xref: /linux/fs/exec.c (revision 4aad8f51d0672f1c95e2cf0e1bc7b9ab42d8e1ea)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
68 
69 /* The maximal length of core_pattern is also specified in sysctl.c */
70 
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73 
74 int __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 	if (!fmt)
77 		return -EINVAL;
78 	write_lock(&binfmt_lock);
79 	insert ? list_add(&fmt->lh, &formats) :
80 		 list_add_tail(&fmt->lh, &formats);
81 	write_unlock(&binfmt_lock);
82 	return 0;
83 }
84 
85 EXPORT_SYMBOL(__register_binfmt);
86 
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 	write_lock(&binfmt_lock);
90 	list_del(&fmt->lh);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(unregister_binfmt);
95 
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 	module_put(fmt->module);
99 }
100 
101 /*
102  * Note that a shared library must be both readable and executable due to
103  * security reasons.
104  *
105  * Also note that we take the address to load from from the file itself.
106  */
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 {
109 	struct file *file;
110 	char *tmp = getname(library);
111 	int error = PTR_ERR(tmp);
112 
113 	if (IS_ERR(tmp))
114 		goto out;
115 
116 	file = do_filp_open(AT_FDCWD, tmp,
117 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
118 				MAY_READ | MAY_EXEC | MAY_OPEN);
119 	putname(tmp);
120 	error = PTR_ERR(file);
121 	if (IS_ERR(file))
122 		goto out;
123 
124 	error = -EINVAL;
125 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
126 		goto exit;
127 
128 	error = -EACCES;
129 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
130 		goto exit;
131 
132 	fsnotify_open(file);
133 
134 	error = -ENOEXEC;
135 	if(file->f_op) {
136 		struct linux_binfmt * fmt;
137 
138 		read_lock(&binfmt_lock);
139 		list_for_each_entry(fmt, &formats, lh) {
140 			if (!fmt->load_shlib)
141 				continue;
142 			if (!try_module_get(fmt->module))
143 				continue;
144 			read_unlock(&binfmt_lock);
145 			error = fmt->load_shlib(file);
146 			read_lock(&binfmt_lock);
147 			put_binfmt(fmt);
148 			if (error != -ENOEXEC)
149 				break;
150 		}
151 		read_unlock(&binfmt_lock);
152 	}
153 exit:
154 	fput(file);
155 out:
156   	return error;
157 }
158 
159 #ifdef CONFIG_MMU
160 
161 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
162 		int write)
163 {
164 	struct page *page;
165 	int ret;
166 
167 #ifdef CONFIG_STACK_GROWSUP
168 	if (write) {
169 		ret = expand_stack_downwards(bprm->vma, pos);
170 		if (ret < 0)
171 			return NULL;
172 	}
173 #endif
174 	ret = get_user_pages(current, bprm->mm, pos,
175 			1, write, 1, &page, NULL);
176 	if (ret <= 0)
177 		return NULL;
178 
179 	if (write) {
180 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
181 		struct rlimit *rlim;
182 
183 		/*
184 		 * We've historically supported up to 32 pages (ARG_MAX)
185 		 * of argument strings even with small stacks
186 		 */
187 		if (size <= ARG_MAX)
188 			return page;
189 
190 		/*
191 		 * Limit to 1/4-th the stack size for the argv+env strings.
192 		 * This ensures that:
193 		 *  - the remaining binfmt code will not run out of stack space,
194 		 *  - the program will have a reasonable amount of stack left
195 		 *    to work from.
196 		 */
197 		rlim = current->signal->rlim;
198 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
199 			put_page(page);
200 			return NULL;
201 		}
202 	}
203 
204 	return page;
205 }
206 
207 static void put_arg_page(struct page *page)
208 {
209 	put_page(page);
210 }
211 
212 static void free_arg_page(struct linux_binprm *bprm, int i)
213 {
214 }
215 
216 static void free_arg_pages(struct linux_binprm *bprm)
217 {
218 }
219 
220 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
221 		struct page *page)
222 {
223 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
224 }
225 
226 static int __bprm_mm_init(struct linux_binprm *bprm)
227 {
228 	int err;
229 	struct vm_area_struct *vma = NULL;
230 	struct mm_struct *mm = bprm->mm;
231 
232 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
233 	if (!vma)
234 		return -ENOMEM;
235 
236 	down_write(&mm->mmap_sem);
237 	vma->vm_mm = mm;
238 
239 	/*
240 	 * Place the stack at the largest stack address the architecture
241 	 * supports. Later, we'll move this to an appropriate place. We don't
242 	 * use STACK_TOP because that can depend on attributes which aren't
243 	 * configured yet.
244 	 */
245 	BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
246 	vma->vm_end = STACK_TOP_MAX;
247 	vma->vm_start = vma->vm_end - PAGE_SIZE;
248 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
249 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
250 	INIT_LIST_HEAD(&vma->anon_vma_chain);
251 	err = insert_vm_struct(mm, vma);
252 	if (err)
253 		goto err;
254 
255 	mm->stack_vm = mm->total_vm = 1;
256 	up_write(&mm->mmap_sem);
257 	bprm->p = vma->vm_end - sizeof(void *);
258 	return 0;
259 err:
260 	up_write(&mm->mmap_sem);
261 	bprm->vma = NULL;
262 	kmem_cache_free(vm_area_cachep, vma);
263 	return err;
264 }
265 
266 static bool valid_arg_len(struct linux_binprm *bprm, long len)
267 {
268 	return len <= MAX_ARG_STRLEN;
269 }
270 
271 #else
272 
273 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
274 		int write)
275 {
276 	struct page *page;
277 
278 	page = bprm->page[pos / PAGE_SIZE];
279 	if (!page && write) {
280 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
281 		if (!page)
282 			return NULL;
283 		bprm->page[pos / PAGE_SIZE] = page;
284 	}
285 
286 	return page;
287 }
288 
289 static void put_arg_page(struct page *page)
290 {
291 }
292 
293 static void free_arg_page(struct linux_binprm *bprm, int i)
294 {
295 	if (bprm->page[i]) {
296 		__free_page(bprm->page[i]);
297 		bprm->page[i] = NULL;
298 	}
299 }
300 
301 static void free_arg_pages(struct linux_binprm *bprm)
302 {
303 	int i;
304 
305 	for (i = 0; i < MAX_ARG_PAGES; i++)
306 		free_arg_page(bprm, i);
307 }
308 
309 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
310 		struct page *page)
311 {
312 }
313 
314 static int __bprm_mm_init(struct linux_binprm *bprm)
315 {
316 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
317 	return 0;
318 }
319 
320 static bool valid_arg_len(struct linux_binprm *bprm, long len)
321 {
322 	return len <= bprm->p;
323 }
324 
325 #endif /* CONFIG_MMU */
326 
327 /*
328  * Create a new mm_struct and populate it with a temporary stack
329  * vm_area_struct.  We don't have enough context at this point to set the stack
330  * flags, permissions, and offset, so we use temporary values.  We'll update
331  * them later in setup_arg_pages().
332  */
333 int bprm_mm_init(struct linux_binprm *bprm)
334 {
335 	int err;
336 	struct mm_struct *mm = NULL;
337 
338 	bprm->mm = mm = mm_alloc();
339 	err = -ENOMEM;
340 	if (!mm)
341 		goto err;
342 
343 	err = init_new_context(current, mm);
344 	if (err)
345 		goto err;
346 
347 	err = __bprm_mm_init(bprm);
348 	if (err)
349 		goto err;
350 
351 	return 0;
352 
353 err:
354 	if (mm) {
355 		bprm->mm = NULL;
356 		mmdrop(mm);
357 	}
358 
359 	return err;
360 }
361 
362 /*
363  * count() counts the number of strings in array ARGV.
