1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/mman.h> 28 #include <linux/a.out.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/highmem.h> 36 #include <linux/spinlock.h> 37 #include <linux/key.h> 38 #include <linux/personality.h> 39 #include <linux/binfmts.h> 40 #include <linux/swap.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/security.h> 49 #include <linux/syscalls.h> 50 #include <linux/rmap.h> 51 #include <linux/tsacct_kern.h> 52 #include <linux/cn_proc.h> 53 #include <linux/audit.h> 54 55 #include <asm/uaccess.h> 56 #include <asm/mmu_context.h> 57 #include <asm/tlb.h> 58 59 #ifdef CONFIG_KMOD 60 #include <linux/kmod.h> 61 #endif 62 63 int core_uses_pid; 64 char core_pattern[CORENAME_MAX_SIZE] = "core"; 65 int suid_dumpable = 0; 66 67 EXPORT_SYMBOL(suid_dumpable); 68 /* The maximal length of core_pattern is also specified in sysctl.c */ 69 70 static LIST_HEAD(formats); 71 static DEFINE_RWLOCK(binfmt_lock); 72 73 int register_binfmt(struct linux_binfmt * fmt) 74 { 75 if (!fmt) 76 return -EINVAL; 77 write_lock(&binfmt_lock); 78 list_add(&fmt->lh, &formats); 79 write_unlock(&binfmt_lock); 80 return 0; 81 } 82 83 EXPORT_SYMBOL(register_binfmt); 84 85 void unregister_binfmt(struct linux_binfmt * fmt) 86 { 87 write_lock(&binfmt_lock); 88 list_del(&fmt->lh); 89 write_unlock(&binfmt_lock); 90 } 91 92 EXPORT_SYMBOL(unregister_binfmt); 93 94 static inline void put_binfmt(struct linux_binfmt * fmt) 95 { 96 module_put(fmt->module); 97 } 98 99 /* 100 * Note that a shared library must be both readable and executable due to 101 * security reasons. 102 * 103 * Also note that we take the address to load from from the file itself. 104 */ 105 asmlinkage long sys_uselib(const char __user * library) 106 { 107 struct file * file; 108 struct nameidata nd; 109 int error; 110 111 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 112 if (error) 113 goto out; 114 115 error = -EINVAL; 116 if (!S_ISREG(nd.dentry->d_inode->i_mode)) 117 goto exit; 118 119 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 120 if (error) 121 goto exit; 122 123 file = nameidata_to_filp(&nd, O_RDONLY); 124 error = PTR_ERR(file); 125 if (IS_ERR(file)) 126 goto out; 127 128 error = -ENOEXEC; 129 if(file->f_op) { 130 struct linux_binfmt * fmt; 131 132 read_lock(&binfmt_lock); 133 list_for_each_entry(fmt, &formats, lh) { 134 if (!fmt->load_shlib) 135 continue; 136 if (!try_module_get(fmt->module)) 137 continue; 138 read_unlock(&binfmt_lock); 139 error = fmt->load_shlib(file); 140 read_lock(&binfmt_lock); 141 put_binfmt(fmt); 142 if (error != -ENOEXEC) 143 break; 144 } 145 read_unlock(&binfmt_lock); 146 } 147 fput(file); 148 out: 149 return error; 150 exit: 151 release_open_intent(&nd); 152 path_release(&nd); 153 goto out; 154 } 155 156 #ifdef CONFIG_MMU 157 158 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 159 int write) 160 { 161 struct page *page; 162 int ret; 163 164 #ifdef CONFIG_STACK_GROWSUP 165 if (write) { 166 ret = expand_stack_downwards(bprm->vma, pos); 167 if (ret < 0) 168 return NULL; 169 } 170 #endif 171 ret = get_user_pages(current, bprm->mm, pos, 172 1, write, 1, &page, NULL); 173 if (ret <= 0) 174 return NULL; 175 176 if (write) { 177 struct rlimit *rlim = current->signal->rlim; 178 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 179 180 /* 181 * Limit to 1/4-th the stack size for the argv+env strings. 182 * This ensures that: 183 * - the remaining binfmt code will not run out of stack space, 184 * - the program will have a reasonable amount of stack left 185 * to work from. 186 */ 187 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 188 put_page(page); 189 return NULL; 190 } 191 } 192 193 return page; 194 } 195 196 static void put_arg_page(struct page *page) 197 { 198 put_page(page); 199 } 200 201 static void free_arg_page(struct linux_binprm *bprm, int i) 202 { 203 } 204 205 static void free_arg_pages(struct linux_binprm *bprm) 206 { 207 } 208 209 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 210 struct page *page) 211 { 212 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 213 } 214 215 static int __bprm_mm_init(struct linux_binprm *bprm) 216 { 217 int err = -ENOMEM; 218 struct vm_area_struct *vma = NULL; 219 struct mm_struct *mm = bprm->mm; 220 221 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 222 if (!vma) 223 goto err; 224 225 down_write(&mm->mmap_sem); 226 vma->vm_mm = mm; 227 228 /* 229 * Place the stack at the largest stack address the architecture 230 * supports. Later, we'll move this to an appropriate place. We don't 231 * use STACK_TOP because that can depend on attributes which aren't 232 * configured yet. 233 */ 234 vma->vm_end = STACK_TOP_MAX; 235 vma->vm_start = vma->vm_end - PAGE_SIZE; 236 237 vma->vm_flags = VM_STACK_FLAGS; 238 vma->vm_page_prot = protection_map[vma->vm_flags & 0x7]; 239 err = insert_vm_struct(mm, vma); 240 if (err) { 241 up_write(&mm->mmap_sem); 242 goto err; 243 } 244 245 mm->stack_vm = mm->total_vm = 1; 246 up_write(&mm->mmap_sem); 247 248 bprm->p = vma->vm_end - sizeof(void *); 249 250 return 0; 251 252 err: 253 if (vma) { 254 bprm->vma = NULL; 255 kmem_cache_free(vm_area_cachep, vma); 256 } 257 258 return err; 259 } 260 261 static bool valid_arg_len(struct linux_binprm *bprm, long len) 262 { 263 return len <= MAX_ARG_STRLEN; 264 } 265 266 #else 267 268 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 269 int write) 270 { 271 struct page *page; 272 273 page = bprm->page[pos / PAGE_SIZE]; 274 if (!page && write) { 275 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 276 if (!page) 277 return NULL; 278 bprm->page[pos / PAGE_SIZE] = page; 279 } 280 281 return page; 282 } 283 284 static void put_arg_page(struct page *page) 285 { 286 } 287 288 static void free_arg_page(struct linux_binprm *bprm, int i) 289 { 290 if (bprm->page[i]) { 291 __free_page(bprm->page[i]); 292 bprm->page[i] = NULL; 293 } 294 } 295 296 static void free_arg_pages(struct linux_binprm *bprm) 297 { 298 int i; 299 300 for (i = 0; i < MAX_ARG_PAGES; i++) 301 free_arg_page(bprm, i); 302 } 303 304 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 305 struct page *page) 306 { 307 } 308 309 static int __bprm_mm_init(struct linux_binprm *bprm) 310 { 311 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 312 return 0; 313 } 314 315 static bool valid_arg_len(struct linux_binprm *bprm, long len) 316 { 317 return len <= bprm->p; 318 } 319 320 #endif /* CONFIG_MMU */ 321 322 /* 323 * Create a new mm_struct and populate it with a temporary stack 324 * vm_area_struct. We don't have enough context at this point to set the stack 325 * flags, permissions, and offset, so we use temporary values. We'll update 326 * them later in setup_arg_pages(). 327 */ 328 int bprm_mm_init(struct linux_binprm *bprm) 329 { 330 int err; 331 struct mm_struct *mm = NULL; 332 333 bprm->mm = mm = mm_alloc(); 334 err = -ENOMEM; 335 if (!mm) 336 goto err; 337 338 err = init_new_context(current, mm); 339 if (err) 340 goto err; 341 342 err = __bprm_mm_init(bprm); 343 if (err) 344 goto err; 345 346 return 0; 347 348 err: 349 if (mm) { 350 bprm->mm = NULL; 351 mmdrop(mm); 352 } 353 354 return err; 355 } 356 357 /* 358 * count() counts the number of strings in array ARGV. 359 */ 360 static int count(char __user * __user * argv, int max) 361 { 362 int i = 0; 363 364 if (argv != NULL) { 365 for (;;) { 366 char __user * p; 367 368 if (get_user(p, argv)) 369 return -EFAULT; 370 if (!p) 371 break; 372 argv++; 373 if(++i > max) 374 return -E2BIG; 375 cond_resched(); 376 } 377 } 378 return i; 379 } 380 381 /* 382 * 'copy_strings()' copies argument/environment strings from the old 383 * processes's memory to the new process's stack. The call to get_user_pages() 384 * ensures the destination page is created and not swapped out. 385 */ 386 static int copy_strings(int argc, char __user * __user * argv, 387 struct linux_binprm *bprm) 388 { 389 struct page *kmapped_page = NULL; 390 char *kaddr = NULL; 391 unsigned long kpos = 0; 392 int ret; 393 394 while (argc-- > 0) { 395 char __user *str; 396 int len; 397 unsigned long pos; 398 399 if (get_user(str, argv+argc) || 400 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 401 ret = -EFAULT; 402 goto out; 403 } 404 405 if (!valid_arg_len(bprm, len)) { 406 ret = -E2BIG; 407 goto out; 408 } 409 410 /* We're going to work our way backwords. */ 411 pos = bprm->p; 412 str += len; 413 bprm->p -= len; 414 415 while (len > 0) { 416 int offset, bytes_to_copy; 417 418 offset = pos % PAGE_SIZE; 419 if (offset == 0) 420 offset = PAGE_SIZE; 421 422 bytes_to_copy = offset; 423 if (bytes_to_copy > len) 424 bytes_to_copy = len; 425 426 offset -= bytes_to_copy; 427 pos -= bytes_to_copy; 428 str -= bytes_to_copy; 429 len -= bytes_to_copy; 430 431 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 432 struct page *page; 433 434 page = get_arg_page(bprm, pos, 1); 435 if (!page) { 436 ret = -E2BIG; 437 goto out; 438 } 439 440 if (kmapped_page) { 441 flush_kernel_dcache_page(kmapped_page); 442 kunmap(kmapped_page); 443 put_arg_page(kmapped_page); 444 } 445 kmapped_page = page; 446 kaddr = kmap(kmapped_page); 447 kpos = pos & PAGE_MASK; 448 flush_arg_page(bprm, kpos, kmapped_page); 449 } 450 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 451 ret = -EFAULT; 452 goto out; 453 } 454 } 455 } 456 ret = 0; 457 out: 458 if (kmapped_page) { 459 flush_kernel_dcache_page(kmapped_page); 460 kunmap(kmapped_page); 461 put_arg_page(kmapped_page); 462 } 463 return ret; 464 } 465 466 /* 467 * Like copy_strings, but get argv and its values from kernel memory. 