1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 #include <linux/user_events.h> 69 #include <linux/rseq.h> 70 #include <linux/ksm.h> 71 72 #include <linux/uaccess.h> 73 #include <asm/mmu_context.h> 74 #include <asm/tlb.h> 75 76 #include <trace/events/task.h> 77 #include "internal.h" 78 79 #include <trace/events/sched.h> 80 81 static int bprm_creds_from_file(struct linux_binprm *bprm); 82 83 int suid_dumpable = 0; 84 85 static LIST_HEAD(formats); 86 static DEFINE_RWLOCK(binfmt_lock); 87 88 void __register_binfmt(struct linux_binfmt * fmt, int insert) 89 { 90 write_lock(&binfmt_lock); 91 insert ? list_add(&fmt->lh, &formats) : 92 list_add_tail(&fmt->lh, &formats); 93 write_unlock(&binfmt_lock); 94 } 95 96 EXPORT_SYMBOL(__register_binfmt); 97 98 void unregister_binfmt(struct linux_binfmt * fmt) 99 { 100 write_lock(&binfmt_lock); 101 list_del(&fmt->lh); 102 write_unlock(&binfmt_lock); 103 } 104 105 EXPORT_SYMBOL(unregister_binfmt); 106 107 static inline void put_binfmt(struct linux_binfmt * fmt) 108 { 109 module_put(fmt->module); 110 } 111 112 bool path_noexec(const struct path *path) 113 { 114 return (path->mnt->mnt_flags & MNT_NOEXEC) || 115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 116 } 117 118 #ifdef CONFIG_USELIB 119 /* 120 * Note that a shared library must be both readable and executable due to 121 * security reasons. 122 * 123 * Also note that we take the address to load from the file itself. 124 */ 125 SYSCALL_DEFINE1(uselib, const char __user *, library) 126 { 127 struct linux_binfmt *fmt; 128 struct file *file; 129 struct filename *tmp = getname(library); 130 int error = PTR_ERR(tmp); 131 static const struct open_flags uselib_flags = { 132 .open_flag = O_LARGEFILE | O_RDONLY, 133 .acc_mode = MAY_READ | MAY_EXEC, 134 .intent = LOOKUP_OPEN, 135 .lookup_flags = LOOKUP_FOLLOW, 136 }; 137 138 if (IS_ERR(tmp)) 139 goto out; 140 141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 142 putname(tmp); 143 error = PTR_ERR(file); 144 if (IS_ERR(file)) 145 goto out; 146 147 /* 148 * Check do_open_execat() for an explanation. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 152 path_noexec(&file->f_path)) 153 goto exit; 154 155 error = -ENOEXEC; 156 157 read_lock(&binfmt_lock); 158 list_for_each_entry(fmt, &formats, lh) { 159 if (!fmt->load_shlib) 160 continue; 161 if (!try_module_get(fmt->module)) 162 continue; 163 read_unlock(&binfmt_lock); 164 error = fmt->load_shlib(file); 165 read_lock(&binfmt_lock); 166 put_binfmt(fmt); 167 if (error != -ENOEXEC) 168 break; 169 } 170 read_unlock(&binfmt_lock); 171 exit: 172 fput(file); 173 out: 174 return error; 175 } 176 #endif /* #ifdef CONFIG_USELIB */ 177 178 #ifdef CONFIG_MMU 179 /* 180 * The nascent bprm->mm is not visible until exec_mmap() but it can 181 * use a lot of memory, account these pages in current->mm temporary 182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 183 * change the counter back via acct_arg_size(0). 184 */ 185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 186 { 187 struct mm_struct *mm = current->mm; 188 long diff = (long)(pages - bprm->vma_pages); 189 190 if (!mm || !diff) 191 return; 192 193 bprm->vma_pages = pages; 194 add_mm_counter(mm, MM_ANONPAGES, diff); 195 } 196 197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 198 int write) 199 { 200 struct page *page; 201 struct vm_area_struct *vma = bprm->vma; 202 struct mm_struct *mm = bprm->mm; 203 int ret; 204 205 /* 206 * Avoid relying on expanding the stack down in GUP (which 207 * does not work for STACK_GROWSUP anyway), and just do it 208 * by hand ahead of time. 209 */ 210 if (write && pos < vma->vm_start) { 211 mmap_write_lock(mm); 212 ret = expand_downwards(vma, pos); 213 if (unlikely(ret < 0)) { 214 mmap_write_unlock(mm); 215 return NULL; 216 } 217 mmap_write_downgrade(mm); 218 } else 219 mmap_read_lock(mm); 220 221 /* 222 * We are doing an exec(). 'current' is the process 223 * doing the exec and 'mm' is the new process's mm. 224 */ 225 ret = get_user_pages_remote(mm, pos, 1, 226 write ? FOLL_WRITE : 0, 227 &page, NULL); 228 mmap_read_unlock(mm); 229 if (ret <= 0) 230 return NULL; 231 232 if (write) 233 acct_arg_size(bprm, vma_pages(vma)); 234 235 return page; 236 } 237 238 static void put_arg_page(struct page *page) 239 { 240 put_page(page); 241 } 242 243 static void free_arg_pages(struct linux_binprm *bprm) 244 { 245 } 246 247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 248 struct page *page) 249 { 250 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 251 } 252 253 static int __bprm_mm_init(struct linux_binprm *bprm) 254 { 255 int err; 256 struct vm_area_struct *vma = NULL; 257 struct mm_struct *mm = bprm->mm; 258 259 bprm->vma = vma = vm_area_alloc(mm); 260 if (!vma) 261 return -ENOMEM; 262 vma_set_anonymous(vma); 263 264 if (mmap_write_lock_killable(mm)) { 265 err = -EINTR; 266 goto err_free; 267 } 268 269 /* 270 * Need to be called with mmap write lock 271 * held, to avoid race with ksmd. 272 */ 273 err = ksm_execve(mm); 274 if (err) 275 goto err_ksm; 276 277 /* 278 * Place the stack at the largest stack address the architecture 279 * supports. Later, we'll move this to an appropriate place. We don't 280 * use STACK_TOP because that can depend on attributes which aren't 281 * configured yet. 282 */ 283 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 284 vma->vm_end = STACK_TOP_MAX; 285 vma->vm_start = vma->vm_end - PAGE_SIZE; 286 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP); 287 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 288 289 err = insert_vm_struct(mm, vma); 290 if (err) 291 goto err; 292 293 mm->stack_vm = mm->total_vm = 1; 294 mmap_write_unlock(mm); 295 bprm->p = vma->vm_end - sizeof(void *); 296 return 0; 297 err: 298 ksm_exit(mm); 299 err_ksm: 300 mmap_write_unlock(mm); 301 err_free: 302 bprm->vma = NULL; 303 vm_area_free(vma); 304 return err; 305 } 306 307 static bool valid_arg_len(struct linux_binprm *bprm, long len) 308 { 309 return len <= MAX_ARG_STRLEN; 310 } 311 312 #else 313 314 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 315 { 316 } 317 318 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 319 int write) 320 { 321 struct page *page; 322 323 page = bprm->page[pos / PAGE_SIZE]; 324 if (!page && write) { 325 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 326 if (!page) 327 return NULL; 328 bprm->page[pos / PAGE_SIZE] = page; 329 } 330 331 return page; 332 } 333 334 static void put_arg_page(struct page *page) 335 { 336 } 337 338 static void free_arg_page(struct linux_binprm *bprm, int i) 339 { 340 if (bprm->page[i]) { 341 __free_page(bprm->page[i]); 342 bprm->page[i] = NULL; 343 } 344 } 345 346 static void free_arg_pages(struct linux_binprm *bprm) 347 { 348 int i; 349 350 for (i = 0; i < MAX_ARG_PAGES; i++) 351 free_arg_page(bprm, i); 352 } 353 354 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 355 struct page *page) 356 { 357 } 358 359 static int __bprm_mm_init(struct linux_binprm *bprm) 360 { 361 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 362 return 0; 363 } 364 365 static bool valid_arg_len(struct linux_binprm *bprm, long len) 366 { 367 return len <= bprm->p; 368 } 369 370 #endif /* CONFIG_MMU */ 371 372 /* 373 * Create a new mm_struct and populate it with a temporary stack 374 * vm_area_struct. We don't have enough context at this point to set the stack 375 * flags, permissions, and offset, so we use temporary values. We'll update 376 * them later in setup_arg_pages(). 