364  */
365 static int count(const char __user * const __user * argv, int max)
366 {
367 	int i = 0;
368 
369 	if (argv != NULL) {
370 		for (;;) {
371 			const char __user * p;
372 
373 			if (get_user(p, argv))
374 				return -EFAULT;
375 			if (!p)
376 				break;
377 			argv++;
378 			if (i++ >= max)
379 				return -E2BIG;
380 
381 			if (fatal_signal_pending(current))
382 				return -ERESTARTNOHAND;
383 			cond_resched();
384 		}
385 	}
386 	return i;
387 }
388 
389 /*
390  * 'copy_strings()' copies argument/environment strings from the old
391  * processes's memory to the new process's stack.  The call to get_user_pages()
392  * ensures the destination page is created and not swapped out.
393  */
394 static int copy_strings(int argc, const char __user *const __user *argv,
395 			struct linux_binprm *bprm)
396 {
397 	struct page *kmapped_page = NULL;
398 	char *kaddr = NULL;
399 	unsigned long kpos = 0;
400 	int ret;
401 
402 	while (argc-- > 0) {
403 		const char __user *str;
404 		int len;
405 		unsigned long pos;
406 
407 		if (get_user(str, argv+argc) ||
408 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
409 			ret = -EFAULT;
410 			goto out;
411 		}
412 
413 		if (!valid_arg_len(bprm, len)) {
414 			ret = -E2BIG;
415 			goto out;
416 		}
417 
418 		/* We're going to work our way backwords. */
419 		pos = bprm->p;
420 		str += len;
421 		bprm->p -= len;
422 
423 		while (len > 0) {
424 			int offset, bytes_to_copy;
425 
426 			if (fatal_signal_pending(current)) {
427 				ret = -ERESTARTNOHAND;
428 				goto out;
429 			}
430 			cond_resched();
431 
432 			offset = pos % PAGE_SIZE;
433 			if (offset == 0)
434 				offset = PAGE_SIZE;
435 
436 			bytes_to_copy = offset;
437 			if (bytes_to_copy > len)
438 				bytes_to_copy = len;
439 
440 			offset -= bytes_to_copy;
441 			pos -= bytes_to_copy;
442 			str -= bytes_to_copy;
443 			len -= bytes_to_copy;
444 
445 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
446 				struct page *page;
447 
448 				page = get_arg_page(bprm, pos, 1);
449 				if (!page) {
450 					ret = -E2BIG;
451 					goto out;
452 				}
453 
454 				if (kmapped_page) {
455 					flush_kernel_dcache_page(kmapped_page);
456 					kunmap(kmapped_page);
457 					put_arg_page(kmapped_page);
458 				}
459 				kmapped_page = page;
460 				kaddr = kmap(kmapped_page);
461 				kpos = pos & PAGE_MASK;
462 				flush_arg_page(bprm, kpos, kmapped_page);
463 			}
464 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
465 				ret = -EFAULT;
466 				goto out;
467 			}
468 		}
469 	}
470 	ret = 0;
471 out:
472 	if (kmapped_page) {
473 		flush_kernel_dcache_page(kmapped_page);
474 		kunmap(kmapped_page);
475 		put_arg_page(kmapped_page);
476 	}
477 	return ret;
478 }
479 
480 /*
481  * Like copy_strings, but get argv and its values from kernel memory.
482  */
483 int copy_strings_kernel(int argc, const char *const *argv,
484 			struct linux_binprm *bprm)
485 {
486 	int r;
487 	mm_segment_t oldfs = get_fs();
488 	set_fs(KERNEL_DS);
489 	r = copy_strings(argc, (const char __user *const  __user *)argv, bprm);
490 	set_fs(oldfs);
491 	return r;
492 }
493 EXPORT_SYMBOL(copy_strings_kernel);
494 
495 #ifdef CONFIG_MMU
496 
497 /*
498  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
499  * the binfmt code determines where the new stack should reside, we shift it to
500  * its final location.  The process proceeds as follows:
501  *
502  * 1) Use shift to calculate the new vma endpoints.
503  * 2) Extend vma to cover both the old and new ranges.  This ensures the
504  *    arguments passed to subsequent functions are consistent.
505  * 3) Move vma's page tables to the new range.
506  * 4) Free up any cleared pgd range.
507  * 5) Shrink the vma to cover only the new range.
508  */
509 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
510 {
511 	struct mm_struct *mm = vma->vm_mm;
512 	unsigned long old_start = vma->vm_start;
513 	unsigned long old_end = vma->vm_end;
514 	unsigned long length = old_end - old_start;
515 	unsigned long new_start = old_start - shift;
516 	unsigned long new_end = old_end - shift;
517 	struct mmu_gather *tlb;
518 
519 	BUG_ON(new_start > new_end);
520 
521 	/*
522 	 * ensure there are no vmas between where we want to go
523 	 * and where we are
524 	 */
525 	if (vma != find_vma(mm, new_start))
526 		return -EFAULT;
527 
528 	/*
529 	 * cover the whole range: [new_start, old_end)
530 	 */
531 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
532 		return -ENOMEM;
533 
534 	/*
535 	 * move the page tables downwards, on failure we rely on
536 	 * process cleanup to remove whatever mess we made.
537 	 */
538 	if (length != move_page_tables(vma, old_start,
539 				       vma, new_start, length))
540 		return -ENOMEM;
541 
542 	lru_add_drain();
543 	tlb = tlb_gather_mmu(mm, 0);
544 	if (new_end > old_start) {
545 		/*
546 		 * when the old and new regions overlap clear from new_end.
547 		 */
548 		free_pgd_range(tlb, new_end, old_end, new_end,
549 			vma->vm_next ? vma->vm_next->vm_start : 0);
550 	} else {
551 		/*
552 		 * otherwise, clean from old_start; this is done to not touch
553 		 * the address space in [new_end, old_start) some architectures
554 		 * have constraints on va-space that make this illegal (IA64) -
555 		 * for the others its just a little faster.
556 		 */
557 		free_pgd_range(tlb, old_start, old_end, new_end,
558 			vma->vm_next ? vma->vm_next->vm_start : 0);
559 	}
560 	tlb_finish_mmu(tlb, new_end, old_end);
561 
562 	/*
563 	 * Shrink the vma to just the new range.  Always succeeds.
564 	 */
565 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
566 
567 	return 0;
568 }
569 
570 /*
571  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
572  * the stack is optionally relocated, and some extra space is added.
573  */
574 int setup_arg_pages(struct linux_binprm *bprm,
575 		    unsigned long stack_top,
576 		    int executable_stack)
577 {
578 	unsigned long ret;
579 	unsigned long stack_shift;
580 	struct mm_struct *mm = current->mm;
581 	struct vm_area_struct *vma = bprm->vma;
582 	struct vm_area_struct *prev = NULL;
583 	unsigned long vm_flags;
584 	unsigned long stack_base;
585 	unsigned long stack_size;
586 	unsigned long stack_expand;
587 	unsigned long rlim_stack;
588 
589 #ifdef CONFIG_STACK_GROWSUP
590 	/* Limit stack size to 1GB */
591 	stack_base = rlimit_max(RLIMIT_STACK);
592 	if (stack_base > (1 << 30))
593 		stack_base = 1 << 30;
594 
595 	/* Make sure we didn't let the argument array grow too large. */
596 	if (vma->vm_end - vma->vm_start > stack_base)
597 		return -ENOMEM;
598 
599 	stack_base = PAGE_ALIGN(stack_top - stack_base);
600 
601 	stack_shift = vma->vm_start - stack_base;
602 	mm->arg_start = bprm->p - stack_shift;
603 	bprm->p = vma->vm_end - stack_shift;
604 #else
605 	stack_top = arch_align_stack(stack_top);
606 	stack_top = PAGE_ALIGN(stack_top);
607 
608 	if (unlikely(stack_top < mmap_min_addr) ||
609 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
610 		return -ENOMEM;
611 
612 	stack_shift = vma->vm_end - stack_top;
613 
614 	bprm->p -= stack_shift;
615 	mm->arg_start = bprm->p;
616 #endif
617 
618 	if (bprm->loader)
619 		bprm->loader -= stack_shift;
620 	bprm->exec -= stack_shift;
621 
622 	down_write(&mm->mmap_sem);
623 	vm_flags = VM_STACK_FLAGS;
624 
625 	/*
626 	 * Adjust stack execute permissions; explicitly enable for
627 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
628 	 * (arch default) otherwise.
