xref: /linux/fs/exec.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
71 
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/tlb.h>
75 
76 #include <trace/events/task.h>
77 #include "internal.h"
78 
79 #include <trace/events/sched.h>
80 
81 static int bprm_creds_from_file(struct linux_binprm *bprm);
82 
83 int suid_dumpable = 0;
84 
85 static LIST_HEAD(formats);
86 static DEFINE_RWLOCK(binfmt_lock);
87 
88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
89 {
90 	write_lock(&binfmt_lock);
91 	insert ? list_add(&fmt->lh, &formats) :
92 		 list_add_tail(&fmt->lh, &formats);
93 	write_unlock(&binfmt_lock);
94 }
95 
96 EXPORT_SYMBOL(__register_binfmt);
97 
98 void unregister_binfmt(struct linux_binfmt * fmt)
99 {
100 	write_lock(&binfmt_lock);
101 	list_del(&fmt->lh);
102 	write_unlock(&binfmt_lock);
103 }
104 
105 EXPORT_SYMBOL(unregister_binfmt);
106 
107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109 	module_put(fmt->module);
110 }
111 
112 bool path_noexec(const struct path *path)
113 {
114 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117 
118 #ifdef CONFIG_USELIB
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from the file itself.
124  */
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 	struct linux_binfmt *fmt;
128 	struct file *file;
129 	struct filename *tmp = getname(library);
130 	int error = PTR_ERR(tmp);
131 	static const struct open_flags uselib_flags = {
132 		.open_flag = O_LARGEFILE | O_RDONLY,
133 		.acc_mode = MAY_READ | MAY_EXEC,
134 		.intent = LOOKUP_OPEN,
135 		.lookup_flags = LOOKUP_FOLLOW,
136 	};
137 
138 	if (IS_ERR(tmp))
139 		goto out;
140 
141 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 	putname(tmp);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	/*
148 	 * Check do_open_execat() for an explanation.
149 	 */
150 	error = -EACCES;
151 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
152 	    path_noexec(&file->f_path))
153 		goto exit;
154 
155 	error = -ENOEXEC;
156 
157 	read_lock(&binfmt_lock);
158 	list_for_each_entry(fmt, &formats, lh) {
159 		if (!fmt->load_shlib)
160 			continue;
161 		if (!try_module_get(fmt->module))
162 			continue;
163 		read_unlock(&binfmt_lock);
164 		error = fmt->load_shlib(file);
165 		read_lock(&binfmt_lock);
166 		put_binfmt(fmt);
167 		if (error != -ENOEXEC)
168 			break;
169 	}
170 	read_unlock(&binfmt_lock);
171 exit:
172 	fput(file);
173 out:
174 	return error;
175 }
176 #endif /* #ifdef CONFIG_USELIB */
177 
178 #ifdef CONFIG_MMU
179 /*
180  * The nascent bprm->mm is not visible until exec_mmap() but it can
181  * use a lot of memory, account these pages in current->mm temporary
182  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183  * change the counter back via acct_arg_size(0).
184  */
185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
186 {
187 	struct mm_struct *mm = current->mm;
188 	long diff = (long)(pages - bprm->vma_pages);
189 
190 	if (!mm || !diff)
191 		return;
192 
193 	bprm->vma_pages = pages;
194 	add_mm_counter(mm, MM_ANONPAGES, diff);
195 }
196 
197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
198 		int write)
199 {
200 	struct page *page;
201 	struct vm_area_struct *vma = bprm->vma;
202 	struct mm_struct *mm = bprm->mm;
203 	int ret;
204 
205 	/*
206 	 * Avoid relying on expanding the stack down in GUP (which
207 	 * does not work for STACK_GROWSUP anyway), and just do it
208 	 * by hand ahead of time.
209 	 */
210 	if (write && pos < vma->vm_start) {
211 		mmap_write_lock(mm);
212 		ret = expand_downwards(vma, pos);
213 		if (unlikely(ret < 0)) {
214 			mmap_write_unlock(mm);
215 			return NULL;
216 		}
217 		mmap_write_downgrade(mm);
218 	} else
219 		mmap_read_lock(mm);
220 
221 	/*
222 	 * We are doing an exec().  'current' is the process
223 	 * doing the exec and 'mm' is the new process's mm.
224 	 */
225 	ret = get_user_pages_remote(mm, pos, 1,
226 			write ? FOLL_WRITE : 0,
227 			&page, NULL);
228 	mmap_read_unlock(mm);
229 	if (ret <= 0)
230 		return NULL;
231 
232 	if (write)
233 		acct_arg_size(bprm, vma_pages(vma));
234 
235 	return page;
236 }
237 
238 static void put_arg_page(struct page *page)
239 {
240 	put_page(page);
241 }
242 
243 static void free_arg_pages(struct linux_binprm *bprm)
244 {
245 }
246 
247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248 		struct page *page)
249 {
250 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
251 }
252 
253 static int __bprm_mm_init(struct linux_binprm *bprm)
254 {
255 	int err;
256 	struct vm_area_struct *vma = NULL;
257 	struct mm_struct *mm = bprm->mm;
258 
259 	bprm->vma = vma = vm_area_alloc(mm);
260 	if (!vma)
261 		return -ENOMEM;
262 	vma_set_anonymous(vma);
263 
264 	if (mmap_write_lock_killable(mm)) {
265 		err = -EINTR;
266 		goto err_free;
267 	}
268 
269 	/*
270 	 * Need to be called with mmap write lock
271 	 * held, to avoid race with ksmd.
272 	 */
273 	err = ksm_execve(mm);
274 	if (err)
275 		goto err_ksm;
276 
277 	/*
278 	 * Place the stack at the largest stack address the architecture
279 	 * supports. Later, we'll move this to an appropriate place. We don't
280 	 * use STACK_TOP because that can depend on attributes which aren't
281 	 * configured yet.
282 	 */
283 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
284 	vma->vm_end = STACK_TOP_MAX;
285 	vma->vm_start = vma->vm_end - PAGE_SIZE;
286 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
287 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
288 
289 	err = insert_vm_struct(mm, vma);
290 	if (err)
291 		goto err;
292 
293 	mm->stack_vm = mm->total_vm = 1;
294 	mmap_write_unlock(mm);
295 	bprm->p = vma->vm_end - sizeof(void *);
296 	return 0;
297 err:
298 	ksm_exit(mm);
299 err_ksm:
300 	mmap_write_unlock(mm);
301 err_free:
302 	bprm->vma = NULL;
303 	vm_area_free(vma);
304 	return err;
305 }
306 
307 static bool valid_arg_len(struct linux_binprm *bprm, long len)
308 {
309 	return len <= MAX_ARG_STRLEN;
310 }
311 
312 #else
313 
314 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
315 {
316 }
317 
318 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
319 		int write)
320 {
321 	struct page *page;
322 
323 	page = bprm->page[pos / PAGE_SIZE];
324 	if (!page && write) {
325 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
326 		if (!page)
327 			return NULL;
328 		bprm->page[pos / PAGE_SIZE] = page;
329 	}
330 
331 	return page;
332 }
333 
334 static void put_arg_page(struct page *page)
335 {
336 }
337 
338 static void free_arg_page(struct linux_binprm *bprm, int i)
339 {
340 	if (bprm->page[i]) {
341 		__free_page(bprm->page[i]);
342 		bprm->page[i] = NULL;
343 	}
344 }
345 
346 static void free_arg_pages(struct linux_binprm *bprm)
347 {
348 	int i;
349 
350 	for (i = 0; i < MAX_ARG_PAGES; i++)
351 		free_arg_page(bprm, i);
352 }
353 
354 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
355 		struct page *page)
356 {
357 }
358 
359 static int __bprm_mm_init(struct linux_binprm *bprm)
360 {
361 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
362 	return 0;
363 }
364 
365 static bool valid_arg_len(struct linux_binprm *bprm, long len)
366 {
367 	return len <= bprm->p;
368 }
369 
370 #endif /* CONFIG_MMU */
371 
372 /*
373  * Create a new mm_struct and populate it with a temporary stack
374  * vm_area_struct.  We don't have enough context at this point to set the stack
375  * flags, permissions, and offset, so we use temporary values.  We'll update
376  * them later in setup_arg_pages().