377 */ 378 static int bprm_mm_init(struct linux_binprm *bprm) 379 { 380 int err; 381 struct mm_struct *mm = NULL; 382 383 bprm->mm = mm = mm_alloc(); 384 err = -ENOMEM; 385 if (!mm) 386 goto err; 387 388 /* Save current stack limit for all calculations made during exec. */ 389 task_lock(current->group_leader); 390 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 391 task_unlock(current->group_leader); 392 393 err = __bprm_mm_init(bprm); 394 if (err) 395 goto err; 396 397 return 0; 398 399 err: 400 if (mm) { 401 bprm->mm = NULL; 402 mmdrop(mm); 403 } 404 405 return err; 406 } 407 408 struct user_arg_ptr { 409 #ifdef CONFIG_COMPAT 410 bool is_compat; 411 #endif 412 union { 413 const char __user *const __user *native; 414 #ifdef CONFIG_COMPAT 415 const compat_uptr_t __user *compat; 416 #endif 417 } ptr; 418 }; 419 420 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 421 { 422 const char __user *native; 423 424 #ifdef CONFIG_COMPAT 425 if (unlikely(argv.is_compat)) { 426 compat_uptr_t compat; 427 428 if (get_user(compat, argv.ptr.compat + nr)) 429 return ERR_PTR(-EFAULT); 430 431 return compat_ptr(compat); 432 } 433 #endif 434 435 if (get_user(native, argv.ptr.native + nr)) 436 return ERR_PTR(-EFAULT); 437 438 return native; 439 } 440 441 /* 442 * count() counts the number of strings in array ARGV. 443 */ 444 static int count(struct user_arg_ptr argv, int max) 445 { 446 int i = 0; 447 448 if (argv.ptr.native != NULL) { 449 for (;;) { 450 const char __user *p = get_user_arg_ptr(argv, i); 451 452 if (!p) 453 break; 454 455 if (IS_ERR(p)) 456 return -EFAULT; 457 458 if (i >= max) 459 return -E2BIG; 460 ++i; 461 462 if (fatal_signal_pending(current)) 463 return -ERESTARTNOHAND; 464 cond_resched(); 465 } 466 } 467 return i; 468 } 469 470 static int count_strings_kernel(const char *const *argv) 471 { 472 int i; 473 474 if (!argv) 475 return 0; 476 477 for (i = 0; argv[i]; ++i) { 478 if (i >= MAX_ARG_STRINGS) 479 return -E2BIG; 480 if (fatal_signal_pending(current)) 481 return -ERESTARTNOHAND; 482 cond_resched(); 483 } 484 return i; 485 } 486 487 static inline int bprm_set_stack_limit(struct linux_binprm *bprm, 488 unsigned long limit) 489 { 490 #ifdef CONFIG_MMU 491 /* Avoid a pathological bprm->p. */ 492 if (bprm->p < limit) 493 return -E2BIG; 494 bprm->argmin = bprm->p - limit; 495 #endif 496 return 0; 497 } 498 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm) 499 { 500 #ifdef CONFIG_MMU 501 return bprm->p < bprm->argmin; 502 #else 503 return false; 504 #endif 505 } 506 507 /* 508 * Calculate bprm->argmin from: 509 * - _STK_LIM 510 * - ARG_MAX 511 * - bprm->rlim_stack.rlim_cur 512 * - bprm->argc 513 * - bprm->envc 514 * - bprm->p 515 */ 516 static int bprm_stack_limits(struct linux_binprm *bprm) 517 { 518 unsigned long limit, ptr_size; 519 520 /* 521 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 522 * (whichever is smaller) for the argv+env strings. 523 * This ensures that: 524 * - the remaining binfmt code will not run out of stack space, 525 * - the program will have a reasonable amount of stack left 526 * to work from. 527 */ 528 limit = _STK_LIM / 4 * 3; 529 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 530 /* 531 * We've historically supported up to 32 pages (ARG_MAX) 532 * of argument strings even with small stacks 533 */ 534 limit = max_t(unsigned long, limit, ARG_MAX); 535 /* Reject totally pathological counts. */ 536 if (bprm->argc < 0 || bprm->envc < 0) 537 return -E2BIG; 538 /* 539 * We must account for the size of all the argv and envp pointers to 540 * the argv and envp strings, since they will also take up space in 541 * the stack. They aren't stored until much later when we can't 542 * signal to the parent that the child has run out of stack space. 543 * Instead, calculate it here so it's possible to fail gracefully. 544 * 545 * In the case of argc = 0, make sure there is space for adding a 546 * empty string (which will bump argc to 1), to ensure confused 547 * userspace programs don't start processing from argv[1], thinking 548 * argc can never be 0, to keep them from walking envp by accident. 549 * See do_execveat_common(). 550 */ 551 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) || 552 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size)) 553 return -E2BIG; 554 if (limit <= ptr_size) 555 return -E2BIG; 556 limit -= ptr_size; 557 558 return bprm_set_stack_limit(bprm, limit); 559 } 560 561 /* 562 * 'copy_strings()' copies argument/environment strings from the old 563 * processes's memory to the new process's stack. The call to get_user_pages() 564 * ensures the destination page is created and not swapped out. 565 */ 566 static int copy_strings(int argc, struct user_arg_ptr argv, 567 struct linux_binprm *bprm) 568 { 569 struct page *kmapped_page = NULL; 570 char *kaddr = NULL; 571 unsigned long kpos = 0; 572 int ret; 573 574 while (argc-- > 0) { 575 const char __user *str; 576 int len; 577 unsigned long pos; 578 579 ret = -EFAULT; 580 str = get_user_arg_ptr(argv, argc); 581 if (IS_ERR(str)) 582 goto out; 583 584 len = strnlen_user(str, MAX_ARG_STRLEN); 585 if (!len) 586 goto out; 587 588 ret = -E2BIG; 589 if (!valid_arg_len(bprm, len)) 590 goto out; 591 592 /* We're going to work our way backwards. */ 593 pos = bprm->p; 594 str += len; 595 bprm->p -= len; 596 if (bprm_hit_stack_limit(bprm)) 597 goto out; 598 599 while (len > 0) { 600 int offset, bytes_to_copy; 601 602 if (fatal_signal_pending(current)) { 603 ret = -ERESTARTNOHAND; 604 goto out; 605 } 606 cond_resched(); 607 608 offset = pos % PAGE_SIZE; 609 if (offset == 0) 610 offset = PAGE_SIZE; 611 612 bytes_to_copy = offset; 613 if (bytes_to_copy > len) 614 bytes_to_copy = len; 615 616 offset -= bytes_to_copy; 617 pos -= bytes_to_copy; 618 str -= bytes_to_copy; 619 len -= bytes_to_copy; 620 621 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 622 struct page *page; 623 624 page = get_arg_page(bprm, pos, 1); 625 if (!page) { 626 ret = -E2BIG; 627 goto out; 628 } 629 630 if (kmapped_page) { 631 flush_dcache_page(kmapped_page); 632 kunmap_local(kaddr); 633 put_arg_page(kmapped_page); 634 } 635 kmapped_page = page; 636 kaddr = kmap_local_page(kmapped_page); 637 kpos = pos & PAGE_MASK; 638 flush_arg_page(bprm, kpos, kmapped_page); 639 } 640 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 641 ret = -EFAULT; 642 goto out; 643 } 644 } 645 } 646 ret = 0; 647 out: 648 if (kmapped_page) { 649 flush_dcache_page(kmapped_page); 650 kunmap_local(kaddr); 651 put_arg_page(kmapped_page); 652 } 653 return ret; 654 } 655 656 /* 657 * Copy and argument/environment string from the kernel to the processes stack. 