_STRLEN; 285 } 286 287 #else 288 289 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 290 int write) 291 { 292 struct page *page; 293 294 page = bprm->page[pos / PAGE_SIZE]; 295 if (!page && write) { 296 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 297 if (!page) 298 return NULL; 299 bprm->page[pos / PAGE_SIZE] = page; 300 } 301 302 return page; 303 } 304 305 static void put_arg_page(struct page *page) 306 { 307 } 308 309 static void free_arg_page(struct linux_binprm *bprm, int i) 310 { 311 if (bprm->page[i]) { 312 __free_page(bprm->page[i]); 313 bprm->page[i] = NULL; 314 } 315 } 316 317 static void free_arg_pages(struct linux_binprm *bprm) 318 { 319 int i; 320 321 for (i = 0; i < MAX_ARG_PAGES; i++) 322 free_arg_page(bprm, i); 323 } 324 325 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 326 struct page *page) 327 { 328 } 329 330 static int __bprm_mm_init(struct linux_binprm *bprm) 331 { 332 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 333 return 0; 334 } 335 336 static bool valid_arg_len(struct linux_binprm *bprm, long len) 337 { 338 return len <= bprm->p; 339 } 340 341 #endif /* CONFIG_MMU */ 342 343 /* 344 * Create a new mm_struct and populate it with a temporary stack 345 * vm_area_struct. We don't have enough context at this point to set the stack 346 * flags, permissions, and offset, so we use temporary values. We'll update 347 * them later in setup_arg_pages(). 348 */ 349 int bprm_mm_init(struct linux_binprm *bprm) 350 { 351 int err; 352 struct mm_struct *mm = NULL; 353 354 bprm->mm = mm = mm_alloc(); 355 err = -ENOMEM; 356 if (!mm) 357 goto err; 358 359 err = init_new_context(current, mm); 360 if (err) 361 goto err; 362 363 err = __bprm_mm_init(bprm); 364 if (err) 365 goto err; 366 367 return 0; 368 369 err: 370 if (mm) { 371 bprm->mm = NULL; 372 mmdrop(mm); 373 } 374 375 return err; 376 } 377 378 /* 379 * count() counts the number of strings in array ARGV. 380 */ 381 static int count(char __user * __user * argv, int max) 382 { 383 int i = 0; 384 385 if (argv != NULL) { 386 for (;;) { 387 char __user * p; 388 389 if (get_user(p, argv)) 390 return -EFAULT; 391 if (!p) 392 break; 393 argv++; 394 if(++i > max) 395 return -E2BIG; 396 cond_resched(); 397 } 398 } 399 return i; 400 } 401 402 /* 403 * 'copy_strings()' copies argument/environment strings from the old 404 * processes's memory to the new process's stack. The call to get_user_pages() 405 * ensures the destination page is created and not swapped out. 406 */ 407 static int copy_strings(int argc, char __user * __user * argv, 408 struct linux_binprm *bprm) 409 { 410 struct page *kmapped_page = NULL; 411 char *kaddr = NULL; 412 unsigned long kpos = 0; 413 int ret; 414 415 while (argc-- > 0) { 416 char __user *str; 417 int len; 418 unsigned long pos; 419 420 if (get_user(str, argv+argc) || 421 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 422 ret = -EFAULT; 423 goto out; 424 } 425 426 if (!valid_arg_len(bprm, len)) { 427 ret = -E2BIG; 428 goto out; 429 } 430 431 /* We're going to work our way backwords. */ 432 pos = bprm->p; 433 str += len; 434 bprm->p -= len; 435 436 while (len > 0) { 437 int offset, bytes_to_copy; 438 439 offset = pos % PAGE_SIZE; 440 if (offset == 0) 441 offset = PAGE_SIZE; 442 443 bytes_to_copy = offset; 444 if (bytes_to_copy > len) 445 bytes_to_copy = len; 446 447 offset -= bytes_to_copy; 448 pos -= bytes_to_copy; 449 str -= bytes_to_copy; 450 len -= bytes_to_copy; 451 452 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 453 struct page *page; 454 455 page = get_arg_page(bprm, pos, 1); 456 if (!page) { 457 ret = -E2BIG; 458 goto out; 459 } 460 461 if (kmapped_page) { 462 flush_kernel_dcache_page(kmapped_page); 463 kunmap(kmapped_page); 464 put_arg_page(kmapped_page); 465 } 466 kmapped_page = page; 467 kaddr = kmap(kmapped_page); 468 kpos = pos & PAGE_MASK; 469 flush_arg_page(bprm, kpos, kmapped_page); 470 } 471 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 472 ret = -EFAULT; 473 goto out; 474 } 475 } 476 } 477 ret = 0; 478 out: 479 if (kmapped_page) { 480 flush_kernel_dcache_page(kmapped_page); 481 kunmap(kmapped_page); 482 put_arg_page(kmapped_page); 483 } 484 return ret; 485 } 486 487 /* 488 * Like copy_strings, but get argv and its values from kernel memory. 489 */ 490 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 491 { 492 int r; 493 mm_segment_t oldfs = get_fs(); 494 set_fs(KERNEL_DS); 495 r = copy_strings(argc, (char __user * __user *)argv, bprm); 496 set_fs(oldfs); 497 return r; 498 } 499 EXPORT_SYMBOL(copy_strings_kernel); 500 501 #ifdef CONFIG_MMU 502 503 /* 504 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 505 * the binfmt code determines where the new stack should reside, we shift it to 506 * its final location. The process proceeds as follows: 507 * 508 * 1) Use shift to calculate the new vma endpoints. 509 * 2) Extend vma to cover both the old and new ranges. This ensures the 510 * arguments passed to subsequent functions are consistent. 511 * 3) Move vma's page tables to the new range. 512 * 4) Free up any cleared pgd range. 513 * 5) Shrink the vma to cover only the new range. 