629 	 */
630 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
631 		vm_flags |= VM_EXEC;
632 	else if (executable_stack == EXSTACK_DISABLE_X)
633 		vm_flags &= ~VM_EXEC;
634 	vm_flags |= mm->def_flags;
635 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
636 
637 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
638 			vm_flags);
639 	if (ret)
640 		goto out_unlock;
641 	BUG_ON(prev != vma);
642 
643 	/* Move stack pages down in memory. */
644 	if (stack_shift) {
645 		ret = shift_arg_pages(vma, stack_shift);
646 		if (ret)
647 			goto out_unlock;
648 	}
649 
650 	/* mprotect_fixup is overkill to remove the temporary stack flags */
651 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
652 
653 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
654 	stack_size = vma->vm_end - vma->vm_start;
655 	/*
656 	 * Align this down to a page boundary as expand_stack
657 	 * will align it up.
658 	 */
659 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
660 #ifdef CONFIG_STACK_GROWSUP
661 	if (stack_size + stack_expand > rlim_stack)
662 		stack_base = vma->vm_start + rlim_stack;
663 	else
664 		stack_base = vma->vm_end + stack_expand;
665 #else
666 	if (stack_size + stack_expand > rlim_stack)
667 		stack_base = vma->vm_end - rlim_stack;
668 	else
669 		stack_base = vma->vm_start - stack_expand;
670 #endif
671 	current->mm->start_stack = bprm->p;
672 	ret = expand_stack(vma, stack_base);
673 	if (ret)
674 		ret = -EFAULT;
675 
676 out_unlock:
677 	up_write(&mm->mmap_sem);
678 	return ret;
679 }
680 EXPORT_SYMBOL(setup_arg_pages);
681 
682 #endif /* CONFIG_MMU */
683 
684 struct file *open_exec(const char *name)
685 {
686 	struct file *file;
687 	int err;
688 
689 	file = do_filp_open(AT_FDCWD, name,
690 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
691 				MAY_EXEC | MAY_OPEN);
692 	if (IS_ERR(file))
693 		goto out;
694 
695 	err = -EACCES;
696 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
697 		goto exit;
698 
699 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
700 		goto exit;
701 
702 	fsnotify_open(file);
703 
704 	err = deny_write_access(file);
705 	if (err)
706 		goto exit;
707 
708 out:
709 	return file;
710 
711 exit:
712 	fput(file);
713 	return ERR_PTR(err);
714 }
715 EXPORT_SYMBOL(open_exec);
716 
717 int kernel_read(struct file *file, loff_t offset,
718 		char *addr, unsigned long count)
719 {
720 	mm_segment_t old_fs;
721 	loff_t pos = offset;
722 	int result;
723 
724 	old_fs = get_fs();
725 	set_fs(get_ds());
726 	/* The cast to a user pointer is valid due to the set_fs() */
727 	result = vfs_read(file, (void __user *)addr, count, &pos);
728 	set_fs(old_fs);
729 	return result;
730 }
731 
732 EXPORT_SYMBOL(kernel_read);
733 
734 static int exec_mmap(struct mm_struct *mm)
735 {
736 	struct task_struct *tsk;
737 	struct mm_struct * old_mm, *active_mm;
738 
739 	/* Notify parent that we're no longer interested in the old VM */
740 	tsk = current;
741 	old_mm = current->mm;
742 	sync_mm_rss(tsk, old_mm);
743 	mm_release(tsk, old_mm);
744 
745 	if (old_mm) {
746 		/*
747 		 * Make sure that if there is a core dump in progress
748 		 * for the old mm, we get out and die instead of going
749 		 * through with the exec.  We must hold mmap_sem around
750 		 * checking core_state and changing tsk->mm.
751 		 */
752 		down_read(&old_mm->mmap_sem);
753 		if (unlikely(old_mm->core_state)) {
754 			up_read(&old_mm->mmap_sem);
755 			return -EINTR;
756 		}
757 	}
758 	task_lock(tsk);
759 	active_mm = tsk->active_mm;
760 	tsk->mm = mm;
761 	tsk->active_mm = mm;
762 	activate_mm(active_mm, mm);
763 	if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
764 		atomic_dec(&old_mm->oom_disable_count);
765 		atomic_inc(&tsk->mm->oom_disable_count);
766 	}
767 	task_unlock(tsk);
768 	arch_pick_mmap_layout(mm);
769 	if (old_mm) {
770 		up_read(&old_mm->mmap_sem);
771 		BUG_ON(active_mm != old_mm);
772 		mm_update_next_owner(old_mm);
773 		mmput(old_mm);
774 		return 0;
775 	}
776 	mmdrop(active_mm);
777 	return 0;
778 }
779 
780 /*
781  * This function makes sure the current process has its own signal table,
782  * so that flush_signal_handlers can later reset the handlers without
783  * disturbing other processes.  (Other processes might share the signal
784  * table via the CLONE_SIGHAND option to clone().)
785  */
786 static int de_thread(struct task_struct *tsk)
787 {
788 	struct signal_struct *sig = tsk->signal;
789 	struct sighand_struct *oldsighand = tsk->sighand;
790 	spinlock_t *lock = &oldsighand->siglock;
791 
792 	if (thread_group_empty(tsk))
793 		goto no_thread_group;
794 
795 	/*
796 	 * Kill all other threads in the thread group.
797 	 */
798 	spin_lock_irq(lock);
799 	if (signal_group_exit(sig)) {
800 		/*
801 		 * Another group action in progress, just
802 		 * return so that the signal is processed.
803 		 */
804 		spin_unlock_irq(lock);
805 		return -EAGAIN;
806 	}
807 
808 	sig->group_exit_task = tsk;
809 	sig->notify_count = zap_other_threads(tsk);
810 	if (!thread_group_leader(tsk))
811 		sig->notify_count--;
812 
813 	while (sig->notify_count) {
814 		__set_current_state(TASK_UNINTERRUPTIBLE);
815 		spin_unlock_irq(lock);
816 		schedule();
817 		spin_lock_irq(lock);
818 	}
819 	spin_unlock_irq(lock);
820 
821 	/*
822 	 * At this point all other threads have exited, all we have to
823 	 * do is to wait for the thread group leader to become inactive,
824 	 * and to assume its PID:
825 	 */
826 	if (!thread_group_leader(tsk)) {
827 		struct task_struct *leader = tsk->group_leader;
828 
829 		sig->notify_count = -1;	/* for exit_notify() */
830 		for (;;) {
831 			write_lock_irq(&tasklist_lock);
832 			if (likely(leader->exit_state))
833 				break;
834 			__set_current_state(TASK_UNINTERRUPTIBLE);
835 			write_unlock_irq(&tasklist_lock);
836 			schedule();
837 		}
838 
839 		/*
840 		 * The only record we have of the real-time age of a
841 		 * process, regardless of execs it's done, is start_time.
842 		 * All the past CPU time is accumulated in signal_struct
843 		 * from sister threads now dead.  But in this non-leader
844 		 * exec, nothing survives from the original leader thread,
845 		 * whose birth marks the true age of this process now.
846 		 * When we take on its identity by switching to its PID, we
847 		 * also take its birthdate (always earlier than our own).
848 		 */
849 		tsk->start_time = leader->start_time;
850 
851 		BUG_ON(!same_thread_group(leader, tsk));
852 		BUG_ON(has_group_leader_pid(tsk));
853 		/*
854 		 * An exec() starts a new thread group with the
855 		 * TGID of the previous thread group. Rehash the
856 		 * two threads with a switched PID, and release
857 		 * the former thread group leader:
858 		 */
859 
860 		/* Become a process group leader with the old leader's pid.