658 */ 659 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 660 { 661 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 662 unsigned long pos = bprm->p; 663 664 if (len == 0) 665 return -EFAULT; 666 if (!valid_arg_len(bprm, len)) 667 return -E2BIG; 668 669 /* We're going to work our way backwards. */ 670 arg += len; 671 bprm->p -= len; 672 if (bprm_hit_stack_limit(bprm)) 673 return -E2BIG; 674 675 while (len > 0) { 676 unsigned int bytes_to_copy = min_t(unsigned int, len, 677 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 678 struct page *page; 679 680 pos -= bytes_to_copy; 681 arg -= bytes_to_copy; 682 len -= bytes_to_copy; 683 684 page = get_arg_page(bprm, pos, 1); 685 if (!page) 686 return -E2BIG; 687 flush_arg_page(bprm, pos & PAGE_MASK, page); 688 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 689 put_arg_page(page); 690 } 691 692 return 0; 693 } 694 EXPORT_SYMBOL(copy_string_kernel); 695 696 static int copy_strings_kernel(int argc, const char *const *argv, 697 struct linux_binprm *bprm) 698 { 699 while (argc-- > 0) { 700 int ret = copy_string_kernel(argv[argc], bprm); 701 if (ret < 0) 702 return ret; 703 if (fatal_signal_pending(current)) 704 return -ERESTARTNOHAND; 705 cond_resched(); 706 } 707 return 0; 708 } 709 710 #ifdef CONFIG_MMU 711 712 /* 713 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 714 * the binfmt code determines where the new stack should reside, we shift it to 715 * its final location. The process proceeds as follows: 716 * 717 * 1) Use shift to calculate the new vma endpoints. 718 * 2) Extend vma to cover both the old and new ranges. This ensures the 719 * arguments passed to subsequent functions are consistent. 720 * 3) Move vma's page tables to the new range. 721 * 4) Free up any cleared pgd range. 722 * 5) Shrink the vma to cover only the new range. 723 */ 724 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 725 { 726 struct mm_struct *mm = vma->vm_mm; 727 unsigned long old_start = vma->vm_start; 728 unsigned long old_end = vma->vm_end; 729 unsigned long length = old_end - old_start; 730 unsigned long new_start = old_start - shift; 731 unsigned long new_end = old_end - shift; 732 VMA_ITERATOR(vmi, mm, new_start); 733 struct vm_area_struct *next; 734 struct mmu_gather tlb; 735 736 BUG_ON(new_start > new_end); 737 738 /* 739 * ensure there are no vmas between where we want to go 740 * and where we are 741 */ 742 if (vma != vma_next(&vmi)) 743 return -EFAULT; 744 745 vma_iter_prev_range(&vmi); 746 /* 747 * cover the whole range: [new_start, old_end) 748 */ 749 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL)) 750 return -ENOMEM; 751 752 /* 753 * move the page tables downwards, on failure we rely on 754 * process cleanup to remove whatever mess we made. 755 */ 756 if (length != move_page_tables(vma, old_start, 757 vma, new_start, length, false, true)) 758 return -ENOMEM; 759 760 lru_add_drain(); 761 tlb_gather_mmu(&tlb, mm); 762 next = vma_next(&vmi); 763 if (new_end > old_start) { 764 /* 765 * when the old and new regions overlap clear from new_end. 766 */ 767 free_pgd_range(&tlb, new_end, old_end, new_end, 768 next ? next->vm_start : USER_PGTABLES_CEILING); 769 } else { 770 /* 771 * otherwise, clean from old_start; this is done to not touch 772 * the address space in [new_end, old_start) some architectures 773 * have constraints on va-space that make this illegal (IA64) - 774 * for the others its just a little faster. 775 */ 776 free_pgd_range(&tlb, old_start, old_end, new_end, 777 next ? next->vm_start : USER_PGTABLES_CEILING); 778 } 779 tlb_finish_mmu(&tlb); 780 781 vma_prev(&vmi); 782 /* Shrink the vma to just the new range */ 783 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff); 784 } 785 786 /* 787 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 788 * the stack is optionally relocated, and some extra space is added. 789 */ 790 int setup_arg_pages(struct linux_binprm *bprm, 791 unsigned long stack_top, 792 int executable_stack) 793 { 794 unsigned long ret; 795 unsigned long stack_shift; 796 struct mm_struct *mm = current->mm; 797 struct vm_area_struct *vma = bprm->vma; 798 struct vm_area_struct *prev = NULL; 799 unsigned long vm_flags; 800 unsigned long stack_base; 801 unsigned long stack_size; 802 unsigned long stack_expand; 803 unsigned long rlim_stack; 804 struct mmu_gather tlb; 805 struct vma_iterator vmi; 806 807 #ifdef CONFIG_STACK_GROWSUP 808 /* Limit stack size */ 809 stack_base = bprm->rlim_stack.rlim_max; 810 811 stack_base = calc_max_stack_size(stack_base); 812 813 /* Add space for stack randomization. */ 814 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 815 816 /* Make sure we didn't let the argument array grow too large. */ 817 if (vma->vm_end - vma->vm_start > stack_base) 818 return -ENOMEM; 819 820 stack_base = PAGE_ALIGN(stack_top - stack_base); 821 822 stack_shift = vma->vm_start - stack_base; 823 mm->arg_start = bprm->p - stack_shift; 824 bprm->p = vma->vm_end - stack_shift; 825 #else 826 stack_top = arch_align_stack(stack_top); 827 stack_top = PAGE_ALIGN(stack_top); 828 829 if (unlikely(stack_top < mmap_min_addr) || 830 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 831 return -ENOMEM; 832 833 stack_shift = vma->vm_end - stack_top; 834 835 bprm->p -= stack_shift; 836 mm->arg_start = bprm->p; 837 #endif 838 839 if (bprm->loader) 840 bprm->loader -= stack_shift; 841 bprm->exec -= stack_shift; 842 843 if (mmap_write_lock_killable(mm)) 844 return -EINTR; 845 846 vm_flags = VM_STACK_FLAGS; 847 848 /* 849 * Adjust stack execute permissions; explicitly enable for 850 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 851 * (arch default) otherwise. 852 */ 853 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 854 vm_flags |= VM_EXEC; 855 else if (executable_stack == EXSTACK_DISABLE_X) 856 vm_flags &= ~VM_EXEC; 857 vm_flags |= mm->def_flags; 858 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 859 860 vma_iter_init(&vmi, mm, vma->vm_start); 861 862 tlb_gather_mmu(&tlb, mm); 863 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end, 864 vm_flags); 865 tlb_finish_mmu(&tlb); 866 867 if (ret) 868 goto out_unlock; 869 BUG_ON(prev != vma); 870 871 if (unlikely(vm_flags & VM_EXEC)) { 872 pr_warn_once("process '%pD4' started with executable stack\n", 873 bprm->file); 874 } 875 876 /* Move stack pages down in memory. */ 877 if (stack_shift) { 878 ret = shift_arg_pages(vma, stack_shift); 879 if (ret) 880 goto out_unlock; 881 } 882 883 /* mprotect_fixup is overkill to remove the temporary stack flags */ 884 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); 885 886 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 887 stack_size = vma->vm_end - vma->vm_start; 888 /* 889 * Align this down to a page boundary as expand_stack 890 * will align it up. 891 */ 892 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 893 894 stack_expand = min(rlim_stack, stack_size + stack_expand); 895 896 #ifdef CONFIG_STACK_GROWSUP 897 stack_base = vma->vm_start + stack_expand; 898 #else 899 stack_base = vma->vm_end - stack_expand; 900 #endif 901 current->mm->start_stack = bprm->p; 902 ret = expand_stack_locked(vma, stack_base); 903 if (ret) 904 ret = -EFAULT; 905 906 out_unlock: 907 mmap_write_unlock(mm); 908 return ret; 909 } 910 EXPORT_SYMBOL(setup_arg_pages); 911 912 #else 913 914 /* 915 * Transfer the program arguments and environment from the holding pages 916 * onto the stack. The provided stack pointer is adjusted accordingly. 