468 */ 469 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 470 { 471 int r; 472 mm_segment_t oldfs = get_fs(); 473 set_fs(KERNEL_DS); 474 r = copy_strings(argc, (char __user * __user *)argv, bprm); 475 set_fs(oldfs); 476 return r; 477 } 478 EXPORT_SYMBOL(copy_strings_kernel); 479 480 #ifdef CONFIG_MMU 481 482 /* 483 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 484 * the binfmt code determines where the new stack should reside, we shift it to 485 * its final location. The process proceeds as follows: 486 * 487 * 1) Use shift to calculate the new vma endpoints. 488 * 2) Extend vma to cover both the old and new ranges. This ensures the 489 * arguments passed to subsequent functions are consistent. 490 * 3) Move vma's page tables to the new range. 491 * 4) Free up any cleared pgd range. 492 * 5) Shrink the vma to cover only the new range. 493 */ 494 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 495 { 496 struct mm_struct *mm = vma->vm_mm; 497 unsigned long old_start = vma->vm_start; 498 unsigned long old_end = vma->vm_end; 499 unsigned long length = old_end - old_start; 500 unsigned long new_start = old_start - shift; 501 unsigned long new_end = old_end - shift; 502 struct mmu_gather *tlb; 503 504 BUG_ON(new_start > new_end); 505 506 /* 507 * ensure there are no vmas between where we want to go 508 * and where we are 509 */ 510 if (vma != find_vma(mm, new_start)) 511 return -EFAULT; 512 513 /* 514 * cover the whole range: [new_start, old_end) 515 */ 516 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 517 518 /* 519 * move the page tables downwards, on failure we rely on 520 * process cleanup to remove whatever mess we made. 521 */ 522 if (length != move_page_tables(vma, old_start, 523 vma, new_start, length)) 524 return -ENOMEM; 525 526 lru_add_drain(); 527 tlb = tlb_gather_mmu(mm, 0); 528 if (new_end > old_start) { 529 /* 530 * when the old and new regions overlap clear from new_end. 531 */ 532 free_pgd_range(&tlb, new_end, old_end, new_end, 533 vma->vm_next ? vma->vm_next->vm_start : 0); 534 } else { 535 /* 536 * otherwise, clean from old_start; this is done to not touch 537 * the address space in [new_end, old_start) some architectures 538 * have constraints on va-space that make this illegal (IA64) - 539 * for the others its just a little faster. 540 */ 541 free_pgd_range(&tlb, old_start, old_end, new_end, 542 vma->vm_next ? vma->vm_next->vm_start : 0); 543 } 544 tlb_finish_mmu(tlb, new_end, old_end); 545 546 /* 547 * shrink the vma to just the new range. 548 */ 549 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 550 551 return 0; 552 } 553 554 #define EXTRA_STACK_VM_PAGES 20 /* random */ 555 556 /* 557 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 558 * the stack is optionally relocated, and some extra space is added. 559 */ 560 int setup_arg_pages(struct linux_binprm *bprm, 561 unsigned long stack_top, 562 int executable_stack) 563 { 564 unsigned long ret; 565 unsigned long stack_shift; 566 struct mm_struct *mm = current->mm; 567 struct vm_area_struct *vma = bprm->vma; 568 struct vm_area_struct *prev = NULL; 569 unsigned long vm_flags; 570 unsigned long stack_base; 571 572 #ifdef CONFIG_STACK_GROWSUP 573 /* Limit stack size to 1GB */ 574 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 575 if (stack_base > (1 << 30)) 576 stack_base = 1 << 30; 577 578 /* Make sure we didn't let the argument array grow too large. */ 579 if (vma->vm_end - vma->vm_start > stack_base) 580 return -ENOMEM; 581 582 stack_base = PAGE_ALIGN(stack_top - stack_base); 583 584 stack_shift = vma->vm_start - stack_base; 585 mm->arg_start = bprm->p - stack_shift; 586 bprm->p = vma->vm_end - stack_shift; 587 #else 588 stack_top = arch_align_stack(stack_top); 589 stack_top = PAGE_ALIGN(stack_top); 590 stack_shift = vma->vm_end - stack_top; 591 592 bprm->p -= stack_shift; 593 mm->arg_start = bprm->p; 594 #endif 595 596 if (bprm->loader) 597 bprm->loader -= stack_shift; 598 bprm->exec -= stack_shift; 599 600 down_write(&mm->mmap_sem); 601 vm_flags = vma->vm_flags; 602 603 /* 604 * Adjust stack execute permissions; explicitly enable for 605 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 606 * (arch default) otherwise. 