377  */
378 static int bprm_mm_init(struct linux_binprm *bprm)
379 {
380 	int err;
381 	struct mm_struct *mm = NULL;
382 
383 	bprm->mm = mm = mm_alloc();
384 	err = -ENOMEM;
385 	if (!mm)
386 		goto err;
387 
388 	/* Save current stack limit for all calculations made during exec. */
389 	task_lock(current->group_leader);
390 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
391 	task_unlock(current->group_leader);
392 
393 	err = __bprm_mm_init(bprm);
394 	if (err)
395 		goto err;
396 
397 	return 0;
398 
399 err:
400 	if (mm) {
401 		bprm->mm = NULL;
402 		mmdrop(mm);
403 	}
404 
405 	return err;
406 }
407 
408 struct user_arg_ptr {
409 #ifdef CONFIG_COMPAT
410 	bool is_compat;
411 #endif
412 	union {
413 		const char __user *const __user *native;
414 #ifdef CONFIG_COMPAT
415 		const compat_uptr_t __user *compat;
416 #endif
417 	} ptr;
418 };
419 
420 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
421 {
422 	const char __user *native;
423 
424 #ifdef CONFIG_COMPAT
425 	if (unlikely(argv.is_compat)) {
426 		compat_uptr_t compat;
427 
428 		if (get_user(compat, argv.ptr.compat + nr))
429 			return ERR_PTR(-EFAULT);
430 
431 		return compat_ptr(compat);
432 	}
433 #endif
434 
435 	if (get_user(native, argv.ptr.native + nr))
436 		return ERR_PTR(-EFAULT);
437 
438 	return native;
439 }
440 
441 /*
442  * count() counts the number of strings in array ARGV.
443  */
444 static int count(struct user_arg_ptr argv, int max)
445 {
446 	int i = 0;
447 
448 	if (argv.ptr.native != NULL) {
449 		for (;;) {
450 			const char __user *p = get_user_arg_ptr(argv, i);
451 
452 			if (!p)
453 				break;
454 
455 			if (IS_ERR(p))
456 				return -EFAULT;
457 
458 			if (i >= max)
459 				return -E2BIG;
460 			++i;
461 
462 			if (fatal_signal_pending(current))
463 				return -ERESTARTNOHAND;
464 			cond_resched();
465 		}
466 	}
467 	return i;
468 }
469 
470 static int count_strings_kernel(const char *const *argv)
471 {
472 	int i;
473 
474 	if (!argv)
475 		return 0;
476 
477 	for (i = 0; argv[i]; ++i) {
478 		if (i >= MAX_ARG_STRINGS)
479 			return -E2BIG;
480 		if (fatal_signal_pending(current))
481 			return -ERESTARTNOHAND;
482 		cond_resched();
483 	}
484 	return i;
485 }
486 
487 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
488 				       unsigned long limit)
489 {
490 #ifdef CONFIG_MMU
491 	/* Avoid a pathological bprm->p. */
492 	if (bprm->p < limit)
493 		return -E2BIG;
494 	bprm->argmin = bprm->p - limit;
495 #endif
496 	return 0;
497 }
498 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
499 {
500 #ifdef CONFIG_MMU
501 	return bprm->p < bprm->argmin;
502 #else
503 	return false;
504 #endif
505 }
506 
507 /*
508  * Calculate bprm->argmin from:
509  * - _STK_LIM
510  * - ARG_MAX
511  * - bprm->rlim_stack.rlim_cur
512  * - bprm->argc
513  * - bprm->envc
514  * - bprm->p
515  */
516 static int bprm_stack_limits(struct linux_binprm *bprm)
517 {
518 	unsigned long limit, ptr_size;
519 
520 	/*
521 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
522 	 * (whichever is smaller) for the argv+env strings.
523 	 * This ensures that:
524 	 *  - the remaining binfmt code will not run out of stack space,
525 	 *  - the program will have a reasonable amount of stack left
526 	 *    to work from.
527 	 */
528 	limit = _STK_LIM / 4 * 3;
529 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
530 	/*
531 	 * We've historically supported up to 32 pages (ARG_MAX)
532 	 * of argument strings even with small stacks
533 	 */
534 	limit = max_t(unsigned long, limit, ARG_MAX);
535 	/* Reject totally pathological counts. */
536 	if (bprm->argc < 0 || bprm->envc < 0)
537 		return -E2BIG;
538 	/*
539 	 * We must account for the size of all the argv and envp pointers to
540 	 * the argv and envp strings, since they will also take up space in
541 	 * the stack. They aren't stored until much later when we can't
542 	 * signal to the parent that the child has run out of stack space.
543 	 * Instead, calculate it here so it's possible to fail gracefully.
544 	 *
545 	 * In the case of argc = 0, make sure there is space for adding a
546 	 * empty string (which will bump argc to 1), to ensure confused
547 	 * userspace programs don't start processing from argv[1], thinking
548 	 * argc can never be 0, to keep them from walking envp by accident.
549 	 * See do_execveat_common().
550 	 */
551 	if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
552 	    check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
553 		return -E2BIG;
554 	if (limit <= ptr_size)
555 		return -E2BIG;
556 	limit -= ptr_size;
557 
558 	return bprm_set_stack_limit(bprm, limit);
559 }
560 
561 /*
562  * 'copy_strings()' copies argument/environment strings from the old
563  * processes's memory to the new process's stack.  The call to get_user_pages()
564  * ensures the destination page is created and not swapped out.
565  */
566 static int copy_strings(int argc, struct user_arg_ptr argv,
567 			struct linux_binprm *bprm)
568 {
569 	struct page *kmapped_page = NULL;
570 	char *kaddr = NULL;
571 	unsigned long kpos = 0;
572 	int ret;
573 
574 	while (argc-- > 0) {
575 		const char __user *str;
576 		int len;
577 		unsigned long pos;
578 
579 		ret = -EFAULT;
580 		str = get_user_arg_ptr(argv, argc);
581 		if (IS_ERR(str))
582 			goto out;
583 
584 		len = strnlen_user(str, MAX_ARG_STRLEN);
585 		if (!len)
586 			goto out;
587 
588 		ret = -E2BIG;
589 		if (!valid_arg_len(bprm, len))
590 			goto out;
591 
592 		/* We're going to work our way backwards. */
593 		pos = bprm->p;
594 		str += len;
595 		bprm->p -= len;
596 		if (bprm_hit_stack_limit(bprm))
597 			goto out;
598 
599 		while (len > 0) {
600 			int offset, bytes_to_copy;
601 
602 			if (fatal_signal_pending(current)) {
603 				ret = -ERESTARTNOHAND;
604 				goto out;
605 			}
606 			cond_resched();
607 
608 			offset = pos % PAGE_SIZE;
609 			if (offset == 0)
610 				offset = PAGE_SIZE;
611 
612 			bytes_to_copy = offset;
613 			if (bytes_to_copy > len)
614 				bytes_to_copy = len;
615 
616 			offset -= bytes_to_copy;
617 			pos -= bytes_to_copy;
618 			str -= bytes_to_copy;
619 			len -= bytes_to_copy;
620 
621 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
622 				struct page *page;
623 
624 				page = get_arg_page(bprm, pos, 1);
625 				if (!page) {
626 					ret = -E2BIG;
627 					goto out;
628 				}
629 
630 				if (kmapped_page) {
631 					flush_dcache_page(kmapped_page);
632 					kunmap_local(kaddr);
633 					put_arg_page(kmapped_page);
634 				}
635 				kmapped_page = page;
636 				kaddr = kmap_local_page(kmapped_page);
637 				kpos = pos & PAGE_MASK;
638 				flush_arg_page(bprm, kpos, kmapped_page);
639 			}
640 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
641 				ret = -EFAULT;
642 				goto out;
643 			}
644 		}
645 	}
646 	ret = 0;
647 out:
648 	if (kmapped_page) {
649 		flush_dcache_page(kmapped_page);
650 		kunmap_local(kaddr);
651 		put_arg_page(kmapped_page);
652 	}
653 	return ret;
654 }
655 
656 /*
657  * Copy and argument/environment string from the kernel to the processes stack.