861 		 * The old leader becomes a thread of the this thread group.
862 		 * Note: The old leader also uses this pid until release_task
863 		 *       is called.  Odd but simple and correct.
864 		 */
865 		detach_pid(tsk, PIDTYPE_PID);
866 		tsk->pid = leader->pid;
867 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
868 		transfer_pid(leader, tsk, PIDTYPE_PGID);
869 		transfer_pid(leader, tsk, PIDTYPE_SID);
870 
871 		list_replace_rcu(&leader->tasks, &tsk->tasks);
872 		list_replace_init(&leader->sibling, &tsk->sibling);
873 
874 		tsk->group_leader = tsk;
875 		leader->group_leader = tsk;
876 
877 		tsk->exit_signal = SIGCHLD;
878 
879 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
880 		leader->exit_state = EXIT_DEAD;
881 		write_unlock_irq(&tasklist_lock);
882 
883 		release_task(leader);
884 	}
885 
886 	sig->group_exit_task = NULL;
887 	sig->notify_count = 0;
888 
889 no_thread_group:
890 	if (current->mm)
891 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
892 
893 	exit_itimers(sig);
894 	flush_itimer_signals();
895 
896 	if (atomic_read(&oldsighand->count) != 1) {
897 		struct sighand_struct *newsighand;
898 		/*
899 		 * This ->sighand is shared with the CLONE_SIGHAND
900 		 * but not CLONE_THREAD task, switch to the new one.
901 		 */
902 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
903 		if (!newsighand)
904 			return -ENOMEM;
905 
906 		atomic_set(&newsighand->count, 1);
907 		memcpy(newsighand->action, oldsighand->action,
908 		       sizeof(newsighand->action));
909 
910 		write_lock_irq(&tasklist_lock);
911 		spin_lock(&oldsighand->siglock);
912 		rcu_assign_pointer(tsk->sighand, newsighand);
913 		spin_unlock(&oldsighand->siglock);
914 		write_unlock_irq(&tasklist_lock);
915 
916 		__cleanup_sighand(oldsighand);
917 	}
918 
919 	BUG_ON(!thread_group_leader(tsk));
920 	return 0;
921 }
922 
923 /*
924  * These functions flushes out all traces of the currently running executable
925  * so that a new one can be started
926  */
927 static void flush_old_files(struct files_struct * files)
928 {
929 	long j = -1;
930 	struct fdtable *fdt;
931 
932 	spin_lock(&files->file_lock);
933 	for (;;) {
934 		unsigned long set, i;
935 
936 		j++;
937 		i = j * __NFDBITS;
938 		fdt = files_fdtable(files);
939 		if (i >= fdt->max_fds)
940 			break;
941 		set = fdt->close_on_exec->fds_bits[j];
942 		if (!set)
943 			continue;
944 		fdt->close_on_exec->fds_bits[j] = 0;
945 		spin_unlock(&files->file_lock);
946 		for ( ; set ; i++,set >>= 1) {
947 			if (set & 1) {
948 				sys_close(i);
949 			}
950 		}
951 		spin_lock(&files->file_lock);
952 
953 	}
954 	spin_unlock(&files->file_lock);
955 }
956 
957 char *get_task_comm(char *buf, struct task_struct *tsk)
958 {
959 	/* buf must be at least sizeof(tsk->comm) in size */
960 	task_lock(tsk);
961 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
962 	task_unlock(tsk);
963 	return buf;
964 }
965 
966 void set_task_comm(struct task_struct *tsk, char *buf)
967 {
968 	task_lock(tsk);
969 
970 	/*
971 	 * Threads may access current->comm without holding
972 	 * the task lock, so write the string carefully.
973 	 * Readers without a lock may see incomplete new
974 	 * names but are safe from non-terminating string reads.
975 	 */
976 	memset(tsk->comm, 0, TASK_COMM_LEN);
977 	wmb();
978 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
979 	task_unlock(tsk);
980 	perf_event_comm(tsk);
981 }
982 
983 int flush_old_exec(struct linux_binprm * bprm)
984 {
985 	int retval;
986 
987 	/*
988 	 * Make sure we have a private signal table and that
989 	 * we are unassociated from the previous thread group.
990 	 */
991 	retval = de_thread(current);
992 	if (retval)
993 		goto out;
994 
995 	set_mm_exe_file(bprm->mm, bprm->file);
996 
997 	/*
998 	 * Release all of the old mmap stuff
999 	 */
1000 	retval = exec_mmap(bprm->mm);
1001 	if (retval)
1002 		goto out;
1003 
1004 	bprm->mm = NULL;		/* We're using it now */
1005 
1006 	current->flags &= ~PF_RANDOMIZE;
1007 	flush_thread();
1008 	current->personality &= ~bprm->per_clear;
1009 
1010 	return 0;
1011 
1012 out:
1013 	return retval;
1014 }
1015 EXPORT_SYMBOL(flush_old_exec);
1016 
1017 void setup_new_exec(struct linux_binprm * bprm)
1018 {
1019 	int i, ch;
1020 	const char *name;
1021 	char tcomm[sizeof(current->comm)];
1022 
1023 	arch_pick_mmap_layout(current->mm);
1024 
1025 	/* This is the point of no return */
1026 	current->sas_ss_sp = current->sas_ss_size = 0;
1027 
1028 	if (current_euid() == current_uid() && current_egid() == current_gid())
1029 		set_dumpable(current->mm, 1);
1030 	else
1031 		set_dumpable(current->mm, suid_dumpable);
1032 
1033 	name = bprm->filename;
1034 
1035 	/* Copies the binary name from after last slash */
1036 	for (i=0; (ch = *(name++)) != '\0';) {
1037 		if (ch == '/')
1038 			i = 0; /* overwrite what we wrote */
1039 		else
1040 			if (i < (sizeof(tcomm) - 1))
1041 				tcomm[i++] = ch;
1042 	}
1043 	tcomm[i] = '\0';
1044 	set_task_comm(current, tcomm);
1045 
1046 	/* Set the new mm task size. We have to do that late because it may
1047 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1048 	 * some architectures like powerpc
1049 	 */
1050 	current->mm->task_size = TASK_SIZE;
1051 
1052 	/* install the new credentials */
1053 	if (bprm->cred->uid != current_euid() ||
1054 	    bprm->cred->gid != current_egid()) {
1055 		current->pdeath_signal = 0;
1056 	} else if (file_permission(bprm->file, MAY_READ) ||
1057 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1058 		set_dumpable(current->mm, suid_dumpable);
1059 	}
1060 
1061 	/*
1062 	 * Flush performance counters when crossing a
1063 	 * security domain:
1064 	 */
1065 	if (!get_dumpable(current->mm))
1066 		perf_event_exit_task(current);
1067 
1068 	/* An exec changes our domain. We are no longer part of the thread
1069 	   group */
1070 
1071 	current->self_exec_id++;
1072 
1073 	flush_signal_handlers(current, 0);
1074 	flush_old_files(current->files);
1075 }
1076 EXPORT_SYMBOL(setup_new_exec);
1077 
1078 /*
1079  * Prepare credentials and lock ->cred_guard_mutex.
1080  * install_exec_creds() commits the new creds and drops the lock.
1081  * Or, if exec fails before, free_bprm() should release ->cred and
1082  * and unlock.