607 */ 608 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 609 vm_flags |= VM_EXEC; 610 else if (executable_stack == EXSTACK_DISABLE_X) 611 vm_flags &= ~VM_EXEC; 612 vm_flags |= mm->def_flags; 613 614 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 615 vm_flags); 616 if (ret) 617 goto out_unlock; 618 BUG_ON(prev != vma); 619 620 /* Move stack pages down in memory. */ 621 if (stack_shift) { 622 ret = shift_arg_pages(vma, stack_shift); 623 if (ret) { 624 up_write(&mm->mmap_sem); 625 return ret; 626 } 627 } 628 629 #ifdef CONFIG_STACK_GROWSUP 630 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 631 #else 632 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 633 #endif 634 ret = expand_stack(vma, stack_base); 635 if (ret) 636 ret = -EFAULT; 637 638 out_unlock: 639 up_write(&mm->mmap_sem); 640 return 0; 641 } 642 EXPORT_SYMBOL(setup_arg_pages); 643 644 #endif /* CONFIG_MMU */ 645 646 struct file *open_exec(const char *name) 647 { 648 struct nameidata nd; 649 int err; 650 struct file *file; 651 652 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 653 file = ERR_PTR(err); 654 655 if (!err) { 656 struct inode *inode = nd.dentry->d_inode; 657 file = ERR_PTR(-EACCES); 658 if (S_ISREG(inode->i_mode)) { 659 int err = vfs_permission(&nd, MAY_EXEC); 660 file = ERR_PTR(err); 661 if (!err) { 662 file = nameidata_to_filp(&nd, O_RDONLY); 663 if (!IS_ERR(file)) { 664 err = deny_write_access(file); 665 if (err) { 666 fput(file); 667 file = ERR_PTR(err); 668 } 669 } 670 out: 671 return file; 672 } 673 } 674 release_open_intent(&nd); 675 path_release(&nd); 676 } 677 goto out; 678 } 679 680 EXPORT_SYMBOL(open_exec); 681 682 int kernel_read(struct file *file, unsigned long offset, 683 char *addr, unsigned long count) 684 { 685 mm_segment_t old_fs; 686 loff_t pos = offset; 687 int result; 688 689 old_fs = get_fs(); 690 set_fs(get_ds()); 691 /* The cast to a user pointer is valid due to the set_fs() */ 692 result = vfs_read(file, (void __user *)addr, count, &pos); 693 set_fs(old_fs); 694 return result; 695 } 696 697 EXPORT_SYMBOL(kernel_read); 698 699 static int exec_mmap(struct mm_struct *mm) 700 { 701 struct task_struct *tsk; 702 struct mm_struct * old_mm, *active_mm; 703 704 /* Notify parent that we're no longer interested in the old VM */ 705 tsk = current; 706 old_mm = current->mm; 707 mm_release(tsk, old_mm); 708 709 if (old_mm) { 710 /* 711 * Make sure that if there is a core dump in progress 712 * for the old mm, we get out and die instead of going 713 * through with the exec. We must hold mmap_sem around 714 * checking core_waiters and changing tsk->mm. The 715 * core-inducing thread will increment core_waiters for 716 * each thread whose ->mm == old_mm. 717 */ 718 down_read(&old_mm->mmap_sem); 719 if (unlikely(old_mm->core_waiters)) { 720 up_read(&old_mm->mmap_sem); 721 return -EINTR; 722 } 723 } 724 task_lock(tsk); 725 active_mm = tsk->active_mm; 726 tsk->mm = mm; 727 tsk->active_mm = mm; 728 activate_mm(active_mm, mm); 729 task_unlock(tsk); 730 arch_pick_mmap_layout(mm); 731 if (old_mm) { 732 up_read(&old_mm->mmap_sem); 733 BUG_ON(active_mm != old_mm); 734 mmput(old_mm); 735 return 0; 736 } 737 mmdrop(active_mm); 738 return 0; 739 } 740 741 /* 742 * This function makes sure the current process has its own signal table, 743 * so that flush_signal_handlers can later reset the handlers without 744 * disturbing other processes. (Other processes might share the signal 745 * table via the CLONE_SIGHAND option to clone().) 746 */ 747 static int de_thread(struct task_struct *tsk) 748 { 749 struct signal_struct *sig = tsk->signal; 750 struct sighand_struct *oldsighand = tsk->sighand; 751 spinlock_t *lock = &oldsighand->siglock; 752 struct task_struct *leader = NULL; 753 int count; 754 755 if (thread_group_empty(tsk)) 756 goto no_thread_group; 757 758 /* 759 * Kill all other threads in the thread group. 760 * We must hold tasklist_lock to call zap_other_threads. 761 */ 762 read_lock(&tasklist_lock); 763 spin_lock_irq(lock); 764 if (sig->flags & SIGNAL_GROUP_EXIT) { 765 /* 766 * Another group action in progress, just 767 * return so that the signal is processed. 768 */ 769 spin_unlock_irq(lock); 770 read_unlock(&tasklist_lock); 771 return -EAGAIN; 772 } 773 774 /* 775 * child_reaper ignores SIGKILL, change it now. 776 * Reparenting needs write_lock on tasklist_lock, 777 * so it is safe to do it under read_lock. 778 */ 779 if (unlikely(tsk->group_leader == child_reaper(tsk))) 780 tsk->nsproxy->pid_ns->child_reaper = tsk; 781 782 zap_other_threads(tsk); 783 read_unlock(&tasklist_lock); 784 785 /* 786 * Account for the thread group leader hanging around: 787 */ 788 count = 1; 789 if (!thread_group_leader(tsk)) { 790 count = 2; 791 /* 792 * The SIGALRM timer survives the exec, but needs to point 793 * at us as the new group leader now. We have a race with 794 * a timer firing now getting the old leader, so we need to 795 * synchronize with any firing (by calling del_timer_sync) 796 * before we can safely let the old group leader die. 797 */ 798 sig->tsk = tsk; 799 spin_unlock_irq(lock); 800 if (hrtimer_cancel(&sig->real_timer)) 801 hrtimer_restart(&sig->real_timer); 802 spin_lock_irq(lock); 803 } 804 805 sig->notify_count = count; 806 sig->group_exit_task = tsk; 807 while (atomic_read(&sig->count) > count) { 808 __set_current_state(TASK_UNINTERRUPTIBLE); 