658  */
659 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
660 {
661 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
662 	unsigned long pos = bprm->p;
663 
664 	if (len == 0)
665 		return -EFAULT;
666 	if (!valid_arg_len(bprm, len))
667 		return -E2BIG;
668 
669 	/* We're going to work our way backwards. */
670 	arg += len;
671 	bprm->p -= len;
672 	if (bprm_hit_stack_limit(bprm))
673 		return -E2BIG;
674 
675 	while (len > 0) {
676 		unsigned int bytes_to_copy = min_t(unsigned int, len,
677 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
678 		struct page *page;
679 
680 		pos -= bytes_to_copy;
681 		arg -= bytes_to_copy;
682 		len -= bytes_to_copy;
683 
684 		page = get_arg_page(bprm, pos, 1);
685 		if (!page)
686 			return -E2BIG;
687 		flush_arg_page(bprm, pos & PAGE_MASK, page);
688 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
689 		put_arg_page(page);
690 	}
691 
692 	return 0;
693 }
694 EXPORT_SYMBOL(copy_string_kernel);
695 
696 static int copy_strings_kernel(int argc, const char *const *argv,
697 			       struct linux_binprm *bprm)
698 {
699 	while (argc-- > 0) {
700 		int ret = copy_string_kernel(argv[argc], bprm);
701 		if (ret < 0)
702 			return ret;
703 		if (fatal_signal_pending(current))
704 			return -ERESTARTNOHAND;
705 		cond_resched();
706 	}
707 	return 0;
708 }
709 
710 #ifdef CONFIG_MMU
711 
712 /*
713  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
714  * the binfmt code determines where the new stack should reside, we shift it to
715  * its final location.  The process proceeds as follows:
716  *
717  * 1) Use shift to calculate the new vma endpoints.
718  * 2) Extend vma to cover both the old and new ranges.  This ensures the
719  *    arguments passed to subsequent functions are consistent.
720  * 3) Move vma's page tables to the new range.
721  * 4) Free up any cleared pgd range.
722  * 5) Shrink the vma to cover only the new range.
723  */
724 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
725 {
726 	struct mm_struct *mm = vma->vm_mm;
727 	unsigned long old_start = vma->vm_start;
728 	unsigned long old_end = vma->vm_end;
729 	unsigned long length = old_end - old_start;
730 	unsigned long new_start = old_start - shift;
731 	unsigned long new_end = old_end - shift;
732 	VMA_ITERATOR(vmi, mm, new_start);
733 	struct vm_area_struct *next;
734 	struct mmu_gather tlb;
735 
736 	BUG_ON(new_start > new_end);
737 
738 	/*
739 	 * ensure there are no vmas between where we want to go
740 	 * and where we are
741 	 */
742 	if (vma != vma_next(&vmi))
743 		return -EFAULT;
744 
745 	vma_iter_prev_range(&vmi);
746 	/*
747 	 * cover the whole range: [new_start, old_end)
748 	 */
749 	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
750 		return -ENOMEM;
751 
752 	/*
753 	 * move the page tables downwards, on failure we rely on
754 	 * process cleanup to remove whatever mess we made.
755 	 */
756 	if (length != move_page_tables(vma, old_start,
757 				       vma, new_start, length, false, true))
758 		return -ENOMEM;
759 
760 	lru_add_drain();
761 	tlb_gather_mmu(&tlb, mm);
762 	next = vma_next(&vmi);
763 	if (new_end > old_start) {
764 		/*
765 		 * when the old and new regions overlap clear from new_end.
766 		 */
767 		free_pgd_range(&tlb, new_end, old_end, new_end,
768 			next ? next->vm_start : USER_PGTABLES_CEILING);
769 	} else {
770 		/*
771 		 * otherwise, clean from old_start; this is done to not touch
772 		 * the address space in [new_end, old_start) some architectures
773 		 * have constraints on va-space that make this illegal (IA64) -
774 		 * for the others its just a little faster.
775 		 */
776 		free_pgd_range(&tlb, old_start, old_end, new_end,
777 			next ? next->vm_start : USER_PGTABLES_CEILING);
778 	}
779 	tlb_finish_mmu(&tlb);
780 
781 	vma_prev(&vmi);
782 	/* Shrink the vma to just the new range */
783 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
784 }
785 
786 /*
787  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
788  * the stack is optionally relocated, and some extra space is added.
789  */
790 int setup_arg_pages(struct linux_binprm *bprm,
791 		    unsigned long stack_top,
792 		    int executable_stack)
793 {
794 	unsigned long ret;
795 	unsigned long stack_shift;
796 	struct mm_struct *mm = current->mm;
797 	struct vm_area_struct *vma = bprm->vma;
798 	struct vm_area_struct *prev = NULL;
799 	unsigned long vm_flags;
800 	unsigned long stack_base;
801 	unsigned long stack_size;
802 	unsigned long stack_expand;
803 	unsigned long rlim_stack;
804 	struct mmu_gather tlb;
805 	struct vma_iterator vmi;
806 
807 #ifdef CONFIG_STACK_GROWSUP
808 	/* Limit stack size */
809 	stack_base = bprm->rlim_stack.rlim_max;
810 
811 	stack_base = calc_max_stack_size(stack_base);
812 
813 	/* Add space for stack randomization. */
814 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
815 
816 	/* Make sure we didn't let the argument array grow too large. */
817 	if (vma->vm_end - vma->vm_start > stack_base)
818 		return -ENOMEM;
819 
820 	stack_base = PAGE_ALIGN(stack_top - stack_base);
821 
822 	stack_shift = vma->vm_start - stack_base;
823 	mm->arg_start = bprm->p - stack_shift;
824 	bprm->p = vma->vm_end - stack_shift;
825 #else
826 	stack_top = arch_align_stack(stack_top);
827 	stack_top = PAGE_ALIGN(stack_top);
828 
829 	if (unlikely(stack_top < mmap_min_addr) ||
830 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
831 		return -ENOMEM;
832 
833 	stack_shift = vma->vm_end - stack_top;
834 
835 	bprm->p -= stack_shift;
836 	mm->arg_start = bprm->p;
837 #endif
838 
839 	if (bprm->loader)
840 		bprm->loader -= stack_shift;
841 	bprm->exec -= stack_shift;
842 
843 	if (mmap_write_lock_killable(mm))
844 		return -EINTR;
845 
846 	vm_flags = VM_STACK_FLAGS;
847 
848 	/*
849 	 * Adjust stack execute permissions; explicitly enable for
850 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
851 	 * (arch default) otherwise.
852 	 */
853 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
854 		vm_flags |= VM_EXEC;
855 	else if (executable_stack == EXSTACK_DISABLE_X)
856 		vm_flags &= ~VM_EXEC;
857 	vm_flags |= mm->def_flags;
858 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
859 
860 	vma_iter_init(&vmi, mm, vma->vm_start);
861 
862 	tlb_gather_mmu(&tlb, mm);
863 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
864 			vm_flags);
865 	tlb_finish_mmu(&tlb);
866 
867 	if (ret)
868 		goto out_unlock;
869 	BUG_ON(prev != vma);
870 
871 	if (unlikely(vm_flags & VM_EXEC)) {
872 		pr_warn_once("process '%pD4' started with executable stack\n",
873 			     bprm->file);
874 	}
875 
876 	/* Move stack pages down in memory. */
877 	if (stack_shift) {
878 		ret = shift_arg_pages(vma, stack_shift);
879 		if (ret)
880 			goto out_unlock;
881 	}
882 
883 	/* mprotect_fixup is overkill to remove the temporary stack flags */
884 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
885 
886 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
887 	stack_size = vma->vm_end - vma->vm_start;
888 	/*
889 	 * Align this down to a page boundary as expand_stack
890 	 * will align it up.
891 	 */
892 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
893 
894 	stack_expand = min(rlim_stack, stack_size + stack_expand);
895 
896 #ifdef CONFIG_STACK_GROWSUP
897 	stack_base = vma->vm_start + stack_expand;
898 #else
899 	stack_base = vma->vm_end - stack_expand;
900 #endif
901 	current->mm->start_stack = bprm->p;
902 	ret = expand_stack_locked(vma, stack_base);
903 	if (ret)
904 		ret = -EFAULT;
905 
906 out_unlock:
907 	mmap_write_unlock(mm);
908 	return ret;
909 }
910 EXPORT_SYMBOL(setup_arg_pages);
911 
912 #else
913 
914 /*
915  * Transfer the program arguments and environment from the holding pages
916  * onto the stack. The provided stack pointer is adjusted accordingly.
917  */
918 int transfer_args_to_stack(struct linux_binprm *bprm,
919 			   unsigned long *sp_location)
920 {
921 	unsigned long index, stop, sp;
922 	int ret = 0;
923 
924 	stop = bprm->p >> PAGE_SHIFT;
925 	sp = *sp_location;
926 
927 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
928 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
929 		char *src = kmap_local_page(bprm->page[index]) + offset;
930 		sp -= PAGE_SIZE - offset;
931 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
932 			ret = -EFAULT;
933 		kunmap_local(src);
934 		if (ret)
935 			goto out;
936 	}
937 
938 	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
939 	*sp_location = sp;
940 
941 out:
942 	return ret;
943 }
944 EXPORT_SYMBOL(transfer_args_to_stack);
945 
946 #endif /* CONFIG_MMU */
947 
948 /*
949  * On success, caller must call do_close_execat() on the returned
950  * struct file to close it.
