1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/pagemap.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 #include <linux/tracehook.h> 53 #include <linux/kmod.h> 54 55 #include <asm/uaccess.h> 56 #include <asm/mmu_context.h> 57 #include <asm/tlb.h> 58 59 #ifdef __alpha__ 60 /* for /sbin/loader handling in search_binary_handler() */ 61 #include <linux/a.out.h> 62 #endif 63 64 int core_uses_pid; 65 char core_pattern[CORENAME_MAX_SIZE] = "core"; 66 int suid_dumpable = 0; 67 68 /* The maximal length of core_pattern is also specified in sysctl.c */ 69 70 static LIST_HEAD(formats); 71 static DEFINE_RWLOCK(binfmt_lock); 72 73 int register_binfmt(struct linux_binfmt * fmt) 74 { 75 if (!fmt) 76 return -EINVAL; 77 write_lock(&binfmt_lock); 78 list_add(&fmt->lh, &formats); 79 write_unlock(&binfmt_lock); 80 return 0; 81 } 82 83 EXPORT_SYMBOL(register_binfmt); 84 85 void unregister_binfmt(struct linux_binfmt * fmt) 86 { 87 write_lock(&binfmt_lock); 88 list_del(&fmt->lh); 89 write_unlock(&binfmt_lock); 90 } 91 92 EXPORT_SYMBOL(unregister_binfmt); 93 94 static inline void put_binfmt(struct linux_binfmt * fmt) 95 { 96 module_put(fmt->module); 97 } 98 99 /* 100 * Note that a shared library must be both readable and executable due to 101 * security reasons. 102 * 103 * Also note that we take the address to load from from the file itself. 104 */ 105 asmlinkage long sys_uselib(const char __user * library) 106 { 107 struct file *file; 108 struct nameidata nd; 109 char *tmp = getname(library); 110 int error = PTR_ERR(tmp); 111 112 if (!IS_ERR(tmp)) { 113 error = path_lookup_open(AT_FDCWD, tmp, 114 LOOKUP_FOLLOW, &nd, 115 FMODE_READ|FMODE_EXEC); 116 putname(tmp); 117 } 118 if (error) 119 goto out; 120 121 error = -EINVAL; 122 if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) 123 goto exit; 124 125 error = -EACCES; 126 if (nd.path.mnt->mnt_flags & MNT_NOEXEC) 127 goto exit; 128 129 error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN); 130 if (error) 131 goto exit; 132 133 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); 134 error = PTR_ERR(file); 135 if (IS_ERR(file)) 136 goto out; 137 138 error = -ENOEXEC; 139 if(file->f_op) { 140 struct linux_binfmt * fmt; 141 142 read_lock(&binfmt_lock); 143 list_for_each_entry(fmt, &formats, lh) { 144 if (!fmt->load_shlib) 145 continue; 146 if (!try_module_get(fmt->module)) 147 continue; 148 read_unlock(&binfmt_lock); 149 error = fmt->load_shlib(file); 150 read_lock(&binfmt_lock); 151 put_binfmt(fmt); 152 if (error != -ENOEXEC) 153 break; 154 } 155 read_unlock(&binfmt_lock); 156 } 157 fput(file); 158 out: 159 return error; 160 exit: 161 release_open_intent(&nd); 162 path_put(&nd.path); 163 goto out; 164 } 165 166 #ifdef CONFIG_MMU 167 168 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 169 int write) 170 { 171 struct page *page; 172 int ret; 173 174 #ifdef CONFIG_STACK_GROWSUP 175 if (write) { 176 ret = expand_stack_downwards(bprm->vma, pos); 177 if (ret < 0) 178 return NULL; 179 } 180 #endif 181 ret = get_user_pages(current, bprm->mm, pos, 182 1, write, 1, &page, NULL); 183 if (ret <= 0) 184 return NULL; 185 186 if (write) { 187 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 188 struct rlimit *rlim; 189 190 /* 191 * We've historically supported up to 32 pages (ARG_MAX) 192 * of argument strings even with small stacks 193 */ 194 if (size <= ARG_MAX) 195 return page; 196 197 /* 198 * Limit to 1/4-th the stack size for the argv+env strings. 199 * This ensures that: 200 * - the remaining binfmt code will not run out of stack space, 201 * - the program will have a reasonable amount of stack left 202 * to work from. 203 */ 204 rlim = current->signal->rlim; 205 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 206 put_page(page); 207 return NULL; 208 } 209 } 210 211 return page; 212 } 213 214 static void put_arg_page(struct page *page) 215 { 216 put_page(page); 217 } 218 219 static void free_arg_page(struct linux_binprm *bprm, int i) 220 { 221 } 222 223 static void free_arg_pages(struct linux_binprm *bprm) 224 { 225 } 226 227 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 228 struct page *page) 229 { 230 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 231 } 232 233 static int __bprm_mm_init(struct linux_binprm *bprm) 234 { 235 int err = -ENOMEM; 236 struct vm_area_struct *vma = NULL; 237 struct mm_struct *mm = bprm->mm; 238 239 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 240 if (!vma) 241 goto err; 242 243 down_write(&mm->mmap_sem); 244 vma->vm_mm = mm; 245 246 /* 247 * Place the stack at the largest stack address the architecture 248 * supports. Later, we'll move this to an appropriate place. We don't 249 * use STACK_TOP because that can depend on attributes which aren't 250 * configured yet. 251 */ 252 vma->vm_end = STACK_TOP_MAX; 253 vma->vm_start = vma->vm_end - PAGE_SIZE; 254 255 vma->vm_flags = VM_STACK_FLAGS; 256 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 257 err = insert_vm_struct(mm, vma); 258 if (err) { 259 up_write(&mm->mmap_sem); 260 goto err; 261 } 262 263 mm->stack_vm = mm->total_vm = 1; 264 up_write(&mm->mmap_sem); 265 266 bprm->p = vma->vm_end - sizeof(void *); 267 268 return 0; 269 270 err: 271 if (vma) { 272 bprm->vma = NULL; 273 kmem_cache_free(vm_area_cachep, vma); 274 } 275 276 return err; 277 } 278 279 static bool valid_arg_len(struct linux_binprm *bprm, long len) 280 { 281 return len <= MAX_ARG_STRLEN; 282 } 283 284 #else 285 286 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 287 int write) 288 { 289 struct page *page; 290 291 page = bprm->page[pos / PAGE_SIZE]; 292 if (!page && write) { 293 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 294 if (!page) 295 return NULL; 296 bprm->page[pos / PAGE_SIZE] = page; 297 } 298 299 return page; 300 } 301 302 