1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/vmacache.h> 32 #include <linux/stat.h> 33 #include <linux/fcntl.h> 34 #include <linux/swap.h> 35 #include <linux/string.h> 36 #include <linux/init.h> 37 #include <linux/sched/mm.h> 38 #include <linux/sched/coredump.h> 39 #include <linux/sched/signal.h> 40 #include <linux/sched/numa_balancing.h> 41 #include <linux/sched/task.h> 42 #include <linux/pagemap.h> 43 #include <linux/perf_event.h> 44 #include <linux/highmem.h> 45 #include <linux/spinlock.h> 46 #include <linux/key.h> 47 #include <linux/personality.h> 48 #include <linux/binfmts.h> 49 #include <linux/utsname.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/module.h> 52 #include <linux/namei.h> 53 #include <linux/mount.h> 54 #include <linux/security.h> 55 #include <linux/syscalls.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/audit.h> 59 #include <linux/tracehook.h> 60 #include <linux/kmod.h> 61 #include <linux/fsnotify.h> 62 #include <linux/fs_struct.h> 63 #include <linux/oom.h> 64 #include <linux/compat.h> 65 #include <linux/vmalloc.h> 66 #include <linux/io_uring.h> 67 #include <linux/syscall_user_dispatch.h> 68 69 #include <linux/uaccess.h> 70 #include <asm/mmu_context.h> 71 #include <asm/tlb.h> 72 73 #include <trace/events/task.h> 74 #include "internal.h" 75 76 #include <trace/events/sched.h> 77 78 static int bprm_creds_from_file(struct linux_binprm *bprm); 79 80 int suid_dumpable = 0; 81 82 static LIST_HEAD(formats); 83 static DEFINE_RWLOCK(binfmt_lock); 84 85 void __register_binfmt(struct linux_binfmt * fmt, int insert) 86 { 87 write_lock(&binfmt_lock); 88 insert ? list_add(&fmt->lh, &formats) : 89 list_add_tail(&fmt->lh, &formats); 90 write_unlock(&binfmt_lock); 91 } 92 93 EXPORT_SYMBOL(__register_binfmt); 94 95 void unregister_binfmt(struct linux_binfmt * fmt) 96 { 97 write_lock(&binfmt_lock); 98 list_del(&fmt->lh); 99 write_unlock(&binfmt_lock); 100 } 101 102 EXPORT_SYMBOL(unregister_binfmt); 103 104 static inline void put_binfmt(struct linux_binfmt * fmt) 105 { 106 module_put(fmt->module); 107 } 108 109 bool path_noexec(const struct path *path) 110 { 111 return (path->mnt->mnt_flags & MNT_NOEXEC) || 112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 113 } 114 115 #ifdef CONFIG_USELIB 116 /* 117 * Note that a shared library must be both readable and executable due to 118 * security reasons. 119 * 120 * Also note that we take the address to load from from the file itself. 121 */ 122 SYSCALL_DEFINE1(uselib, const char __user *, library) 123 { 124 struct linux_binfmt *fmt; 125 struct file *file; 126 struct filename *tmp = getname(library); 127 int error = PTR_ERR(tmp); 128 static const struct open_flags uselib_flags = { 129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 130 .acc_mode = MAY_READ | MAY_EXEC, 131 .intent = LOOKUP_OPEN, 132 .lookup_flags = LOOKUP_FOLLOW, 133 }; 134 135 if (IS_ERR(tmp)) 136 goto out; 137 138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 139 putname(tmp); 140 error = PTR_ERR(file); 141 if (IS_ERR(file)) 142 goto out; 143 144 /* 145 * may_open() has already checked for this, so it should be 146 * impossible to trip now. But we need to be extra cautious 147 * and check again at the very end too. 148 */ 149 error = -EACCES; 150 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 151 path_noexec(&file->f_path))) 152 goto exit; 153 154 fsnotify_open(file); 155 156 error = -ENOEXEC; 157 158 read_lock(&binfmt_lock); 159 list_for_each_entry(fmt, &formats, lh) { 160 if (!fmt->load_shlib) 161 continue; 162 if (!try_module_get(fmt->module)) 163 continue; 164 read_unlock(&binfmt_lock); 165 error = fmt->load_shlib(file); 166 read_lock(&binfmt_lock); 167 put_binfmt(fmt); 168 if (error != -ENOEXEC) 169 break; 170 } 171 read_unlock(&binfmt_lock); 172 exit: 173 fput(file); 174 out: 175 return error; 176 } 177 #endif /* #ifdef CONFIG_USELIB */ 178 179 #ifdef CONFIG_MMU 180 /* 181 * The nascent bprm->mm is not visible until exec_mmap() but it can 182 * use a lot of memory, account these pages in current->mm temporary 183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 184 * change the counter back via acct_arg_size(0). 185 */ 186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 187 { 188 struct mm_struct *mm = current->mm; 189 long diff = (long)(pages - bprm->vma_pages); 190 191 if (!mm || !diff) 192 return; 193 194 bprm->vma_pages = pages; 195 add_mm_counter(mm, MM_ANONPAGES, diff); 196 } 197 198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 199 int write) 200 { 201 struct page *page; 202 int ret; 203 unsigned int gup_flags = FOLL_FORCE; 204 205 #ifdef CONFIG_STACK_GROWSUP 206 if (write) { 207 ret = expand_downwards(bprm->vma, pos); 208 if (ret < 0) 209 return NULL; 210 } 211 #endif 212 213 if (write) 214 gup_flags |= FOLL_WRITE; 215 216 /* 217 * We are doing an exec(). 'current' is the process 218 * doing the exec and bprm->mm is the new process's mm. 219 */ 220 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 221 &page, NULL, NULL); 222 if (ret <= 0) 223 return NULL; 224 225 if (write) 226 acct_arg_size(bprm, vma_pages(bprm->vma)); 227 228 return page; 229 } 230 231 static void put_arg_page(struct page *page) 232 { 233 put_page(page); 234 } 235 236 static void free_arg_pages(struct linux_binprm *bprm) 237 { 238 } 239 240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 241 struct page *page) 242 { 243 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 244 } 245 246 static int __bprm_mm_init(struct linux_binprm *bprm) 247 { 248 int err; 249 struct vm_area_struct *vma = NULL; 250 struct mm_struct *mm = bprm->mm; 251 252 bprm->vma = vma = vm_area_alloc(mm); 253 if (!vma) 254 return -ENOMEM; 255 vma_set_anonymous(vma); 256 257 if (mmap_write_lock_killable(mm)) { 258 err = -EINTR; 259 goto err_free; 260 } 261 262 /* 263 * Place the stack at the largest stack address the architecture 264 * supports. Later, we'll move this to an appropriate place. We don't 265 * use STACK_TOP because that can depend on attributes which aren't 266 * configured yet. 267 */ 268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 269 vma->vm_end = STACK_TOP_MAX; 270 vma->vm_start = vma->vm_end - PAGE_SIZE; 271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 273 274 err = insert_vm_struct(mm, vma); 275 if (err) 276 goto err; 277 278 mm->stack_vm = mm->total_vm = 1; 279 mmap_write_unlock(mm); 280 bprm->p = vma->vm_end - sizeof(void *); 281 return 0; 282 err: 283 mmap_write_unlock(mm); 284 err_free: 285 bprm->vma = NULL; 286 vm_area_free(vma); 287 return err; 288 } 289 290 static bool valid_arg_len(struct linux_binprm *bprm, long len) 291 { 292 return len <= MAX_ARG_STRLEN; 293 } 294 295 #else 296 297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 298 { 299 } 300 301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 302 int write) 303 { 304 struct page *page; 305 306 page = bprm->page[pos / PAGE_SIZE]; 307 if (!page && write) { 308 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 309 if (!page) 310 return NULL; 311 bprm->page[pos / PAGE_SIZE] = page; 312 } 313 314 return page; 315 } 316 317 static void put_arg_page(struct page *page) 318 { 319 } 320 321 static void free_arg_page(struct linux_binprm *bprm, int i) 322 { 323 if (bprm->page[i]) { 324 __free_page(bprm->page[i]); 325 bprm->page[i] = NULL; 326 } 327 } 328 329 static void free_arg_pages(struct linux_binprm *bprm) 330 { 331 int i; 332 333 for (i = 0; i < MAX_ARG_PAGES; i++) 334 free_arg_page(bprm, i); 335 } 336 337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 338 struct page *page) 339 { 340 } 341 342 static int __bprm_mm_init(struct linux_binprm *bprm) 343 { 344 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 345 return 0; 346 } 347 348 static bool valid_arg_len(struct linux_binprm *bprm, long len) 349 { 350 return len <= bprm->p; 351 } 352 353 #endif /* CONFIG_MMU */ 354 355 /* 356 * Create a new mm_struct and populate it with a temporary stack 357 * vm_area_struct. We don't have enough context at this point to set the stack 358 * flags, permissions, and offset, so we use temporary values. We'll update 359 * them later in setup_arg_pages(). 360 */ 361 static int bprm_mm_init(struct linux_binprm *bprm) 362 { 363 int err; 364 struct mm_struct *mm = NULL; 365 366 bprm->mm = mm = mm_alloc(); 367 err = -ENOMEM; 368 if (!mm) 369 goto err; 370 371 /* Save current stack limit for all calculations made during exec. */ 372 task_lock(current->group_leader); 373 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 374 task_unlock(current->group_leader); 375 376 err = __bprm_mm_init(bprm); 377 if (err) 378 goto err; 379 380 return 0; 381 382 err: 383 if (mm) { 384 bprm->mm = NULL; 385 mmdrop(mm); 386 } 387 388 return err; 389 } 390 391 struct user_arg_ptr { 392 #ifdef CONFIG_COMPAT 393 bool is_compat; 394 #endif 395 union { 396 const char __user *const __user *native; 397 #ifdef CONFIG_COMPAT 398 const compat_uptr_t __user *compat; 399 #endif 400 } ptr; 401 }; 402 403 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 404 { 405 const char __user *native; 406 407 #ifdef CONFIG_COMPAT 408 if (unlikely(argv.is_compat)) { 409 compat_uptr_t compat; 410 411 if (get_user(compat, argv.ptr.compat + nr)) 412 return ERR_PTR(-EFAULT); 413 414 return compat_ptr(compat); 415 } 416 #endif 417 418 if (get_user(native, argv.ptr.native + nr)) 419 return ERR_PTR(-EFAULT); 420 421 return native; 422 } 423 424 /* 425 * count() counts the number of strings in array ARGV. 426 */ 427 static int count(struct user_arg_ptr argv, int max) 428 { 429 int i = 0; 430 431 if (argv.ptr.native != NULL) { 432 for (;;) { 433 const char __user *p = get_user_arg_ptr(argv, i); 434 435 if (!p) 436 break; 437 438 if (IS_ERR(p)) 439 return -EFAULT; 440 441 if (i >= max) 442 return -E2BIG; 443 ++i; 444 445 if (fatal_signal_pending(current)) 446 return -ERESTARTNOHAND; 447 cond_resched(); 448 } 449 } 450 return i; 451 } 452 453 static int count_strings_kernel(const char *const *argv) 454 { 455 int i; 456 457 if (!argv) 458 return 0; 459 460 for (i = 0; argv[i]; ++i) { 461 if (i >= MAX_ARG_STRINGS) 462 return -E2BIG; 463 if (fatal_signal_pending(current)) 464 return -ERESTARTNOHAND; 465 cond_resched(); 466 } 467 return i; 468 } 469 470 static int bprm_stack_limits(struct linux_binprm *bprm) 471 { 472 unsigned long limit, ptr_size; 473 474 /* 475 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 476 * (whichever is smaller) for the argv+env strings. 477 * This ensures that: 478 * - the remaining binfmt code will not run out of stack space, 479 * - the program will have a reasonable amount of stack left 480 * to work from. 481 */ 482 limit = _STK_LIM / 4 * 3; 483 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 484 /* 485 * We've historically supported up to 32 pages (ARG_MAX) 486 * of argument strings even with small stacks 487 */ 488 limit = max_t(unsigned long, limit, ARG_MAX); 489 /* 490 * We must account for the size of all the argv and envp pointers to 491 * the argv and envp strings, since they will also take up space in 492 * the stack. They aren't stored until much later when we can't 493 * signal to the parent that the child has run out of stack space. 494 * Instead, calculate it here so it's possible to fail gracefully. 495 */ 496 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 497 if (limit <= ptr_size) 498 return -E2BIG; 499 limit -= ptr_size; 500 501 bprm->argmin = bprm->p - limit; 502 return 0; 503 } 504 505 /* 506 * 'copy_strings()' copies argument/environment strings from the old 507 * processes's memory to the new process's stack. The call to get_user_pages() 508 * ensures the destination page is created and not swapped out. 509 */ 510 static int copy_strings(int argc, struct user_arg_ptr argv, 511 struct linux_binprm *bprm) 512 { 513 struct page *kmapped_page = NULL; 514 char *kaddr = NULL; 515 unsigned long kpos = 0; 516 int ret; 517 518 while (argc-- > 0) { 519 const char __user *str; 520 int len; 521 unsigned long pos; 522 523 ret = -EFAULT; 524 str = get_user_arg_ptr(argv, argc); 525 if (IS_ERR(str)) 526 goto out; 527 528 len = strnlen_user(str, MAX_ARG_STRLEN); 529 if (!len) 530 goto out; 531 532 ret = -E2BIG; 533 if (!valid_arg_len(bprm, len)) 534 goto out; 535 536 /* We're going to work our way backwords. */ 537 pos = bprm->p; 538 str += len; 539 bprm->p -= len; 540 #ifdef CONFIG_MMU 541 if (bprm->p < bprm->argmin) 542 goto out; 543 #endif 544 545 while (len > 0) { 546 int offset, bytes_to_copy; 547 548 if (fatal_signal_pending(current)) { 549 ret = -ERESTARTNOHAND; 550 goto out; 551 } 552 cond_resched(); 553 554 offset = pos % PAGE_SIZE; 555 if (offset == 0) 556 offset = PAGE_SIZE; 557 558 bytes_to_copy = offset; 559 if (bytes_to_copy > len) 560 bytes_to_copy = len; 561 562 offset -= bytes_to_copy; 563 pos -= bytes_to_copy; 564 str -= bytes_to_copy; 565 len -= bytes_to_copy; 566 567 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 568 struct page *page; 569 570 page = get_arg_page(bprm, pos, 1); 571 if (!page) { 572 ret = -E2BIG; 573 goto out; 574 } 575 576 if (kmapped_page) { 577 flush_kernel_dcache_page(kmapped_page); 578 kunmap(kmapped_page); 579 put_arg_page(kmapped_page); 580 } 581 kmapped_page = page; 582 kaddr = kmap(kmapped_page); 583 kpos = pos & PAGE_MASK; 584 flush_arg_page(bprm, kpos, kmapped_page); 585 } 586 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 587 ret = -EFAULT; 588 goto out; 589 } 590 } 591 } 592 ret = 0; 593 out: 594 if (kmapped_page) { 595 flush_kernel_dcache_page(kmapped_page); 596 kunmap(kmapped_page); 597 put_arg_page(kmapped_page); 598 } 599 return ret; 600 } 601 602 /* 603 * Copy and argument/environment string from the kernel to the processes stack. 