1083  */
1084 int prepare_bprm_creds(struct linux_binprm *bprm)
1085 {
1086 	if (mutex_lock_interruptible(&current->cred_guard_mutex))
1087 		return -ERESTARTNOINTR;
1088 
1089 	bprm->cred = prepare_exec_creds();
1090 	if (likely(bprm->cred))
1091 		return 0;
1092 
1093 	mutex_unlock(&current->cred_guard_mutex);
1094 	return -ENOMEM;
1095 }
1096 
1097 void free_bprm(struct linux_binprm *bprm)
1098 {
1099 	free_arg_pages(bprm);
1100 	if (bprm->cred) {
1101 		mutex_unlock(&current->cred_guard_mutex);
1102 		abort_creds(bprm->cred);
1103 	}
1104 	kfree(bprm);
1105 }
1106 
1107 /*
1108  * install the new credentials for this executable
1109  */
1110 void install_exec_creds(struct linux_binprm *bprm)
1111 {
1112 	security_bprm_committing_creds(bprm);
1113 
1114 	commit_creds(bprm->cred);
1115 	bprm->cred = NULL;
1116 	/*
1117 	 * cred_guard_mutex must be held at least to this point to prevent
1118 	 * ptrace_attach() from altering our determination of the task's
1119 	 * credentials; any time after this it may be unlocked.
1120 	 */
1121 	security_bprm_committed_creds(bprm);
1122 	mutex_unlock(&current->cred_guard_mutex);
1123 }
1124 EXPORT_SYMBOL(install_exec_creds);
1125 
1126 /*
1127  * determine how safe it is to execute the proposed program
1128  * - the caller must hold current->cred_guard_mutex to protect against
1129  *   PTRACE_ATTACH
1130  */
1131 int check_unsafe_exec(struct linux_binprm *bprm)
1132 {
1133 	struct task_struct *p = current, *t;
1134 	unsigned n_fs;
1135 	int res = 0;
1136 
1137 	bprm->unsafe = tracehook_unsafe_exec(p);
1138 
1139 	n_fs = 1;
1140 	spin_lock(&p->fs->lock);
1141 	rcu_read_lock();
1142 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1143 		if (t->fs == p->fs)
1144 			n_fs++;
1145 	}
1146 	rcu_read_unlock();
1147 
1148 	if (p->fs->users > n_fs) {
1149 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1150 	} else {
1151 		res = -EAGAIN;
1152 		if (!p->fs->in_exec) {
1153 			p->fs->in_exec = 1;
1154 			res = 1;
1155 		}
1156 	}
1157 	spin_unlock(&p->fs->lock);
1158 
1159 	return res;
1160 }
1161 
1162 /*
1163  * Fill the binprm structure from the inode.
1164  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1165  *
1166  * This may be called multiple times for binary chains (scripts for example).
1167  */
1168 int prepare_binprm(struct linux_binprm *bprm)
1169 {
1170 	umode_t mode;
1171 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1172 	int retval;
1173 
1174 	mode = inode->i_mode;
1175 	if (bprm->file->f_op == NULL)
1176 		return -EACCES;
1177 
1178 	/* clear any previous set[ug]id data from a previous binary */
1179 	bprm->cred->euid = current_euid();
1180 	bprm->cred->egid = current_egid();
1181 
1182 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1183 		/* Set-uid? */
1184 		if (mode & S_ISUID) {
1185 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1186 			bprm->cred->euid = inode->i_uid;
1187 		}
1188 
1189 		/* Set-gid? */
1190 		/*
1191 		 * If setgid is set but no group execute bit then this
1192 		 * is a candidate for mandatory locking, not a setgid
1193 		 * executable.
1194 		 */
1195 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1196 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1197 			bprm->cred->egid = inode->i_gid;
1198 		}
1199 	}
1200 
1201 	/* fill in binprm security blob */
1202 	retval = security_bprm_set_creds(bprm);
1203 	if (retval)
1204 		return retval;
1205 	bprm->cred_prepared = 1;
1206 
1207 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1208 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1209 }
1210 
1211 EXPORT_SYMBOL(prepare_binprm);
1212 
1213 /*
1214  * Arguments are '\0' separated strings found at the location bprm->p
1215  * points to; chop off the first by relocating brpm->p to right after
1216  * the first '\0' encountered.
1217  */
1218 int remove_arg_zero(struct linux_binprm *bprm)
1219 {
1220 	int ret = 0;
1221 	unsigned long offset;
1222 	char *kaddr;
1223 	struct page *page;
1224 
1225 	if (!bprm->argc)
1226 		return 0;
1227 
1228 	do {
1229 		offset = bprm->p & ~PAGE_MASK;
1230 		page = get_arg_page(bprm, bprm->p, 0);
1231 		if (!page) {
1232 			ret = -EFAULT;
1233 			goto out;
1234 		}
1235 		kaddr = kmap_atomic(page, KM_USER0);
1236 
1237 		for (; offset < PAGE_SIZE && kaddr[offset];
1238 				offset++, bprm->p++)
1239 			;
1240 
1241 		kunmap_atomic(kaddr, KM_USER0);
1242 		put_arg_page(page);
1243 
1244 		if (offset == PAGE_SIZE)
1245 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1246 	} while (offset == PAGE_SIZE);
1247 
1248 	bprm->p++;
1249 	bprm->argc--;
1250 	ret = 0;
1251 
1252 out:
1253 	return ret;
1254 }
1255 EXPORT_SYMBOL(remove_arg_zero);
1256 
1257 /*
1258  * cycle the list of binary formats handler, until one recognizes the image
1259  */
1260 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1261 {
1262 	unsigned int depth = bprm->recursion_depth;
1263 	int try,retval;
1264 	struct linux_binfmt *fmt;
1265 
1266 	retval = security_bprm_check(bprm);
1267 	if (retval)
1268 		return retval;
1269 
1270 	/* kernel module loader fixup */
1271 	/* so we don't try to load run modprobe in kernel space. */
1272 	set_fs(USER_DS);
1273 
1274 	retval = audit_bprm(bprm);
1275 	if (retval)
1276 		return retval;
1277 
1278 	retval = -ENOENT;
1279 	for (try=0; try<2; try++) {
1280 		read_lock(&binfmt_lock);
1281 		list_for_each_entry(fmt, &formats, lh) {
1282 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1283 			if (!fn)
1284 				continue;
1285 			if (!try_module_get(fmt->module))
1286 				continue;
1287 			read_unlock(&binfmt_lock);
1288 			retval = fn(bprm, regs);
1289 			/*
1290 			 * Restore the depth counter to its starting value
1291 			 * in this call, so we don't have to rely on every
1292 			 * load_binary function to restore it on return.
1293 			 */
1294 			bprm->recursion_depth = depth;
1295 			if (retval >= 0) {
1296 				if (depth == 0)
1297 					tracehook_report_exec(fmt, bprm, regs);
1298 				put_binfmt(fmt);
1299 				allow_write_access(bprm->file);
1300 				if (bprm->file)
1301 					fput(bprm->file);
1302 				bprm->file = NULL;
1303 				current->did_exec = 1;
1304 				proc_exec_connector(current);
1305 				return retval;
1306 			}
1307 			read_lock(&binfmt_lock);
1308 			put_binfmt(fmt);
1309 			if (retval != -ENOEXEC || bprm->mm == NULL)
1310 				break;
1311 			if (!bprm->file) {
1312 				read_unlock(&binfmt_lock);
1313 				return retval;
1314 			}
1315 		}
1316 		read_unlock(&binfmt_lock);
1317 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1318 			break;
1319 #ifdef CONFIG_MODULES
1320 		} else {
1321 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1322 			if (printable(bprm->buf[0]) &&
1323 			    printable(bprm->buf[1]) &&
1324 			    printable(bprm->buf[2]) &&
1325 			    printable(bprm->buf[3]))
1326 				break; /* -ENOEXEC */
1327 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1328 #endif
1329 		}
1330 	}
1331 	return retval;
1332 }
1333 
1334 EXPORT_SYMBOL(search_binary_handler);
1335 
1336 /*
1337  * sys_execve() executes a new program.