514 */ 515 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 516 { 517 struct mm_struct *mm = vma->vm_mm; 518 unsigned long old_start = vma->vm_start; 519 unsigned long old_end = vma->vm_end; 520 unsigned long length = old_end - old_start; 521 unsigned long new_start = old_start - shift; 522 unsigned long new_end = old_end - shift; 523 struct mmu_gather *tlb; 524 525 BUG_ON(new_start > new_end); 526 527 /* 528 * ensure there are no vmas between where we want to go 529 * and where we are 530 */ 531 if (vma != find_vma(mm, new_start)) 532 return -EFAULT; 533 534 /* 535 * cover the whole range: [new_start, old_end) 536 */ 537 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 538 539 /* 540 * move the page tables downwards, on failure we rely on 541 * process cleanup to remove whatever mess we made. 542 */ 543 if (length != move_page_tables(vma, old_start, 544 vma, new_start, length)) 545 return -ENOMEM; 546 547 lru_add_drain(); 548 tlb = tlb_gather_mmu(mm, 0); 549 if (new_end > old_start) { 550 /* 551 * when the old and new regions overlap clear from new_end. 552 */ 553 free_pgd_range(tlb, new_end, old_end, new_end, 554 vma->vm_next ? vma->vm_next->vm_start : 0); 555 } else { 556 /* 557 * otherwise, clean from old_start; this is done to not touch 558 * the address space in [new_end, old_start) some architectures 559 * have constraints on va-space that make this illegal (IA64) - 560 * for the others its just a little faster. 561 */ 562 free_pgd_range(tlb, old_start, old_end, new_end, 563 vma->vm_next ? vma->vm_next->vm_start : 0); 564 } 565 tlb_finish_mmu(tlb, new_end, old_end); 566 567 /* 568 * shrink the vma to just the new range. 569 */ 570 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 571 572 return 0; 573 } 574 575 #define EXTRA_STACK_VM_PAGES 20 /* random */ 576 577 /* 578 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 579 * the stack is optionally relocated, and some extra space is added. 580 */ 581 int setup_arg_pages(struct linux_binprm *bprm, 582 unsigned long stack_top, 583 int executable_stack) 584 { 585 unsigned long ret; 586 unsigned long stack_shift; 587 struct mm_struct *mm = current->mm; 588 struct vm_area_struct *vma = bprm->vma; 589 struct vm_area_struct *prev = NULL; 590 unsigned long vm_flags; 591 unsigned long stack_base; 592 593 #ifdef CONFIG_STACK_GROWSUP 594 /* Limit stack size to 1GB */ 595 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 596 if (stack_base > (1 << 30)) 597 stack_base = 1 << 30; 598 599 /* Make sure we didn't let the argument array grow too large. */ 600 if (vma->vm_end - vma->vm_start > stack_base) 601 return -ENOMEM; 602 603 stack_base = PAGE_ALIGN(stack_top - stack_base); 604 605 stack_shift = vma->vm_start - stack_base; 606 mm->arg_start = bprm->p - stack_shift; 607 bprm->p = vma->vm_end - stack_shift; 608 #else 609 stack_top = arch_align_stack(stack_top); 610 stack_top = PAGE_ALIGN(stack_top); 611 stack_shift = vma->vm_end - stack_top; 612 613 bprm->p -= stack_shift; 614 mm->arg_start = bprm->p; 615 #endif 616 617 if (bprm->loader) 618 bprm->loader -= stack_shift; 619 bprm->exec -= stack_shift; 620 621 down_write(&mm->mmap_sem); 622 vm_flags = VM_STACK_FLAGS; 623 624 /* 625 * Adjust stack execute permissions; explicitly enable for 626 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 627 * (arch default) otherwise. 628 */ 629 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 630 vm_flags |= VM_EXEC; 631 else if (executable_stack == EXSTACK_DISABLE_X) 632 vm_flags &= ~VM_EXEC; 633 vm_flags |= mm->def_flags; 634 635 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 636 vm_flags); 637 if (ret) 638 goto out_unlock; 639 BUG_ON(prev != vma); 640 641 /* Move stack pages down in memory. */ 642 if (stack_shift) { 643 ret = shift_arg_pages(vma, stack_shift); 644 if (ret) { 645 up_write(&mm->mmap_sem); 646 return ret; 647 } 648 } 649 650 #ifdef CONFIG_STACK_GROWSUP 651 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 652 #else 653 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 654 #endif 655 ret = expand_stack(vma, stack_base); 656 if (ret) 657 ret = -EFAULT; 658 659 out_unlock: 660 up_write(&mm->mmap_sem); 661 return 0; 662 } 663 EXPORT_SYMBOL(setup_arg_pages); 664 665 #endif /* CONFIG_MMU */ 666 667 struct file *open_exec(const char *name) 668 { 669 struct nameidata nd; 670 struct file *file; 671 int err; 672 673 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, 674 FMODE_READ|FMODE_EXEC); 675 if (err) 676 goto out; 677 678 err = -EACCES; 679 if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) 680 goto out_path_put; 681 682 if (nd.path.mnt->mnt_flags & MNT_NOEXEC) 683 goto out_path_put; 684 685 err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN); 686 if (err) 687 goto out_path_put; 688 689 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); 690 if (IS_ERR(file)) 691 return file; 692 693 err = deny_write_access(file); 694 if (err) { 695 fput(file); 696 goto out; 697 } 698 699 return file; 700 701 out_path_put: 702 release_open_intent(&nd); 703 path_put(&nd.path); 704 out: 705 return