604 */ 605 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 606 { 607 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 608 unsigned long pos = bprm->p; 609 610 if (len == 0) 611 return -EFAULT; 612 if (!valid_arg_len(bprm, len)) 613 return -E2BIG; 614 615 /* We're going to work our way backwards. */ 616 arg += len; 617 bprm->p -= len; 618 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 619 return -E2BIG; 620 621 while (len > 0) { 622 unsigned int bytes_to_copy = min_t(unsigned int, len, 623 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 624 struct page *page; 625 char *kaddr; 626 627 pos -= bytes_to_copy; 628 arg -= bytes_to_copy; 629 len -= bytes_to_copy; 630 631 page = get_arg_page(bprm, pos, 1); 632 if (!page) 633 return -E2BIG; 634 kaddr = kmap_atomic(page); 635 flush_arg_page(bprm, pos & PAGE_MASK, page); 636 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy); 637 flush_kernel_dcache_page(page); 638 kunmap_atomic(kaddr); 639 put_arg_page(page); 640 } 641 642 return 0; 643 } 644 EXPORT_SYMBOL(copy_string_kernel); 645 646 static int copy_strings_kernel(int argc, const char *const *argv, 647 struct linux_binprm *bprm) 648 { 649 while (argc-- > 0) { 650 int ret = copy_string_kernel(argv[argc], bprm); 651 if (ret < 0) 652 return ret; 653 if (fatal_signal_pending(current)) 654 return -ERESTARTNOHAND; 655 cond_resched(); 656 } 657 return 0; 658 } 659 660 #ifdef CONFIG_MMU 661 662 /* 663 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 664 * the binfmt code determines where the new stack should reside, we shift it to 665 * its final location. The process proceeds as follows: 666 * 667 * 1) Use shift to calculate the new vma endpoints. 668 * 2) Extend vma to cover both the old and new ranges. This ensures the 669 * arguments passed to subsequent functions are consistent. 670 * 3) Move vma's page tables to the new range. 671 * 4) Free up any cleared pgd range. 672 * 5) Shrink the vma to cover only the new range. 673 */ 674 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 675 { 676 struct mm_struct *mm = vma->vm_mm; 677 unsigned long old_start = vma->vm_start; 678 unsigned long old_end = vma->vm_end; 679 unsigned long length = old_end - old_start; 680 unsigned long new_start = old_start - shift; 681 unsigned long new_end = old_end - shift; 682 struct mmu_gather tlb; 683 684 BUG_ON(new_start > new_end); 685 686 /* 687 * ensure there are no vmas between where we want to go 688 * and where we are 689 */ 690 if (vma != find_vma(mm, new_start)) 691 return -EFAULT; 692 693 /* 694 * cover the whole range: [new_start, old_end) 695 */ 696 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 697 return -ENOMEM; 698 699 /* 700 * move the page tables downwards, on failure we rely on 701 * process cleanup to remove whatever mess we made. 702 */ 703 if (length != move_page_tables(vma, old_start, 704 vma, new_start, length, false)) 705 return -ENOMEM; 706 707 lru_add_drain(); 708 tlb_gather_mmu(&tlb, mm); 709 if (new_end > old_start) { 710 /* 711 * when the old and new regions overlap clear from new_end. 712 */ 713 free_pgd_range(&tlb, new_end, old_end, new_end, 714 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 715 } else { 716 /* 717 * otherwise, clean from old_start; this is done to not touch 718 * the address space in [new_end, old_start) some architectures 719 * have constraints on va-space that make this illegal (IA64) - 720 * for the others its just a little faster. 721 */ 722 free_pgd_range(&tlb, old_start, old_end, new_end, 723 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 724 } 725 tlb_finish_mmu(&tlb); 726 727 /* 728 * Shrink the vma to just the new range. Always succeeds. 729 */ 730 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 731 732 return 0; 733 } 734 735 /* 736 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 737 * the stack is optionally relocated, and some extra space is added. 738 */ 739 int setup_arg_pages(struct linux_binprm *bprm, 740 unsigned long stack_top, 741 int executable_stack) 742 { 743 unsigned long ret; 744 unsigned long stack_shift; 745 struct mm_struct *mm = current->mm; 746 struct vm_area_struct *vma = bprm->vma; 747 struct vm_area_struct *prev = NULL; 748 unsigned long vm_flags; 749 unsigned long stack_base; 750 unsigned long stack_size; 751 unsigned long stack_expand; 752 unsigned long rlim_stack; 753 754 #ifdef CONFIG_STACK_GROWSUP 755 /* Limit stack size */ 756 stack_base = bprm->rlim_stack.rlim_max; 757 758 stack_base = calc_max_stack_size(stack_base); 759 760 /* Add space for stack randomization. */ 761 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 762 763 /* Make sure we didn't let the argument array grow too large. */ 764 if (vma->vm_end - vma->vm_start > stack_base) 765 return -ENOMEM; 766 767 stack_base = PAGE_ALIGN(stack_top - stack_base); 768 769 stack_shift = vma->vm_start - stack_base; 770 mm->arg_start = bprm->p - stack_shift; 771 bprm->p = vma->vm_end - stack_shift; 772 #else 773 stack_top = arch_align_stack(stack_top); 774 stack_top = PAGE_ALIGN(stack_top); 775 776 if (unlikely(stack_top < mmap_min_addr) || 777 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 778 return -ENOMEM; 779 780 stack_shift = vma->vm_end - stack_top; 781 782 bprm->p -= stack_shift; 783 mm->arg_start = bprm->p; 784 #endif 785 786 if (bprm->loader) 787 bprm->loader -= stack_shift; 788 bprm->exec -= stack_shift; 789 790 if (mmap_write_lock_killable(mm)) 791 return -EINTR; 792 793 vm_flags = VM_STACK_FLAGS; 794 795 /* 796 * Adjust stack execute permissions; explicitly enable for 797 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 798 * (arch default) otherwise. 799 */ 800 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 801 vm_flags |= VM_EXEC; 802 else if (executable_stack == EXSTACK_DISABLE_X) 803 vm_flags &= ~VM_EXEC; 804 vm_flags |= mm->def_flags; 805 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 806 807 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 808 vm_flags); 809 if (ret) 810 goto out_unlock; 811 BUG_ON(prev != vma); 812 813 if (unlikely(vm_flags & VM_EXEC)) { 814 pr_warn_once("process '%pD4' started with executable stack\n", 815 bprm->file); 816 } 817 818 /* Move stack pages down in memory. */ 819 if (stack_shift) { 820 ret = shift_arg_pages(vma, stack_shift); 821 if (ret) 822 goto out_unlock; 823 } 824 825 /* mprotect_fixup is overkill to remove the temporary stack flags */ 826 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 827 828 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 829 stack_size = vma->vm_end - vma->vm_start; 830 /* 831 * Align this down to a page boundary as expand_stack 832 * will align it up. 833 */ 834 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 835 #ifdef CONFIG_STACK_GROWSUP 836 if (stack_size + stack_expand > rlim_stack) 837 stack_base = vma->vm_start + rlim_stack; 838 else 839 stack_base = vma->vm_end + stack_expand; 840 #else 841 if (stack_size + stack_expand > rlim_stack) 842 stack_base = vma->vm_end - rlim_stack; 843 else 844 stack_base = vma->vm_start - stack_expand; 845 #endif 846 current->mm->start_stack = bprm->p; 847 ret = expand_stack(vma, stack_base); 848 if (ret) 849 ret = -EFAULT; 850 851 out_unlock: 852 mmap_write_unlock(mm); 853 return ret; 854 } 855 EXPORT_SYMBOL(setup_arg_pages); 856 857 #else 858 859 /* 860 * Transfer the program arguments and environment from the holding pages 861 * onto the stack. The provided stack pointer is adjusted accordingly. 