951  */
952 static struct file *do_open_execat(int fd, struct filename *name, int flags)
953 {
954 	struct file *file;
955 	struct open_flags open_exec_flags = {
956 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
957 		.acc_mode = MAY_EXEC,
958 		.intent = LOOKUP_OPEN,
959 		.lookup_flags = LOOKUP_FOLLOW,
960 	};
961 
962 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
963 		return ERR_PTR(-EINVAL);
964 	if (flags & AT_SYMLINK_NOFOLLOW)
965 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
966 	if (flags & AT_EMPTY_PATH)
967 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
968 
969 	file = do_filp_open(fd, name, &open_exec_flags);
970 	if (IS_ERR(file))
971 		return file;
972 
973 	/*
974 	 * In the past the regular type check was here. It moved to may_open() in
975 	 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
976 	 * an invariant that all non-regular files error out before we get here.
977 	 */
978 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
979 	    path_noexec(&file->f_path)) {
980 		fput(file);
981 		return ERR_PTR(-EACCES);
982 	}
983 
984 	return file;
985 }
986 
987 /**
988  * open_exec - Open a path name for execution
989  *
990  * @name: path name to open with the intent of executing it.
991  *
992  * Returns ERR_PTR on failure or allocated struct file on success.
993  *
994  * As this is a wrapper for the internal do_open_execat(). Also see
995  * do_close_execat().
996  */
997 struct file *open_exec(const char *name)
998 {
999 	struct filename *filename = getname_kernel(name);
1000 	struct file *f = ERR_CAST(filename);
1001 
1002 	if (!IS_ERR(filename)) {
1003 		f = do_open_execat(AT_FDCWD, filename, 0);
1004 		putname(filename);
1005 	}
1006 	return f;
1007 }
1008 EXPORT_SYMBOL(open_exec);
1009 
1010 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
1011 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1012 {
1013 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1014 	if (res > 0)
1015 		flush_icache_user_range(addr, addr + len);
1016 	return res;
1017 }
1018 EXPORT_SYMBOL(read_code);
1019 #endif
1020 
1021 /*
1022  * Maps the mm_struct mm into the current task struct.
1023  * On success, this function returns with exec_update_lock
1024  * held for writing.
1025  */
1026 static int exec_mmap(struct mm_struct *mm)
1027 {
1028 	struct task_struct *tsk;
1029 	struct mm_struct *old_mm, *active_mm;
1030 	int ret;
1031 
1032 	/* Notify parent that we're no longer interested in the old VM */
1033 	tsk = current;
1034 	old_mm = current->mm;
1035 	exec_mm_release(tsk, old_mm);
1036 
1037 	ret = down_write_killable(&tsk->signal->exec_update_lock);
1038 	if (ret)
1039 		return ret;
1040 
1041 	if (old_mm) {
1042 		/*
1043 		 * If there is a pending fatal signal perhaps a signal
1044 		 * whose default action is to create a coredump get
1045 		 * out and die instead of going through with the exec.
1046 		 */
1047 		ret = mmap_read_lock_killable(old_mm);
1048 		if (ret) {
1049 			up_write(&tsk->signal->exec_update_lock);
1050 			return ret;
1051 		}
1052 	}
1053 
1054 	task_lock(tsk);
1055 	membarrier_exec_mmap(mm);
1056 
1057 	local_irq_disable();
1058 	active_mm = tsk->active_mm;
1059 	tsk->active_mm = mm;
1060 	tsk->mm = mm;
1061 	mm_init_cid(mm);
1062 	/*
1063 	 * This prevents preemption while active_mm is being loaded and
1064 	 * it and mm are being updated, which could cause problems for
1065 	 * lazy tlb mm refcounting when these are updated by context
1066 	 * switches. Not all architectures can handle irqs off over
1067 	 * activate_mm yet.
1068 	 */
1069 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1070 		local_irq_enable();
1071 	activate_mm(active_mm, mm);
1072 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1073 		local_irq_enable();
1074 	lru_gen_add_mm(mm);
1075 	task_unlock(tsk);
1076 	lru_gen_use_mm(mm);
1077 	if (old_mm) {
1078 		mmap_read_unlock(old_mm);
1079 		BUG_ON(active_mm != old_mm);
1080 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1081 		mm_update_next_owner(old_mm);
1082 		mmput(old_mm);
1083 		return 0;
1084 	}
1085 	mmdrop_lazy_tlb(active_mm);
1086 	return 0;
1087 }
1088 
1089 static int de_thread(struct task_struct *tsk)
1090 {
1091 	struct signal_struct *sig = tsk->signal;
1092 	struct sighand_struct *oldsighand = tsk->sighand;
1093 	spinlock_t *lock = &oldsighand->siglock;
1094 
1095 	if (thread_group_empty(tsk))
1096 		goto no_thread_group;
1097 
1098 	/*
1099 	 * Kill all other threads in the thread group.
1100 	 */
1101 	spin_lock_irq(lock);
1102 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1103 		/*
1104 		 * Another group action in progress, just
1105 		 * return so that the signal is processed.
1106 		 */
1107 		spin_unlock_irq(lock);
1108 		return -EAGAIN;
1109 	}
1110 
1111 	sig->group_exec_task = tsk;
1112 	sig->notify_count = zap_other_threads(tsk);
1113 	if (!thread_group_leader(tsk))
1114 		sig->notify_count--;
1115 
1116 	while (sig->notify_count) {
1117 		__set_current_state(TASK_KILLABLE);
1118 		spin_unlock_irq(lock);
1119 		schedule();
1120 		if (__fatal_signal_pending(tsk))
1121 			goto killed;
1122 		spin_lock_irq(lock);
1123 	}
1124 	spin_unlock_irq(lock);
1125 
1126 	/*
1127 	 * At this point all other threads have exited, all we have to
1128 	 * do is to wait for the thread group leader to become inactive,
1129 	 * and to assume its PID:
1130 	 */
1131 	if (!thread_group_leader(tsk)) {
1132 		struct task_struct *leader = tsk->group_leader;
1133 
1134 		for (;;) {
1135 			cgroup_threadgroup_change_begin(tsk);
1136 			write_lock_irq(&tasklist_lock);
1137 			/*
1138 			 * Do this under tasklist_lock to ensure that
1139 			 * exit_notify() can't miss ->group_exec_task
1140 			 */
1141 			sig->notify_count = -1;
1142 			if (likely(leader->exit_state))
1143 				break;
1144 			__set_current_state(TASK_KILLABLE);
1145 			write_unlock_irq(&tasklist_lock);
1146 			cgroup_threadgroup_change_end(tsk);
1147 			schedule();
1148 			if (__fatal_signal_pending(tsk))
1149 				goto killed;
1150 		}
1151 
1152 		/*
1153 		 * The only record we have of the real-time age of a
1154 		 * process, regardless of execs it's done, is start_time.
1155 		 * All the past CPU time is accumulated in signal_struct
1156 		 * from sister threads now dead.  But in this non-leader
1157 		 * exec, nothing survives from the original leader thread,
1158 		 * whose birth marks the true age of this process now.
1159 		 * When we take on its identity by switching to its PID, we
1160 		 * also take its birthdate (always earlier than our own).
1161 		 */
1162 		tsk->start_time = leader->start_time;
1163 		tsk->start_boottime = leader->start_boottime;
1164 
1165 		BUG_ON(!same_thread_group(leader, tsk));
1166 		/*
1167 		 * An exec() starts a new thread group with the
1168 		 * TGID of the previous thread group. Rehash the
1169 		 * two threads with a switched PID, and release
1170 		 * the former thread group leader:
1171 		 */
1172 
1173 		/* Become a process group leader with the old leader's pid.
1174 		 * The old leader becomes a thread of the this thread group.
1175 		 */
1176 		exchange_tids(tsk, leader);
1177 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1178 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1179 		transfer_pid(leader, tsk, PIDTYPE_SID);
1180 
1181 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1182 		list_replace_init(&leader->sibling, &tsk->sibling);
1183 
1184 		tsk->group_leader = tsk;
1185 		leader->group_leader = tsk;
1186 
1187 		tsk->exit_signal = SIGCHLD;
1188 		leader->exit_signal = -1;
1189 
1190 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1191 		leader->exit_state = EXIT_DEAD;
1192 		/*
1193 		 * We are going to release_task()->ptrace_unlink() silently,
1194 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1195 		 * the tracer won't block again waiting for this thread.