static void put_arg_page(struct page *page) 303 { 304 } 305 306 static void free_arg_page(struct linux_binprm *bprm, int i) 307 { 308 if (bprm->page[i]) { 309 __free_page(bprm->page[i]); 310 bprm->page[i] = NULL; 311 } 312 } 313 314 static void free_arg_pages(struct linux_binprm *bprm) 315 { 316 int i; 317 318 for (i = 0; i < MAX_ARG_PAGES; i++) 319 free_arg_page(bprm, i); 320 } 321 322 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 323 struct page *page) 324 { 325 } 326 327 static int __bprm_mm_init(struct linux_binprm *bprm) 328 { 329 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 330 return 0; 331 } 332 333 static bool valid_arg_len(struct linux_binprm *bprm, long len) 334 { 335 return len <= bprm->p; 336 } 337 338 #endif /* CONFIG_MMU */ 339 340 /* 341 * Create a new mm_struct and populate it with a temporary stack 342 * vm_area_struct. We don't have enough context at this point to set the stack 343 * flags, permissions, and offset, so we use temporary values. We'll update 344 * them later in setup_arg_pages(). 345 */ 346 int bprm_mm_init(struct linux_binprm *bprm) 347 { 348 int err; 349 struct mm_struct *mm = NULL; 350 351 bprm->mm = mm = mm_alloc(); 352 err = -ENOMEM; 353 if (!mm) 354 goto err; 355 356 err = init_new_context(current, mm); 357 if (err) 358 goto err; 359 360 err = __bprm_mm_init(bprm); 361 if (err) 362 goto err; 363 364 return 0; 365 366 err: 367 if (mm) { 368 bprm->mm = NULL; 369 mmdrop(mm); 370 } 371 372 return err; 373 } 374 375 /* 376 * count() counts the number of strings in array ARGV. 377 */ 378 static int count(char __user * __user * argv, int max) 379 { 380 int i = 0; 381 382 if (argv != NULL) { 383 for (;;) { 384 char __user * p; 385 386 if (get_user(p, argv)) 387 return -EFAULT; 388 if (!p) 389 break; 390 argv++; 391 if(++i > max) 392 return -E2BIG; 393 cond_resched(); 394 } 395 } 396 return i; 397 } 398 399 /* 400 * 'copy_strings()' copies argument/environment strings from the old 401 * processes's memory to the new process's stack. The call to get_user_pages() 402 * ensures the destination page is created and not swapped out. 403 */ 404 static int copy_strings(int argc, char __user * __user * argv, 405 struct linux_binprm *bprm) 406 { 407 struct page *kmapped_page = NULL; 408 char *kaddr = NULL; 409 unsigned long kpos = 0; 410 int ret; 411 412 while (argc-- > 0) { 413 char __user *str; 414 int len; 415 unsigned long pos; 416 417 if (get_user(str, argv+argc) || 418 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 419 ret = -EFAULT; 420 goto out; 421 } 422 423 if (!valid_arg_len(bprm, len)) { 424 ret = -E2BIG; 425 goto out; 426 } 427 428 /* We're going to work our way backwords. */ 429 pos = bprm->p; 430 str += len; 431 bprm->p -= len; 432 433 while (len > 0) { 434 int offset, bytes_to_copy; 435 436 offset = pos % PAGE_SIZE; 437 if (offset == 0) 438 offset = PAGE_SIZE; 439 440 bytes_to_copy = offset; 441 if (bytes_to_copy > len) 442 bytes_to_copy = len; 443 444 offset -= bytes_to_copy; 445 pos -= bytes_to_copy; 446 str -= bytes_to_copy; 447 len -= bytes_to_copy; 448 449 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 450 struct page *page; 451 452 page = get_arg_page(bprm, pos, 1); 453 if (!page) { 454 ret = -E2BIG; 455 goto out; 456 } 457 458 if (kmapped_page) { 459 flush_kernel_dcache_page(kmapped_page); 460 kunmap(kmapped_page); 461 put_arg_page(kmapped_page); 462 } 463 kmapped_page = page; 464 kaddr = kmap(kmapped_page); 465 kpos = pos & PAGE_MASK; 466 flush_arg_page(bprm, kpos, kmapped_page); 467 } 468 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 469 ret = -EFAULT; 470 goto out; 471 } 472 } 473 } 474 ret = 0; 475 out: 476 if (kmapped_page) { 477 flush_kernel_dcache_page(kmapped_page); 478 kunmap(kmapped_page); 479 put_arg_page(kmapped_page); 480 } 481 return ret; 482 } 483 484 /* 485 * Like copy_strings, but get argv and its values from kernel memory. 486 */ 487 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 488 { 489 int r; 490 mm_segment_t oldfs = get_fs(); 491 set_fs(KERNEL_DS); 492 r = copy_strings(argc, (char __user * __user *)argv, bprm); 493 set_fs(oldfs); 494 return r; 495 } 496 EXPORT_SYMBOL(copy_strings_kernel); 497 498 #ifdef CONFIG_MMU 499 500 /* 501 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 502 * the binfmt code determines where the new stack should reside, we shift it to 503 * its final location. The process proceeds as follows: 504 * 505 * 1) Use shift to calculate the new vma endpoints. 506 * 2) Extend vma to cover both the old and new ranges. This ensures the 507 * arguments passed to subsequent functions are consistent. 508 * 3) Move vma's page tables to the new range. 509 * 4) Free up any cleared pgd range. 510 * 5) Shrink the vma to cover only the new range. 511 */ 512 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 513 { 514 struct mm_struct *mm = vma->vm_mm; 515 unsigned long old_start = vma->vm_start; 516 unsigned long old_end = vma->vm_end; 517 unsigned long length = old_end - old_start; 518 unsigned long new_start = old_start - shift; 519 unsigned long new_end = old_end - shift; 520 struct mmu_gather *tlb; 521 522 BUG_ON(new_start > new_end); 523 524 /* 525 * ensure there are no vmas between where we want to go 526 * and where we are 527 */ 528 if (vma != find_vma(mm, new_start)) 529 return -EFAULT; 530 531 /* 532 * cover the whole range: [new_start, old_end) 533 */ 534 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 535 536 /* 537 * move the page tables downwards, on failure we rely on 538 * process cleanup to remove whatever mess we made. 539 */ 540 if (length != move_page_tables(vma, old_start, 541 vma, new_start, length)) 542 return -ENOMEM; 543 544 lru_add_drain(); 545 tlb = tlb_gather_mmu(mm, 0); 546 if (new_end > old_start) { 547 /* 548 * when the old and new regions overlap clear from new_end. 549 */ 550 free_pgd_range(tlb, new_end, old_end, new_end, 551 vma->vm_next ? vma->vm_next->vm_start : 0); 552 } else { 553 /* 554 * otherwise, clean from old_start; this is done to not touch 555 * the address space in [new_end, old_start) some architectures 556 * have constraints on va-space that make this illegal (IA64) - 557 * for the others its just a little faster. 