917 */ 918 int transfer_args_to_stack(struct linux_binprm *bprm, 919 unsigned long *sp_location) 920 { 921 unsigned long index, stop, sp; 922 int ret = 0; 923 924 stop = bprm->p >> PAGE_SHIFT; 925 sp = *sp_location; 926 927 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 928 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 929 char *src = kmap_local_page(bprm->page[index]) + offset; 930 sp -= PAGE_SIZE - offset; 931 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 932 ret = -EFAULT; 933 kunmap_local(src); 934 if (ret) 935 goto out; 936 } 937 938 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE; 939 *sp_location = sp; 940 941 out: 942 return ret; 943 } 944 EXPORT_SYMBOL(transfer_args_to_stack); 945 946 #endif /* CONFIG_MMU */ 947 948 /* 949 * On success, caller must call do_close_execat() on the returned 950 * struct file to close it. 951 */ 952 static struct file *do_open_execat(int fd, struct filename *name, int flags) 953 { 954 struct file *file; 955 struct open_flags open_exec_flags = { 956 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 957 .acc_mode = MAY_EXEC, 958 .intent = LOOKUP_OPEN, 959 .lookup_flags = LOOKUP_FOLLOW, 960 }; 961 962 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 963 return ERR_PTR(-EINVAL); 964 if (flags & AT_SYMLINK_NOFOLLOW) 965 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 966 if (flags & AT_EMPTY_PATH) 967 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 968 969 file = do_filp_open(fd, name, &open_exec_flags); 970 if (IS_ERR(file)) 971 return file; 972 973 /* 974 * In the past the regular type check was here. It moved to may_open() in 975 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is 976 * an invariant that all non-regular files error out before we get here. 977 */ 978 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 979 path_noexec(&file->f_path)) { 980 fput(file); 981 return ERR_PTR(-EACCES); 982 } 983 984 return file; 985 } 986 987 /** 988 * open_exec - Open a path name for execution 989 * 990 * @name: path name to open with the intent of executing it. 991 * 992 * Returns ERR_PTR on failure or allocated struct file on success. 993 * 994 * As this is a wrapper for the internal do_open_execat(). Also see 995 * do_close_execat(). 996 */ 997 struct file *open_exec(const char *name) 998 { 999 struct filename *filename = getname_kernel(name); 1000 struct file *f = ERR_CAST(filename); 1001 1002 if (!IS_ERR(filename)) { 1003 f = do_open_execat(AT_FDCWD, filename, 0); 1004 putname(filename); 1005 } 1006 return f; 1007 } 1008 EXPORT_SYMBOL(open_exec); 1009 1010 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 1011 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 1012 { 1013 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 1014 if (res > 0) 1015 flush_icache_user_range(addr, addr + len); 1016 return res; 1017 } 1018 EXPORT_SYMBOL(read_code); 1019 #endif 1020 1021 /* 1022 * Maps the mm_struct mm into the current task struct. 1023 * On success, this function returns with exec_update_lock 1024 * held for writing. 1025 */ 1026 static int exec_mmap(struct mm_struct *mm) 1027 { 1028 struct task_struct *tsk; 1029 struct mm_struct *old_mm, *active_mm; 1030 int ret; 1031 1032 /* Notify parent that we're no longer interested in the old VM */ 1033 tsk = current; 1034 old_mm = current->mm; 1035 exec_mm_release(tsk, old_mm); 1036 1037 ret = down_write_killable(&tsk->signal->exec_update_lock); 1038 if (ret) 1039 return ret; 1040 1041 if (old_mm) { 1042 /* 1043 * If there is a pending fatal signal perhaps a signal 1044 * whose default action is to create a coredump get 1045 * out and die instead of going through with the exec. 1046 */ 1047 ret = mmap_read_lock_killable(old_mm); 1048 if (ret) { 1049 up_write(&tsk->signal->exec_update_lock); 1050 return ret; 1051 } 1052 } 1053 1054 task_lock(tsk); 1055 membarrier_exec_mmap(mm); 1056 1057 local_irq_disable(); 1058 active_mm = tsk->active_mm; 1059 tsk->active_mm = mm; 1060 tsk->mm = mm; 1061 mm_init_cid(mm); 1062 /* 1063 * This prevents preemption while active_mm is being loaded and 1064 * it and mm are being updated, which could cause problems for 1065 * lazy tlb mm refcounting when these are updated by context 1066 * switches. Not all architectures can handle irqs off over 1067 * activate_mm yet. 1068 */ 1069 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1070 local_irq_enable(); 1071 activate_mm(active_mm, mm); 1072 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1073 local_irq_enable(); 1074 lru_gen_add_mm(mm); 1075 task_unlock(tsk); 1076 lru_gen_use_mm(mm); 1077 if (old_mm) { 1078 mmap_read_unlock(old_mm); 1079 BUG_ON(active_mm != old_mm); 1080 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1081 mm_update_next_owner(old_mm); 1082 mmput(old_mm); 1083 return 0; 1084 } 1085 mmdrop_lazy_tlb(active_mm); 1086 return 0; 1087 } 1088 1089 static int de_thread(struct task_struct *tsk) 1090 { 1091 struct signal_struct *sig = tsk->signal; 1092 struct sighand_struct *oldsighand = tsk->sighand; 1093 spinlock_t *lock = &oldsighand->siglock; 1094 1095 if (thread_group_empty(tsk)) 1096 goto no_thread_group; 1097 1098 /* 1099 * Kill all other threads in the thread group. 1100 */ 1101 spin_lock_irq(lock); 1102 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1103 /* 1104 * Another group action in progress, just 1105 * return so that the signal is processed. 1106 */ 1107 spin_unlock_irq(lock); 1108 return -EAGAIN; 1109 } 1110 1111 sig->group_exec_task = tsk; 1112 sig->notify_count = zap_other_threads(tsk); 1113 if (!thread_group_leader(tsk)) 1114 sig->notify_count--; 1115 1116 while (sig->notify_count) { 1117 __set_current_state(TASK_KILLABLE); 1118 spin_unlock_irq(lock); 1119 schedule(); 1120 if (__fatal_signal_pending(tsk)) 1121 goto killed; 1122 spin_lock_irq(lock); 1123 } 1124 spin_unlock_irq(lock); 1125 1126 /* 1127 * At this point all other threads have exited, all we have to 1128 * do is to wait for the thread group leader to become inactive, 1129 * and to assume its PID: 1130 */ 1131 if (!thread_group_leader(tsk)) { 1132 struct task_struct *leader = tsk->group_leader; 1133 1134 for (;;) { 1135 cgroup_threadgroup_change_begin(tsk); 1136 write_lock_irq(&tasklist_lock); 1137 /* 1138 * Do this under tasklist_lock to ensure that 1139 * exit_notify() can't miss ->group_exec_task 1140 */ 1141 sig->notify_count = -1; 1142 if (likely(leader->exit_state)) 1143 break; 1144 __set_current_state(TASK_KILLABLE); 1145 write_unlock_irq(&tasklist_lock); 1146 cgroup_threadgroup_change_end(tsk); 1147 schedule(); 1148 if (__fatal_signal_pending(tsk)) 1149 goto killed; 1150 } 1151 1152 /* 1153 * The only record we have of the real-time age of a 1154 * process, regardless of execs it's done, is start_time. 1155 * All the past CPU time is accumulated in signal_struct 1156 * from sister threads now dead. But in this non-leader 1157 * exec, nothing survives from the original leader thread, 1158 * whose birth marks the true age of this process now. 1159 * When we take on its identity by switching to its PID, we 1160 * also take its birthdate (always earlier than our own). 1161 */ 1162 tsk->start_time = leader->start_time; 1163 tsk->start_boottime = leader->start_boottime; 1164 1165 BUG_ON(!same_thread_group(leader, tsk)); 1166 /* 1167 * An exec() starts a new thread group with the 1168 * TGID of the previous thread group. Rehash the 1169 * two threads with a switched PID, and release 1170 * the former thread group leader: 1171 */ 1172 1173 /* Become a process group leader with the old leader's pid. 1174 * The old leader becomes a thread of the this thread group. 