1196 		 */
1197 		if (unlikely(leader->ptrace))
1198 			__wake_up_parent(leader, leader->parent);
1199 		write_unlock_irq(&tasklist_lock);
1200 		cgroup_threadgroup_change_end(tsk);
1201 
1202 		release_task(leader);
1203 	}
1204 
1205 	sig->group_exec_task = NULL;
1206 	sig->notify_count = 0;
1207 
1208 no_thread_group:
1209 	/* we have changed execution domain */
1210 	tsk->exit_signal = SIGCHLD;
1211 
1212 	BUG_ON(!thread_group_leader(tsk));
1213 	return 0;
1214 
1215 killed:
1216 	/* protects against exit_notify() and __exit_signal() */
1217 	read_lock(&tasklist_lock);
1218 	sig->group_exec_task = NULL;
1219 	sig->notify_count = 0;
1220 	read_unlock(&tasklist_lock);
1221 	return -EAGAIN;
1222 }
1223 
1224 
1225 /*
1226  * This function makes sure the current process has its own signal table,
1227  * so that flush_signal_handlers can later reset the handlers without
1228  * disturbing other processes.  (Other processes might share the signal
1229  * table via the CLONE_SIGHAND option to clone().)
1230  */
1231 static int unshare_sighand(struct task_struct *me)
1232 {
1233 	struct sighand_struct *oldsighand = me->sighand;
1234 
1235 	if (refcount_read(&oldsighand->count) != 1) {
1236 		struct sighand_struct *newsighand;
1237 		/*
1238 		 * This ->sighand is shared with the CLONE_SIGHAND
1239 		 * but not CLONE_THREAD task, switch to the new one.
1240 		 */
1241 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1242 		if (!newsighand)
1243 			return -ENOMEM;
1244 
1245 		refcount_set(&newsighand->count, 1);
1246 
1247 		write_lock_irq(&tasklist_lock);
1248 		spin_lock(&oldsighand->siglock);
1249 		memcpy(newsighand->action, oldsighand->action,
1250 		       sizeof(newsighand->action));
1251 		rcu_assign_pointer(me->sighand, newsighand);
1252 		spin_unlock(&oldsighand->siglock);
1253 		write_unlock_irq(&tasklist_lock);
1254 
1255 		__cleanup_sighand(oldsighand);
1256 	}
1257 	return 0;
1258 }
1259 
1260 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1261 {
1262 	task_lock(tsk);
1263 	/* Always NUL terminated and zero-padded */
1264 	strscpy_pad(buf, tsk->comm, buf_size);
1265 	task_unlock(tsk);
1266 	return buf;
1267 }
1268 EXPORT_SYMBOL_GPL(__get_task_comm);
1269 
1270 /*
1271  * These functions flushes out all traces of the currently running executable
1272  * so that a new one can be started
1273  */
1274 
1275 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1276 {
1277 	task_lock(tsk);
1278 	trace_task_rename(tsk, buf);
1279 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1280 	task_unlock(tsk);
1281 	perf_event_comm(tsk, exec);
1282 }
1283 
1284 /*
1285  * Calling this is the point of no return. None of the failures will be
1286  * seen by userspace since either the process is already taking a fatal
1287  * signal (via de_thread() or coredump), or will have SEGV raised
1288  * (after exec_mmap()) by search_binary_handler (see below).
1289  */
1290 int begin_new_exec(struct linux_binprm * bprm)
1291 {
1292 	struct task_struct *me = current;
1293 	int retval;
1294 
1295 	/* Once we are committed compute the creds */
1296 	retval = bprm_creds_from_file(bprm);
1297 	if (retval)
1298 		return retval;
1299 
1300 	/*
1301 	 * This tracepoint marks the point before flushing the old exec where
1302 	 * the current task is still unchanged, but errors are fatal (point of
1303 	 * no return). The later "sched_process_exec" tracepoint is called after
1304 	 * the current task has successfully switched to the new exec.
1305 	 */
1306 	trace_sched_prepare_exec(current, bprm);
1307 
1308 	/*
1309 	 * Ensure all future errors are fatal.
1310 	 */
1311 	bprm->point_of_no_return = true;
1312 
1313 	/*
1314 	 * Make this the only thread in the thread group.
1315 	 */
1316 	retval = de_thread(me);
1317 	if (retval)
1318 		goto out;
1319 
1320 	/*
1321 	 * Cancel any io_uring activity across execve
1322 	 */
1323 	io_uring_task_cancel();
1324 
1325 	/* Ensure the files table is not shared. */
1326 	retval = unshare_files();
1327 	if (retval)
1328 		goto out;
1329 
1330 	/*
1331 	 * Must be called _before_ exec_mmap() as bprm->mm is
1332 	 * not visible until then. Doing it here also ensures
1333 	 * we don't race against replace_mm_exe_file().
1334 	 */
1335 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1336 	if (retval)
1337 		goto out;
1338 
1339 	/* If the binary is not readable then enforce mm->dumpable=0 */
1340 	would_dump(bprm, bprm->file);
1341 	if (bprm->have_execfd)
1342 		would_dump(bprm, bprm->executable);
1343 
1344 	/*
1345 	 * Release all of the old mmap stuff
1346 	 */
1347 	acct_arg_size(bprm, 0);
1348 	retval = exec_mmap(bprm->mm);
1349 	if (retval)
1350 		goto out;
1351 
1352 	bprm->mm = NULL;
1353 
1354 	retval = exec_task_namespaces();
1355 	if (retval)
1356 		goto out_unlock;
1357 
1358 #ifdef CONFIG_POSIX_TIMERS
1359 	spin_lock_irq(&me->sighand->siglock);
1360 	posix_cpu_timers_exit(me);
1361 	spin_unlock_irq(&me->sighand->siglock);
1362 	exit_itimers(me);
1363 	flush_itimer_signals();
1364 #endif
1365 
1366 	/*
1367 	 * Make the signal table private.
1368 	 */
1369 	retval = unshare_sighand(me);
1370 	if (retval)
1371 		goto out_unlock;
1372 
1373 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1374 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1375 	flush_thread();
1376 	me->personality &= ~bprm->per_clear;
1377 
1378 	clear_syscall_work_syscall_user_dispatch(me);
1379 
1380 	/*
1381 	 * We have to apply CLOEXEC before we change whether the process is
1382 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1383 	 * trying to access the should-be-closed file descriptors of a process
1384 	 * undergoing exec(2).
1385 	 */
1386 	do_close_on_exec(me->files);
1387 
1388 	if (bprm->secureexec) {
1389 		/* Make sure parent cannot signal privileged process. */
1390 		me->pdeath_signal = 0;
1391 
1392 		/*
1393 		 * For secureexec, reset the stack limit to sane default to
1394 		 * avoid bad behavior from the prior rlimits. This has to
1395 		 * happen before arch_pick_mmap_layout(), which examines
1396 		 * RLIMIT_STACK, but after the point of no return to avoid
1397 		 * needing to clean up the change on failure.
1398 		 */
1399 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1400 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1401 	}
1402 
1403 	me->sas_ss_sp = me->sas_ss_size = 0;
1404 
1405 	/*
1406 	 * Figure out dumpability. Note that this checking only of current
1407 	 * is wrong, but userspace depends on it. This should be testing
1408 	 * bprm->secureexec instead.
1409 	 */
1410 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1411 	    !(uid_eq(current_euid(), current_uid()) &&
1412 	      gid_eq(current_egid(), current_gid())))
1413 		set_dumpable(current->mm, suid_dumpable);
1414 	else
1415 		set_dumpable(current->mm, SUID_DUMP_USER);
1416 
1417 	perf_event_exec();
1418 	__set_task_comm(me, kbasename(bprm->filename), true);
1419 
1420 	/* An exec changes our domain. We are no longer part of the thread
1421 	   group */
1422 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1423 	flush_signal_handlers(me, 0);
1424 
1425 	retval = set_cred_ucounts(bprm->cred);
1426 	if (retval < 0)
1427 		goto out_unlock;
1428 
1429 	/*
1430 	 * install the new credentials for this executable
1431 	 */
1432 	security_bprm_committing_creds(bprm);
1433 
1434 	commit_creds(bprm->cred);
1435 	bprm->cred = NULL;
1436 
1437 	/*
1438 	 * Disable monitoring for regular users
1439 	 * when executing setuid binaries. Must
1440 	 * wait until new credentials are committed
1441 	 * by commit_creds() above
1442 	 */
1443 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1444 		perf_event_exit_task(me);
1445 	/*
1446 	 * cred_guard_mutex must be held at least to this point to prevent
1447 	 * ptrace_attach() from altering our determination of the task's
1448 	 * credentials; any time after this it may be unlocked.