558 */ 559 free_pgd_range(tlb, old_start, old_end, new_end, 560 vma->vm_next ? vma->vm_next->vm_start : 0); 561 } 562 tlb_finish_mmu(tlb, new_end, old_end); 563 564 /* 565 * shrink the vma to just the new range. 566 */ 567 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 568 569 return 0; 570 } 571 572 #define EXTRA_STACK_VM_PAGES 20 /* random */ 573 574 /* 575 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 576 * the stack is optionally relocated, and some extra space is added. 577 */ 578 int setup_arg_pages(struct linux_binprm *bprm, 579 unsigned long stack_top, 580 int executable_stack) 581 { 582 unsigned long ret; 583 unsigned long stack_shift; 584 struct mm_struct *mm = current->mm; 585 struct vm_area_struct *vma = bprm->vma; 586 struct vm_area_struct *prev = NULL; 587 unsigned long vm_flags; 588 unsigned long stack_base; 589 590 #ifdef CONFIG_STACK_GROWSUP 591 /* Limit stack size to 1GB */ 592 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 593 if (stack_base > (1 << 30)) 594 stack_base = 1 << 30; 595 596 /* Make sure we didn't let the argument array grow too large. */ 597 if (vma->vm_end - vma->vm_start > stack_base) 598 return -ENOMEM; 599 600 stack_base = PAGE_ALIGN(stack_top - stack_base); 601 602 stack_shift = vma->vm_start - stack_base; 603 mm->arg_start = bprm->p - stack_shift; 604 bprm->p = vma->vm_end - stack_shift; 605 #else 606 stack_top = arch_align_stack(stack_top); 607 stack_top = PAGE_ALIGN(stack_top); 608 stack_shift = vma->vm_end - stack_top; 609 610 bprm->p -= stack_shift; 611 mm->arg_start = bprm->p; 612 #endif 613 614 if (bprm->loader) 615 bprm->loader -= stack_shift; 616 bprm->exec -= stack_shift; 617 618 down_write(&mm->mmap_sem); 619 vm_flags = VM_STACK_FLAGS; 620 621 /* 622 * Adjust stack execute permissions; explicitly enable for 623 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 624 * (arch default) otherwise. 625 */ 626 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 627 vm_flags |= VM_EXEC; 628 else if (executable_stack == EXSTACK_DISABLE_X) 629 vm_flags &= ~VM_EXEC; 630 vm_flags |= mm->def_flags; 631 632 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 633 vm_flags); 634 if (ret) 635 goto out_unlock; 636 BUG_ON(prev != vma); 637 638 /* Move stack pages down in memory. */ 639 if (stack_shift) { 640 ret = shift_arg_pages(vma, stack_shift); 641 if (ret) { 642 up_write(&mm->mmap_sem); 643 return ret; 644 } 645 } 646 647 #ifdef CONFIG_STACK_GROWSUP 648 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 649 #else 650 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 651 #endif 652 ret = expand_stack(vma, stack_base); 653 if (ret) 654 ret = -EFAULT; 655 656 out_unlock: 657 up_write(&mm->mmap_sem); 658 return 0; 659 } 660 EXPORT_SYMBOL(setup_arg_pages); 661 662 #endif /* CONFIG_MMU */ 663 664 struct file *open_exec(const char *name) 665 { 666 struct nameidata nd; 667 struct file *file; 668 int err; 669 670 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, 671 FMODE_READ|FMODE_EXEC); 672 if (err) 673 goto out; 674 675 err = -EACCES; 676 if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) 677 goto out_path_put; 678 679 if (nd.path.mnt->mnt_flags & MNT_NOEXEC) 680 goto out_path_put; 681 682 err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN); 683 if (err) 684 goto out_path_put; 685 686 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); 687 if (IS_ERR(file)) 688 return file; 689 690 err = deny_write_access(file); 691 if (err) { 692 fput(file); 693 goto out; 694 } 695 696 return file; 697 698 out_path_put: 699 release_open_intent(&nd); 700 path_put(&nd.path); 701 out: 702 return ERR_PTR(err); 703 } 704 EXPORT_SYMBOL(open_exec); 705 706 int kernel_read(struct file *file, unsigned long offset, 707 char *addr, unsigned long count) 708 { 709 mm_segment_t old_fs; 710 loff_t pos = offset; 711 int result; 712 713 old_fs = get_fs(); 714 set_fs(get_ds()); 715 /* The cast to a user pointer is valid due to the set_fs() */ 716 result = vfs_read(file, (void __user *)addr, count, &pos); 717 set_fs(old_fs); 718 return result; 719 } 720 721 EXPORT_SYMBOL(kernel_read); 722 723 static int exec_mmap(struct mm_struct *mm) 724 { 725 struct task_struct *tsk; 726 struct mm_struct * old_mm, *active_mm; 727 728 /* Notify parent that we're no longer interested in the old VM */ 729 tsk = current; 730 old_mm = current->mm; 731 mm_release(tsk, old_mm); 732 733 if (old_mm) { 734 /* 735 * Make sure that if there is a core dump in progress 736 * for the old mm, we get out and die instead of going 737 * through with the exec. We must hold mmap_sem around 738 * checking core_state and changing tsk->mm. 739 */ 740 down_read(&old_mm->mmap_sem); 741 if (unlikely(old_mm->core_state)) { 742 up_read(&old_mm->mmap_sem); 743 return -EINTR; 744 } 745 } 746 task_lock(tsk); 747 active_mm = tsk->active_mm; 748 tsk->mm = mm; 749 tsk->active_mm = mm; 750 activate_mm(active_mm, mm); 751 task_unlock(tsk); 752 arch_pick_mmap_layout(mm); 753 if (old_mm) { 754 up_read(&old_mm->mmap_sem); 755 BUG_ON(active_mm != old_mm); 756 mm_update_next_owner(old_mm); 757 mmput(old_mm); 758 return 0; 759 } 760 mmdrop(active_mm); 761 return 0; 762 } 763 764 /* 765 * This function makes sure the current process has its own signal table, 766 * so that flush_signal_handlers can later reset the handlers without 767 * disturbing other processes. (Other processes might share the signal 768 * table via the CLONE_SIGHAND option to clone().) 