809 spin_unlock_irq(lock); 810 schedule(); 811 spin_lock_irq(lock); 812 } 813 spin_unlock_irq(lock); 814 815 /* 816 * At this point all other threads have exited, all we have to 817 * do is to wait for the thread group leader to become inactive, 818 * and to assume its PID: 819 */ 820 if (!thread_group_leader(tsk)) { 821 leader = tsk->group_leader; 822 823 sig->notify_count = -1; 824 for (;;) { 825 write_lock_irq(&tasklist_lock); 826 if (likely(leader->exit_state)) 827 break; 828 __set_current_state(TASK_UNINTERRUPTIBLE); 829 write_unlock_irq(&tasklist_lock); 830 schedule(); 831 } 832 833 /* 834 * The only record we have of the real-time age of a 835 * process, regardless of execs it's done, is start_time. 836 * All the past CPU time is accumulated in signal_struct 837 * from sister threads now dead. But in this non-leader 838 * exec, nothing survives from the original leader thread, 839 * whose birth marks the true age of this process now. 840 * When we take on its identity by switching to its PID, we 841 * also take its birthdate (always earlier than our own). 842 */ 843 tsk->start_time = leader->start_time; 844 845 BUG_ON(leader->tgid != tsk->tgid); 846 BUG_ON(tsk->pid == tsk->tgid); 847 /* 848 * An exec() starts a new thread group with the 849 * TGID of the previous thread group. Rehash the 850 * two threads with a switched PID, and release 851 * the former thread group leader: 852 */ 853 854 /* Become a process group leader with the old leader's pid. 855 * The old leader becomes a thread of the this thread group. 856 * Note: The old leader also uses this pid until release_task 857 * is called. Odd but simple and correct. 858 */ 859 detach_pid(tsk, PIDTYPE_PID); 860 tsk->pid = leader->pid; 861 attach_pid(tsk, PIDTYPE_PID, find_pid(tsk->pid)); 862 transfer_pid(leader, tsk, PIDTYPE_PGID); 863 transfer_pid(leader, tsk, PIDTYPE_SID); 864 list_replace_rcu(&leader->tasks, &tsk->tasks); 865 866 tsk->group_leader = tsk; 867 leader->group_leader = tsk; 868 869 tsk->exit_signal = SIGCHLD; 870 871 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 872 leader->exit_state = EXIT_DEAD; 873 874 write_unlock_irq(&tasklist_lock); 875 } 876 877 sig->group_exit_task = NULL; 878 sig->notify_count = 0; 879 /* 880 * There may be one thread left which is just exiting, 881 * but it's safe to stop telling the group to kill themselves. 882 */ 883 sig->flags = 0; 884 885 no_thread_group: 886 exit_itimers(sig); 887 if (leader) 888 release_task(leader); 889 890 if (atomic_read(&oldsighand->count) != 1) { 891 struct sighand_struct *newsighand; 892 /* 893 * This ->sighand is shared with the CLONE_SIGHAND 894 * but not CLONE_THREAD task, switch to the new one. 895 */ 896 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 897 if (!newsighand) 898 return -ENOMEM; 899 900 atomic_set(&newsighand->count, 1); 901 memcpy(newsighand->action, oldsighand->action, 902 sizeof(newsighand->action)); 903 904 write_lock_irq(&tasklist_lock); 905 spin_lock(&oldsighand->siglock); 906 rcu_assign_pointer(tsk->sighand, newsighand); 907 spin_unlock(&oldsighand->siglock); 908 write_unlock_irq(&tasklist_lock); 909 910 __cleanup_sighand(oldsighand); 911 } 912 913 BUG_ON(!thread_group_leader(tsk)); 914 return 0; 915 } 916 917 /* 918 * These functions flushes out all traces of the currently running executable 919 * so that a new one can be started 920 */ 921 static void flush_old_files(struct files_struct * files) 922 { 923 long j = -1; 924 struct fdtable *fdt; 925 926 spin_lock(&files->file_lock); 927 for (;;) { 928 unsigned long set, i; 929 930 j++; 931 i = j * __NFDBITS; 932 fdt = files_fdtable(files); 933 if (i >= fdt->max_fds) 934 break; 935 set = fdt->close_on_exec->fds_bits[j]; 936 if (!set) 937 continue; 938 fdt->close_on_exec->fds_bits[j] = 0; 939 spin_unlock(&files->file_lock); 940 for ( ; set ; i++,set >>= 1) { 941 if (set & 1) { 942 sys_close(i); 943 } 944 } 945 spin_lock(&files->file_lock); 946 947 } 948 spin_unlock(&files->file_lock); 949 } 950 951 void get_task_comm(char *buf, struct task_struct *tsk) 952 { 953 /* buf must be at least sizeof(tsk->comm) in size */ 954 task_lock(tsk); 955 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 956 task_unlock(tsk); 957 } 958 959 void set_task_comm(struct task_struct *tsk, char *buf) 960 { 961 task_lock(tsk); 962 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 963 task_unlock(tsk); 964 } 965 966 int flush_old_exec(struct linux_binprm * bprm) 967 { 968 char * name; 969 int i, ch, retval; 970 struct files_struct *files; 971 char tcomm[sizeof(current->comm)]; 972 973 /* 974 * Make sure we have a private signal table and that 975 * we are unassociated from the previous thread group. 