ERR_PTR(err); 706 } 707 EXPORT_SYMBOL(open_exec); 708 709 int kernel_read(struct file *file, unsigned long offset, 710 char *addr, unsigned long count) 711 { 712 mm_segment_t old_fs; 713 loff_t pos = offset; 714 int result; 715 716 old_fs = get_fs(); 717 set_fs(get_ds()); 718 /* The cast to a user pointer is valid due to the set_fs() */ 719 result = vfs_read(file, (void __user *)addr, count, &pos); 720 set_fs(old_fs); 721 return result; 722 } 723 724 EXPORT_SYMBOL(kernel_read); 725 726 static int exec_mmap(struct mm_struct *mm) 727 { 728 struct task_struct *tsk; 729 struct mm_struct * old_mm, *active_mm; 730 731 /* Notify parent that we're no longer interested in the old VM */ 732 tsk = current; 733 old_mm = current->mm; 734 mm_release(tsk, old_mm); 735 736 if (old_mm) { 737 /* 738 * Make sure that if there is a core dump in progress 739 * for the old mm, we get out and die instead of going 740 * through with the exec. We must hold mmap_sem around 741 * checking core_state and changing tsk->mm. 742 */ 743 down_read(&old_mm->mmap_sem); 744 if (unlikely(old_mm->core_state)) { 745 up_read(&old_mm->mmap_sem); 746 return -EINTR; 747 } 748 } 749 task_lock(tsk); 750 active_mm = tsk->active_mm; 751 tsk->mm = mm; 752 tsk->active_mm = mm; 753 activate_mm(active_mm, mm); 754 task_unlock(tsk); 755 mm_update_next_owner(old_mm); 756 arch_pick_mmap_layout(mm); 757 if (old_mm) { 758 up_read(&old_mm->mmap_sem); 759 BUG_ON(active_mm != old_mm); 760 mmput(old_mm); 761 return 0; 762 } 763 mmdrop(active_mm); 764 return 0; 765 } 766 767 /* 768 * This function makes sure the current process has its own signal table, 769 * so that flush_signal_handlers can later reset the handlers without 770 * disturbing other processes. (Other processes might share the signal 771 * table via the CLONE_SIGHAND option to clone().) 772 */ 773 static int de_thread(struct task_struct *tsk) 774 { 775 struct signal_struct *sig = tsk->signal; 776 struct sighand_struct *oldsighand = tsk->sighand; 777 spinlock_t *lock = &oldsighand->siglock; 778 struct task_struct *leader = NULL; 779 int count; 780 781 if (thread_group_empty(tsk)) 782 goto no_thread_group; 783 784 /* 785 * Kill all other threads in the thread group. 786 */ 787 spin_lock_irq(lock); 788 if (signal_group_exit(sig)) { 789 /* 790 * Another group action in progress, just 791 * return so that the signal is processed. 792 */ 793 spin_unlock_irq(lock); 794 return -EAGAIN; 795 } 796 sig->group_exit_task = tsk; 797 zap_other_threads(tsk); 798 799 /* Account for the thread group leader hanging around: */ 800 count = thread_group_leader(tsk) ? 1 : 2; 801 sig->notify_count = count; 802 while (atomic_read(&sig->count) > count) { 803 __set_current_state(TASK_UNINTERRUPTIBLE); 804 spin_unlock_irq(lock); 805 schedule(); 806 spin_lock_irq(lock); 807 } 808 spin_unlock_irq(lock); 809 810 /* 811 * At this point all other threads have exited, all we have to 812 * do is to wait for the thread group leader to become inactive, 813 * and to assume its PID: 814 */ 815 if (!thread_group_leader(tsk)) { 816 leader = tsk->group_leader; 817 818 sig->notify_count = -1; /* for exit_notify() */ 819 for (;;) { 820 write_lock_irq(&tasklist_lock); 821 if (likely(leader->exit_state)) 822 break; 823 __set_current_state(TASK_UNINTERRUPTIBLE); 824 write_unlock_irq(&tasklist_lock); 825 schedule(); 826 } 827 828 if (unlikely(task_child_reaper(tsk) == leader)) 829 task_active_pid_ns(tsk)->child_reaper = tsk; 830 /* 831 * The only record we have of the real-time age of a 832 * process, regardless of execs it's done, is start_time. 833 * All the past CPU time is accumulated in signal_struct 834 * from sister threads now dead. But in this non-leader 835 * exec, nothing survives from the original leader thread, 836 * whose birth marks the true age of this process now. 837 * When we take on its identity by switching to its PID, we 838 * also take its birthdate (always earlier than our own). 839 */ 840 tsk->start_time = leader->start_time; 841 842 BUG_ON(!same_thread_group(leader, tsk)); 843 BUG_ON(has_group_leader_pid(tsk)); 844 /* 845 * An exec() starts a new thread group with the 846 * TGID of the previous thread group. Rehash the 847 * two threads with a switched PID, and release 848 * the former thread group leader: 849 */ 850 851 /* Become a process group leader with the old leader's pid. 852 * The old leader becomes a thread of the this thread group. 853 * Note: The old leader also uses this pid until release_task 854 * is called. Odd but simple and correct. 