769 */ 770 static int de_thread(struct task_struct *tsk) 771 { 772 struct signal_struct *sig = tsk->signal; 773 struct sighand_struct *oldsighand = tsk->sighand; 774 spinlock_t *lock = &oldsighand->siglock; 775 struct task_struct *leader = NULL; 776 int count; 777 778 if (thread_group_empty(tsk)) 779 goto no_thread_group; 780 781 /* 782 * Kill all other threads in the thread group. 783 */ 784 spin_lock_irq(lock); 785 if (signal_group_exit(sig)) { 786 /* 787 * Another group action in progress, just 788 * return so that the signal is processed. 789 */ 790 spin_unlock_irq(lock); 791 return -EAGAIN; 792 } 793 sig->group_exit_task = tsk; 794 zap_other_threads(tsk); 795 796 /* Account for the thread group leader hanging around: */ 797 count = thread_group_leader(tsk) ? 1 : 2; 798 sig->notify_count = count; 799 while (atomic_read(&sig->count) > count) { 800 __set_current_state(TASK_UNINTERRUPTIBLE); 801 spin_unlock_irq(lock); 802 schedule(); 803 spin_lock_irq(lock); 804 } 805 spin_unlock_irq(lock); 806 807 /* 808 * At this point all other threads have exited, all we have to 809 * do is to wait for the thread group leader to become inactive, 810 * and to assume its PID: 811 */ 812 if (!thread_group_leader(tsk)) { 813 leader = tsk->group_leader; 814 815 sig->notify_count = -1; /* for exit_notify() */ 816 for (;;) { 817 write_lock_irq(&tasklist_lock); 818 if (likely(leader->exit_state)) 819 break; 820 __set_current_state(TASK_UNINTERRUPTIBLE); 821 write_unlock_irq(&tasklist_lock); 822 schedule(); 823 } 824 825 if (unlikely(task_child_reaper(tsk) == leader)) 826 task_active_pid_ns(tsk)->child_reaper = tsk; 827 /* 828 * The only record we have of the real-time age of a 829 * process, regardless of execs it's done, is start_time. 830 * All the past CPU time is accumulated in signal_struct 831 * from sister threads now dead. But in this non-leader 832 * exec, nothing survives from the original leader thread, 833 * whose birth marks the true age of this process now. 834 * When we take on its identity by switching to its PID, we 835 * also take its birthdate (always earlier than our own). 836 */ 837 tsk->start_time = leader->start_time; 838 839 BUG_ON(!same_thread_group(leader, tsk)); 840 BUG_ON(has_group_leader_pid(tsk)); 841 /* 842 * An exec() starts a new thread group with the 843 * TGID of the previous thread group. Rehash the 844 * two threads with a switched PID, and release 845 * the former thread group leader: 846 */ 847 848 /* Become a process group leader with the old leader's pid. 849 * The old leader becomes a thread of the this thread group. 850 * Note: The old leader also uses this pid until release_task 851 * is called. Odd but simple and correct. 852 */ 853 detach_pid(tsk, PIDTYPE_PID); 854 tsk->pid = leader->pid; 855 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 856 transfer_pid(leader, tsk, PIDTYPE_PGID); 857 transfer_pid(leader, tsk, PIDTYPE_SID); 858 list_replace_rcu(&leader->tasks, &tsk->tasks); 859 860 tsk->group_leader = tsk; 861 leader->group_leader = tsk; 862 863 tsk->exit_signal = SIGCHLD; 864 865 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 866 leader->exit_state = EXIT_DEAD; 867 868 write_unlock_irq(&tasklist_lock); 869 } 870 871 sig->group_exit_task = NULL; 872 sig->notify_count = 0; 873 874 no_thread_group: 875 exit_itimers(sig); 876 flush_itimer_signals(); 877 if (leader) 878 release_task(leader); 879 880 if (atomic_read(&oldsighand->count) != 1) { 881 struct sighand_struct *newsighand; 882 /* 883 * This ->sighand is shared with the CLONE_SIGHAND 884 * but not CLONE_THREAD task, switch to the new one. 885 */ 886 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 887 if (!newsighand) 888 return -ENOMEM; 889 890 atomic_set(&newsighand->count, 1); 891 memcpy(newsighand->action, oldsighand->action, 892 sizeof(newsighand->action)); 893 894 write_lock_irq(&tasklist_lock); 895 spin_lock(&oldsighand->siglock); 896 rcu_assign_pointer(tsk->sighand, newsighand); 897 spin_unlock(&oldsighand->siglock); 898 write_unlock_irq(&tasklist_lock); 899 900 __cleanup_sighand(oldsighand); 901 } 902 903 BUG_ON(!thread_group_leader(tsk)); 904 return 0; 905 } 906 907 /* 908 * These functions flushes out all traces of the currently running executable 909 * so that a new one can be started 910 */ 911 static void flush_old_files(struct files_struct * files) 912 { 913 long j = -1; 914 struct fdtable *fdt; 915 916 spin_lock(&files->file_lock); 917 for (;;) { 918 unsigned long set, i; 919 920 j++; 921 i = j * __NFDBITS; 922 fdt = files_fdtable(files); 923 if (i >= fdt->max_fds) 924 break; 925 set = fdt->close_on_exec->fds_bits[j]; 926 if (!set) 927 continue; 928 fdt->close_on_exec->fds_bits[j] = 0; 929 spin_unlock(&files->file_lock); 930 for ( ; set ; i++,set >>= 1) { 931 if (set & 1) { 932 sys_close(i); 933 } 934 } 935 spin_lock(&files->file_lock); 936 937 } 938 spin_unlock(&files->file_lock); 939 } 940 941 char *get_task_comm(char *buf, struct task_struct *tsk) 942 { 943 /* buf must be at least sizeof(tsk->comm) in size */ 944 task_lock(tsk); 945 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 946 task_unlock(tsk); 947 return buf; 948 } 949 950 void set_task_comm(struct task_struct *tsk, char *buf) 951 { 952 task_lock(tsk); 953 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 954 task_unlock(tsk); 955 } 956 957 int flush_old_exec(struct linux_binprm * bprm) 958 { 959 char * name; 960 int i, ch, retval; 961 char tcomm[sizeof(current->comm)]; 962 963 /* 964 * Make sure we have a private signal table and that 965 * we are unassociated from the previous thread group. 