976 */ 977 retval = de_thread(current); 978 if (retval) 979 goto out; 980 981 /* 982 * Make sure we have private file handles. Ask the 983 * fork helper to do the work for us and the exit 984 * helper to do the cleanup of the old one. 985 */ 986 files = current->files; /* refcounted so safe to hold */ 987 retval = unshare_files(); 988 if (retval) 989 goto out; 990 /* 991 * Release all of the old mmap stuff 992 */ 993 retval = exec_mmap(bprm->mm); 994 if (retval) 995 goto mmap_failed; 996 997 bprm->mm = NULL; /* We're using it now */ 998 999 /* This is the point of no return */ 1000 put_files_struct(files); 1001 1002 current->sas_ss_sp = current->sas_ss_size = 0; 1003 1004 if (current->euid == current->uid && current->egid == current->gid) 1005 set_dumpable(current->mm, 1); 1006 else 1007 set_dumpable(current->mm, suid_dumpable); 1008 1009 name = bprm->filename; 1010 1011 /* Copies the binary name from after last slash */ 1012 for (i=0; (ch = *(name++)) != '\0';) { 1013 if (ch == '/') 1014 i = 0; /* overwrite what we wrote */ 1015 else 1016 if (i < (sizeof(tcomm) - 1)) 1017 tcomm[i++] = ch; 1018 } 1019 tcomm[i] = '\0'; 1020 set_task_comm(current, tcomm); 1021 1022 current->flags &= ~PF_RANDOMIZE; 1023 flush_thread(); 1024 1025 /* Set the new mm task size. We have to do that late because it may 1026 * depend on TIF_32BIT which is only updated in flush_thread() on 1027 * some architectures like powerpc 1028 */ 1029 current->mm->task_size = TASK_SIZE; 1030 1031 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { 1032 suid_keys(current); 1033 set_dumpable(current->mm, suid_dumpable); 1034 current->pdeath_signal = 0; 1035 } else if (file_permission(bprm->file, MAY_READ) || 1036 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1037 suid_keys(current); 1038 set_dumpable(current->mm, suid_dumpable); 1039 } 1040 1041 /* An exec changes our domain. We are no longer part of the thread 1042 group */ 1043 1044 current->self_exec_id++; 1045 1046 flush_signal_handlers(current, 0); 1047 flush_old_files(current->files); 1048 1049 return 0; 1050 1051 mmap_failed: 1052 reset_files_struct(current, files); 1053 out: 1054 return retval; 1055 } 1056 1057 EXPORT_SYMBOL(flush_old_exec); 1058 1059 /* 1060 * Fill the binprm structure from the inode. 1061 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1062 */ 1063 int prepare_binprm(struct linux_binprm *bprm) 1064 { 1065 int mode; 1066 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1067 int retval; 1068 1069 mode = inode->i_mode; 1070 if (bprm->file->f_op == NULL) 1071 return -EACCES; 1072 1073 bprm->e_uid = current->euid; 1074 bprm->e_gid = current->egid; 1075 1076 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1077 /* Set-uid? */ 1078 if (mode & S_ISUID) { 1079 current->personality &= ~PER_CLEAR_ON_SETID; 1080 bprm->e_uid = inode->i_uid; 1081 } 1082 1083 /* Set-gid? */ 1084 /* 1085 * If setgid is set but no group execute bit then this 1086 * is a candidate for mandatory locking, not a setgid 1087 * executable. 1088 */ 1089 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1090 current->personality &= ~PER_CLEAR_ON_SETID; 1091 bprm->e_gid = inode->i_gid; 1092 } 1093 } 1094 1095 /* fill in binprm security blob */ 1096 retval = security_bprm_set(bprm); 1097 if (retval) 1098 return retval; 1099 1100 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1101 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1102 } 1103 1104 EXPORT_SYMBOL(prepare_binprm); 1105 1106 static int unsafe_exec(struct task_struct *p) 1107 { 1108 int unsafe = 0; 1109 if (p->ptrace & PT_PTRACED) { 1110 if (p->ptrace & PT_PTRACE_CAP) 1111 unsafe |= LSM_UNSAFE_PTRACE_CAP; 1112 else 1113 unsafe |= LSM_UNSAFE_PTRACE; 1114 } 1115 if (atomic_read(&p->fs->count) > 1 || 1116 atomic_read(&p->files->count) > 1 || 1117 atomic_read(&p->sighand->count) > 1) 1118 unsafe |= LSM_UNSAFE_SHARE; 1119 1120 return unsafe; 1121 } 1122 1123 void compute_creds(struct linux_binprm *bprm) 1124 { 1125 int unsafe; 1126 1127 if (bprm->e_uid != current->uid) { 1128 suid_keys(current); 1129 current->pdeath_signal = 0; 1130 } 1131 exec_keys(current); 1132 1133 task_lock(current); 1134 unsafe = unsafe_exec(current); 1135 security_bprm_apply_creds(bprm, unsafe); 1136 task_unlock(current); 1137 security_bprm_post_apply_creds(bprm); 1138 } 1139 EXPORT_SYMBOL(compute_creds); 1140 1141 /* 1142 * Arguments are '\0' separated strings found at the location bprm->p 1143 * points to; chop off the first by relocating brpm->p to right after 1144 * the first '\0' encountered. 