1175 */ 1176 exchange_tids(tsk, leader); 1177 transfer_pid(leader, tsk, PIDTYPE_TGID); 1178 transfer_pid(leader, tsk, PIDTYPE_PGID); 1179 transfer_pid(leader, tsk, PIDTYPE_SID); 1180 1181 list_replace_rcu(&leader->tasks, &tsk->tasks); 1182 list_replace_init(&leader->sibling, &tsk->sibling); 1183 1184 tsk->group_leader = tsk; 1185 leader->group_leader = tsk; 1186 1187 tsk->exit_signal = SIGCHLD; 1188 leader->exit_signal = -1; 1189 1190 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1191 leader->exit_state = EXIT_DEAD; 1192 /* 1193 * We are going to release_task()->ptrace_unlink() silently, 1194 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1195 * the tracer won't block again waiting for this thread. 1196 */ 1197 if (unlikely(leader->ptrace)) 1198 __wake_up_parent(leader, leader->parent); 1199 write_unlock_irq(&tasklist_lock); 1200 cgroup_threadgroup_change_end(tsk); 1201 1202 release_task(leader); 1203 } 1204 1205 sig->group_exec_task = NULL; 1206 sig->notify_count = 0; 1207 1208 no_thread_group: 1209 /* we have changed execution domain */ 1210 tsk->exit_signal = SIGCHLD; 1211 1212 BUG_ON(!thread_group_leader(tsk)); 1213 return 0; 1214 1215 killed: 1216 /* protects against exit_notify() and __exit_signal() */ 1217 read_lock(&tasklist_lock); 1218 sig->group_exec_task = NULL; 1219 sig->notify_count = 0; 1220 read_unlock(&tasklist_lock); 1221 return -EAGAIN; 1222 } 1223 1224 1225 /* 1226 * This function makes sure the current process has its own signal table, 1227 * so that flush_signal_handlers can later reset the handlers without 1228 * disturbing other processes. (Other processes might share the signal 1229 * table via the CLONE_SIGHAND option to clone().) 1230 */ 1231 static int unshare_sighand(struct task_struct *me) 1232 { 1233 struct sighand_struct *oldsighand = me->sighand; 1234 1235 if (refcount_read(&oldsighand->count) != 1) { 1236 struct sighand_struct *newsighand; 1237 /* 1238 * This ->sighand is shared with the CLONE_SIGHAND 1239 * but not CLONE_THREAD task, switch to the new one. 1240 */ 1241 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1242 if (!newsighand) 1243 return -ENOMEM; 1244 1245 refcount_set(&newsighand->count, 1); 1246 1247 write_lock_irq(&tasklist_lock); 1248 spin_lock(&oldsighand->siglock); 1249 memcpy(newsighand->action, oldsighand->action, 1250 sizeof(newsighand->action)); 1251 rcu_assign_pointer(me->sighand, newsighand); 1252 spin_unlock(&oldsighand->siglock); 1253 write_unlock_irq(&tasklist_lock); 1254 1255 __cleanup_sighand(oldsighand); 1256 } 1257 return 0; 1258 } 1259 1260 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1261 { 1262 task_lock(tsk); 1263 /* Always NUL terminated and zero-padded */ 1264 strscpy_pad(buf, tsk->comm, buf_size); 1265 task_unlock(tsk); 1266 return buf; 1267 } 1268 EXPORT_SYMBOL_GPL(__get_task_comm); 1269 1270 /* 1271 * These functions flushes out all traces of the currently running executable 1272 * so that a new one can be started 1273 */ 1274 1275 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1276 { 1277 task_lock(tsk); 1278 trace_task_rename(tsk, buf); 1279 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1280 task_unlock(tsk); 1281 perf_event_comm(tsk, exec); 1282 } 1283 1284 /* 1285 * Calling this is the point of no return. None of the failures will be 1286 * seen by userspace since either the process is already taking a fatal 1287 * signal (via de_thread() or coredump), or will have SEGV raised 1288 * (after exec_mmap()) by search_binary_handler (see below). 1289 */ 1290 int begin_new_exec(struct linux_binprm * bprm) 1291 { 1292 struct task_struct *me = current; 1293 int retval; 1294 1295 /* Once we are committed compute the creds */ 1296 retval = bprm_creds_from_file(bprm); 1297 if (retval) 1298 return retval; 1299 1300 /* 1301 * This tracepoint marks the point before flushing the old exec where 1302 * the current task is still unchanged, but errors are fatal (point of 1303 * no return). The later "sched_process_exec" tracepoint is called after 1304 * the current task has successfully switched to the new exec. 1305 */ 1306 trace_sched_prepare_exec(current, bprm); 1307 1308 /* 1309 * Ensure all future errors are fatal. 1310 */ 1311 bprm->point_of_no_return = true; 1312 1313 /* 1314 * Make this the only thread in the thread group. 1315 */ 1316 retval = de_thread(me); 1317 if (retval) 1318 goto out; 1319 1320 /* 1321 * Cancel any io_uring activity across execve 1322 */ 1323 io_uring_task_cancel(); 1324 1325 /* Ensure the files table is not shared. */ 1326 retval = unshare_files(); 1327 if (retval) 1328 goto out; 1329 1330 /* 1331 * Must be called _before_ exec_mmap() as bprm->mm is 1332 * not visible until then. Doing it here also ensures 1333 * we don't race against replace_mm_exe_file(). 1334 */ 1335 retval = set_mm_exe_file(bprm->mm, bprm->file); 1336 if (retval) 1337 goto out; 1338 1339 /* If the binary is not readable then enforce mm->dumpable=0 */ 1340 would_dump(bprm, bprm->file); 1341 if (bprm->have_execfd) 1342 would_dump(bprm, bprm->executable); 1343 1344 /* 1345 * Release all of the old mmap stuff 1346 */ 1347 acct_arg_size(bprm, 0); 1348 retval = exec_mmap(bprm->mm); 1349 if (retval) 1350 goto out; 1351 1352 bprm->mm = NULL; 1353 1354 retval = exec_task_namespaces(); 1355 if (retval) 1356 goto out_unlock; 1357 1358 #ifdef CONFIG_POSIX_TIMERS 1359 spin_lock_irq(&me->sighand->siglock); 1360 posix_cpu_timers_exit(me); 1361 spin_unlock_irq(&me->sighand->siglock); 1362 exit_itimers(me); 1363 flush_itimer_signals(); 1364 #endif 1365 1366 /* 1367 * Make the signal table private. 1368 */ 1369 retval = unshare_sighand(me); 1370 if (retval) 1371 goto out_unlock; 1372 1373 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1374 PF_NOFREEZE | PF_NO_SETAFFINITY); 1375 flush_thread(); 1376 me->personality &= ~bprm->per_clear; 1377 1378 clear_syscall_work_syscall_user_dispatch(me); 1379 1380 /* 1381 * We have to apply CLOEXEC before we change whether the process is 1382 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1383 * trying to access the should-be-closed file descriptors of a process 1384 * undergoing exec(2). 1385 */ 1386 do_close_on_exec(me->files); 1387 1388 if (bprm->secureexec) { 1389 /* Make sure parent cannot signal privileged process. */ 1390 me->pdeath_signal = 0; 1391 1392 /* 1393 * For secureexec, reset the stack limit to sane default to 1394 * avoid bad behavior from the prior rlimits. This has to 1395 * happen before arch_pick_mmap_layout(), which examines 1396 * RLIMIT_STACK, but after the point of no return to avoid 1397 * needing to clean up the change on failure. 1398 */ 1399 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1400 bprm->rlim_stack.rlim_cur = _STK_LIM; 1401 } 1402 1403 me->sas_ss_sp = me->sas_ss_size = 0; 1404 1405 /* 1406 * Figure out dumpability. Note that this checking only of current 1407 * is wrong, but userspace depends on it. This should be testing 1408 * bprm->secureexec instead. 1409 */ 1410 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1411 !