966 */ 967 retval = de_thread(current); 968 if (retval) 969 goto out; 970 971 set_mm_exe_file(bprm->mm, bprm->file); 972 973 /* 974 * Release all of the old mmap stuff 975 */ 976 retval = exec_mmap(bprm->mm); 977 if (retval) 978 goto out; 979 980 bprm->mm = NULL; /* We're using it now */ 981 982 /* This is the point of no return */ 983 current->sas_ss_sp = current->sas_ss_size = 0; 984 985 if (current->euid == current->uid && current->egid == current->gid) 986 set_dumpable(current->mm, 1); 987 else 988 set_dumpable(current->mm, suid_dumpable); 989 990 name = bprm->filename; 991 992 /* Copies the binary name from after last slash */ 993 for (i=0; (ch = *(name++)) != '\0';) { 994 if (ch == '/') 995 i = 0; /* overwrite what we wrote */ 996 else 997 if (i < (sizeof(tcomm) - 1)) 998 tcomm[i++] = ch; 999 } 1000 tcomm[i] = '\0'; 1001 set_task_comm(current, tcomm); 1002 1003 current->flags &= ~PF_RANDOMIZE; 1004 flush_thread(); 1005 1006 /* Set the new mm task size. We have to do that late because it may 1007 * depend on TIF_32BIT which is only updated in flush_thread() on 1008 * some architectures like powerpc 1009 */ 1010 current->mm->task_size = TASK_SIZE; 1011 1012 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { 1013 suid_keys(current); 1014 set_dumpable(current->mm, suid_dumpable); 1015 current->pdeath_signal = 0; 1016 } else if (file_permission(bprm->file, MAY_READ) || 1017 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1018 suid_keys(current); 1019 set_dumpable(current->mm, suid_dumpable); 1020 } 1021 1022 /* An exec changes our domain. We are no longer part of the thread 1023 group */ 1024 1025 current->self_exec_id++; 1026 1027 flush_signal_handlers(current, 0); 1028 flush_old_files(current->files); 1029 1030 return 0; 1031 1032 out: 1033 return retval; 1034 } 1035 1036 EXPORT_SYMBOL(flush_old_exec); 1037 1038 /* 1039 * Fill the binprm structure from the inode. 1040 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1041 */ 1042 int prepare_binprm(struct linux_binprm *bprm) 1043 { 1044 int mode; 1045 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1046 int retval; 1047 1048 mode = inode->i_mode; 1049 if (bprm->file->f_op == NULL) 1050 return -EACCES; 1051 1052 bprm->e_uid = current->euid; 1053 bprm->e_gid = current->egid; 1054 1055 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1056 /* Set-uid? */ 1057 if (mode & S_ISUID) { 1058 current->personality &= ~PER_CLEAR_ON_SETID; 1059 bprm->e_uid = inode->i_uid; 1060 } 1061 1062 /* Set-gid? */ 1063 /* 1064 * If setgid is set but no group execute bit then this 1065 * is a candidate for mandatory locking, not a setgid 1066 * executable. 1067 */ 1068 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1069 current->personality &= ~PER_CLEAR_ON_SETID; 1070 bprm->e_gid = inode->i_gid; 1071 } 1072 } 1073 1074 /* fill in binprm security blob */ 1075 retval = security_bprm_set(bprm); 1076 if (retval) 1077 return retval; 1078 1079 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1080 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1081 } 1082 1083 EXPORT_SYMBOL(prepare_binprm); 1084 1085 static int unsafe_exec(struct task_struct *p) 1086 { 1087 int unsafe = tracehook_unsafe_exec(p); 1088 1089 if (atomic_read(&p->fs->count) > 1 || 1090 atomic_read(&p->files->count) > 1 || 1091 atomic_read(&p->sighand->count) > 1) 1092 unsafe |= LSM_UNSAFE_SHARE; 1093 1094 return unsafe; 1095 } 1096 1097 void compute_creds(struct linux_binprm *bprm) 1098 { 1099 int unsafe; 1100 1101 if (bprm->e_uid != current->uid) { 1102 suid_keys(current); 1103 current->pdeath_signal = 0; 1104 } 1105 exec_keys(current); 1106 1107 task_lock(current); 1108 unsafe = unsafe_exec(current); 1109 security_bprm_apply_creds(bprm, unsafe); 1110 task_unlock(current); 1111 security_bprm_post_apply_creds(bprm); 1112 } 1113 EXPORT_SYMBOL(compute_creds); 1114 1115 /* 1116 * Arguments are '\0' separated strings found at the location bprm->p 1117 * points to; chop off the first by relocating brpm->p to right after 1118 * the first '\0' encountered. 1119 */ 1120 int remove_arg_zero(struct linux_binprm *bprm) 1121 { 1122 int ret = 0; 1123 unsigned long offset; 1124 char *kaddr; 1125 struct page *page; 1126 1127 if (!bprm->argc) 1128 return 0; 1129 1130 do { 1131 offset = bprm->p & ~PAGE_MASK; 1132 page = get_arg_page(bprm, bprm->p, 0); 1133 if (!page) { 1134 ret = -EFAULT; 1135 goto out; 1136 } 1137 kaddr = kmap_atomic(page, KM_USER0); 1138 1139 for (; offset < PAGE_SIZE && kaddr[offset]; 1140 offset++, bprm->p++) 1141 ; 1142 1143 kunmap_atomic(kaddr, KM_USER0); 1144 put_arg_page(page); 1145 1146 if (offset == PAGE_SIZE) 1147 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1148 } while (offset == PAGE_SIZE); 1149 1150 bprm->p++; 1151 bprm->argc--; 1152 ret = 0; 1153 1154 out: 1155 return ret; 1156 } 1157 EXPORT_SYMBOL(remove_arg_zero); 1158 1159 /* 1160 * cycle the list of binary formats handler, until one recognizes the image 1161 */ 1162 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1163 { 1164 int try,retval; 1165 struct linux_binfmt *fmt; 1166 #ifdef __alpha__ 1167 /* handle /sbin/loader.. */ 1168 { 1169 struct exec * eh = (struct exec *) bprm->buf; 1170 1171 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1172 (eh->fh.f_flags & 0x3000) == 0x3000) 1173 { 1174 struct file * file; 1175 unsigned long loader; 1176 1177 allow_write_access(bprm->file); 1178 fput(bprm->file); 1179 bprm->file = NULL; 1180 1181 loader = bprm->vma->vm_end - sizeof(void *); 1182 1183 file = open_exec("/sbin/loader"); 1184 retval = PTR_ERR(file); 1185 if (IS_ERR(file)) 1186 return retval; 1187 1188 /* Remember if the application is TASO. */ 1189 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1190 1191 bprm->file = file; 1192 bprm->loader = loader; 1193 retval = prepare_binprm(bprm); 1194 if (retval<0) 1195 return retval; 1196 /* should call search_binary_handler recursively