862 */ 863 int transfer_args_to_stack(struct linux_binprm *bprm, 864 unsigned long *sp_location) 865 { 866 unsigned long index, stop, sp; 867 int ret = 0; 868 869 stop = bprm->p >> PAGE_SHIFT; 870 sp = *sp_location; 871 872 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 873 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 874 char *src = kmap(bprm->page[index]) + offset; 875 sp -= PAGE_SIZE - offset; 876 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 877 ret = -EFAULT; 878 kunmap(bprm->page[index]); 879 if (ret) 880 goto out; 881 } 882 883 *sp_location = sp; 884 885 out: 886 return ret; 887 } 888 EXPORT_SYMBOL(transfer_args_to_stack); 889 890 #endif /* CONFIG_MMU */ 891 892 static struct file *do_open_execat(int fd, struct filename *name, int flags) 893 { 894 struct file *file; 895 int err; 896 struct open_flags open_exec_flags = { 897 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 898 .acc_mode = MAY_EXEC, 899 .intent = LOOKUP_OPEN, 900 .lookup_flags = LOOKUP_FOLLOW, 901 }; 902 903 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 904 return ERR_PTR(-EINVAL); 905 if (flags & AT_SYMLINK_NOFOLLOW) 906 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 907 if (flags & AT_EMPTY_PATH) 908 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 909 910 file = do_filp_open(fd, name, &open_exec_flags); 911 if (IS_ERR(file)) 912 goto out; 913 914 /* 915 * may_open() has already checked for this, so it should be 916 * impossible to trip now. But we need to be extra cautious 917 * and check again at the very end too. 918 */ 919 err = -EACCES; 920 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 921 path_noexec(&file->f_path))) 922 goto exit; 923 924 err = deny_write_access(file); 925 if (err) 926 goto exit; 927 928 if (name->name[0] != '\0') 929 fsnotify_open(file); 930 931 out: 932 return file; 933 934 exit: 935 fput(file); 936 return ERR_PTR(err); 937 } 938 939 struct file *open_exec(const char *name) 940 { 941 struct filename *filename = getname_kernel(name); 942 struct file *f = ERR_CAST(filename); 943 944 if (!IS_ERR(filename)) { 945 f = do_open_execat(AT_FDCWD, filename, 0); 946 putname(filename); 947 } 948 return f; 949 } 950 EXPORT_SYMBOL(open_exec); 951 952 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ 953 defined(CONFIG_BINFMT_ELF_FDPIC) 954 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 955 { 956 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 957 if (res > 0) 958 flush_icache_user_range(addr, addr + len); 959 return res; 960 } 961 EXPORT_SYMBOL(read_code); 962 #endif 963 964 /* 965 * Maps the mm_struct mm into the current task struct. 966 * On success, this function returns with exec_update_lock 967 * held for writing. 968 */ 969 static int exec_mmap(struct mm_struct *mm) 970 { 971 struct task_struct *tsk; 972 struct mm_struct *old_mm, *active_mm; 973 int ret; 974 975 /* Notify parent that we're no longer interested in the old VM */ 976 tsk = current; 977 old_mm = current->mm; 978 exec_mm_release(tsk, old_mm); 979 if (old_mm) 980 sync_mm_rss(old_mm); 981 982 ret = down_write_killable(&tsk->signal->exec_update_lock); 983 if (ret) 984 return ret; 985 986 if (old_mm) { 987 /* 988 * Make sure that if there is a core dump in progress 989 * for the old mm, we get out and die instead of going 990 * through with the exec. We must hold mmap_lock around 991 * checking core_state and changing tsk->mm. 992 */ 993 mmap_read_lock(old_mm); 994 if (unlikely(old_mm->core_state)) { 995 mmap_read_unlock(old_mm); 996 up_write(&tsk->signal->exec_update_lock); 997 return -EINTR; 998 } 999 } 1000 1001 task_lock(tsk); 1002 membarrier_exec_mmap(mm); 1003 1004 local_irq_disable(); 1005 active_mm = tsk->active_mm; 1006 tsk->active_mm = mm; 1007 tsk->mm = mm; 1008 /* 1009 * This prevents preemption while active_mm is being loaded and 1010 * it and mm are being updated, which could cause problems for 1011 * lazy tlb mm refcounting when these are updated by context 1012 * switches. Not all architectures can handle irqs off over 1013 * activate_mm yet. 1014 */ 1015 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1016 local_irq_enable(); 1017 activate_mm(active_mm, mm); 1018 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1019 local_irq_enable(); 1020 tsk->mm->vmacache_seqnum = 0; 1021 vmacache_flush(tsk); 1022 task_unlock(tsk); 1023 if (old_mm) { 1024 mmap_read_unlock(old_mm); 1025 BUG_ON(active_mm != old_mm); 1026 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1027 mm_update_next_owner(old_mm); 1028 mmput(old_mm); 1029 return 0; 1030 } 1031 mmdrop(active_mm); 1032 return 0; 1033 } 1034 1035 static int de_thread(struct task_struct *tsk) 1036 { 1037 struct signal_struct *sig = tsk->signal; 1038 struct sighand_struct *oldsighand = tsk->sighand; 1039 spinlock_t *lock = &oldsighand->siglock; 1040 1041 if (thread_group_empty(tsk)) 1042 goto no_thread_group; 1043 1044 /* 1045 * Kill all other threads in the thread group. 1046 */ 1047 spin_lock_irq(lock); 1048 if (signal_group_exit(sig)) { 1049 /* 1050 * Another group action in progress, just 1051 * return so that the signal is processed. 1052 */ 1053 spin_unlock_irq(lock); 1054 return -EAGAIN; 1055 } 1056 1057 sig->group_exit_task = tsk; 1058 sig->notify_count = zap_other_threads(tsk); 1059 if (!thread_group_leader(tsk)) 1060 sig->notify_count--; 1061 1062 while (sig->notify_count) { 1063 __set_current_state(TASK_KILLABLE); 1064 spin_unlock_irq(lock); 1065 schedule(); 1066 if (__fatal_signal_pending(tsk)) 1067 goto killed; 1068 spin_lock_irq(lock); 1069 } 1070 spin_unlock_irq(lock); 1071 1072 /* 1073 * At this point all other threads have exited, all we have to 1074 * do is to wait for the thread group leader to become inactive, 1075 * and to assume its PID: 1076 */ 1077 if (!thread_group_leader(tsk)) { 1078 struct task_struct *leader = tsk->group_leader; 1079 1080 for (;;) { 1081 cgroup_threadgroup_change_begin(tsk); 1082 write_lock_irq(&tasklist_lock); 1083 /* 1084 * Do this under tasklist_lock to ensure that 1085 * exit_notify() can't miss ->group_exit_task 1086 */ 1087 sig->notify_count = -1; 1088 if (likely(leader->exit_state)) 1089 break; 1090 __set_current_state(TASK_KILLABLE); 1091 write_unlock_irq(&tasklist_lock); 1092 cgroup_threadgroup_change_end(tsk); 1093 schedule(); 1094 if (__fatal_signal_pending(tsk)) 1095 goto killed; 1096 } 1097 1098 /* 1099 * The only record we have of the real-time age of a 1100 * process, regardless of execs it's done, is start_time. 1101 * All the past CPU time is accumulated in signal_struct 1102 * from sister threads now dead. But in this non-leader 1103 * exec, nothing survives from the original leader thread, 1104 * whose birth marks the true age of this process now. 1105 * When we take on its identity by switching to its PID, we 1106 * also take its birthdate (always earlier than our own). 