855 */ 856 detach_pid(tsk, PIDTYPE_PID); 857 tsk->pid = leader->pid; 858 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 859 transfer_pid(leader, tsk, PIDTYPE_PGID); 860 transfer_pid(leader, tsk, PIDTYPE_SID); 861 list_replace_rcu(&leader->tasks, &tsk->tasks); 862 863 tsk->group_leader = tsk; 864 leader->group_leader = tsk; 865 866 tsk->exit_signal = SIGCHLD; 867 868 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 869 leader->exit_state = EXIT_DEAD; 870 871 write_unlock_irq(&tasklist_lock); 872 } 873 874 sig->group_exit_task = NULL; 875 sig->notify_count = 0; 876 877 no_thread_group: 878 exit_itimers(sig); 879 flush_itimer_signals(); 880 if (leader) 881 release_task(leader); 882 883 if (atomic_read(&oldsighand->count) != 1) { 884 struct sighand_struct *newsighand; 885 /* 886 * This ->sighand is shared with the CLONE_SIGHAND 887 * but not CLONE_THREAD task, switch to the new one. 888 */ 889 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 890 if (!newsighand) 891 return -ENOMEM; 892 893 atomic_set(&newsighand->count, 1); 894 memcpy(newsighand->action, oldsighand->action, 895 sizeof(newsighand->action)); 896 897 write_lock_irq(&tasklist_lock); 898 spin_lock(&oldsighand->siglock); 899 rcu_assign_pointer(tsk->sighand, newsighand); 900 spin_unlock(&oldsighand->siglock); 901 write_unlock_irq(&tasklist_lock); 902 903 __cleanup_sighand(oldsighand); 904 } 905 906 BUG_ON(!thread_group_leader(tsk)); 907 return 0; 908 } 909 910 /* 911 * These functions flushes out all traces of the currently running executable 912 * so that a new one can be started 913 */ 914 static void flush_old_files(struct files_struct * files) 915 { 916 long j = -1; 917 struct fdtable *fdt; 918 919 spin_lock(&files->file_lock); 920 for (;;) { 921 unsigned long set, i; 922 923 j++; 924 i = j * __NFDBITS; 925 fdt = files_fdtable(files); 926 if (i >= fdt->max_fds) 927 break; 928 set = fdt->close_on_exec->fds_bits[j]; 929 if (!set) 930 continue; 931 fdt->close_on_exec->fds_bits[j] = 0; 932 spin_unlock(&files->file_lock); 933 for ( ; set ; i++,set >>= 1) { 934 if (set & 1) { 935 sys_close(i); 936 } 937 } 938 spin_lock(&files->file_lock); 939 940 } 941 spin_unlock(&files->file_lock); 942 } 943 944 char *get_task_comm(char *buf, struct task_struct *tsk) 945 { 946 /* buf must be at least sizeof(tsk->comm) in size */ 947 task_lock(tsk); 948 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 949 task_unlock(tsk); 950 return buf; 951 } 952 953 void set_task_comm(struct task_struct *tsk, char *buf) 954 { 955 task_lock(tsk); 956 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 957 task_unlock(tsk); 958 } 959 960 int flush_old_exec(struct linux_binprm * bprm) 961 { 962 char * name; 963 int i, ch, retval; 964 char tcomm[sizeof(current->comm)]; 965 966 /* 967 * Make sure we have a private signal table and that 968 * we are unassociated from the previous thread group. 969 */ 970 retval = de_thread(current); 971 if (retval) 972 goto out; 973 974 set_mm_exe_file(bprm->mm, bprm->file); 975 976 /* 977 * Release all of the old mmap stuff 978 */ 979 retval = exec_mmap(bprm->mm); 980 if (retval) 981 goto out; 982 983 bprm->mm = NULL; /* We're using it now */ 984 985 /* This is the point of no return */ 986 current->sas_ss_sp = current->sas_ss_size = 0; 987 988 if (current->euid == current->uid && current->egid == current->gid) 989 set_dumpable(current->mm, 1); 990 else 991 set_dumpable(current->mm, suid_dumpable); 992 993 name = bprm->filename; 994 995 /* Copies the binary name from after last slash */ 996 for (i=0; (ch = *(name++)) != '\0';) { 997 if (ch == '/') 998 i = 0; /* overwrite what we wrote */ 999 else 1000 if (i < (sizeof(tcomm) - 1)) 1001 tcomm[i++] = ch; 1002 } 1003 tcomm[i] = '\0'; 1004 set_task_comm(current, tcomm); 1005 1006 current->flags &= ~PF_RANDOMIZE; 1007 flush_thread(); 1008 1009 /* Set the new mm task size. We have to do that late because it may 1010 * depend on TIF_32BIT which is only updated in flush_thread() on 1011 * some architectures like powerpc 1012 */ 1013 current->mm->task_size = TASK_SIZE; 1014 1015 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { 1016 suid_keys(current); 1017 set_dumpable(current->mm, suid_dumpable); 1018 current->pdeath_signal = 0; 1019 } else if (file_permission(bprm->file, MAY_READ) || 1020 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1021 suid_keys(current); 1022 set_dumpable(current->mm, suid_dumpable); 1023 } 1024 1025 /* An exec changes our domain. We are no longer part of the thread 1026 group */ 1027 1028 current->self_exec_id++; 1029 1030 flush_signal_handlers(current, 0); 1031 flush_old_files(current->files); 1032 1033 return 0; 1034 1035 out: 1036 return retval; 1037 } 1038 1039 EXPORT_SYMBOL(flush_old_exec); 1040 1041 /* 1042 * Fill the binprm structure from the inode. 1043 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1044 */ 1045 int prepare_binprm(struct linux_binprm *bprm) 1046 { 1047 int mode; 1048 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1049 int retval; 1050 1051 mode = inode->i_mode; 1052 if (bprm->file->f_op == NULL) 1053 return -EACCES; 1054 1055 bprm->e_uid = current->euid; 1056 bprm->e_gid = current->egid; 1057 1058 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1059 /* Set-uid? */ 1060 if (mode & S_ISUID) { 1061 current->personality &= ~PER_CLEAR_ON_SETID; 1062 bprm->e_uid = inode->i_uid; 1063 } 1064 1065 /* Set-gid? */ 1066 /* 1067 * If setgid is set but no group execute bit then this 1068 * is a candidate for mandatory locking, not a setgid 1069 * executable. 