here, 1197 but it does not matter */ 1198 } 1199 } 1200 #endif 1201 retval = security_bprm_check(bprm); 1202 if (retval) 1203 return retval; 1204 1205 /* kernel module loader fixup */ 1206 /* so we don't try to load run modprobe in kernel space. */ 1207 set_fs(USER_DS); 1208 1209 retval = audit_bprm(bprm); 1210 if (retval) 1211 return retval; 1212 1213 retval = -ENOENT; 1214 for (try=0; try<2; try++) { 1215 read_lock(&binfmt_lock); 1216 list_for_each_entry(fmt, &formats, lh) { 1217 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1218 if (!fn) 1219 continue; 1220 if (!try_module_get(fmt->module)) 1221 continue; 1222 read_unlock(&binfmt_lock); 1223 retval = fn(bprm, regs); 1224 if (retval >= 0) { 1225 tracehook_report_exec(fmt, bprm, regs); 1226 put_binfmt(fmt); 1227 allow_write_access(bprm->file); 1228 if (bprm->file) 1229 fput(bprm->file); 1230 bprm->file = NULL; 1231 current->did_exec = 1; 1232 proc_exec_connector(current); 1233 return retval; 1234 } 1235 read_lock(&binfmt_lock); 1236 put_binfmt(fmt); 1237 if (retval != -ENOEXEC || bprm->mm == NULL) 1238 break; 1239 if (!bprm->file) { 1240 read_unlock(&binfmt_lock); 1241 return retval; 1242 } 1243 } 1244 read_unlock(&binfmt_lock); 1245 if (retval != -ENOEXEC || bprm->mm == NULL) { 1246 break; 1247 #ifdef CONFIG_MODULES 1248 } else { 1249 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1250 if (printable(bprm->buf[0]) && 1251 printable(bprm->buf[1]) && 1252 printable(bprm->buf[2]) && 1253 printable(bprm->buf[3])) 1254 break; /* -ENOEXEC */ 1255 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1256 #endif 1257 } 1258 } 1259 return retval; 1260 } 1261 1262 EXPORT_SYMBOL(search_binary_handler); 1263 1264 void free_bprm(struct linux_binprm *bprm) 1265 { 1266 free_arg_pages(bprm); 1267 kfree(bprm); 1268 } 1269 1270 /* 1271 * sys_execve() executes a new program. 1272 */ 1273 int do_execve(char * filename, 1274 char __user *__user *argv, 1275 char __user *__user *envp, 1276 struct pt_regs * regs) 1277 { 1278 struct linux_binprm *bprm; 1279 struct file *file; 1280 struct files_struct *displaced; 1281 int retval; 1282 1283 retval = unshare_files(&displaced); 1284 if (retval) 1285 goto out_ret; 1286 1287 retval = -ENOMEM; 1288 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1289 if (!bprm) 1290 goto out_files; 1291 1292 file = open_exec(filename); 1293 retval = PTR_ERR(file); 1294 if (IS_ERR(file)) 1295 goto out_kfree; 1296 1297 sched_exec(); 1298 1299 bprm->file = file; 1300 bprm->filename = filename; 1301 bprm->interp = filename; 1302 1303 retval = bprm_mm_init(bprm); 1304 if (retval) 1305 goto out_file; 1306 1307 bprm->argc = count(argv, MAX_ARG_STRINGS); 1308 if ((retval = bprm->argc) < 0) 1309 goto out_mm; 1310 1311 bprm->envc = count(envp, MAX_ARG_STRINGS); 1312 if ((retval = bprm->envc) < 0) 1313 goto out_mm; 1314 1315 retval = security_bprm_alloc(bprm); 1316 if (retval) 1317 goto out; 1318 1319 retval = prepare_binprm(bprm); 1320 if (retval < 0) 1321 goto out; 1322 1323 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1324 if (retval < 0) 1325 goto out; 1326 1327 bprm->exec = bprm->p; 1328 retval = copy_strings(bprm->envc, envp, bprm); 1329 if (retval < 0) 1330 goto out; 1331 1332 retval = copy_strings(bprm->argc, argv, bprm); 1333 if (retval < 0) 1334 goto out; 1335 1336 current->flags &= ~PF_KTHREAD; 1337 retval = search_binary_handler(bprm,regs); 1338 if (retval >= 0) { 1339 /* execve success */ 1340 security_bprm_free(bprm); 1341 acct_update_integrals(current); 1342 free_bprm(bprm); 1343 if (displaced) 1344 put_files_struct(displaced); 1345 return retval; 1346 } 1347 1348 out: 1349 if (bprm->security) 1350 security_bprm_free(bprm); 1351 1352 out_mm: 1353 if (bprm->mm) 1354 mmput (bprm->mm); 1355 1356 out_file: 1357 if (bprm->file) { 1358 allow_write_access(bprm->file); 1359 fput(bprm->file); 1360 } 1361 out_kfree: 1362 free_bprm(bprm); 1363 1364 out_files: 1365 if (displaced) 1366 reset_files_struct(displaced); 1367 out_ret: 1368 return retval; 1369 } 1370 1371 int set_binfmt(struct linux_binfmt *new) 1372 { 1373 struct linux_binfmt *old = current->binfmt; 1374 1375 if (new) { 1376 if (!try_module_get(new->module)) 1377 return -1; 1378 } 1379 current->binfmt = new; 1380 if (old) 1381 module_put(old->module); 1382 return 0; 1383 } 1384 1385 EXPORT_SYMBOL(set_binfmt); 1386 1387 /* format_corename will inspect the pattern parameter, and output a 1388 * name into corename, which must have space for at least 1389 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1390 */ 1391 static int format_corename(char *corename, int nr_threads, long signr) 1392 { 1393 const char *pat_ptr = core_pattern; 1394 int ispipe = (*pat_ptr == '|'); 1395 char *out_ptr = corename; 1396 char *const out_end = corename + CORENAME_MAX_SIZE; 1397 int rc; 1398 int pid_in_pattern = 0; 1399 1400 /* Repeat as long as we have more pattern to process and more output 1401 space */ 1402 while (*pat_ptr) { 1403 if (*pat_ptr != '%') { 1404 if (out_ptr == out_end) 1405 goto out; 1406 *out_ptr++ = *pat_ptr++; 1407 } else { 1408 switch (*++pat_ptr) { 1409 case 0: 1410 goto out; 1411 /* Double percent, output one percent */ 1412 case '%': 1413 if (out_ptr == out_end) 1414 goto out; 1415 *out_ptr++ = '%'; 1416 break; 1417 /* pid */ 1418 case 'p': 1419 pid_in_pattern = 1; 1420 rc = snprintf(out_ptr, out_end - out_ptr, 1421 "%d", task_tgid_vnr(current)); 1422 if (rc > out_end - out_ptr) 1423 goto out; 1424 out_ptr += rc; 1425 break; 1426 /* uid */ 1427 case 'u': 1428 rc = snprintf(out_ptr, out_end - out_ptr, 1429 "%d", current->uid); 1430 if (rc > out_end - out_ptr) 1431 goto out; 1432 out_ptr += rc; 1433 break; 1434 /* gid */ 1435 case 'g': 1436 rc = snprintf(out_ptr, out_end - out_ptr, 1437 "%d", current->gid); 1438 if (rc > out_end - out_ptr) 