1449 	 */
1450 	security_bprm_committed_creds(bprm);
1451 
1452 	/* Pass the opened binary to the interpreter. */
1453 	if (bprm->have_execfd) {
1454 		retval = get_unused_fd_flags(0);
1455 		if (retval < 0)
1456 			goto out_unlock;
1457 		fd_install(retval, bprm->executable);
1458 		bprm->executable = NULL;
1459 		bprm->execfd = retval;
1460 	}
1461 	return 0;
1462 
1463 out_unlock:
1464 	up_write(&me->signal->exec_update_lock);
1465 	if (!bprm->cred)
1466 		mutex_unlock(&me->signal->cred_guard_mutex);
1467 
1468 out:
1469 	return retval;
1470 }
1471 EXPORT_SYMBOL(begin_new_exec);
1472 
1473 void would_dump(struct linux_binprm *bprm, struct file *file)
1474 {
1475 	struct inode *inode = file_inode(file);
1476 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1477 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1478 		struct user_namespace *old, *user_ns;
1479 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1480 
1481 		/* Ensure mm->user_ns contains the executable */
1482 		user_ns = old = bprm->mm->user_ns;
1483 		while ((user_ns != &init_user_ns) &&
1484 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1485 			user_ns = user_ns->parent;
1486 
1487 		if (old != user_ns) {
1488 			bprm->mm->user_ns = get_user_ns(user_ns);
1489 			put_user_ns(old);
1490 		}
1491 	}
1492 }
1493 EXPORT_SYMBOL(would_dump);
1494 
1495 void setup_new_exec(struct linux_binprm * bprm)
1496 {
1497 	/* Setup things that can depend upon the personality */
1498 	struct task_struct *me = current;
1499 
1500 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1501 
1502 	arch_setup_new_exec();
1503 
1504 	/* Set the new mm task size. We have to do that late because it may
1505 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1506 	 * some architectures like powerpc
1507 	 */
1508 	me->mm->task_size = TASK_SIZE;
1509 	up_write(&me->signal->exec_update_lock);
1510 	mutex_unlock(&me->signal->cred_guard_mutex);
1511 }
1512 EXPORT_SYMBOL(setup_new_exec);
1513 
1514 /* Runs immediately before start_thread() takes over. */
1515 void finalize_exec(struct linux_binprm *bprm)
1516 {
1517 	/* Store any stack rlimit changes before starting thread. */
1518 	task_lock(current->group_leader);
1519 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1520 	task_unlock(current->group_leader);
1521 }
1522 EXPORT_SYMBOL(finalize_exec);
1523 
1524 /*
1525  * Prepare credentials and lock ->cred_guard_mutex.
1526  * setup_new_exec() commits the new creds and drops the lock.
1527  * Or, if exec fails before, free_bprm() should release ->cred
1528  * and unlock.
1529  */
1530 static int prepare_bprm_creds(struct linux_binprm *bprm)
1531 {
1532 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1533 		return -ERESTARTNOINTR;
1534 
1535 	bprm->cred = prepare_exec_creds();
1536 	if (likely(bprm->cred))
1537 		return 0;
1538 
1539 	mutex_unlock(&current->signal->cred_guard_mutex);
1540 	return -ENOMEM;
1541 }
1542 
1543 /* Matches do_open_execat() */
1544 static void do_close_execat(struct file *file)
1545 {
1546 	if (file)
1547 		fput(file);
1548 }
1549 
1550 static void free_bprm(struct linux_binprm *bprm)
1551 {
1552 	if (bprm->mm) {
1553 		acct_arg_size(bprm, 0);
1554 		mmput(bprm->mm);
1555 	}
1556 	free_arg_pages(bprm);
1557 	if (bprm->cred) {
1558 		mutex_unlock(&current->signal->cred_guard_mutex);
1559 		abort_creds(bprm->cred);
1560 	}
1561 	do_close_execat(bprm->file);
1562 	if (bprm->executable)
1563 		fput(bprm->executable);
1564 	/* If a binfmt changed the interp, free it. */
1565 	if (bprm->interp != bprm->filename)
1566 		kfree(bprm->interp);
1567 	kfree(bprm->fdpath);
1568 	kfree(bprm);
1569 }
1570 
1571 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1572 {
1573 	struct linux_binprm *bprm;
1574 	struct file *file;
1575 	int retval = -ENOMEM;
1576 
1577 	file = do_open_execat(fd, filename, flags);
1578 	if (IS_ERR(file))
1579 		return ERR_CAST(file);
1580 
1581 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1582 	if (!bprm) {
1583 		do_close_execat(file);
1584 		return ERR_PTR(-ENOMEM);
1585 	}
1586 
1587 	bprm->file = file;
1588 
1589 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1590 		bprm->filename = filename->name;
1591 	} else {
1592 		if (filename->name[0] == '\0')
1593 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1594 		else
1595 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1596 						  fd, filename->name);
1597 		if (!bprm->fdpath)
1598 			goto out_free;
1599 
1600 		/*
1601 		 * Record that a name derived from an O_CLOEXEC fd will be
1602 		 * inaccessible after exec.  This allows the code in exec to
1603 		 * choose to fail when the executable is not mmaped into the
1604 		 * interpreter and an open file descriptor is not passed to
1605 		 * the interpreter.  This makes for a better user experience
1606 		 * than having the interpreter start and then immediately fail
1607 		 * when it finds the executable is inaccessible.
1608 		 */
1609 		if (get_close_on_exec(fd))
1610 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1611 
1612 		bprm->filename = bprm->fdpath;
1613 	}
1614 	bprm->interp = bprm->filename;
1615 
1616 	retval = bprm_mm_init(bprm);
1617 	if (!retval)
1618 		return bprm;
1619 
1620 out_free:
1621 	free_bprm(bprm);
1622 	return ERR_PTR(retval);
1623 }
1624 
1625 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1626 {
1627 	/* If a binfmt changed the interp, free it first. */
1628 	if (bprm->interp != bprm->filename)
1629 		kfree(bprm->interp);
1630 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1631 	if (!bprm->interp)
1632 		return -ENOMEM;
1633 	return 0;
1634 }
1635 EXPORT_SYMBOL(bprm_change_interp);
1636 
1637 /*
1638  * determine how safe it is to execute the proposed program
1639  * - the caller must hold ->cred_guard_mutex to protect against
1640  *   PTRACE_ATTACH or seccomp thread-sync
1641  */
1642 static void check_unsafe_exec(struct linux_binprm *bprm)
1643 {
1644 	struct task_struct *p = current, *t;
1645 	unsigned n_fs;
1646 
1647 	if (p->ptrace)
1648 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1649 
1650 	/*
1651 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1652 	 * mess up.
1653 	 */
1654 	if (task_no_new_privs(current))
1655 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1656 
1657 	/*
1658 	 * If another task is sharing our fs, we cannot safely
1659 	 * suid exec because the differently privileged task
1660 	 * will be able to manipulate the current directory, etc.
1661 	 * It would be nice to force an unshare instead...