(uid_eq(current_euid(), current_uid()) && 1412 gid_eq(current_egid(), current_gid()))) 1413 set_dumpable(current->mm, suid_dumpable); 1414 else 1415 set_dumpable(current->mm, SUID_DUMP_USER); 1416 1417 perf_event_exec(); 1418 __set_task_comm(me, kbasename(bprm->filename), true); 1419 1420 /* An exec changes our domain. We are no longer part of the thread 1421 group */ 1422 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1423 flush_signal_handlers(me, 0); 1424 1425 retval = set_cred_ucounts(bprm->cred); 1426 if (retval < 0) 1427 goto out_unlock; 1428 1429 /* 1430 * install the new credentials for this executable 1431 */ 1432 security_bprm_committing_creds(bprm); 1433 1434 commit_creds(bprm->cred); 1435 bprm->cred = NULL; 1436 1437 /* 1438 * Disable monitoring for regular users 1439 * when executing setuid binaries. Must 1440 * wait until new credentials are committed 1441 * by commit_creds() above 1442 */ 1443 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1444 perf_event_exit_task(me); 1445 /* 1446 * cred_guard_mutex must be held at least to this point to prevent 1447 * ptrace_attach() from altering our determination of the task's 1448 * credentials; any time after this it may be unlocked. 1449 */ 1450 security_bprm_committed_creds(bprm); 1451 1452 /* Pass the opened binary to the interpreter. */ 1453 if (bprm->have_execfd) { 1454 retval = get_unused_fd_flags(0); 1455 if (retval < 0) 1456 goto out_unlock; 1457 fd_install(retval, bprm->executable); 1458 bprm->executable = NULL; 1459 bprm->execfd = retval; 1460 } 1461 return 0; 1462 1463 out_unlock: 1464 up_write(&me->signal->exec_update_lock); 1465 if (!bprm->cred) 1466 mutex_unlock(&me->signal->cred_guard_mutex); 1467 1468 out: 1469 return retval; 1470 } 1471 EXPORT_SYMBOL(begin_new_exec); 1472 1473 void would_dump(struct linux_binprm *bprm, struct file *file) 1474 { 1475 struct inode *inode = file_inode(file); 1476 struct mnt_idmap *idmap = file_mnt_idmap(file); 1477 if (inode_permission(idmap, inode, MAY_READ) < 0) { 1478 struct user_namespace *old, *user_ns; 1479 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1480 1481 /* Ensure mm->user_ns contains the executable */ 1482 user_ns = old = bprm->mm->user_ns; 1483 while ((user_ns != &init_user_ns) && 1484 !privileged_wrt_inode_uidgid(user_ns, idmap, inode)) 1485 user_ns = user_ns->parent; 1486 1487 if (old != user_ns) { 1488 bprm->mm->user_ns = get_user_ns(user_ns); 1489 put_user_ns(old); 1490 } 1491 } 1492 } 1493 EXPORT_SYMBOL(would_dump); 1494 1495 void setup_new_exec(struct linux_binprm * bprm) 1496 { 1497 /* Setup things that can depend upon the personality */ 1498 struct task_struct *me = current; 1499 1500 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1501 1502 arch_setup_new_exec(); 1503 1504 /* Set the new mm task size. We have to do that late because it may 1505 * depend on TIF_32BIT which is only updated in flush_thread() on 1506 * some architectures like powerpc 1507 */ 1508 me->mm->task_size = TASK_SIZE; 1509 up_write(&me->signal->exec_update_lock); 1510 mutex_unlock(&me->signal->cred_guard_mutex); 1511 } 1512 EXPORT_SYMBOL(setup_new_exec); 1513 1514 /* Runs immediately before start_thread() takes over. */ 1515 void finalize_exec(struct linux_binprm *bprm) 1516 { 1517 /* Store any stack rlimit changes before starting thread. */ 1518 task_lock(current->group_leader); 1519 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1520 task_unlock(current->group_leader); 1521 } 1522 EXPORT_SYMBOL(finalize_exec); 1523 1524 /* 1525 * Prepare credentials and lock ->cred_guard_mutex. 1526 * setup_new_exec() commits the new creds and drops the lock. 1527 * Or, if exec fails before, free_bprm() should release ->cred 1528 * and unlock. 1529 */ 1530 static int prepare_bprm_creds(struct linux_binprm *bprm) 1531 { 1532 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1533 return -ERESTARTNOINTR; 1534 1535 bprm->cred = prepare_exec_creds(); 1536 if (likely(bprm->cred)) 1537 return 0; 1538 1539 mutex_unlock(¤t->signal->cred_guard_mutex); 1540 return -ENOMEM; 1541 } 1542 1543 /* Matches do_open_execat() */ 1544 static void do_close_execat(struct file *file) 1545 { 1546 if (file) 1547 fput(file); 1548 } 1549 1550 static void free_bprm(struct linux_binprm *bprm) 1551 { 1552 if (bprm->mm) { 1553 acct_arg_size(bprm, 0); 1554 mmput(bprm->mm); 1555 } 1556 free_arg_pages(bprm); 1557 if (bprm->cred) { 1558 mutex_unlock(¤t->signal->cred_guard_mutex); 1559 abort_creds(bprm->cred); 1560 } 1561 do_close_execat(bprm->file); 1562 if (bprm->executable) 1563 fput(bprm->executable); 1564 /* If a binfmt changed the interp, free it. */ 1565 if (bprm->interp != bprm->filename) 1566 kfree(bprm->interp); 1567 kfree(bprm->fdpath); 1568 kfree(bprm); 1569 } 1570 1571 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags) 1572 { 1573 struct linux_binprm *bprm; 1574 struct file *file; 1575 int retval = -ENOMEM; 1576 1577 file = do_open_execat(fd, filename, flags); 1578 if (IS_ERR(file)) 1579 return ERR_CAST(file); 1580 1581 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1582 if (!bprm) { 1583 do_close_execat(file); 1584 return ERR_PTR(-ENOMEM); 1585 } 1586 1587 bprm->file = file; 1588 1589 if (fd == AT_FDCWD || filename->name[0] == '/') { 1590 bprm->filename = filename->name; 1591 } else { 1592 if (filename->name[0] == '\0') 1593 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1594 else 1595 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1596 fd, filename->name); 1597 if (!bprm->fdpath) 1598 goto out_free; 1599 1600 /* 1601 * Record that a name derived from an O_CLOEXEC fd will be 1602 * inaccessible after exec. This allows the code in exec to 1603 * choose to fail when the executable is not mmaped into the 1604 * interpreter and an open file descriptor is not passed to 1605 * the interpreter. This makes for a better user experience 1606 * than having the interpreter start and then immediately fail 1607 * when it finds the executable is inaccessible. 1608 */ 1609 if (get_close_on_exec(fd)) 1610 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1611 1612 bprm->filename = bprm->fdpath; 1613 } 1614 bprm->interp = bprm->filename; 1615 1616 retval = bprm_mm_init(bprm); 1617 if (!retval) 1618 return bprm; 1619 1620 out_free: 1621 free_bprm(bprm); 1622 return ERR_PTR(retval); 1623 } 1624 1625 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1626 { 1627 /* If a binfmt changed the interp, free it first. */ 1628 if (bprm->interp != bprm->filename) 1629 kfree(bprm->interp); 1630 bprm->interp = kstrdup(interp, GFP_KERNEL); 1631 if (!bprm->interp) 1632 return -ENOMEM; 1633 return 0; 1634 } 1635 EXPORT_SYMBOL(bprm_change_interp); 1636 1637 /* 1638 * determine how safe it is to execute the proposed program 1639 * - the caller must hold ->cred_guard_mutex to protect against 1640 * PTRACE_ATTACH or seccomp thread-sync 1641 */ 1642 static void check_unsafe_exec(struct linux_binprm *bprm) 1643 { 1644 struct task_struct *p = current, *t; 1645 unsigned n_fs; 1646 1647 if (p->ptrace) 1648 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1649 1650 /* 1651 * This isn't strictly necessary, but it makes it harder for LSMs to 1652 * mess up. 1653 */ 1654 if (task_no_new_privs(current)) 1655 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1656 1657 /* 1658 * If another task is sharing our fs, we cannot safely 1659 * suid exec because the differently privileged task 1660 * will be able to manipulate the current directory, etc. 1661 * It would be nice to force an unshare instead... 1662 */ 1663 n_fs = 1; 1664 spin_lock(&p->fs->lock); 1665 rcu_read_lock(); 1666 for_other_threads(p, t) { 1667 if (t->fs == p->fs) 1668 n_fs++; 1669 } 1670 rcu_read_unlock(); 1671 1672 /* "users" and "in_exec" locked for copy_fs() */ 1673 if (p->fs->users > n_fs) 1674 bprm->unsafe |= LSM_UNSAFE_SHARE; 1675 else 1676 p->fs->in_exec = 1; 1677 spin_unlock(&p->fs->lock); 1678 } 1679 1680 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1681 { 1682 /* Handle suid and sgid on files */ 1683 struct mnt_idmap *idmap; 1684 struct inode *inode = file_inode(file); 1685 unsigned int mode; 1686 vfsuid_t vfsuid; 1687 vfsgid_t vfsgid; 1688 int err; 1689 1690 if (!mnt_may_suid(file->f_path.mnt)) 1691 return; 1692 1693 if (task_no_new_privs(current)) 1694 return; 1695 1696 mode = READ_ONCE(inode->i_mode); 1697 if (!