1070 */ 1071 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1072 current->personality &= ~PER_CLEAR_ON_SETID; 1073 bprm->e_gid = inode->i_gid; 1074 } 1075 } 1076 1077 /* fill in binprm security blob */ 1078 retval = security_bprm_set(bprm); 1079 if (retval) 1080 return retval; 1081 1082 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1083 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1084 } 1085 1086 EXPORT_SYMBOL(prepare_binprm); 1087 1088 static int unsafe_exec(struct task_struct *p) 1089 { 1090 int unsafe = tracehook_unsafe_exec(p); 1091 1092 if (atomic_read(&p->fs->count) > 1 || 1093 atomic_read(&p->files->count) > 1 || 1094 atomic_read(&p->sighand->count) > 1) 1095 unsafe |= LSM_UNSAFE_SHARE; 1096 1097 return unsafe; 1098 } 1099 1100 void compute_creds(struct linux_binprm *bprm) 1101 { 1102 int unsafe; 1103 1104 if (bprm->e_uid != current->uid) { 1105 suid_keys(current); 1106 current->pdeath_signal = 0; 1107 } 1108 exec_keys(current); 1109 1110 task_lock(current); 1111 unsafe = unsafe_exec(current); 1112 security_bprm_apply_creds(bprm, unsafe); 1113 task_unlock(current); 1114 security_bprm_post_apply_creds(bprm); 1115 } 1116 EXPORT_SYMBOL(compute_creds); 1117 1118 /* 1119 * Arguments are '\0' separated strings found at the location bprm->p 1120 * points to; chop off the first by relocating brpm->p to right after 1121 * the first '\0' encountered. 1122 */ 1123 int remove_arg_zero(struct linux_binprm *bprm) 1124 { 1125 int ret = 0; 1126 unsigned long offset; 1127 char *kaddr; 1128 struct page *page; 1129 1130 if (!bprm->argc) 1131 return 0; 1132 1133 do { 1134 offset = bprm->p & ~PAGE_MASK; 1135 page = get_arg_page(bprm, bprm->p, 0); 1136 if (!page) { 1137 ret = -EFAULT; 1138 goto out; 1139 } 1140 kaddr = kmap_atomic(page, KM_USER0); 1141 1142 for (; offset < PAGE_SIZE && kaddr[offset]; 1143 offset++, bprm->p++) 1144 ; 1145 1146 kunmap_atomic(kaddr, KM_USER0); 1147 put_arg_page(page); 1148 1149 if (offset == PAGE_SIZE) 1150 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1151 } while (offset == PAGE_SIZE); 1152 1153 bprm->p++; 1154 bprm->argc--; 1155 ret = 0; 1156 1157 out: 1158 return ret; 1159 } 1160 EXPORT_SYMBOL(remove_arg_zero); 1161 1162 /* 1163 * cycle the list of binary formats handler, until one recognizes the image 1164 */ 1165 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1166 { 1167 int try,retval; 1168 struct linux_binfmt *fmt; 1169 #ifdef __alpha__ 1170 /* handle /sbin/loader.. */ 1171 { 1172 struct exec * eh = (struct exec *) bprm->buf; 1173 1174 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1175 (eh->fh.f_flags & 0x3000) == 0x3000) 1176 { 1177 struct file * file; 1178 unsigned long loader; 1179 1180 allow_write_access(bprm->file); 1181 fput(bprm->file); 1182 bprm->file = NULL; 1183 1184 loader = bprm->vma->vm_end - sizeof(void *); 1185 1186 file = open_exec("/sbin/loader"); 1187 retval = PTR_ERR(file); 1188 if (IS_ERR(file)) 1189 return retval; 1190 1191 /* Remember if the application is TASO. */ 1192 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1193 1194 bprm->file = file; 1195 bprm->loader = loader; 1196 retval = prepare_binprm(bprm); 1197 if (retval<0) 1198 return retval; 1199 /* should call search_binary_handler recursively here, 1200 but it does not matter */ 1201 } 1202 } 1203 #endif 1204 retval = security_bprm_check(bprm); 1205 if (retval) 1206 return retval; 1207 1208 /* kernel module loader fixup */ 1209 /* so we don't try to load run modprobe in kernel space. */ 1210 set_fs(USER_DS); 1211 1212 retval = audit_bprm(bprm); 1213 if (retval) 1214 return retval; 1215 1216 retval = -ENOENT; 1217 for (try=0; try<2; try++) { 1218 read_lock(&binfmt_lock); 1219 list_for_each_entry(fmt, &formats, lh) { 1220 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1221 if (!fn) 1222 continue; 1223 if (!try_module_get(fmt->module)) 1224 continue; 1225 read_unlock(&binfmt_lock); 1226 retval = fn(bprm, regs); 1227 if (retval >= 0) { 1228 tracehook_report_exec(fmt, bprm, regs); 1229 put_binfmt(fmt); 1230 allow_write_access(bprm->file); 1231 if (bprm->file) 1232 fput(bprm->file); 1233 bprm->file = NULL; 1234 current->did_exec = 1; 1235 proc_exec_connector(current); 1236 return retval; 1237 } 1238 read_lock(&binfmt_lock); 1239 put_binfmt(fmt); 1240 if (retval != -ENOEXEC || bprm->mm == NULL) 1241 break; 1242 if (!bprm->file) { 1243 read_unlock(&binfmt_lock); 1244 return retval; 1245 } 1246 } 1247 read_unlock(&binfmt_lock); 1248 if (retval != -ENOEXEC || bprm->mm == NULL) { 1249 break; 1250 #ifdef CONFIG_KMOD 1251 }else{ 1252 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1253 if (printable(bprm->buf[0]) && 1254 printable(bprm->buf[1]) && 1255 printable(bprm->buf[2]) && 1256 printable(bprm->buf[3])) 1257 break; /* -ENOEXEC */ 1258 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1259 #endif 1260 } 1261 } 1262 return retval; 1263 } 1264 1265 EXPORT_SYMBOL(search_binary_handler); 1266 1267 void free_bprm(struct linux_binprm *bprm) 1268 { 1269 free_arg_pages(bprm); 1270 kfree(bprm); 1271 } 1272 1273 /* 1274 * sys_execve() executes a new program. 