1107 */ 1108 tsk->start_time = leader->start_time; 1109 tsk->start_boottime = leader->start_boottime; 1110 1111 BUG_ON(!same_thread_group(leader, tsk)); 1112 /* 1113 * An exec() starts a new thread group with the 1114 * TGID of the previous thread group. Rehash the 1115 * two threads with a switched PID, and release 1116 * the former thread group leader: 1117 */ 1118 1119 /* Become a process group leader with the old leader's pid. 1120 * The old leader becomes a thread of the this thread group. 1121 */ 1122 exchange_tids(tsk, leader); 1123 transfer_pid(leader, tsk, PIDTYPE_TGID); 1124 transfer_pid(leader, tsk, PIDTYPE_PGID); 1125 transfer_pid(leader, tsk, PIDTYPE_SID); 1126 1127 list_replace_rcu(&leader->tasks, &tsk->tasks); 1128 list_replace_init(&leader->sibling, &tsk->sibling); 1129 1130 tsk->group_leader = tsk; 1131 leader->group_leader = tsk; 1132 1133 tsk->exit_signal = SIGCHLD; 1134 leader->exit_signal = -1; 1135 1136 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1137 leader->exit_state = EXIT_DEAD; 1138 1139 /* 1140 * We are going to release_task()->ptrace_unlink() silently, 1141 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1142 * the tracer wont't block again waiting for this thread. 1143 */ 1144 if (unlikely(leader->ptrace)) 1145 __wake_up_parent(leader, leader->parent); 1146 write_unlock_irq(&tasklist_lock); 1147 cgroup_threadgroup_change_end(tsk); 1148 1149 release_task(leader); 1150 } 1151 1152 sig->group_exit_task = NULL; 1153 sig->notify_count = 0; 1154 1155 no_thread_group: 1156 /* we have changed execution domain */ 1157 tsk->exit_signal = SIGCHLD; 1158 1159 BUG_ON(!thread_group_leader(tsk)); 1160 return 0; 1161 1162 killed: 1163 /* protects against exit_notify() and __exit_signal() */ 1164 read_lock(&tasklist_lock); 1165 sig->group_exit_task = NULL; 1166 sig->notify_count = 0; 1167 read_unlock(&tasklist_lock); 1168 return -EAGAIN; 1169 } 1170 1171 1172 /* 1173 * This function makes sure the current process has its own signal table, 1174 * so that flush_signal_handlers can later reset the handlers without 1175 * disturbing other processes. (Other processes might share the signal 1176 * table via the CLONE_SIGHAND option to clone().) 1177 */ 1178 static int unshare_sighand(struct task_struct *me) 1179 { 1180 struct sighand_struct *oldsighand = me->sighand; 1181 1182 if (refcount_read(&oldsighand->count) != 1) { 1183 struct sighand_struct *newsighand; 1184 /* 1185 * This ->sighand is shared with the CLONE_SIGHAND 1186 * but not CLONE_THREAD task, switch to the new one. 1187 */ 1188 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1189 if (!newsighand) 1190 return -ENOMEM; 1191 1192 refcount_set(&newsighand->count, 1); 1193 memcpy(newsighand->action, oldsighand->action, 1194 sizeof(newsighand->action)); 1195 1196 write_lock_irq(&tasklist_lock); 1197 spin_lock(&oldsighand->siglock); 1198 rcu_assign_pointer(me->sighand, newsighand); 1199 spin_unlock(&oldsighand->siglock); 1200 write_unlock_irq(&tasklist_lock); 1201 1202 __cleanup_sighand(oldsighand); 1203 } 1204 return 0; 1205 } 1206 1207 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1208 { 1209 task_lock(tsk); 1210 strncpy(buf, tsk->comm, buf_size); 1211 task_unlock(tsk); 1212 return buf; 1213 } 1214 EXPORT_SYMBOL_GPL(__get_task_comm); 1215 1216 /* 1217 * These functions flushes out all traces of the currently running executable 1218 * so that a new one can be started 1219 */ 1220 1221 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1222 { 1223 task_lock(tsk); 1224 trace_task_rename(tsk, buf); 1225 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1226 task_unlock(tsk); 1227 perf_event_comm(tsk, exec); 1228 } 1229 1230 /* 1231 * Calling this is the point of no return. None of the failures will be 1232 * seen by userspace since either the process is already taking a fatal 1233 * signal (via de_thread() or coredump), or will have SEGV raised 1234 * (after exec_mmap()) by search_binary_handler (see below). 1235 */ 1236 int begin_new_exec(struct linux_binprm * bprm) 1237 { 1238 struct task_struct *me = current; 1239 int retval; 1240 1241 /* Once we are committed compute the creds */ 1242 retval = bprm_creds_from_file(bprm); 1243 if (retval) 1244 return retval; 1245 1246 /* 1247 * Ensure all future errors are fatal. 1248 */ 1249 bprm->point_of_no_return = true; 1250 1251 /* 1252 * Make this the only thread in the thread group. 1253 */ 1254 retval = de_thread(me); 1255 if (retval) 1256 goto out; 1257 1258 /* 1259 * Cancel any io_uring activity across execve 1260 */ 1261 io_uring_task_cancel(); 1262 1263 /* Ensure the files table is not shared. */ 1264 retval = unshare_files(); 1265 if (retval) 1266 goto out; 1267 1268 /* 1269 * Must be called _before_ exec_mmap() as bprm->mm is 1270 * not visibile until then. This also enables the update 1271 * to be lockless. 1272 */ 1273 set_mm_exe_file(bprm->mm, bprm->file); 1274 1275 /* If the binary is not readable then enforce mm->dumpable=0 */ 1276 would_dump(bprm, bprm->file); 1277 if (bprm->have_execfd) 1278 would_dump(bprm, bprm->executable); 1279 1280 /* 1281 * Release all of the old mmap stuff 1282 */ 1283 acct_arg_size(bprm, 0); 1284 retval = exec_mmap(bprm->mm); 1285 if (retval) 1286 goto out; 1287 1288 bprm->mm = NULL; 1289 1290 #ifdef CONFIG_POSIX_TIMERS 1291 exit_itimers(me->signal); 1292 flush_itimer_signals(); 1293 #endif 1294 1295 /* 1296 * Make the signal table private. 1297 */ 1298 retval = unshare_sighand(me); 1299 if (retval) 1300 goto out_unlock; 1301 1302 /* 1303 * Ensure that the uaccess routines can actually operate on userspace 1304 * pointers: 1305 */ 1306 force_uaccess_begin(); 1307 1308 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1309 PF_NOFREEZE | PF_NO_SETAFFINITY); 1310 flush_thread(); 1311 me->personality &= ~bprm->per_clear; 1312 1313 clear_syscall_work_syscall_user_dispatch(me); 1314 1315 /* 1316 * We have to apply CLOEXEC before we change whether the process is 1317 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1318 * trying to access the should-be-closed file descriptors of a process 1319 * undergoing exec(2). 1320 */ 1321 do_close_on_exec(me->files); 1322 1323 if (bprm->secureexec) { 1324 /* Make sure parent cannot signal privileged process. */ 1325 me->pdeath_signal = 0; 1326 1327 /* 1328 * For secureexec, reset the stack limit to sane default to 1329 * avoid bad behavior from the prior rlimits. This has to 1330 * happen before arch_pick_mmap_layout(), which examines 1331 * RLIMIT_STACK, but after the point of no return to avoid 1332 * needing to clean up the change on failure. 