1439 goto out; 1440 out_ptr += rc; 1441 break; 1442 /* signal that caused the coredump */ 1443 case 's': 1444 rc = snprintf(out_ptr, out_end - out_ptr, 1445 "%ld", signr); 1446 if (rc > out_end - out_ptr) 1447 goto out; 1448 out_ptr += rc; 1449 break; 1450 /* UNIX time of coredump */ 1451 case 't': { 1452 struct timeval tv; 1453 do_gettimeofday(&tv); 1454 rc = snprintf(out_ptr, out_end - out_ptr, 1455 "%lu", tv.tv_sec); 1456 if (rc > out_end - out_ptr) 1457 goto out; 1458 out_ptr += rc; 1459 break; 1460 } 1461 /* hostname */ 1462 case 'h': 1463 down_read(&uts_sem); 1464 rc = snprintf(out_ptr, out_end - out_ptr, 1465 "%s", utsname()->nodename); 1466 up_read(&uts_sem); 1467 if (rc > out_end - out_ptr) 1468 goto out; 1469 out_ptr += rc; 1470 break; 1471 /* executable */ 1472 case 'e': 1473 rc = snprintf(out_ptr, out_end - out_ptr, 1474 "%s", current->comm); 1475 if (rc > out_end - out_ptr) 1476 goto out; 1477 out_ptr += rc; 1478 break; 1479 /* core limit size */ 1480 case 'c': 1481 rc = snprintf(out_ptr, out_end - out_ptr, 1482 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1483 if (rc > out_end - out_ptr) 1484 goto out; 1485 out_ptr += rc; 1486 break; 1487 default: 1488 break; 1489 } 1490 ++pat_ptr; 1491 } 1492 } 1493 /* Backward compatibility with core_uses_pid: 1494 * 1495 * If core_pattern does not include a %p (as is the default) 1496 * and core_uses_pid is set, then .%pid will be appended to 1497 * the filename. Do not do this for piped commands. */ 1498 if (!ispipe && !pid_in_pattern 1499 && (core_uses_pid || nr_threads)) { 1500 rc = snprintf(out_ptr, out_end - out_ptr, 1501 ".%d", task_tgid_vnr(current)); 1502 if (rc > out_end - out_ptr) 1503 goto out; 1504 out_ptr += rc; 1505 } 1506 out: 1507 *out_ptr = 0; 1508 return ispipe; 1509 } 1510 1511 static int zap_process(struct task_struct *start) 1512 { 1513 struct task_struct *t; 1514 int nr = 0; 1515 1516 start->signal->flags = SIGNAL_GROUP_EXIT; 1517 start->signal->group_stop_count = 0; 1518 1519 t = start; 1520 do { 1521 if (t != current && t->mm) { 1522 sigaddset(&t->pending.signal, SIGKILL); 1523 signal_wake_up(t, 1); 1524 nr++; 1525 } 1526 } while_each_thread(start, t); 1527 1528 return nr; 1529 } 1530 1531 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1532 struct core_state *core_state, int exit_code) 1533 { 1534 struct task_struct *g, *p; 1535 unsigned long flags; 1536 int nr = -EAGAIN; 1537 1538 spin_lock_irq(&tsk->sighand->siglock); 1539 if (!signal_group_exit(tsk->signal)) { 1540 mm->core_state = core_state; 1541 tsk->signal->group_exit_code = exit_code; 1542 nr = zap_process(tsk); 1543 } 1544 spin_unlock_irq(&tsk->sighand->siglock); 1545 if (unlikely(nr < 0)) 1546 return nr; 1547 1548 if (atomic_read(&mm->mm_users) == nr + 1) 1549 goto done; 1550 /* 1551 * We should find and kill all tasks which use this mm, and we should 1552 * count them correctly into ->nr_threads. We don't take tasklist 1553 * lock, but this is safe wrt: 1554 * 1555 * fork: 1556 * None of sub-threads can fork after zap_process(leader). All 1557 * processes which were created before this point should be 1558 * visible to zap_threads() because copy_process() adds the new 1559 * process to the tail of init_task.tasks list, and lock/unlock 1560 * of ->siglock provides a memory barrier. 1561 * 1562 * do_exit: 1563 * The caller holds mm->mmap_sem. This means that the task which 1564 * uses this mm can't pass exit_mm(), so it can't exit or clear 1565 * its ->mm. 1566 * 1567 * de_thread: 1568 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1569 * we must see either old or new leader, this does not matter. 1570 * However, it can change p->sighand, so lock_task_sighand(p) 1571 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1572 * it can't fail. 1573 * 1574 * Note also that "g" can be the old leader with ->mm == NULL 1575 * and already unhashed and thus removed from ->thread_group. 1576 * This is OK, __unhash_process()->list_del_rcu() does not 1577 * clear the ->next pointer, we will find the new leader via 1578 * next_thread(). 1579 */ 1580 rcu_read_lock(); 1581 for_each_process(g) { 1582 if (g == tsk->group_leader) 1583 continue; 1584 if (g->flags & PF_KTHREAD) 1585 continue; 1586 p = g; 1587 do { 1588 if (p->mm) { 1589 if (unlikely(p->mm == mm)) { 1590 lock_task_sighand(p, &flags); 1591 nr += zap_process(p); 1592 unlock_task_sighand(p, &flags); 1593 } 1594 break; 1595 } 1596 } while_each_thread(g, p); 1597 } 1598 rcu_read_unlock(); 1599 done: 1600 atomic_set(&core_state->nr_threads, nr); 1601 return nr; 1602 } 1603 1604 static int coredump_wait(int exit_code, struct core_state *core_state) 1605 { 1606 struct task_struct *tsk = current; 1607 struct mm_struct *mm = tsk->mm; 1608 struct completion *vfork_done; 1609 int core_waiters; 1610 1611 init_completion(&core_state->startup); 1612 core_state->dumper.task = tsk; 1613 core_state->dumper.next = NULL; 1614 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1615 up_write(&mm->mmap_sem); 1616 1617 if (unlikely(core_waiters < 0)) 1618 goto fail; 1619 1620 /* 1621 * Make sure nobody is waiting for us to release the VM, 1622 * otherwise we can deadlock when we wait on each other 1623 */ 1624 vfork_done = tsk->vfork_done; 1625 if (vfork_done) { 1626 tsk->vfork_done = NULL; 1627 complete(vfork_done); 1628 } 1629 1630 if (core_waiters) 1631 wait_for_completion(&core_state->startup); 1632 fail: 1633 return core_waiters; 1634 } 1635 1636 static void coredump_finish(struct mm_struct *mm) 1637 { 1638 struct core_thread *curr, *next; 1639 struct task_struct *task; 1640 1641 next = mm->core_state->dumper.next; 1642 while ((curr = next) != NULL) { 1643 next = curr->next; 1644 task = curr->task; 1645 /* 1646 * see exit_mm(), curr->task must not see 1647 * ->task == NULL before we read ->next. 1648 */ 1649 smp_mb(); 1650 curr->task = NULL; 1651 wake_up_process(task); 1652 } 1653 1654 mm->core_state = NULL; 1655 } 1656 1657 /* 1658 * set_dumpable converts traditional three-value dumpable to two flags and 1659 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1660 * these bits are not changed atomically. So get_dumpable can observe the 1661 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1662 * return either old dumpable or new one by paying attention to the order of 1663 * modifying the bits. 1664 * 1665 * dumpable | mm->flags (binary) 1666 * old new | initial interim final 1667 * ---------+----------------------- 1668 * 0 1 | 00 01 01 1669 * 0 2 | 00 10(*) 11 1670 * 1 0 | 01 00 00 1671 * 1 2 | 01 11 11 1672 * 2 0 | 11 10(*) 00 1673 * 2 1 | 11 11 01 1674 * 1675 * (*) get_dumpable regards interim value of 10 as 11. 