1338  */
1339 int do_execve(const char * filename,
1340 	const char __user *const __user *argv,
1341 	const char __user *const __user *envp,
1342 	struct pt_regs * regs)
1343 {
1344 	struct linux_binprm *bprm;
1345 	struct file *file;
1346 	struct files_struct *displaced;
1347 	bool clear_in_exec;
1348 	int retval;
1349 
1350 	retval = unshare_files(&displaced);
1351 	if (retval)
1352 		goto out_ret;
1353 
1354 	retval = -ENOMEM;
1355 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1356 	if (!bprm)
1357 		goto out_files;
1358 
1359 	retval = prepare_bprm_creds(bprm);
1360 	if (retval)
1361 		goto out_free;
1362 
1363 	retval = check_unsafe_exec(bprm);
1364 	if (retval < 0)
1365 		goto out_free;
1366 	clear_in_exec = retval;
1367 	current->in_execve = 1;
1368 
1369 	file = open_exec(filename);
1370 	retval = PTR_ERR(file);
1371 	if (IS_ERR(file))
1372 		goto out_unmark;
1373 
1374 	sched_exec();
1375 
1376 	bprm->file = file;
1377 	bprm->filename = filename;
1378 	bprm->interp = filename;
1379 
1380 	retval = bprm_mm_init(bprm);
1381 	if (retval)
1382 		goto out_file;
1383 
1384 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1385 	if ((retval = bprm->argc) < 0)
1386 		goto out;
1387 
1388 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1389 	if ((retval = bprm->envc) < 0)
1390 		goto out;
1391 
1392 	retval = prepare_binprm(bprm);
1393 	if (retval < 0)
1394 		goto out;
1395 
1396 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1397 	if (retval < 0)
1398 		goto out;
1399 
1400 	bprm->exec = bprm->p;
1401 	retval = copy_strings(bprm->envc, envp, bprm);
1402 	if (retval < 0)
1403 		goto out;
1404 
1405 	retval = copy_strings(bprm->argc, argv, bprm);
1406 	if (retval < 0)
1407 		goto out;
1408 
1409 	current->flags &= ~PF_KTHREAD;
1410 	retval = search_binary_handler(bprm,regs);
1411 	if (retval < 0)
1412 		goto out;
1413 
1414 	/* execve succeeded */
1415 	current->fs->in_exec = 0;
1416 	current->in_execve = 0;
1417 	acct_update_integrals(current);
1418 	free_bprm(bprm);
1419 	if (displaced)
1420 		put_files_struct(displaced);
1421 	return retval;
1422 
1423 out:
1424 	if (bprm->mm)
1425 		mmput (bprm->mm);
1426 
1427 out_file:
1428 	if (bprm->file) {
1429 		allow_write_access(bprm->file);
1430 		fput(bprm->file);
1431 	}
1432 
1433 out_unmark:
1434 	if (clear_in_exec)
1435 		current->fs->in_exec = 0;
1436 	current->in_execve = 0;
1437 
1438 out_free:
1439 	free_bprm(bprm);
1440 
1441 out_files:
1442 	if (displaced)
1443 		reset_files_struct(displaced);
1444 out_ret:
1445 	return retval;
1446 }
1447 
1448 void set_binfmt(struct linux_binfmt *new)
1449 {
1450 	struct mm_struct *mm = current->mm;
1451 
1452 	if (mm->binfmt)
1453 		module_put(mm->binfmt->module);
1454 
1455 	mm->binfmt = new;
1456 	if (new)
1457 		__module_get(new->module);
1458 }
1459 
1460 EXPORT_SYMBOL(set_binfmt);
1461 
1462 /* format_corename will inspect the pattern parameter, and output a
1463  * name into corename, which must have space for at least
1464  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1465  */
1466 static int format_corename(char *corename, long signr)
1467 {
1468 	const struct cred *cred = current_cred();
1469 	const char *pat_ptr = core_pattern;
1470 	int ispipe = (*pat_ptr == '|');
1471 	char *out_ptr = corename;
1472 	char *const out_end = corename + CORENAME_MAX_SIZE;
1473 	int rc;
1474 	int pid_in_pattern = 0;
1475 
1476 	/* Repeat as long as we have more pattern to process and more output
1477 	   space */
1478 	while (*pat_ptr) {
1479 		if (*pat_ptr != '%') {
1480 			if (out_ptr == out_end)
1481 				goto out;
1482 			*out_ptr++ = *pat_ptr++;
1483 		} else {
1484 			switch (*++pat_ptr) {
1485 			case 0:
1486 				goto out;
1487 			/* Double percent, output one percent */
1488 			case '%':
1489 				if (out_ptr == out_end)
1490 					goto out;
1491 				*out_ptr++ = '%';
1492 				break;
1493 			/* pid */
1494 			case 'p':
1495 				pid_in_pattern = 1;
1496 				rc = snprintf(out_ptr, out_end - out_ptr,
1497 					      "%d", task_tgid_vnr(current));
1498 				if (rc > out_end - out_ptr)
1499 					goto out;
1500 				out_ptr += rc;
1501 				break;
1502 			/* uid */
1503 			case 'u':
1504 				rc = snprintf(out_ptr, out_end - out_ptr,
1505 					      "%d", cred->uid);
1506 				if (rc > out_end - out_ptr)
1507 					goto out;
1508 				out_ptr += rc;
1509 				break;
1510 			/* gid */
1511 			case 'g':
1512 				rc = snprintf(out_ptr, out_end - out_ptr,
1513 					      "%d", cred->gid);
1514 				if (rc > out_end - out_ptr)
1515 					goto out;
1516 				out_ptr += rc;
1517 				break;
1518 			/* signal that caused the coredump */
1519 			case 's':
1520 				rc = snprintf(out_ptr, out_end - out_ptr,
1521 					      "%ld", signr);
1522 				if (rc > out_end - out_ptr)
1523 					goto out;
1524 				out_ptr += rc;
1525 				break;
1526 			/* UNIX time of coredump */
1527 			case 't': {
1528 				struct timeval tv;
1529 				do_gettimeofday(&tv);
1530 				rc = snprintf(out_ptr, out_end - out_ptr,
1531 					      "%lu", tv.tv_sec);
1532 				if (rc > out_end - out_ptr)
1533 					goto out;
1534 				out_ptr += rc;
1535 				break;
1536 			}
1537 			/* hostname */
1538 			case 'h':
1539 				down_read(&uts_sem);
1540 				rc = snprintf(out_ptr, out_end - out_ptr,
1541 					      "%s", utsname()->nodename);
1542 				up_read(&uts_sem);
1543 				if (rc > out_end - out_ptr)
1544 					goto out;
1545 				out_ptr += rc;
1546 				break;
1547 			/* executable */
1548 			case 'e':
1549 				rc = snprintf(out_ptr, out_end - out_ptr,
1550 					      "%s", current->comm);
1551 				if (rc > out_end - out_ptr)
1552 					goto out;
1553 				out_ptr += rc;
1554 				break;
1555 			/* core limit size */
1556 			case 'c':
1557 				rc = snprintf(out_ptr, out_end - out_ptr,
1558 					      "%lu", rlimit(RLIMIT_CORE));
1559 				if (rc > out_end - out_ptr)
1560 					goto out;
1561 				out_ptr += rc;
1562 				break;
1563 			default:
1564 				break;
1565 			}
1566 			++pat_ptr;
1567 		}
1568 	}
1569 	/* Backward compatibility with core_uses_pid:
1570 	 *
1571 	 * If core_pattern does not include a %p (as is the default)
1572 	 * and core_uses_pid is set, then .%pid will be appended to
1573 	 * the filename. Do not do this for piped commands. */
1574 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1575 		rc = snprintf(out_ptr, out_end - out_ptr,
1576 			      ".%d", task_tgid_vnr(current));
1577 		if (rc > out_end - out_ptr)
1578 			goto out;
1579 		out_ptr += rc;
1580 	}
1581 out:
1582 	*out_ptr = 0;
1583 	return ispipe;
1584 }
1585 
1586 static int zap_process(struct task_struct *start, int exit_code)
1587 {
1588 	struct task_struct *t;
1589 	int nr = 0;
1590 
1591 	start->signal->flags = SIGNAL_GROUP_EXIT;
1592 	start->signal->group_exit_code = exit_code;
1593 	start->signal->group_stop_count = 0;
1594 
1595 	t = start;
1596 	do {
1597 		if (t != current && t->mm) {
1598 			sigaddset(&t->pending.signal, SIGKILL);
1599 			signal_wake_up(t, 1);
1600 			nr++;
1601 		}
1602 	} while_each_thread(start, t);
1603 
1604 	return nr;
1605 }
1606 
1607 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1608 				struct core_state *core_state, int exit_code)
1609 {
1610 	struct task_struct *g, *p;
1611 	unsigned long flags;
1612 	int nr = -EAGAIN;
1613 
1614 	spin_lock_irq(&tsk->sighand->siglock);
1615 	if (!signal_group_exit(tsk->signal)) {
1616 		mm->core_state = core_state;
1617 		nr = zap_process(tsk, exit_code);
1618 	}
1619 	spin_unlock_irq(&tsk->sighand->siglock);
1620 	if (unlikely(nr < 0))
1621 		return nr;
1622 
1623 	if (atomic_read(&mm->mm_users) == nr + 1)
1624 		goto done;
1625 	/*
1626 	 * We should find and kill all tasks which use this mm, and we should
1627 	 * count them correctly into ->nr_threads. We don't take tasklist
1628 	 * lock, but this is safe wrt:
1629 	 *
1630 	 * fork:
1631 	 *	None of sub-threads can fork after zap_process(leader). All
1632 	 *	processes which were created before this point should be
1633 	 *	visible to zap_threads() because copy_process() adds the new
1634 	 *	process to the tail of init_task.tasks list, and lock/unlock
1635 	 *	of ->siglock provides a memory barrier.