1333 */ 1334 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1335 bprm->rlim_stack.rlim_cur = _STK_LIM; 1336 } 1337 1338 me->sas_ss_sp = me->sas_ss_size = 0; 1339 1340 /* 1341 * Figure out dumpability. Note that this checking only of current 1342 * is wrong, but userspace depends on it. This should be testing 1343 * bprm->secureexec instead. 1344 */ 1345 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1346 !(uid_eq(current_euid(), current_uid()) && 1347 gid_eq(current_egid(), current_gid()))) 1348 set_dumpable(current->mm, suid_dumpable); 1349 else 1350 set_dumpable(current->mm, SUID_DUMP_USER); 1351 1352 perf_event_exec(); 1353 __set_task_comm(me, kbasename(bprm->filename), true); 1354 1355 /* An exec changes our domain. We are no longer part of the thread 1356 group */ 1357 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1358 flush_signal_handlers(me, 0); 1359 1360 retval = set_cred_ucounts(bprm->cred); 1361 if (retval < 0) 1362 goto out_unlock; 1363 1364 /* 1365 * install the new credentials for this executable 1366 */ 1367 security_bprm_committing_creds(bprm); 1368 1369 commit_creds(bprm->cred); 1370 bprm->cred = NULL; 1371 1372 /* 1373 * Disable monitoring for regular users 1374 * when executing setuid binaries. Must 1375 * wait until new credentials are committed 1376 * by commit_creds() above 1377 */ 1378 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1379 perf_event_exit_task(me); 1380 /* 1381 * cred_guard_mutex must be held at least to this point to prevent 1382 * ptrace_attach() from altering our determination of the task's 1383 * credentials; any time after this it may be unlocked. 1384 */ 1385 security_bprm_committed_creds(bprm); 1386 1387 /* Pass the opened binary to the interpreter. */ 1388 if (bprm->have_execfd) { 1389 retval = get_unused_fd_flags(0); 1390 if (retval < 0) 1391 goto out_unlock; 1392 fd_install(retval, bprm->executable); 1393 bprm->executable = NULL; 1394 bprm->execfd = retval; 1395 } 1396 return 0; 1397 1398 out_unlock: 1399 up_write(&me->signal->exec_update_lock); 1400 out: 1401 return retval; 1402 } 1403 EXPORT_SYMBOL(begin_new_exec); 1404 1405 void would_dump(struct linux_binprm *bprm, struct file *file) 1406 { 1407 struct inode *inode = file_inode(file); 1408 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 1409 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) { 1410 struct user_namespace *old, *user_ns; 1411 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1412 1413 /* Ensure mm->user_ns contains the executable */ 1414 user_ns = old = bprm->mm->user_ns; 1415 while ((user_ns != &init_user_ns) && 1416 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode)) 1417 user_ns = user_ns->parent; 1418 1419 if (old != user_ns) { 1420 bprm->mm->user_ns = get_user_ns(user_ns); 1421 put_user_ns(old); 1422 } 1423 } 1424 } 1425 EXPORT_SYMBOL(would_dump); 1426 1427 void setup_new_exec(struct linux_binprm * bprm) 1428 { 1429 /* Setup things that can depend upon the personality */ 1430 struct task_struct *me = current; 1431 1432 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1433 1434 arch_setup_new_exec(); 1435 1436 /* Set the new mm task size. We have to do that late because it may 1437 * depend on TIF_32BIT which is only updated in flush_thread() on 1438 * some architectures like powerpc 1439 */ 1440 me->mm->task_size = TASK_SIZE; 1441 up_write(&me->signal->exec_update_lock); 1442 mutex_unlock(&me->signal->cred_guard_mutex); 1443 } 1444 EXPORT_SYMBOL(setup_new_exec); 1445 1446 /* Runs immediately before start_thread() takes over. */ 1447 void finalize_exec(struct linux_binprm *bprm) 1448 { 1449 /* Store any stack rlimit changes before starting thread. */ 1450 task_lock(current->group_leader); 1451 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1452 task_unlock(current->group_leader); 1453 } 1454 EXPORT_SYMBOL(finalize_exec); 1455 1456 /* 1457 * Prepare credentials and lock ->cred_guard_mutex. 1458 * setup_new_exec() commits the new creds and drops the lock. 1459 * Or, if exec fails before, free_bprm() should release ->cred 1460 * and unlock. 1461 */ 1462 static int prepare_bprm_creds(struct linux_binprm *bprm) 1463 { 1464 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1465 return -ERESTARTNOINTR; 1466 1467 bprm->cred = prepare_exec_creds(); 1468 if (likely(bprm->cred)) 1469 return 0; 1470 1471 mutex_unlock(¤t->signal->cred_guard_mutex); 1472 return -ENOMEM; 1473 } 1474 1475 static void free_bprm(struct linux_binprm *bprm) 1476 { 1477 if (bprm->mm) { 1478 acct_arg_size(bprm, 0); 1479 mmput(bprm->mm); 1480 } 1481 free_arg_pages(bprm); 1482 if (bprm->cred) { 1483 mutex_unlock(¤t->signal->cred_guard_mutex); 1484 abort_creds(bprm->cred); 1485 } 1486 if (bprm->file) { 1487 allow_write_access(bprm->file); 1488 fput(bprm->file); 1489 } 1490 if (bprm->executable) 1491 fput(bprm->executable); 1492 /* If a binfmt changed the interp, free it. */ 1493 if (bprm->interp != bprm->filename) 1494 kfree(bprm->interp); 1495 kfree(bprm->fdpath); 1496 kfree(bprm); 1497 } 1498 1499 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1500 { 1501 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1502 int retval = -ENOMEM; 1503 if (!bprm) 1504 goto out; 1505 1506 if (fd == AT_FDCWD || filename->name[0] == '/') { 1507 bprm->filename = filename->name; 1508 } else { 1509 if (filename->name[0] == '\0') 1510 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1511 else 1512 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1513 fd, filename->name); 1514 if (!bprm->fdpath) 1515 goto out_free; 1516 1517 bprm->filename = bprm->fdpath; 1518 } 1519 bprm->interp = bprm->filename; 1520 1521 retval = bprm_mm_init(bprm); 1522 if (retval) 1523 goto out_free; 1524 return bprm; 1525 1526 out_free: 1527 free_bprm(bprm); 1528 out: 1529 return ERR_PTR(retval); 1530 } 1531 1532 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1533 { 1534 /* If a binfmt changed the interp, free it first. */ 1535 if (bprm->interp != bprm->filename) 1536 kfree(bprm->interp); 1537 bprm->interp = kstrdup(interp, GFP_KERNEL); 1538 if (!bprm->interp) 1539 return -ENOMEM; 1540 return 0; 1541 } 1542 EXPORT_SYMBOL(bprm_change_interp); 1543 1544 /* 1545 * determine how safe it is to execute the proposed program 1546 * - the caller must hold ->cred_guard_mutex to protect against 1547 * PTRACE_ATTACH or seccomp thread-sync 1548 */ 1549 static void check_unsafe_exec(struct linux_binprm *bprm) 1550 { 1551 struct task_struct *p = current, *t; 1552 unsigned n_fs; 1553 1554 if (p->ptrace) 1555 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1556 1557 /* 1558 * This isn't strictly necessary, but it makes it harder for LSMs to 1559 * mess up. 1560 */ 1561 if (task_no_new_privs(current)) 1562 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1563 1564 t = p; 1565 n_fs = 1; 1566 spin_lock(&p->fs->lock); 1567 rcu_read_lock(); 1568 while_each_thread(p, t) { 1569 if (t->fs == p->fs) 1570 n_fs++; 1571 } 1572 rcu_read_unlock(); 1573 1574 if (p->fs->users > n_fs) 1575 bprm->unsafe |= LSM_UNSAFE_SHARE; 1576 else 1577 p->fs->in_exec = 1; 1578 spin_unlock(&p->fs->lock); 1579 } 1580 1581 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1582 { 1583 /* Handle suid and sgid on files */ 1584 struct user_namespace *mnt_userns; 1585 struct inode *inode; 1586 unsigned int mode; 1587 kuid_t uid; 1588 kgid_t gid; 1589 1590 if (!mnt_may_suid(file->f_path.mnt)) 1591 return; 1592 1593 if (task_no_new_privs(current)) 1594 return; 1595 1596 inode = file->f_path.dentry->d_inode; 1597 mode = READ_ONCE(inode->i_mode); 1598 if (!