1145 */ 1146 int remove_arg_zero(struct linux_binprm *bprm) 1147 { 1148 int ret = 0; 1149 unsigned long offset; 1150 char *kaddr; 1151 struct page *page; 1152 1153 if (!bprm->argc) 1154 return 0; 1155 1156 do { 1157 offset = bprm->p & ~PAGE_MASK; 1158 page = get_arg_page(bprm, bprm->p, 0); 1159 if (!page) { 1160 ret = -EFAULT; 1161 goto out; 1162 } 1163 kaddr = kmap_atomic(page, KM_USER0); 1164 1165 for (; offset < PAGE_SIZE && kaddr[offset]; 1166 offset++, bprm->p++) 1167 ; 1168 1169 kunmap_atomic(kaddr, KM_USER0); 1170 put_arg_page(page); 1171 1172 if (offset == PAGE_SIZE) 1173 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1174 } while (offset == PAGE_SIZE); 1175 1176 bprm->p++; 1177 bprm->argc--; 1178 ret = 0; 1179 1180 out: 1181 return ret; 1182 } 1183 EXPORT_SYMBOL(remove_arg_zero); 1184 1185 /* 1186 * cycle the list of binary formats handler, until one recognizes the image 1187 */ 1188 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1189 { 1190 int try,retval; 1191 struct linux_binfmt *fmt; 1192 #ifdef __alpha__ 1193 /* handle /sbin/loader.. */ 1194 { 1195 struct exec * eh = (struct exec *) bprm->buf; 1196 1197 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1198 (eh->fh.f_flags & 0x3000) == 0x3000) 1199 { 1200 struct file * file; 1201 unsigned long loader; 1202 1203 allow_write_access(bprm->file); 1204 fput(bprm->file); 1205 bprm->file = NULL; 1206 1207 loader = bprm->vma->vm_end - sizeof(void *); 1208 1209 file = open_exec("/sbin/loader"); 1210 retval = PTR_ERR(file); 1211 if (IS_ERR(file)) 1212 return retval; 1213 1214 /* Remember if the application is TASO. */ 1215 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1216 1217 bprm->file = file; 1218 bprm->loader = loader; 1219 retval = prepare_binprm(bprm); 1220 if (retval<0) 1221 return retval; 1222 /* should call search_binary_handler recursively here, 1223 but it does not matter */ 1224 } 1225 } 1226 #endif 1227 retval = security_bprm_check(bprm); 1228 if (retval) 1229 return retval; 1230 1231 /* kernel module loader fixup */ 1232 /* so we don't try to load run modprobe in kernel space. */ 1233 set_fs(USER_DS); 1234 1235 retval = audit_bprm(bprm); 1236 if (retval) 1237 return retval; 1238 1239 retval = -ENOENT; 1240 for (try=0; try<2; try++) { 1241 read_lock(&binfmt_lock); 1242 list_for_each_entry(fmt, &formats, lh) { 1243 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1244 if (!fn) 1245 continue; 1246 if (!try_module_get(fmt->module)) 1247 continue; 1248 read_unlock(&binfmt_lock); 1249 retval = fn(bprm, regs); 1250 if (retval >= 0) { 1251 put_binfmt(fmt); 1252 allow_write_access(bprm->file); 1253 if (bprm->file) 1254 fput(bprm->file); 1255 bprm->file = NULL; 1256 current->did_exec = 1; 1257 proc_exec_connector(current); 1258 return retval; 1259 } 1260 read_lock(&binfmt_lock); 1261 put_binfmt(fmt); 1262 if (retval != -ENOEXEC || bprm->mm == NULL) 1263 break; 1264 if (!bprm->file) { 1265 read_unlock(&binfmt_lock); 1266 return retval; 1267 } 1268 } 1269 read_unlock(&binfmt_lock); 1270 if (retval != -ENOEXEC || bprm->mm == NULL) { 1271 break; 1272 #ifdef CONFIG_KMOD 1273 }else{ 1274 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1275 if (printable(bprm->buf[0]) && 1276 printable(bprm->buf[1]) && 1277 printable(bprm->buf[2]) && 1278 printable(bprm->buf[3])) 1279 break; /* -ENOEXEC */ 1280 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1281 #endif 1282 } 1283 } 1284 return retval; 1285 } 1286 1287 EXPORT_SYMBOL(search_binary_handler); 1288 1289 /* 1290 * sys_execve() executes a new program. 1291 */ 1292 int do_execve(char * filename, 1293 char __user *__user *argv, 1294 char __user *__user *envp, 1295 struct pt_regs * regs) 1296 { 1297 struct linux_binprm *bprm; 1298 struct file *file; 1299 unsigned long env_p; 1300 int retval; 1301 1302 retval = -ENOMEM; 1303 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1304 if (!bprm) 1305 goto out_ret; 1306 1307 file = open_exec(filename); 1308 retval = PTR_ERR(file); 1309 if (IS_ERR(file)) 1310 goto out_kfree; 1311 1312 sched_exec(); 1313 1314 bprm->file = file; 1315 bprm->filename = filename; 1316 bprm->interp = filename; 1317 1318 retval = bprm_mm_init(bprm); 1319 if (retval) 1320 goto out_file; 1321 1322 bprm->argc = count(argv, MAX_ARG_STRINGS); 1323 if ((retval = bprm->argc) < 0) 1324 goto out_mm; 1325 1326 bprm->envc = count(envp, MAX_ARG_STRINGS); 1327 if ((retval = bprm->envc) < 0) 1328 goto out_mm; 1329 1330 retval = security_bprm_alloc(bprm); 1331 if (retval) 1332 goto out; 1333 1334 retval = prepare_binprm(bprm); 1335 if (retval < 0) 1336 goto out; 1337 1338 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1339 if (retval < 0) 1340 goto out; 1341 1342 bprm->exec = bprm->p; 1343 retval = copy_strings(bprm->envc, envp, bprm); 1344 if (retval < 0) 1345 goto out; 1346 1347 env_p = bprm->p; 1348 retval = copy_strings(bprm->argc, argv, bprm); 1349 if (retval < 0) 1350 goto out; 1351 bprm->argv_len = env_p - bprm->p; 1352 1353 retval = search_binary_handler(bprm,regs); 1354 if (retval >= 0) { 1355 /* execve success */ 1356 free_arg_pages(bprm); 1357 security_bprm_free(bprm); 1358 