1275 */ 1276 int do_execve(char * filename, 1277 char __user *__user *argv, 1278 char __user *__user *envp, 1279 struct pt_regs * regs) 1280 { 1281 struct linux_binprm *bprm; 1282 struct file *file; 1283 struct files_struct *displaced; 1284 int retval; 1285 1286 retval = unshare_files(&displaced); 1287 if (retval) 1288 goto out_ret; 1289 1290 retval = -ENOMEM; 1291 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1292 if (!bprm) 1293 goto out_files; 1294 1295 file = open_exec(filename); 1296 retval = PTR_ERR(file); 1297 if (IS_ERR(file)) 1298 goto out_kfree; 1299 1300 sched_exec(); 1301 1302 bprm->file = file; 1303 bprm->filename = filename; 1304 bprm->interp = filename; 1305 1306 retval = bprm_mm_init(bprm); 1307 if (retval) 1308 goto out_file; 1309 1310 bprm->argc = count(argv, MAX_ARG_STRINGS); 1311 if ((retval = bprm->argc) < 0) 1312 goto out_mm; 1313 1314 bprm->envc = count(envp, MAX_ARG_STRINGS); 1315 if ((retval = bprm->envc) < 0) 1316 goto out_mm; 1317 1318 retval = security_bprm_alloc(bprm); 1319 if (retval) 1320 goto out; 1321 1322 retval = prepare_binprm(bprm); 1323 if (retval < 0) 1324 goto out; 1325 1326 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1327 if (retval < 0) 1328 goto out; 1329 1330 bprm->exec = bprm->p; 1331 retval = copy_strings(bprm->envc, envp, bprm); 1332 if (retval < 0) 1333 goto out; 1334 1335 retval = copy_strings(bprm->argc, argv, bprm); 1336 if (retval < 0) 1337 goto out; 1338 1339 current->flags &= ~PF_KTHREAD; 1340 retval = search_binary_handler(bprm,regs); 1341 if (retval >= 0) { 1342 /* execve success */ 1343 security_bprm_free(bprm); 1344 acct_update_integrals(current); 1345 free_bprm(bprm); 1346 if (displaced) 1347 put_files_struct(displaced); 1348 return retval; 1349 } 1350 1351 out: 1352 if (bprm->security) 1353 security_bprm_free(bprm); 1354 1355 out_mm: 1356 if (bprm->mm) 1357 mmput (bprm->mm); 1358 1359 out_file: 1360 if (bprm->file) { 1361 allow_write_access(bprm->file); 1362 fput(bprm->file); 1363 } 1364 out_kfree: 1365 free_bprm(bprm); 1366 1367 out_files: 1368 if (displaced) 1369 reset_files_struct(displaced); 1370 out_ret: 1371 return retval; 1372 } 1373 1374 int set_binfmt(struct linux_binfmt *new) 1375 { 1376 struct linux_binfmt *old = current->binfmt; 1377 1378 if (new) { 1379 if (!try_module_get(new->module)) 1380 return -1; 1381 } 1382 current->binfmt = new; 1383 if (old) 1384 module_put(old->module); 1385 return 0; 1386 } 1387 1388 EXPORT_SYMBOL(set_binfmt); 1389 1390 /* format_corename will inspect the pattern parameter, and output a 1391 * name into corename, which must have space for at least 1392 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1393 */ 1394 static int format_corename(char *corename, int nr_threads, long signr) 1395 { 1396 const char *pat_ptr = core_pattern; 1397 int ispipe = (*pat_ptr == '|'); 1398 char *out_ptr = corename; 1399 char *const out_end = corename + CORENAME_MAX_SIZE; 1400 int rc; 1401 int pid_in_pattern = 0; 1402 1403 /* Repeat as long as we have more pattern to process and more output 1404 space */ 1405 while (*pat_ptr) { 1406 if (*pat_ptr != '%') { 1407 if (out_ptr == out_end) 1408 goto out; 1409 *out_ptr++ = *pat_ptr++; 1410 } else { 1411 switch (*++pat_ptr) { 1412 case 0: 1413 goto out; 1414 /* Double percent, output one percent */ 1415 case '%': 1416 if (out_ptr == out_end) 1417 goto out; 1418 *out_ptr++ = '%'; 1419 break; 1420 /* pid */ 1421 case 'p': 1422 pid_in_pattern = 1; 1423 rc = snprintf(out_ptr, out_end - out_ptr, 1424 "%d", task_tgid_vnr(current)); 1425 if (rc > out_end - out_ptr) 1426 goto out; 1427 out_ptr += rc; 1428 break; 1429 /* uid */ 1430 case 'u': 1431 rc = snprintf(out_ptr, out_end - out_ptr, 1432 "%d", current->uid); 1433 if (rc > out_end - out_ptr) 1434 goto out; 1435 out_ptr += rc; 1436 break; 1437 /* gid */ 1438 case 'g': 1439 rc = snprintf(out_ptr, out_end - out_ptr, 1440 "%d", current->gid); 1441 if (rc > out_end - out_ptr) 1442 goto out; 1443 out_ptr += rc; 1444 break; 1445 /* signal that caused the coredump */ 1446 case 's': 1447 rc = snprintf(out_ptr, out_end - out_ptr, 1448 "%ld", signr); 1449 if (rc > out_end - out_ptr) 1450 goto out; 1451 out_ptr += rc; 1452 break; 1453 /* UNIX time of coredump */ 1454 case 't': { 1455 struct timeval tv; 1456 do_gettimeofday(&tv); 1457 rc = snprintf(out_ptr, out_end - out_ptr, 1458 "%lu", tv.tv_sec); 1459 if (rc > out_end - out_ptr) 1460 goto out; 1461 out_ptr += rc; 1462 break; 1463 } 1464 /* hostname */ 1465 case 'h': 1466 down_read(&uts_sem); 1467 rc = snprintf(out_ptr, out_end - out_ptr, 1468 "%s", utsname()->nodename); 1469 up_read(&uts_sem); 1470 if (rc > out_end - out_ptr) 1471 goto out; 1472 out_ptr += rc; 1473 break; 1474 /* executable */ 1475 case 'e': 1476 rc = snprintf(out_ptr, out_end - out_ptr, 1477 "%s", current->comm); 1478 if (rc > out_end - out_ptr) 1479 goto out; 1480 out_ptr += rc; 1481 break; 1482 /* core limit size */ 1483 case 'c': 1484 rc = snprintf(out_ptr, out_end - out_ptr, 1485 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1486 if (rc > out_end - out_ptr) 1487 goto out; 1488 out_ptr += rc; 1489 break; 1490 default: 1491 break; 1492 } 1493 ++pat_ptr; 1494 } 1495 } 1496 /* Backward compatibility with core_uses_pid: 1497 * 1498 * If core_pattern does not include a %p (as is the default) 1499 * and core_uses_pid is set, then .