1662 	 */
1663 	n_fs = 1;
1664 	spin_lock(&p->fs->lock);
1665 	rcu_read_lock();
1666 	for_other_threads(p, t) {
1667 		if (t->fs == p->fs)
1668 			n_fs++;
1669 	}
1670 	rcu_read_unlock();
1671 
1672 	/* "users" and "in_exec" locked for copy_fs() */
1673 	if (p->fs->users > n_fs)
1674 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1675 	else
1676 		p->fs->in_exec = 1;
1677 	spin_unlock(&p->fs->lock);
1678 }
1679 
1680 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1681 {
1682 	/* Handle suid and sgid on files */
1683 	struct mnt_idmap *idmap;
1684 	struct inode *inode = file_inode(file);
1685 	unsigned int mode;
1686 	vfsuid_t vfsuid;
1687 	vfsgid_t vfsgid;
1688 	int err;
1689 
1690 	if (!mnt_may_suid(file->f_path.mnt))
1691 		return;
1692 
1693 	if (task_no_new_privs(current))
1694 		return;
1695 
1696 	mode = READ_ONCE(inode->i_mode);
1697 	if (!(mode & (S_ISUID|S_ISGID)))
1698 		return;
1699 
1700 	idmap = file_mnt_idmap(file);
1701 
1702 	/* Be careful if suid/sgid is set */
1703 	inode_lock(inode);
1704 
1705 	/* Atomically reload and check mode/uid/gid now that lock held. */
1706 	mode = inode->i_mode;
1707 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1708 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1709 	err = inode_permission(idmap, inode, MAY_EXEC);
1710 	inode_unlock(inode);
1711 
1712 	/* Did the exec bit vanish out from under us? Give up. */
1713 	if (err)
1714 		return;
1715 
1716 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1717 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1718 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1719 		return;
1720 
1721 	if (mode & S_ISUID) {
1722 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1723 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1724 	}
1725 
1726 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1727 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1728 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1729 	}
1730 }
1731 
1732 /*
1733  * Compute brpm->cred based upon the final binary.
1734  */
1735 static int bprm_creds_from_file(struct linux_binprm *bprm)
1736 {
1737 	/* Compute creds based on which file? */
1738 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1739 
1740 	bprm_fill_uid(bprm, file);
1741 	return security_bprm_creds_from_file(bprm, file);
1742 }
1743 
1744 /*
1745  * Fill the binprm structure from the inode.
1746  * Read the first BINPRM_BUF_SIZE bytes
1747  *
1748  * This may be called multiple times for binary chains (scripts for example).
1749  */
1750 static int prepare_binprm(struct linux_binprm *bprm)
1751 {
1752 	loff_t pos = 0;
1753 
1754 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1755 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1756 }
1757 
1758 /*
1759  * Arguments are '\0' separated strings found at the location bprm->p
1760  * points to; chop off the first by relocating brpm->p to right after
1761  * the first '\0' encountered.
1762  */
1763 int remove_arg_zero(struct linux_binprm *bprm)
1764 {
1765 	unsigned long offset;
1766 	char *kaddr;
1767 	struct page *page;
1768 
1769 	if (!bprm->argc)
1770 		return 0;
1771 
1772 	do {
1773 		offset = bprm->p & ~PAGE_MASK;
1774 		page = get_arg_page(bprm, bprm->p, 0);
1775 		if (!page)
1776 			return -EFAULT;
1777 		kaddr = kmap_local_page(page);
1778 
1779 		for (; offset < PAGE_SIZE && kaddr[offset];
1780 				offset++, bprm->p++)
1781 			;
1782 
1783 		kunmap_local(kaddr);
1784 		put_arg_page(page);
1785 	} while (offset == PAGE_SIZE);
1786 
1787 	bprm->p++;
1788 	bprm->argc--;
1789 
1790 	return 0;
1791 }
1792 EXPORT_SYMBOL(remove_arg_zero);
1793 
1794 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1795 /*
1796  * cycle the list of binary formats handler, until one recognizes the image
1797  */
1798 static int search_binary_handler(struct linux_binprm *bprm)
1799 {
1800 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1801 	struct linux_binfmt *fmt;
1802 	int retval;
1803 
1804 	retval = prepare_binprm(bprm);
1805 	if (retval < 0)
1806 		return retval;
1807 
1808 	retval = security_bprm_check(bprm);
1809 	if (retval)
1810 		return retval;
1811 
1812 	retval = -ENOENT;
1813  retry:
1814 	read_lock(&binfmt_lock);
1815 	list_for_each_entry(fmt, &formats, lh) {
1816 		if (!try_module_get(fmt->module))
1817 			continue;
1818 		read_unlock(&binfmt_lock);
1819 
1820 		retval = fmt->load_binary(bprm);
1821 
1822 		read_lock(&binfmt_lock);
1823 		put_binfmt(fmt);
1824 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1825 			read_unlock(&binfmt_lock);
1826 			return retval;
1827 		}
1828 	}
1829 	read_unlock(&binfmt_lock);
1830 
1831 	if (need_retry) {
1832 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1833 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1834 			return retval;
1835 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1836 			return retval;
1837 		need_retry = false;
1838 		goto retry;
1839 	}
1840 
1841 	return retval;
1842 }
1843 
1844 /* binfmt handlers will call back into begin_new_exec() on success. */
1845 static int exec_binprm(struct linux_binprm *bprm)
1846 {
1847 	pid_t old_pid, old_vpid;
1848 	int ret, depth;
1849 
1850 	/* Need to fetch pid before load_binary changes it */
1851 	old_pid = current->pid;
1852 	rcu_read_lock();
1853 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1854 	rcu_read_unlock();
1855 
1856 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1857 	for (depth = 0;; depth++) {
1858 		struct file *exec;
1859 		if (depth > 5)
1860 			return -ELOOP;
1861 
1862 		ret = search_binary_handler(bprm);
1863 		if (ret < 0)
1864 			return ret;
1865 		if (!bprm->interpreter)
1866 			break;
1867 
1868 		exec = bprm->file;
1869 		bprm->file = bprm->interpreter;
1870 		bprm->interpreter = NULL;
1871 
1872 		if (unlikely(bprm->have_execfd)) {
1873 			if (bprm->executable) {
1874 				fput(exec);
1875 				return -ENOEXEC;
1876 			}
1877 			bprm->executable = exec;
1878 		} else
1879 			fput(exec);
1880 	}
1881 
1882 	audit_bprm(bprm);
1883 	trace_sched_process_exec(current, old_pid, bprm);
1884 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1885 	proc_exec_connector(current);
1886 	return 0;
1887 }
1888 
1889 static int bprm_execve(struct linux_binprm *bprm)
1890 {
1891 	int retval;
1892 
1893 	retval = prepare_bprm_creds(bprm);
1894 	if (retval)
1895 		return retval;
1896 
1897 	/*
1898 	 * Check for unsafe execution states before exec_binprm(), which
1899 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1900 	 * where setuid-ness is evaluated.
1901 	 */
1902 	check_unsafe_exec(bprm);
1903 	current->in_execve = 1;
1904 	sched_mm_cid_before_execve(current);
1905 
1906 	sched_exec();
1907 
1908 	/* Set the unchanging part of bprm->cred */
1909 	retval = security_bprm_creds_for_exec(bprm);
1910 	if (retval)
1911 		goto out;
1912 
1913 	retval = exec_binprm(bprm);
1914 	if (retval < 0)
1915 		goto out;
1916 
1917 	sched_mm_cid_after_execve(current);
1918 	/* execve succeeded */
1919 	current->fs->in_exec = 0;
1920 	current->in_execve = 0;
1921 	rseq_execve(current);
1922 	user_events_execve(current);
1923 	acct_update_integrals(current);
1924 	task_numa_free(current, false);
1925 	return retval;
1926 
1927 out:
1928 	/*
1929 	 * If past the point of no return ensure the code never
1930 	 * returns to the userspace process.  Use an existing fatal
1931 	 * signal if present otherwise terminate the process with
1932 	 * SIGSEGV.
1933 	 */
1934 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1935 		force_fatal_sig(SIGSEGV);
1936 
1937 	sched_mm_cid_after_execve(current);
1938 	current->fs->in_exec = 0;
1939 	current->in_execve = 0;
1940 
1941 	return retval;
1942 }
1943 
1944 static int do_execveat_common(int fd, struct filename *filename,
1945 			      struct user_arg_ptr argv,
1946 			      struct user_arg_ptr envp,
1947 			      int flags)
1948 {
1949 	struct linux_binprm *bprm;
1950 	int retval;
1951 
1952 	if (IS_ERR(filename))
1953 		return PTR_ERR(filename);
1954 
1955 	/*
1956 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1957 	 * set*uid() to execve() because too many poorly written programs
1958 	 * don't check setuid() return code.  Here we additionally recheck
1959 	 * whether NPROC limit is still exceeded.