(mode & (S_ISUID|S_ISGID))) 1599 return; 1600 1601 mnt_userns = file_mnt_user_ns(file); 1602 1603 /* Be careful if suid/sgid is set */ 1604 inode_lock(inode); 1605 1606 /* reload atomically mode/uid/gid now that lock held */ 1607 mode = inode->i_mode; 1608 uid = i_uid_into_mnt(mnt_userns, inode); 1609 gid = i_gid_into_mnt(mnt_userns, inode); 1610 inode_unlock(inode); 1611 1612 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1613 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1614 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1615 return; 1616 1617 if (mode & S_ISUID) { 1618 bprm->per_clear |= PER_CLEAR_ON_SETID; 1619 bprm->cred->euid = uid; 1620 } 1621 1622 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1623 bprm->per_clear |= PER_CLEAR_ON_SETID; 1624 bprm->cred->egid = gid; 1625 } 1626 } 1627 1628 /* 1629 * Compute brpm->cred based upon the final binary. 1630 */ 1631 static int bprm_creds_from_file(struct linux_binprm *bprm) 1632 { 1633 /* Compute creds based on which file? */ 1634 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1635 1636 bprm_fill_uid(bprm, file); 1637 return security_bprm_creds_from_file(bprm, file); 1638 } 1639 1640 /* 1641 * Fill the binprm structure from the inode. 1642 * Read the first BINPRM_BUF_SIZE bytes 1643 * 1644 * This may be called multiple times for binary chains (scripts for example). 1645 */ 1646 static int prepare_binprm(struct linux_binprm *bprm) 1647 { 1648 loff_t pos = 0; 1649 1650 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1651 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1652 } 1653 1654 /* 1655 * Arguments are '\0' separated strings found at the location bprm->p 1656 * points to; chop off the first by relocating brpm->p to right after 1657 * the first '\0' encountered. 1658 */ 1659 int remove_arg_zero(struct linux_binprm *bprm) 1660 { 1661 int ret = 0; 1662 unsigned long offset; 1663 char *kaddr; 1664 struct page *page; 1665 1666 if (!bprm->argc) 1667 return 0; 1668 1669 do { 1670 offset = bprm->p & ~PAGE_MASK; 1671 page = get_arg_page(bprm, bprm->p, 0); 1672 if (!page) { 1673 ret = -EFAULT; 1674 goto out; 1675 } 1676 kaddr = kmap_atomic(page); 1677 1678 for (; offset < PAGE_SIZE && kaddr[offset]; 1679 offset++, bprm->p++) 1680 ; 1681 1682 kunmap_atomic(kaddr); 1683 put_arg_page(page); 1684 } while (offset == PAGE_SIZE); 1685 1686 bprm->p++; 1687 bprm->argc--; 1688 ret = 0; 1689 1690 out: 1691 return ret; 1692 } 1693 EXPORT_SYMBOL(remove_arg_zero); 1694 1695 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1696 /* 1697 * cycle the list of binary formats handler, until one recognizes the image 1698 */ 1699 static int search_binary_handler(struct linux_binprm *bprm) 1700 { 1701 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1702 struct linux_binfmt *fmt; 1703 int retval; 1704 1705 retval = prepare_binprm(bprm); 1706 if (retval < 0) 1707 return retval; 1708 1709 retval = security_bprm_check(bprm); 1710 if (retval) 1711 return retval; 1712 1713 retval = -ENOENT; 1714 retry: 1715 read_lock(&binfmt_lock); 1716 list_for_each_entry(fmt, &formats, lh) { 1717 if (!try_module_get(fmt->module)) 1718 continue; 1719 read_unlock(&binfmt_lock); 1720 1721 retval = fmt->load_binary(bprm); 1722 1723 read_lock(&binfmt_lock); 1724 put_binfmt(fmt); 1725 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1726 read_unlock(&binfmt_lock); 1727 return retval; 1728 } 1729 } 1730 read_unlock(&binfmt_lock); 1731 1732 if (need_retry) { 1733 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1734 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1735 return retval; 1736 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1737 return retval; 1738 need_retry = false; 1739 goto retry; 1740 } 1741 1742 return retval; 1743 } 1744 1745 static int exec_binprm(struct linux_binprm *bprm) 1746 { 1747 pid_t old_pid, old_vpid; 1748 int ret, depth; 1749 1750 /* Need to fetch pid before load_binary changes it */ 1751 old_pid = current->pid; 1752 rcu_read_lock(); 1753 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1754 rcu_read_unlock(); 1755 1756 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1757 for (depth = 0;; depth++) { 1758 struct file *exec; 1759 if (depth > 5) 1760 return -ELOOP; 1761 1762 ret = search_binary_handler(bprm); 1763 if (ret < 0) 1764 return ret; 1765 if (!bprm->interpreter) 1766 break; 1767 1768 exec = bprm->file; 1769 bprm->file = bprm->interpreter; 1770 bprm->interpreter = NULL; 1771 1772 allow_write_access(exec); 1773 if (unlikely(bprm->have_execfd)) { 1774 if (bprm->executable) { 1775 fput(exec); 1776 return -ENOEXEC; 1777 } 1778 bprm->executable = exec; 1779 } else 1780 fput(exec); 1781 } 1782 1783 audit_bprm(bprm); 1784 trace_sched_process_exec(current, old_pid, bprm); 1785 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1786 proc_exec_connector(current); 1787 return 0; 1788 } 1789 1790 /* 1791 * sys_execve() executes a new program. 1792 */ 1793 static int bprm_execve(struct linux_binprm *bprm, 1794 int fd, struct filename *filename, int flags) 1795 { 1796 struct file *file; 1797 int retval; 1798 1799 retval = prepare_bprm_creds(bprm); 1800 if (retval) 1801 return retval; 1802 1803 check_unsafe_exec(bprm); 1804 current->in_execve = 1; 1805 1806 file = do_open_execat(fd, filename, flags); 1807 retval = PTR_ERR(file); 1808 if (IS_ERR(file)) 1809 goto out_unmark; 1810 1811 sched_exec(); 1812 1813 bprm->file = file; 1814 /* 1815 * Record that a name derived from an O_CLOEXEC fd will be 1816 * inaccessible after exec. This allows the code in exec to 1817 * choose to fail when the executable is not mmaped into the 1818 * interpreter and an open file descriptor is not passed to 1819 * the interpreter. This makes for a better user experience 1820 * than having the interpreter start and then immediately fail 1821 * when it finds the executable is inaccessible. 