%pid will be appended to 1500 * the filename. Do not do this for piped commands. */ 1501 if (!ispipe && !pid_in_pattern 1502 && (core_uses_pid || nr_threads)) { 1503 rc = snprintf(out_ptr, out_end - out_ptr, 1504 ".%d", task_tgid_vnr(current)); 1505 if (rc > out_end - out_ptr) 1506 goto out; 1507 out_ptr += rc; 1508 } 1509 out: 1510 *out_ptr = 0; 1511 return ispipe; 1512 } 1513 1514 static int zap_process(struct task_struct *start) 1515 { 1516 struct task_struct *t; 1517 int nr = 0; 1518 1519 start->signal->flags = SIGNAL_GROUP_EXIT; 1520 start->signal->group_stop_count = 0; 1521 1522 t = start; 1523 do { 1524 if (t != current && t->mm) { 1525 sigaddset(&t->pending.signal, SIGKILL); 1526 signal_wake_up(t, 1); 1527 nr++; 1528 } 1529 } while_each_thread(start, t); 1530 1531 return nr; 1532 } 1533 1534 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1535 struct core_state *core_state, int exit_code) 1536 { 1537 struct task_struct *g, *p; 1538 unsigned long flags; 1539 int nr = -EAGAIN; 1540 1541 spin_lock_irq(&tsk->sighand->siglock); 1542 if (!signal_group_exit(tsk->signal)) { 1543 mm->core_state = core_state; 1544 tsk->signal->group_exit_code = exit_code; 1545 nr = zap_process(tsk); 1546 } 1547 spin_unlock_irq(&tsk->sighand->siglock); 1548 if (unlikely(nr < 0)) 1549 return nr; 1550 1551 if (atomic_read(&mm->mm_users) == nr + 1) 1552 goto done; 1553 /* 1554 * We should find and kill all tasks which use this mm, and we should 1555 * count them correctly into ->nr_threads. We don't take tasklist 1556 * lock, but this is safe wrt: 1557 * 1558 * fork: 1559 * None of sub-threads can fork after zap_process(leader). All 1560 * processes which were created before this point should be 1561 * visible to zap_threads() because copy_process() adds the new 1562 * process to the tail of init_task.tasks list, and lock/unlock 1563 * of ->siglock provides a memory barrier. 1564 * 1565 * do_exit: 1566 * The caller holds mm->mmap_sem. This means that the task which 1567 * uses this mm can't pass exit_mm(), so it can't exit or clear 1568 * its ->mm. 1569 * 1570 * de_thread: 1571 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1572 * we must see either old or new leader, this does not matter. 1573 * However, it can change p->sighand, so lock_task_sighand(p) 1574 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1575 * it can't fail. 1576 * 1577 * Note also that "g" can be the old leader with ->mm == NULL 1578 * and already unhashed and thus removed from ->thread_group. 1579 * This is OK, __unhash_process()->list_del_rcu() does not 1580 * clear the ->next pointer, we will find the new leader via 1581 * next_thread(). 1582 */ 1583 rcu_read_lock(); 1584 for_each_process(g) { 1585 if (g == tsk->group_leader) 1586 continue; 1587 if (g->flags & PF_KTHREAD) 1588 continue; 1589 p = g; 1590 do { 1591 if (p->mm) { 1592 if (unlikely(p->mm == mm)) { 1593 lock_task_sighand(p, &flags); 1594 nr += zap_process(p); 1595 unlock_task_sighand(p, &flags); 1596 } 1597 break; 1598 } 1599 } while_each_thread(g, p); 1600 } 1601 rcu_read_unlock(); 1602 done: 1603 atomic_set(&core_state->nr_threads, nr); 1604 return nr; 1605 } 1606 1607 static int coredump_wait(int exit_code, struct core_state *core_state) 1608 { 1609 struct task_struct *tsk = current; 1610 struct mm_struct *mm = tsk->mm; 1611 struct completion *vfork_done; 1612 int core_waiters; 1613 1614 init_completion(&core_state->startup); 1615 core_state->dumper.task = tsk; 1616 core_state->dumper.next = NULL; 1617 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1618 up_write(&mm->mmap_sem); 1619 1620 if (unlikely(core_waiters < 0)) 1621 goto fail; 1622 1623 /* 1624 * Make sure nobody is waiting for us to release the VM, 1625 * otherwise we can deadlock when we wait on each other 1626 */ 1627 vfork_done = tsk->vfork_done; 1628 if (vfork_done) { 1629 tsk->vfork_done = NULL; 1630 complete(vfork_done); 1631 } 1632 1633 if (core_waiters) 1634 wait_for_completion(&core_state->startup); 1635 fail: 1636 return core_waiters; 1637 } 1638 1639 static void coredump_finish(struct mm_struct *mm) 1640 { 1641 struct core_thread *curr, *next; 1642 struct task_struct *task; 1643 1644 next = mm->core_state->dumper.next; 1645 while ((curr = next) != NULL) { 1646 next = curr->next; 1647 task = curr->task; 1648 /* 1649 * see exit_mm(), curr->task must not see 1650 * ->task == NULL before we read ->next. 1651 */ 1652 smp_mb(); 1653 curr->task = NULL; 1654 wake_up_process(task); 1655 } 1656 1657 mm->core_state = NULL; 1658 } 1659 1660 /* 1661 * set_dumpable converts traditional three-value dumpable to two flags and 1662 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1663 * these bits are not changed atomically. So get_dumpable can observe the 1664 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1665 * return either old dumpable or new one by paying attention to the order of 1666 * modifying the bits. 1667 * 1668 * dumpable | mm->flags (binary) 1669 * old new | initial interim final 1670 * ---------+----------------------- 1671 * 0 1 | 00 01 01 1672 * 0 2 | 00 10(*) 11 1673 * 1 0 | 01 00 00 1674 * 1 2 | 01 11 11 1675 * 2 0 | 11 10(*) 00 1676 * 2 1 | 11 11 01 1677 * 1678 * (*) get_dumpable regards interim value of 10 as 11. 