(mode & (S_ISUID|S_ISGID))) 1698 return; 1699 1700 idmap = file_mnt_idmap(file); 1701 1702 /* Be careful if suid/sgid is set */ 1703 inode_lock(inode); 1704 1705 /* Atomically reload and check mode/uid/gid now that lock held. */ 1706 mode = inode->i_mode; 1707 vfsuid = i_uid_into_vfsuid(idmap, inode); 1708 vfsgid = i_gid_into_vfsgid(idmap, inode); 1709 err = inode_permission(idmap, inode, MAY_EXEC); 1710 inode_unlock(inode); 1711 1712 /* Did the exec bit vanish out from under us? Give up. */ 1713 if (err) 1714 return; 1715 1716 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1717 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1718 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1719 return; 1720 1721 if (mode & S_ISUID) { 1722 bprm->per_clear |= PER_CLEAR_ON_SETID; 1723 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1724 } 1725 1726 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1727 bprm->per_clear |= PER_CLEAR_ON_SETID; 1728 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1729 } 1730 } 1731 1732 /* 1733 * Compute brpm->cred based upon the final binary. 1734 */ 1735 static int bprm_creds_from_file(struct linux_binprm *bprm) 1736 { 1737 /* Compute creds based on which file? */ 1738 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1739 1740 bprm_fill_uid(bprm, file); 1741 return security_bprm_creds_from_file(bprm, file); 1742 } 1743 1744 /* 1745 * Fill the binprm structure from the inode. 1746 * Read the first BINPRM_BUF_SIZE bytes 1747 * 1748 * This may be called multiple times for binary chains (scripts for example). 1749 */ 1750 static int prepare_binprm(struct linux_binprm *bprm) 1751 { 1752 loff_t pos = 0; 1753 1754 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1755 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1756 } 1757 1758 /* 1759 * Arguments are '\0' separated strings found at the location bprm->p 1760 * points to; chop off the first by relocating brpm->p to right after 1761 * the first '\0' encountered. 1762 */ 1763 int remove_arg_zero(struct linux_binprm *bprm) 1764 { 1765 unsigned long offset; 1766 char *kaddr; 1767 struct page *page; 1768 1769 if (!bprm->argc) 1770 return 0; 1771 1772 do { 1773 offset = bprm->p & ~PAGE_MASK; 1774 page = get_arg_page(bprm, bprm->p, 0); 1775 if (!page) 1776 return -EFAULT; 1777 kaddr = kmap_local_page(page); 1778 1779 for (; offset < PAGE_SIZE && kaddr[offset]; 1780 offset++, bprm->p++) 1781 ; 1782 1783 kunmap_local(kaddr); 1784 put_arg_page(page); 1785 } while (offset == PAGE_SIZE); 1786 1787 bprm->p++; 1788 bprm->argc--; 1789 1790 return 0; 1791 } 1792 EXPORT_SYMBOL(remove_arg_zero); 1793 1794 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1795 /* 1796 * cycle the list of binary formats handler, until one recognizes the image 1797 */ 1798 static int search_binary_handler(struct linux_binprm *bprm) 1799 { 1800 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1801 struct linux_binfmt *fmt; 1802 int retval; 1803 1804 retval = prepare_binprm(bprm); 1805 if (retval < 0) 1806 return retval; 1807 1808 retval = security_bprm_check(bprm); 1809 if (retval) 1810 return retval; 1811 1812 retval = -ENOENT; 1813 retry: 1814 read_lock(&binfmt_lock); 1815 list_for_each_entry(fmt, &formats, lh) { 1816 if (!try_module_get(fmt->module)) 1817 continue; 1818 read_unlock(&binfmt_lock); 1819 1820 retval = fmt->load_binary(bprm); 1821 1822 read_lock(&binfmt_lock); 1823 put_binfmt(fmt); 1824 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1825 read_unlock(&binfmt_lock); 1826 return retval; 1827 } 1828 } 1829 read_unlock(&binfmt_lock); 1830 1831 if (need_retry) { 1832 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1833 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1834 return retval; 1835 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1836 return retval; 1837 need_retry = false; 1838 goto retry; 1839 } 1840 1841 return retval; 1842 } 1843 1844 /* binfmt handlers will call back into begin_new_exec() on success. */ 1845 static int exec_binprm(struct linux_binprm *bprm) 1846 { 1847 pid_t old_pid, old_vpid; 1848 int ret, depth; 1849 1850 /* Need to fetch pid before load_binary changes it */ 1851 old_pid = current->pid; 1852 rcu_read_lock(); 1853 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1854 rcu_read_unlock(); 1855 1856 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1857 for (depth = 0;; depth++) { 1858 struct file *exec; 1859 if (depth > 5) 1860 return -ELOOP; 1861 1862 ret = search_binary_handler(bprm); 1863 if (ret < 0) 1864 return ret; 1865 if (!bprm->interpreter) 1866 break; 1867 1868 exec = bprm->file; 1869 bprm->file = bprm->interpreter; 1870 bprm->interpreter = NULL; 1871 1872 if (unlikely(bprm->have_execfd)) { 1873 if (bprm->executable) { 1874 fput(exec); 1875 return -ENOEXEC; 1876 } 1877 bprm->executable = exec; 1878 } else 1879 fput(exec); 1880 } 1881 1882 audit_bprm(bprm); 1883 trace_sched_process_exec(current, old_pid, bprm); 1884 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1885 proc_exec_connector(current); 1886 return 0; 1887 } 1888 1889 static int bprm_execve(struct linux_binprm *bprm) 1890 { 1891 int retval; 1892 1893 retval = prepare_bprm_creds(bprm); 1894 if (retval) 1895 return retval; 1896 1897 /* 1898 * Check for unsafe execution states before exec_binprm(), which 1899 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1900 * where setuid-ness is evaluated. 1901 */ 1902 check_unsafe_exec(bprm); 1903 current->in_execve = 1; 1904 sched_mm_cid_before_execve(current); 1905 1906 sched_exec(); 1907 1908 /* Set the unchanging part of bprm->cred */ 1909 retval = security_bprm_creds_for_exec(bprm); 1910 if (retval) 1911 goto out; 1912 1913 retval = exec_binprm(bprm); 1914 if (retval < 0) 1915 goto out; 1916 1917 sched_mm_cid_after_execve(current); 1918 /* execve succeeded */ 1919 current->fs->in_exec = 0; 1920 current->in_execve = 0; 1921 rseq_execve(current); 1922 user_events_execve(current); 1923 acct_update_integrals(current); 1924 task_numa_free(current, false); 1925 return retval; 1926 1927 out: 1928 /* 1929 * If past the point of no return ensure the code never 1930 * returns to the userspace process. Use an existing fatal 1931 * signal if present otherwise terminate the process with 1932 * SIGSEGV. 1933 */ 1934 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1935 force_fatal_sig(SIGSEGV); 1936 1937 sched_mm_cid_after_execve(current); 1938 current->fs->in_exec = 0; 1939 current->in_execve = 0; 1940 1941 return retval; 1942 } 1943 1944 static int do_execveat_common(int fd, struct filename *filename, 1945 struct user_arg_ptr argv, 1946 struct user_arg_ptr envp, 1947 int flags) 1948 { 1949 struct linux_binprm *bprm; 1950 int retval; 1951 1952 if (IS_ERR(filename)) 1953 return PTR_ERR(filename); 1954 1955 /* 1956 * We move the actual failure in case of RLIMIT_NPROC excess from 1957 * set*uid() to execve() because too many poorly written programs 1958 * don't check setuid() return code. Here we additionally recheck 1959 * whether NPROC limit is still exceeded. 