1676 */ 1677 void set_dumpable(struct mm_struct *mm, int value) 1678 { 1679 switch (value) { 1680 case 0: 1681 clear_bit(MMF_DUMPABLE, &mm->flags); 1682 smp_wmb(); 1683 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1684 break; 1685 case 1: 1686 set_bit(MMF_DUMPABLE, &mm->flags); 1687 smp_wmb(); 1688 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1689 break; 1690 case 2: 1691 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1692 smp_wmb(); 1693 set_bit(MMF_DUMPABLE, &mm->flags); 1694 break; 1695 } 1696 } 1697 1698 int get_dumpable(struct mm_struct *mm) 1699 { 1700 int ret; 1701 1702 ret = mm->flags & 0x3; 1703 return (ret >= 2) ? 2 : ret; 1704 } 1705 1706 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1707 { 1708 struct core_state core_state; 1709 char corename[CORENAME_MAX_SIZE + 1]; 1710 struct mm_struct *mm = current->mm; 1711 struct linux_binfmt * binfmt; 1712 struct inode * inode; 1713 struct file * file; 1714 int retval = 0; 1715 int fsuid = current->fsuid; 1716 int flag = 0; 1717 int ispipe = 0; 1718 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; 1719 char **helper_argv = NULL; 1720 int helper_argc = 0; 1721 char *delimit; 1722 1723 audit_core_dumps(signr); 1724 1725 binfmt = current->binfmt; 1726 if (!binfmt || !binfmt->core_dump) 1727 goto fail; 1728 down_write(&mm->mmap_sem); 1729 /* 1730 * If another thread got here first, or we are not dumpable, bail out. 1731 */ 1732 if (mm->core_state || !get_dumpable(mm)) { 1733 up_write(&mm->mmap_sem); 1734 goto fail; 1735 } 1736 1737 /* 1738 * We cannot trust fsuid as being the "true" uid of the 1739 * process nor do we know its entire history. We only know it 1740 * was tainted so we dump it as root in mode 2. 1741 */ 1742 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1743 flag = O_EXCL; /* Stop rewrite attacks */ 1744 current->fsuid = 0; /* Dump root private */ 1745 } 1746 1747 retval = coredump_wait(exit_code, &core_state); 1748 if (retval < 0) 1749 goto fail; 1750 1751 /* 1752 * Clear any false indication of pending signals that might 1753 * be seen by the filesystem code called to write the core file. 1754 */ 1755 clear_thread_flag(TIF_SIGPENDING); 1756 1757 /* 1758 * lock_kernel() because format_corename() is controlled by sysctl, which 1759 * uses lock_kernel() 1760 */ 1761 lock_kernel(); 1762 ispipe = format_corename(corename, retval, signr); 1763 unlock_kernel(); 1764 /* 1765 * Don't bother to check the RLIMIT_CORE value if core_pattern points 1766 * to a pipe. Since we're not writing directly to the filesystem 1767 * RLIMIT_CORE doesn't really apply, as no actual core file will be 1768 * created unless the pipe reader choses to write out the core file 1769 * at which point file size limits and permissions will be imposed 1770 * as it does with any other process 1771 */ 1772 if ((!ispipe) && (core_limit < binfmt->min_coredump)) 1773 goto fail_unlock; 1774 1775 if (ispipe) { 1776 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1777 /* Terminate the string before the first option */ 1778 delimit = strchr(corename, ' '); 1779 if (delimit) 1780 *delimit = '\0'; 1781 delimit = strrchr(helper_argv[0], '/'); 1782 if (delimit) 1783 delimit++; 1784 else 1785 delimit = helper_argv[0]; 1786 if (!strcmp(delimit, current->comm)) { 1787 printk(KERN_NOTICE "Recursive core dump detected, " 1788 "aborting\n"); 1789 goto fail_unlock; 1790 } 1791 1792 core_limit = RLIM_INFINITY; 1793 1794 /* SIGPIPE can happen, but it's just never processed */ 1795 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, 1796 &file)) { 1797 printk(KERN_INFO "Core dump to %s pipe failed\n", 1798 corename); 1799 goto fail_unlock; 1800 } 1801 } else 1802 file = filp_open(corename, 1803 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1804 0600); 1805 if (IS_ERR(file)) 1806 goto fail_unlock; 1807 inode = file->f_path.dentry->d_inode; 1808 if (inode->i_nlink > 1) 1809 goto close_fail; /* multiple links - don't dump */ 1810 if (!ispipe && d_unhashed(file->f_path.dentry)) 1811 goto close_fail; 1812 1813 /* AK: actually i see no reason to not allow this for named pipes etc., 1814 but keep the previous behaviour for now. */ 1815 if (!ispipe && !S_ISREG(inode->i_mode)) 1816 goto close_fail; 1817 /* 1818 * Dont allow local users get cute and trick others to coredump 1819 * into their pre-created files: 1820 */ 1821 if (inode->i_uid != current->fsuid) 1822 goto close_fail; 1823 if (!file->f_op) 1824 goto close_fail; 1825 if (!file->f_op->write) 1826 goto close_fail; 1827 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1828 goto close_fail; 1829 1830 retval = binfmt->core_dump(signr, regs, file, core_limit); 1831 1832 if (retval) 1833 current->signal->group_exit_code |= 0x80; 1834 close_fail: 1835 filp_close(file, NULL); 1836 fail_unlock: 1837 if (helper_argv) 1838 argv_free(helper_argv); 1839 1840 current->fsuid = fsuid; 1841 coredump_finish(mm); 1842 fail: 1843 return retval; 1844 } 1845