1679 */ 1680 void set_dumpable(struct mm_struct *mm, int value) 1681 { 1682 switch (value) { 1683 case 0: 1684 clear_bit(MMF_DUMPABLE, &mm->flags); 1685 smp_wmb(); 1686 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1687 break; 1688 case 1: 1689 set_bit(MMF_DUMPABLE, &mm->flags); 1690 smp_wmb(); 1691 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1692 break; 1693 case 2: 1694 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1695 smp_wmb(); 1696 set_bit(MMF_DUMPABLE, &mm->flags); 1697 break; 1698 } 1699 } 1700 1701 int get_dumpable(struct mm_struct *mm) 1702 { 1703 int ret; 1704 1705 ret = mm->flags & 0x3; 1706 return (ret >= 2) ? 2 : ret; 1707 } 1708 1709 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1710 { 1711 struct core_state core_state; 1712 char corename[CORENAME_MAX_SIZE + 1]; 1713 struct mm_struct *mm = current->mm; 1714 struct linux_binfmt * binfmt; 1715 struct inode * inode; 1716 struct file * file; 1717 int retval = 0; 1718 int fsuid = current->fsuid; 1719 int flag = 0; 1720 int ispipe = 0; 1721 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; 1722 char **helper_argv = NULL; 1723 int helper_argc = 0; 1724 char *delimit; 1725 1726 audit_core_dumps(signr); 1727 1728 binfmt = current->binfmt; 1729 if (!binfmt || !binfmt->core_dump) 1730 goto fail; 1731 down_write(&mm->mmap_sem); 1732 /* 1733 * If another thread got here first, or we are not dumpable, bail out. 1734 */ 1735 if (mm->core_state || !get_dumpable(mm)) { 1736 up_write(&mm->mmap_sem); 1737 goto fail; 1738 } 1739 1740 /* 1741 * We cannot trust fsuid as being the "true" uid of the 1742 * process nor do we know its entire history. We only know it 1743 * was tainted so we dump it as root in mode 2. 1744 */ 1745 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1746 flag = O_EXCL; /* Stop rewrite attacks */ 1747 current->fsuid = 0; /* Dump root private */ 1748 } 1749 1750 retval = coredump_wait(exit_code, &core_state); 1751 if (retval < 0) 1752 goto fail; 1753 1754 /* 1755 * Clear any false indication of pending signals that might 1756 * be seen by the filesystem code called to write the core file. 1757 */ 1758 clear_thread_flag(TIF_SIGPENDING); 1759 1760 /* 1761 * lock_kernel() because format_corename() is controlled by sysctl, which 1762 * uses lock_kernel() 1763 */ 1764 lock_kernel(); 1765 ispipe = format_corename(corename, retval, signr); 1766 unlock_kernel(); 1767 /* 1768 * Don't bother to check the RLIMIT_CORE value if core_pattern points 1769 * to a pipe. Since we're not writing directly to the filesystem 1770 * RLIMIT_CORE doesn't really apply, as no actual core file will be 1771 * created unless the pipe reader choses to write out the core file 1772 * at which point file size limits and permissions will be imposed 1773 * as it does with any other process 1774 */ 1775 if ((!ispipe) && (core_limit < binfmt->min_coredump)) 1776 goto fail_unlock; 1777 1778 if (ispipe) { 1779 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1780 /* Terminate the string before the first option */ 1781 delimit = strchr(corename, ' '); 1782 if (delimit) 1783 *delimit = '\0'; 1784 delimit = strrchr(helper_argv[0], '/'); 1785 if (delimit) 1786 delimit++; 1787 else 1788 delimit = helper_argv[0]; 1789 if (!strcmp(delimit, current->comm)) { 1790 printk(KERN_NOTICE "Recursive core dump detected, " 1791 "aborting\n"); 1792 goto fail_unlock; 1793 } 1794 1795 core_limit = RLIM_INFINITY; 1796 1797 /* SIGPIPE can happen, but it's just never processed */ 1798 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, 1799 &file)) { 1800 printk(KERN_INFO "Core dump to %s pipe failed\n", 1801 corename); 1802 goto fail_unlock; 1803 } 1804 } else 1805 file = filp_open(corename, 1806 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1807 0600); 1808 if (IS_ERR(file)) 1809 goto fail_unlock; 1810 inode = file->f_path.dentry->d_inode; 1811 if (inode->i_nlink > 1) 1812 goto close_fail; /* multiple links - don't dump */ 1813 if (!ispipe && d_unhashed(file->f_path.dentry)) 1814 goto close_fail; 1815 1816 /* AK: actually i see no reason to not allow this for named pipes etc., 1817 but keep the previous behaviour for now. */ 1818 if (!ispipe && !S_ISREG(inode->i_mode)) 1819 goto close_fail; 1820 /* 1821 * Dont allow local users get cute and trick others to coredump 1822 * into their pre-created files: 1823 */ 1824 if (inode->i_uid != current->fsuid) 1825 goto close_fail; 1826 if (!file->f_op) 1827 goto close_fail; 1828 if (!file->f_op->write) 1829 goto close_fail; 1830 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1831 goto close_fail; 1832 1833 retval = binfmt->core_dump(signr, regs, file, core_limit); 1834 1835 if (retval) 1836 current->signal->group_exit_code |= 0x80; 1837 close_fail: 1838 filp_close(file, NULL); 1839 fail_unlock: 1840 if (helper_argv) 1841 argv_free(helper_argv); 1842 1843 current->fsuid = fsuid; 1844 coredump_finish(mm); 1845 fail: 1846 return retval; 1847 } 1848