1636 	 *
1637 	 * do_exit:
1638 	 *	The caller holds mm->mmap_sem. This means that the task which
1639 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1640 	 *	its ->mm.
1641 	 *
1642 	 * de_thread:
1643 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1644 	 *	we must see either old or new leader, this does not matter.
1645 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1646 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1647 	 *	it can't fail.
1648 	 *
1649 	 *	Note also that "g" can be the old leader with ->mm == NULL
1650 	 *	and already unhashed and thus removed from ->thread_group.
1651 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1652 	 *	clear the ->next pointer, we will find the new leader via
1653 	 *	next_thread().
1654 	 */
1655 	rcu_read_lock();
1656 	for_each_process(g) {
1657 		if (g == tsk->group_leader)
1658 			continue;
1659 		if (g->flags & PF_KTHREAD)
1660 			continue;
1661 		p = g;
1662 		do {
1663 			if (p->mm) {
1664 				if (unlikely(p->mm == mm)) {
1665 					lock_task_sighand(p, &flags);
1666 					nr += zap_process(p, exit_code);
1667 					unlock_task_sighand(p, &flags);
1668 				}
1669 				break;
1670 			}
1671 		} while_each_thread(g, p);
1672 	}
1673 	rcu_read_unlock();
1674 done:
1675 	atomic_set(&core_state->nr_threads, nr);
1676 	return nr;
1677 }
1678 
1679 static int coredump_wait(int exit_code, struct core_state *core_state)
1680 {
1681 	struct task_struct *tsk = current;
1682 	struct mm_struct *mm = tsk->mm;
1683 	struct completion *vfork_done;
1684 	int core_waiters = -EBUSY;
1685 
1686 	init_completion(&core_state->startup);
1687 	core_state->dumper.task = tsk;
1688 	core_state->dumper.next = NULL;
1689 
1690 	down_write(&mm->mmap_sem);
1691 	if (!mm->core_state)
1692 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1693 	up_write(&mm->mmap_sem);
1694 
1695 	if (unlikely(core_waiters < 0))
1696 		goto fail;
1697 
1698 	/*
1699 	 * Make sure nobody is waiting for us to release the VM,
1700 	 * otherwise we can deadlock when we wait on each other
1701 	 */
1702 	vfork_done = tsk->vfork_done;
1703 	if (vfork_done) {
1704 		tsk->vfork_done = NULL;
1705 		complete(vfork_done);
1706 	}
1707 
1708 	if (core_waiters)
1709 		wait_for_completion(&core_state->startup);
1710 fail:
1711 	return core_waiters;
1712 }
1713 
1714 static void coredump_finish(struct mm_struct *mm)
1715 {
1716 	struct core_thread *curr, *next;
1717 	struct task_struct *task;
1718 
1719 	next = mm->core_state->dumper.next;
1720 	while ((curr = next) != NULL) {
1721 		next = curr->next;
1722 		task = curr->task;
1723 		/*
1724 		 * see exit_mm(), curr->task must not see
1725 		 * ->task == NULL before we read ->next.
1726 		 */
1727 		smp_mb();
1728 		curr->task = NULL;
1729 		wake_up_process(task);
1730 	}
1731 
1732 	mm->core_state = NULL;
1733 }
1734 
1735 /*
1736  * set_dumpable converts traditional three-value dumpable to two flags and
1737  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1738  * these bits are not changed atomically.  So get_dumpable can observe the
1739  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1740  * return either old dumpable or new one by paying attention to the order of
1741  * modifying the bits.
1742  *
1743  * dumpable |   mm->flags (binary)
1744  * old  new | initial interim  final
1745  * ---------+-----------------------
1746  *  0    1  |   00      01      01
1747  *  0    2  |   00      10(*)   11
1748  *  1    0  |   01      00      00
1749  *  1    2  |   01      11      11
1750  *  2    0  |   11      10(*)   00
1751  *  2    1  |   11      11      01
1752  *
1753  * (*) get_dumpable regards interim value of 10 as 11.
1754  */
1755 void set_dumpable(struct mm_struct *mm, int value)
1756 {
1757 	switch (value) {
1758 	case 0:
1759 		clear_bit(MMF_DUMPABLE, &mm->flags);
1760 		smp_wmb();
1761 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1762 		break;
1763 	case 1:
1764 		set_bit(MMF_DUMPABLE, &mm->flags);
1765 		smp_wmb();
1766 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1767 		break;
1768 	case 2:
1769 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1770 		smp_wmb();
1771 		set_bit(MMF_DUMPABLE, &mm->flags);
1772 		break;
1773 	}
1774 }
1775 
1776 static int __get_dumpable(unsigned long mm_flags)
1777 {
1778 	int ret;
1779 
1780 	ret = mm_flags & MMF_DUMPABLE_MASK;
1781 	return (ret >= 2) ? 2 : ret;
1782 }
1783 
1784 int get_dumpable(struct mm_struct *mm)
1785 {
1786 	return __get_dumpable(mm->flags);
1787 }
1788 
1789 static void wait_for_dump_helpers(struct file *file)
1790 {
1791 	struct pipe_inode_info *pipe;
1792 
1793 	pipe = file->f_path.dentry->d_inode->i_pipe;
1794 
1795 	pipe_lock(pipe);
1796 	pipe->readers++;
1797 	pipe->writers--;
1798 
1799 	while ((pipe->readers > 1) && (!signal_pending(current))) {
1800 		wake_up_interruptible_sync(&pipe->wait);
1801 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1802 		pipe_wait(pipe);
1803 	}
1804 
1805 	pipe->readers--;
1806 	pipe->writers++;
1807 	pipe_unlock(pipe);
1808 
1809 }
1810 
1811 
1812 /*
1813  * uhm_pipe_setup
1814  * helper function to customize the process used
1815  * to collect the core in userspace.  Specifically
1816  * it sets up a pipe and installs it as fd 0 (stdin)
1817  * for the process.  Returns 0 on success, or
1818  * PTR_ERR on failure.