1822 */ 1823 if (bprm->fdpath && get_close_on_exec(fd)) 1824 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1825 1826 /* Set the unchanging part of bprm->cred */ 1827 retval = security_bprm_creds_for_exec(bprm); 1828 if (retval) 1829 goto out; 1830 1831 retval = exec_binprm(bprm); 1832 if (retval < 0) 1833 goto out; 1834 1835 /* execve succeeded */ 1836 current->fs->in_exec = 0; 1837 current->in_execve = 0; 1838 rseq_execve(current); 1839 acct_update_integrals(current); 1840 task_numa_free(current, false); 1841 return retval; 1842 1843 out: 1844 /* 1845 * If past the point of no return ensure the code never 1846 * returns to the userspace process. Use an existing fatal 1847 * signal if present otherwise terminate the process with 1848 * SIGSEGV. 1849 */ 1850 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1851 force_sigsegv(SIGSEGV); 1852 1853 out_unmark: 1854 current->fs->in_exec = 0; 1855 current->in_execve = 0; 1856 1857 return retval; 1858 } 1859 1860 static int do_execveat_common(int fd, struct filename *filename, 1861 struct user_arg_ptr argv, 1862 struct user_arg_ptr envp, 1863 int flags) 1864 { 1865 struct linux_binprm *bprm; 1866 int retval; 1867 1868 if (IS_ERR(filename)) 1869 return PTR_ERR(filename); 1870 1871 /* 1872 * We move the actual failure in case of RLIMIT_NPROC excess from 1873 * set*uid() to execve() because too many poorly written programs 1874 * don't check setuid() return code. Here we additionally recheck 1875 * whether NPROC limit is still exceeded. 1876 */ 1877 if ((current->flags & PF_NPROC_EXCEEDED) && 1878 is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1879 retval = -EAGAIN; 1880 goto out_ret; 1881 } 1882 1883 /* We're below the limit (still or again), so we don't want to make 1884 * further execve() calls fail. */ 1885 current->flags &= ~PF_NPROC_EXCEEDED; 1886 1887 bprm = alloc_bprm(fd, filename); 1888 if (IS_ERR(bprm)) { 1889 retval = PTR_ERR(bprm); 1890 goto out_ret; 1891 } 1892 1893 retval = count(argv, MAX_ARG_STRINGS); 1894 if (retval < 0) 1895 goto out_free; 1896 bprm->argc = retval; 1897 1898 retval = count(envp, MAX_ARG_STRINGS); 1899 if (retval < 0) 1900 goto out_free; 1901 bprm->envc = retval; 1902 1903 retval = bprm_stack_limits(bprm); 1904 if (retval < 0) 1905 goto out_free; 1906 1907 retval = copy_string_kernel(bprm->filename, bprm); 1908 if (retval < 0) 1909 goto out_free; 1910 bprm->exec = bprm->p; 1911 1912 retval = copy_strings(bprm->envc, envp, bprm); 1913 if (retval < 0) 1914 goto out_free; 1915 1916 retval = copy_strings(bprm->argc, argv, bprm); 1917 if (retval < 0) 1918 goto out_free; 1919 1920 retval = bprm_execve(bprm, fd, filename, flags); 1921 out_free: 1922 free_bprm(bprm); 1923 1924 out_ret: 1925 putname(filename); 1926 return retval; 1927 } 1928 1929 int kernel_execve(const char *kernel_filename, 1930 const char *const *argv, const char *const *envp) 1931 { 1932 struct filename *filename; 1933 struct linux_binprm *bprm; 1934 int fd = AT_FDCWD; 1935 int retval; 1936 1937 filename = getname_kernel(kernel_filename); 1938 if (IS_ERR(filename)) 1939 return PTR_ERR(filename); 1940 1941 bprm = alloc_bprm(fd, filename); 1942 if (IS_ERR(bprm)) { 1943 retval = PTR_ERR(bprm); 1944 goto out_ret; 1945 } 1946 1947 retval = count_strings_kernel(argv); 1948 if (retval < 0) 1949 goto out_free; 1950 bprm->argc = retval; 1951 1952 retval = count_strings_kernel(envp); 1953 if (retval < 0) 1954 goto out_free; 1955 bprm->envc = retval; 1956 1957 retval = bprm_stack_limits(bprm); 1958 if (retval < 0) 1959 goto out_free; 1960 1961 retval = copy_string_kernel(bprm->filename, bprm); 1962 if (retval < 0) 1963 goto out_free; 1964 bprm->exec = bprm->p; 1965 1966 retval = copy_strings_kernel(bprm->envc, envp, bprm); 1967 if (retval < 0) 1968 goto out_free; 1969 1970 retval = copy_strings_kernel(bprm->argc, argv, bprm); 1971 if (retval < 0) 1972 goto out_free; 1973 1974 retval = bprm_execve(bprm, fd, filename, 0); 1975 out_free: 1976 free_bprm(bprm); 1977 out_ret: 1978 putname(filename); 1979 return retval; 1980 } 1981 1982 static int do_execve(struct filename *filename, 1983 const char __user *const __user *__argv, 1984 const char __user *const __user *__envp) 1985 { 1986 struct user_arg_ptr argv = { .ptr.native = __argv }; 1987 struct user_arg_ptr envp = { .ptr.native = __envp }; 1988 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1989 } 1990 1991 static int do_execveat(int fd, struct filename *filename, 1992 const char __user *const __user *__argv, 1993 const char __user *const __user *__envp, 1994 int flags) 1995 { 1996 struct user_arg_ptr argv = { .ptr.native = __argv }; 1997 struct user_arg_ptr envp = { .ptr.native = __envp }; 1998 1999 return do_execveat_common(fd, filename, argv, envp, flags); 2000 } 2001 2002 #ifdef CONFIG_COMPAT 2003 static int compat_do_execve(struct filename *filename, 2004 const compat_uptr_t __user *__argv, 2005 const compat_uptr_t __user *__envp) 2006 { 2007 struct user_arg_ptr argv = { 2008 .is_compat = true, 2009 .ptr.compat = __argv, 2010 }; 2011 struct user_arg_ptr envp = { 2012 .is_compat = true, 2013 .ptr.compat = __envp, 2014 }; 2015 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2016 } 2017 2018 static int compat_do_execveat(int fd, struct filename *filename, 2019 const compat_uptr_t __user *__argv, 2020 const compat_uptr_t __user *__envp, 2021 int flags) 2022 { 2023 struct user_arg_ptr argv = { 2024 .is_compat = true, 2025 .ptr.compat = __argv, 2026 }; 2027 struct user_arg_ptr envp = { 2028 .is_compat = true, 2029 .ptr.compat = __envp, 2030 }; 2031 return do_execveat_common(fd, filename, argv, envp, flags); 2032 } 2033 #endif 2034 2035 void set_binfmt(struct linux_binfmt *new) 2036 { 2037 struct mm_struct *mm = current->mm; 2038 2039 if (mm->binfmt) 2040 module_put(mm->binfmt->module); 2041 2042 mm->binfmt = new; 2043 if (new) 2044 __module_get(new->module); 2045 } 2046 EXPORT_SYMBOL(set_binfmt); 2047 2048 /* 2049 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2050 */ 2051 void set_dumpable(struct mm_struct *mm, int value) 2052 { 2053 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2054 return; 2055 2056 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2057 } 2058 2059 SYSCALL_DEFINE3(execve, 2060 const char __user *, filename, 2061 const char __user *const __user *, argv, 2062 const char __user *const __user *, envp) 2063 { 2064 return do_execve(getname(filename), argv, envp); 2065 } 2066 2067 SYSCALL_DEFINE5(execveat, 2068 int, fd, const char __user *, filename, 2069 const char __user *const __user *, argv, 2070 const char __user *const __user *, envp, 2071 int, flags) 2072 { 2073 return do_execveat(fd, 2074 getname_uflags(filename, flags), 2075 argv, envp, flags); 2076 } 2077 2078 #ifdef CONFIG_COMPAT 2079 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2080 const compat_uptr_t __user *, argv, 2081 const compat_uptr_t __user *, envp) 2082 { 2083 return compat_do_execve(getname(filename), argv, envp); 2084 } 2085 2086 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2087 const char __user *, filename, 2088 const compat_uptr_t __user *, argv, 2089 const compat_uptr_t __user *, envp, 2090 int, flags) 2091 { 2092 return compat_do_execveat(fd, 2093 getname_uflags(filename, flags), 2094 argv, envp, flags); 2095 } 2096 #endif 2097