1960 	 */
1961 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1962 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1963 		retval = -EAGAIN;
1964 		goto out_ret;
1965 	}
1966 
1967 	/* We're below the limit (still or again), so we don't want to make
1968 	 * further execve() calls fail. */
1969 	current->flags &= ~PF_NPROC_EXCEEDED;
1970 
1971 	bprm = alloc_bprm(fd, filename, flags);
1972 	if (IS_ERR(bprm)) {
1973 		retval = PTR_ERR(bprm);
1974 		goto out_ret;
1975 	}
1976 
1977 	retval = count(argv, MAX_ARG_STRINGS);
1978 	if (retval == 0)
1979 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1980 			     current->comm, bprm->filename);
1981 	if (retval < 0)
1982 		goto out_free;
1983 	bprm->argc = retval;
1984 
1985 	retval = count(envp, MAX_ARG_STRINGS);
1986 	if (retval < 0)
1987 		goto out_free;
1988 	bprm->envc = retval;
1989 
1990 	retval = bprm_stack_limits(bprm);
1991 	if (retval < 0)
1992 		goto out_free;
1993 
1994 	retval = copy_string_kernel(bprm->filename, bprm);
1995 	if (retval < 0)
1996 		goto out_free;
1997 	bprm->exec = bprm->p;
1998 
1999 	retval = copy_strings(bprm->envc, envp, bprm);
2000 	if (retval < 0)
2001 		goto out_free;
2002 
2003 	retval = copy_strings(bprm->argc, argv, bprm);
2004 	if (retval < 0)
2005 		goto out_free;
2006 
2007 	/*
2008 	 * When argv is empty, add an empty string ("") as argv[0] to
2009 	 * ensure confused userspace programs that start processing
2010 	 * from argv[1] won't end up walking envp. See also
2011 	 * bprm_stack_limits().
2012 	 */
2013 	if (bprm->argc == 0) {
2014 		retval = copy_string_kernel("", bprm);
2015 		if (retval < 0)
2016 			goto out_free;
2017 		bprm->argc = 1;
2018 	}
2019 
2020 	retval = bprm_execve(bprm);
2021 out_free:
2022 	free_bprm(bprm);
2023 
2024 out_ret:
2025 	putname(filename);
2026 	return retval;
2027 }
2028 
2029 int kernel_execve(const char *kernel_filename,
2030 		  const char *const *argv, const char *const *envp)
2031 {
2032 	struct filename *filename;
2033 	struct linux_binprm *bprm;
2034 	int fd = AT_FDCWD;
2035 	int retval;
2036 
2037 	/* It is non-sense for kernel threads to call execve */
2038 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2039 		return -EINVAL;
2040 
2041 	filename = getname_kernel(kernel_filename);
2042 	if (IS_ERR(filename))
2043 		return PTR_ERR(filename);
2044 
2045 	bprm = alloc_bprm(fd, filename, 0);
2046 	if (IS_ERR(bprm)) {
2047 		retval = PTR_ERR(bprm);
2048 		goto out_ret;
2049 	}
2050 
2051 	retval = count_strings_kernel(argv);
2052 	if (WARN_ON_ONCE(retval == 0))
2053 		retval = -EINVAL;
2054 	if (retval < 0)
2055 		goto out_free;
2056 	bprm->argc = retval;
2057 
2058 	retval = count_strings_kernel(envp);
2059 	if (retval < 0)
2060 		goto out_free;
2061 	bprm->envc = retval;
2062 
2063 	retval = bprm_stack_limits(bprm);
2064 	if (retval < 0)
2065 		goto out_free;
2066 
2067 	retval = copy_string_kernel(bprm->filename, bprm);
2068 	if (retval < 0)
2069 		goto out_free;
2070 	bprm->exec = bprm->p;
2071 
2072 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2073 	if (retval < 0)
2074 		goto out_free;
2075 
2076 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2077 	if (retval < 0)
2078 		goto out_free;
2079 
2080 	retval = bprm_execve(bprm);
2081 out_free:
2082 	free_bprm(bprm);
2083 out_ret:
2084 	putname(filename);
2085 	return retval;
2086 }
2087 
2088 static int do_execve(struct filename *filename,
2089 	const char __user *const __user *__argv,
2090 	const char __user *const __user *__envp)
2091 {
2092 	struct user_arg_ptr argv = { .ptr.native = __argv };
2093 	struct user_arg_ptr envp = { .ptr.native = __envp };
2094 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2095 }
2096 
2097 static int do_execveat(int fd, struct filename *filename,
2098 		const char __user *const __user *__argv,
2099 		const char __user *const __user *__envp,
2100 		int flags)
2101 {
2102 	struct user_arg_ptr argv = { .ptr.native = __argv };
2103 	struct user_arg_ptr envp = { .ptr.native = __envp };
2104 
2105 	return do_execveat_common(fd, filename, argv, envp, flags);
2106 }
2107 
2108 #ifdef CONFIG_COMPAT
2109 static int compat_do_execve(struct filename *filename,
2110 	const compat_uptr_t __user *__argv,
2111 	const compat_uptr_t __user *__envp)
2112 {
2113 	struct user_arg_ptr argv = {
2114 		.is_compat = true,
2115 		.ptr.compat = __argv,
2116 	};
2117 	struct user_arg_ptr envp = {
2118 		.is_compat = true,
2119 		.ptr.compat = __envp,
2120 	};
2121 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2122 }
2123 
2124 static int compat_do_execveat(int fd, struct filename *filename,
2125 			      const compat_uptr_t __user *__argv,
2126 			      const compat_uptr_t __user *__envp,
2127 			      int flags)
2128 {
2129 	struct user_arg_ptr argv = {
2130 		.is_compat = true,
2131 		.ptr.compat = __argv,
2132 	};
2133 	struct user_arg_ptr envp = {
2134 		.is_compat = true,
2135 		.ptr.compat = __envp,
2136 	};
2137 	return do_execveat_common(fd, filename, argv, envp, flags);
2138 }
2139 #endif
2140 
2141 void set_binfmt(struct linux_binfmt *new)
2142 {
2143 	struct mm_struct *mm = current->mm;
2144 
2145 	if (mm->binfmt)
2146 		module_put(mm->binfmt->module);
2147 
2148 	mm->binfmt = new;
2149 	if (new)
2150 		__module_get(new->module);
2151 }
2152 EXPORT_SYMBOL(set_binfmt);
2153 
2154 /*
2155  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2156  */
2157 void set_dumpable(struct mm_struct *mm, int value)
2158 {
2159 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2160 		return;
2161 
2162 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2163 }
2164 
2165 SYSCALL_DEFINE3(execve,
2166 		const char __user *, filename,
2167 		const char __user *const __user *, argv,
2168 		const char __user *const __user *, envp)
2169 {
2170 	return do_execve(getname(filename), argv, envp);
2171 }
2172 
2173 SYSCALL_DEFINE5(execveat,
2174 		int, fd, const char __user *, filename,
2175 		const char __user *const __user *, argv,
2176 		const char __user *const __user *, envp,
2177 		int, flags)
2178 {
2179 	return do_execveat(fd,
2180 			   getname_uflags(filename, flags),
2181 			   argv, envp, flags);
2182 }
2183 
2184 #ifdef CONFIG_COMPAT
2185 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2186 	const compat_uptr_t __user *, argv,
2187 	const compat_uptr_t __user *, envp)
2188 {
2189 	return compat_do_execve(getname(filename), argv, envp);
2190 }
2191 
2192 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2193 		       const char __user *, filename,
2194 		       const compat_uptr_t __user *, argv,
2195 		       const compat_uptr_t __user *, envp,
2196 		       int,  flags)
2197 {
2198 	return compat_do_execveat(fd,
2199 				  getname_uflags(filename, flags),
2200 				  argv, envp, flags);
2201 }
2202 #endif
2203 
2204 #ifdef CONFIG_SYSCTL
2205 
2206 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2207 		void *buffer, size_t *lenp, loff_t *ppos)
2208 {
2209 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2210 
2211 	if (!error)
2212 		validate_coredump_safety();
2213 	return error;
2214 }
2215 
2216 static struct ctl_table fs_exec_sysctls[] = {
2217 	{
2218 		.procname	= "suid_dumpable",
2219 		.data		= &suid_dumpable,
2220 		.maxlen		= sizeof(int),
2221 		.mode		= 0644,
2222 		.proc_handler	= proc_dointvec_minmax_coredump,
2223 		.extra1		= SYSCTL_ZERO,
2224 		.extra2		= SYSCTL_TWO,
2225 	},
2226 };
2227 
2228 static int __init init_fs_exec_sysctls(void)
2229 {
2230 	register_sysctl_init("fs", fs_exec_sysctls);
2231 	return 0;
2232 }
2233 
2234 fs_initcall(init_fs_exec_sysctls);
2235 #endif /* CONFIG_SYSCTL */
2236 
2237 #ifdef CONFIG_EXEC_KUNIT_TEST
2238 #include "tests/exec_kunit.c"
2239 #endif
2240