1819  * Note that it also sets the core limit to 1.  This
1820  * is a special value that we use to trap recursive
1821  * core dumps
1822  */
1823 static int umh_pipe_setup(struct subprocess_info *info)
1824 {
1825 	struct file *rp, *wp;
1826 	struct fdtable *fdt;
1827 	struct coredump_params *cp = (struct coredump_params *)info->data;
1828 	struct files_struct *cf = current->files;
1829 
1830 	wp = create_write_pipe(0);
1831 	if (IS_ERR(wp))
1832 		return PTR_ERR(wp);
1833 
1834 	rp = create_read_pipe(wp, 0);
1835 	if (IS_ERR(rp)) {
1836 		free_write_pipe(wp);
1837 		return PTR_ERR(rp);
1838 	}
1839 
1840 	cp->file = wp;
1841 
1842 	sys_close(0);
1843 	fd_install(0, rp);
1844 	spin_lock(&cf->file_lock);
1845 	fdt = files_fdtable(cf);
1846 	FD_SET(0, fdt->open_fds);
1847 	FD_CLR(0, fdt->close_on_exec);
1848 	spin_unlock(&cf->file_lock);
1849 
1850 	/* and disallow core files too */
1851 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1852 
1853 	return 0;
1854 }
1855 
1856 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1857 {
1858 	struct core_state core_state;
1859 	char corename[CORENAME_MAX_SIZE + 1];
1860 	struct mm_struct *mm = current->mm;
1861 	struct linux_binfmt * binfmt;
1862 	const struct cred *old_cred;
1863 	struct cred *cred;
1864 	int retval = 0;
1865 	int flag = 0;
1866 	int ispipe;
1867 	static atomic_t core_dump_count = ATOMIC_INIT(0);
1868 	struct coredump_params cprm = {
1869 		.signr = signr,
1870 		.regs = regs,
1871 		.limit = rlimit(RLIMIT_CORE),
1872 		/*
1873 		 * We must use the same mm->flags while dumping core to avoid
1874 		 * inconsistency of bit flags, since this flag is not protected
1875 		 * by any locks.
1876 		 */
1877 		.mm_flags = mm->flags,
1878 	};
1879 
1880 	audit_core_dumps(signr);
1881 
1882 	binfmt = mm->binfmt;
1883 	if (!binfmt || !binfmt->core_dump)
1884 		goto fail;
1885 	if (!__get_dumpable(cprm.mm_flags))
1886 		goto fail;
1887 
1888 	cred = prepare_creds();
1889 	if (!cred)
1890 		goto fail;
1891 	/*
1892 	 *	We cannot trust fsuid as being the "true" uid of the
1893 	 *	process nor do we know its entire history. We only know it
1894 	 *	was tainted so we dump it as root in mode 2.
1895 	 */
1896 	if (__get_dumpable(cprm.mm_flags) == 2) {
1897 		/* Setuid core dump mode */
1898 		flag = O_EXCL;		/* Stop rewrite attacks */
1899 		cred->fsuid = 0;	/* Dump root private */
1900 	}
1901 
1902 	retval = coredump_wait(exit_code, &core_state);
1903 	if (retval < 0)
1904 		goto fail_creds;
1905 
1906 	old_cred = override_creds(cred);
1907 
1908 	/*
1909 	 * Clear any false indication of pending signals that might
1910 	 * be seen by the filesystem code called to write the core file.
1911 	 */
1912 	clear_thread_flag(TIF_SIGPENDING);
1913 
1914 	ispipe = format_corename(corename, signr);
1915 
1916  	if (ispipe) {
1917 		int dump_count;
1918 		char **helper_argv;
1919 
1920 		if (cprm.limit == 1) {
1921 			/*
1922 			 * Normally core limits are irrelevant to pipes, since
1923 			 * we're not writing to the file system, but we use
1924 			 * cprm.limit of 1 here as a speacial value. Any
1925 			 * non-1 limit gets set to RLIM_INFINITY below, but
1926 			 * a limit of 0 skips the dump.  This is a consistent
1927 			 * way to catch recursive crashes.  We can still crash
1928 			 * if the core_pattern binary sets RLIM_CORE =  !1
1929 			 * but it runs as root, and can do lots of stupid things
1930 			 * Note that we use task_tgid_vnr here to grab the pid
1931 			 * of the process group leader.  That way we get the
1932 			 * right pid if a thread in a multi-threaded
1933 			 * core_pattern process dies.
1934 			 */
1935 			printk(KERN_WARNING
1936 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
1937 				task_tgid_vnr(current), current->comm);
1938 			printk(KERN_WARNING "Aborting core\n");
1939 			goto fail_unlock;
1940 		}
1941 		cprm.limit = RLIM_INFINITY;
1942 
1943 		dump_count = atomic_inc_return(&core_dump_count);
1944 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1945 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1946 			       task_tgid_vnr(current), current->comm);
1947 			printk(KERN_WARNING "Skipping core dump\n");
1948 			goto fail_dropcount;
1949 		}
1950 
1951 		helper_argv = argv_split(GFP_KERNEL, corename+1, NULL);
1952 		if (!helper_argv) {
1953 			printk(KERN_WARNING "%s failed to allocate memory\n",
1954 			       __func__);
1955 			goto fail_dropcount;
1956 		}
1957 
1958 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
1959 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
1960 					NULL, &cprm);
1961 		argv_free(helper_argv);
1962 		if (retval) {
1963  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1964 			       corename);
1965 			goto close_fail;
1966  		}
1967 	} else {
1968 		struct inode *inode;
1969 
1970 		if (cprm.limit < binfmt->min_coredump)
1971 			goto fail_unlock;
1972 
1973 		cprm.file = filp_open(corename,
1974 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1975 				 0600);
1976 		if (IS_ERR(cprm.file))
1977 			goto fail_unlock;
1978 
1979 		inode = cprm.file->f_path.dentry->d_inode;
1980 		if (inode->i_nlink > 1)
1981 			goto close_fail;
1982 		if (d_unhashed(cprm.file->f_path.dentry))
1983 			goto close_fail;
1984 		/*
1985 		 * AK: actually i see no reason to not allow this for named
1986 		 * pipes etc, but keep the previous behaviour for now.
1987 		 */
1988 		if (!S_ISREG(inode->i_mode))
1989 			goto close_fail;
1990 		/*
1991 		 * Dont allow local users get cute and trick others to coredump
1992 		 * into their pre-created files.
1993 		 */
1994 		if (inode->i_uid != current_fsuid())
1995 			goto close_fail;
1996 		if (!cprm.file->f_op || !cprm.file->f_op->write)
1997 			goto close_fail;
1998 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
1999 			goto close_fail;
2000 	}
2001 
2002 	retval = binfmt->core_dump(&cprm);
2003 	if (retval)
2004 		current->signal->group_exit_code |= 0x80;
2005 
2006 	if (ispipe && core_pipe_limit)
2007 		wait_for_dump_helpers(cprm.file);
2008 close_fail:
2009 	if (cprm.file)
2010 		filp_close(cprm.file, NULL);
2011 fail_dropcount:
2012 	if (ispipe)
2013 		atomic_dec(&core_dump_count);
2014 fail_unlock:
2015 	coredump_finish(mm);
2016 	revert_creds(old_cred);
2017 fail_creds:
2018 	put_cred(cred);
2019 fail:
2020 	return;
2021 }
2022 
2023 /*
2024  * Core dumping helper functions.  These are the only things you should
2025  * do on a core-file: use only these functions to write out all the
2026  * necessary info.
2027  */
2028 int dump_write(struct file *file, const void *addr, int nr)
2029 {
2030 	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2031 }
2032 EXPORT_SYMBOL(dump_write);
2033 
2034 int dump_seek(struct file *file, loff_t off)
2035 {
2036 	int ret = 1;
2037 
2038 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2039 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2040 			return 0;
2041 	} else {
2042 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2043 
2044 		if (!buf)
2045 			return 0;
2046 		while (off > 0) {
2047 			unsigned long n = off;
2048 
2049 			if (n > PAGE_SIZE)
2050 				n = PAGE_SIZE;
2051 			if (!dump_write(file, buf, n)) {
2052 				ret = 0;
2053 				break;
2054 			}
2055 			off -= n;
2056 		}
2057 		free_page((unsigned long)buf);
2058 	}
2059 	return ret;
2060 }
2061 EXPORT_SYMBOL(dump_seek);
2062