1960 */ 1961 if ((current->flags & PF_NPROC_EXCEEDED) && 1962 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1963 retval = -EAGAIN; 1964 goto out_ret; 1965 } 1966 1967 /* We're below the limit (still or again), so we don't want to make 1968 * further execve() calls fail. */ 1969 current->flags &= ~PF_NPROC_EXCEEDED; 1970 1971 bprm = alloc_bprm(fd, filename, flags); 1972 if (IS_ERR(bprm)) { 1973 retval = PTR_ERR(bprm); 1974 goto out_ret; 1975 } 1976 1977 retval = count(argv, MAX_ARG_STRINGS); 1978 if (retval == 0) 1979 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1980 current->comm, bprm->filename); 1981 if (retval < 0) 1982 goto out_free; 1983 bprm->argc = retval; 1984 1985 retval = count(envp, MAX_ARG_STRINGS); 1986 if (retval < 0) 1987 goto out_free; 1988 bprm->envc = retval; 1989 1990 retval = bprm_stack_limits(bprm); 1991 if (retval < 0) 1992 goto out_free; 1993 1994 retval = copy_string_kernel(bprm->filename, bprm); 1995 if (retval < 0) 1996 goto out_free; 1997 bprm->exec = bprm->p; 1998 1999 retval = copy_strings(bprm->envc, envp, bprm); 2000 if (retval < 0) 2001 goto out_free; 2002 2003 retval = copy_strings(bprm->argc, argv, bprm); 2004 if (retval < 0) 2005 goto out_free; 2006 2007 /* 2008 * When argv is empty, add an empty string ("") as argv[0] to 2009 * ensure confused userspace programs that start processing 2010 * from argv[1] won't end up walking envp. See also 2011 * bprm_stack_limits(). 2012 */ 2013 if (bprm->argc == 0) { 2014 retval = copy_string_kernel("", bprm); 2015 if (retval < 0) 2016 goto out_free; 2017 bprm->argc = 1; 2018 } 2019 2020 retval = bprm_execve(bprm); 2021 out_free: 2022 free_bprm(bprm); 2023 2024 out_ret: 2025 putname(filename); 2026 return retval; 2027 } 2028 2029 int kernel_execve(const char *kernel_filename, 2030 const char *const *argv, const char *const *envp) 2031 { 2032 struct filename *filename; 2033 struct linux_binprm *bprm; 2034 int fd = AT_FDCWD; 2035 int retval; 2036 2037 /* It is non-sense for kernel threads to call execve */ 2038 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 2039 return -EINVAL; 2040 2041 filename = getname_kernel(kernel_filename); 2042 if (IS_ERR(filename)) 2043 return PTR_ERR(filename); 2044 2045 bprm = alloc_bprm(fd, filename, 0); 2046 if (IS_ERR(bprm)) { 2047 retval = PTR_ERR(bprm); 2048 goto out_ret; 2049 } 2050 2051 retval = count_strings_kernel(argv); 2052 if (WARN_ON_ONCE(retval == 0)) 2053 retval = -EINVAL; 2054 if (retval < 0) 2055 goto out_free; 2056 bprm->argc = retval; 2057 2058 retval = count_strings_kernel(envp); 2059 if (retval < 0) 2060 goto out_free; 2061 bprm->envc = retval; 2062 2063 retval = bprm_stack_limits(bprm); 2064 if (retval < 0) 2065 goto out_free; 2066 2067 retval = copy_string_kernel(bprm->filename, bprm); 2068 if (retval < 0) 2069 goto out_free; 2070 bprm->exec = bprm->p; 2071 2072 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2073 if (retval < 0) 2074 goto out_free; 2075 2076 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2077 if (retval < 0) 2078 goto out_free; 2079 2080 retval = bprm_execve(bprm); 2081 out_free: 2082 free_bprm(bprm); 2083 out_ret: 2084 putname(filename); 2085 return retval; 2086 } 2087 2088 static int do_execve(struct filename *filename, 2089 const char __user *const __user *__argv, 2090 const char __user *const __user *__envp) 2091 { 2092 struct user_arg_ptr argv = { .ptr.native = __argv }; 2093 struct user_arg_ptr envp = { .ptr.native = __envp }; 2094 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2095 } 2096 2097 static int do_execveat(int fd, struct filename *filename, 2098 const char __user *const __user *__argv, 2099 const char __user *const __user *__envp, 2100 int flags) 2101 { 2102 struct user_arg_ptr argv = { .ptr.native = __argv }; 2103 struct user_arg_ptr envp = { .ptr.native = __envp }; 2104 2105 return do_execveat_common(fd, filename, argv, envp, flags); 2106 } 2107 2108 #ifdef CONFIG_COMPAT 2109 static int compat_do_execve(struct filename *filename, 2110 const compat_uptr_t __user *__argv, 2111 const compat_uptr_t __user *__envp) 2112 { 2113 struct user_arg_ptr argv = { 2114 .is_compat = true, 2115 .ptr.compat = __argv, 2116 }; 2117 struct user_arg_ptr envp = { 2118 .is_compat = true, 2119 .ptr.compat = __envp, 2120 }; 2121 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2122 } 2123 2124 static int compat_do_execveat(int fd, struct filename *filename, 2125 const compat_uptr_t __user *__argv, 2126 const compat_uptr_t __user *__envp, 2127 int flags) 2128 { 2129 struct user_arg_ptr argv = { 2130 .is_compat = true, 2131 .ptr.compat = __argv, 2132 }; 2133 struct user_arg_ptr envp = { 2134 .is_compat = true, 2135 .ptr.compat = __envp, 2136 }; 2137 return do_execveat_common(fd, filename, argv, envp, flags); 2138 } 2139 #endif 2140 2141 void set_binfmt(struct linux_binfmt *new) 2142 { 2143 struct mm_struct *mm = current->mm; 2144 2145 if (mm->binfmt) 2146 module_put(mm->binfmt->module); 2147 2148 mm->binfmt = new; 2149 if (new) 2150 __module_get(new->module); 2151 } 2152 EXPORT_SYMBOL(set_binfmt); 2153 2154 /* 2155 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2156 */ 2157 void set_dumpable(struct mm_struct *mm, int value) 2158 { 2159 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2160 return; 2161 2162 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2163 } 2164 2165 SYSCALL_DEFINE3(execve, 2166 const char __user *, filename, 2167 const char __user *const __user *, argv, 2168 const char __user *const __user *, envp) 2169 { 2170 return do_execve(getname(filename), argv, envp); 2171 } 2172 2173 SYSCALL_DEFINE5(execveat, 2174 int, fd, const char __user *, filename, 2175 const char __user *const __user *, argv, 2176 const char __user *const __user *, envp, 2177 int, flags) 2178 { 2179 return do_execveat(fd, 2180 getname_uflags(filename, flags), 2181 argv, envp, flags); 2182 } 2183 2184 #ifdef CONFIG_COMPAT 2185 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2186 const compat_uptr_t __user *, argv, 2187 const compat_uptr_t __user *, envp) 2188 { 2189 return compat_do_execve(getname(filename), argv, envp); 2190 } 2191 2192 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2193 const char __user *, filename, 2194 const compat_uptr_t __user *, argv, 2195 const compat_uptr_t __user *, envp, 2196 int, flags) 2197 { 2198 return compat_do_execveat(fd, 2199 getname_uflags(filename, flags), 2200 argv, envp, flags); 2201 } 2202 #endif 2203 2204 #ifdef CONFIG_SYSCTL 2205 2206 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write, 2207 void *buffer, size_t *lenp, loff_t *ppos) 2208 { 2209 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2210 2211 if (!error) 2212 validate_coredump_safety(); 2213 return error; 2214 } 2215 2216 static struct ctl_table fs_exec_sysctls[] = { 2217 { 2218 .procname = "suid_dumpable", 2219 .data = &suid_dumpable, 2220 .maxlen = sizeof(int), 2221 .mode = 0644, 2222 .proc_handler = proc_dointvec_minmax_coredump, 2223 .extra1 = SYSCTL_ZERO, 2224 .extra2 = SYSCTL_TWO, 2225 }, 2226 }; 2227 2228 static int __init init_fs_exec_sysctls(void) 2229 { 2230 register_sysctl_init("fs", fs_exec_sysctls); 2231 return 0; 2232 } 2233 2234 fs_initcall(init_fs_exec_sysctls); 2235 #endif /* CONFIG_SYSCTL */ 2236 2237 #ifdef CONFIG_EXEC_KUNIT_TEST 2238 #include "tests/exec_kunit.c" 2239 #endif 2240