acct_update_integrals(current); 1359 kfree(bprm); 1360 return retval; 1361 } 1362 1363 out: 1364 free_arg_pages(bprm); 1365 if (bprm->security) 1366 security_bprm_free(bprm); 1367 1368 out_mm: 1369 if (bprm->mm) 1370 mmput (bprm->mm); 1371 1372 out_file: 1373 if (bprm->file) { 1374 allow_write_access(bprm->file); 1375 fput(bprm->file); 1376 } 1377 out_kfree: 1378 kfree(bprm); 1379 1380 out_ret: 1381 return retval; 1382 } 1383 1384 int set_binfmt(struct linux_binfmt *new) 1385 { 1386 struct linux_binfmt *old = current->binfmt; 1387 1388 if (new) { 1389 if (!try_module_get(new->module)) 1390 return -1; 1391 } 1392 current->binfmt = new; 1393 if (old) 1394 module_put(old->module); 1395 return 0; 1396 } 1397 1398 EXPORT_SYMBOL(set_binfmt); 1399 1400 /* format_corename will inspect the pattern parameter, and output a 1401 * name into corename, which must have space for at least 1402 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1403 */ 1404 static int format_corename(char *corename, const char *pattern, long signr) 1405 { 1406 const char *pat_ptr = pattern; 1407 char *out_ptr = corename; 1408 char *const out_end = corename + CORENAME_MAX_SIZE; 1409 int rc; 1410 int pid_in_pattern = 0; 1411 int ispipe = 0; 1412 1413 if (*pattern == '|') 1414 ispipe = 1; 1415 1416 /* Repeat as long as we have more pattern to process and more output 1417 space */ 1418 while (*pat_ptr) { 1419 if (*pat_ptr != '%') { 1420 if (out_ptr == out_end) 1421 goto out; 1422 *out_ptr++ = *pat_ptr++; 1423 } else { 1424 switch (*++pat_ptr) { 1425 case 0: 1426 goto out; 1427 /* Double percent, output one percent */ 1428 case '%': 1429 if (out_ptr == out_end) 1430 goto out; 1431 *out_ptr++ = '%'; 1432 break; 1433 /* pid */ 1434 case 'p': 1435 pid_in_pattern = 1; 1436 rc = snprintf(out_ptr, out_end - out_ptr, 1437 "%d", current->tgid); 1438 if (rc > out_end - out_ptr) 1439 goto out; 1440 out_ptr += rc; 1441 break; 1442 /* uid */ 1443 case 'u': 1444 rc = snprintf(out_ptr, out_end - out_ptr, 1445 "%d", current->uid); 1446 if (rc > out_end - out_ptr) 1447 goto out; 1448 out_ptr += rc; 1449 break; 1450 /* gid */ 1451 case 'g': 1452 rc = snprintf(out_ptr, out_end - out_ptr, 1453 "%d", current->gid); 1454 if (rc > out_end - out_ptr) 1455 goto out; 1456 out_ptr += rc; 1457 break; 1458 /* signal that caused the coredump */ 1459 case 's': 1460 rc = snprintf(out_ptr, out_end - out_ptr, 1461 "%ld", signr); 1462 if (rc > out_end - out_ptr) 1463 goto out; 1464 out_ptr += rc; 1465 break; 1466 /* UNIX time of coredump */ 1467 case 't': { 1468 struct timeval tv; 1469 do_gettimeofday(&tv); 1470 rc = snprintf(out_ptr, out_end - out_ptr, 1471 "%lu", tv.tv_sec); 1472 if (rc > out_end - out_ptr) 1473 goto out; 1474 out_ptr += rc; 1475 break; 1476 } 1477 /* hostname */ 1478 case 'h': 1479 down_read(&uts_sem); 1480 rc = snprintf(out_ptr, out_end - out_ptr, 1481 "%s", utsname()->nodename); 1482 up_read(&uts_sem); 1483 if (rc > out_end - out_ptr) 1484 goto out; 1485 out_ptr += rc; 1486 break; 1487 /* executable */ 1488 case 'e': 1489 rc = snprintf(out_ptr, out_end - out_ptr, 1490 "%s", current->comm); 1491 if (rc > out_end - out_ptr) 1492 goto out; 1493 out_ptr += rc; 1494 break; 1495 /* core limit size */ 1496 case 'c': 1497 rc = snprintf(out_ptr, out_end - out_ptr, 1498 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1499 if (rc > out_end - out_ptr) 1500 goto out; 1501 out_ptr += rc; 1502 break; 1503 default: 1504 break; 1505 } 1506 ++pat_ptr; 1507 } 1508 } 1509 /* Backward compatibility with core_uses_pid: 1510 * 1511 * If core_pattern does not include a %p (as is the default) 1512 * and core_uses_pid is set, then .%pid will be appended to 1513 * the filename. Do not do this for piped commands. */ 1514 if (!ispipe && !pid_in_pattern 1515 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1516 rc = snprintf(out_ptr, out_end - out_ptr, 1517 ".%d", current->tgid); 1518 if (rc > out_end - out_ptr) 1519 goto out; 1520 out_ptr += rc; 1521 } 1522 out: 1523 *out_ptr = 0; 1524 return ispipe; 1525 } 1526 1527 static void zap_process(struct task_struct *start) 1528 { 1529 struct task_struct *t; 1530 1531 start->signal->flags = SIGNAL_GROUP_EXIT; 1532 start->signal->group_stop_count = 0; 1533 1534 t = start; 1535 do { 1536 if (t != current && t->mm) { 1537 t->mm->core_waiters++; 1538 sigaddset(&t->pending.signal, SIGKILL); 1539 signal_wake_up(t, 1); 1540 } 1541 } while ((t = next_thread(t)) != start); 1542 } 1543 1544 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1545 int exit_code) 1546 { 1547 struct task_struct *g, *p; 1548 unsigned long flags; 1549 int err = -EAGAIN; 1550 1551 spin_lock_irq(&tsk->sighand->siglock); 1552 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 1553 tsk->signal->group_exit_code = exit_code; 1554 zap_process(tsk); 1555 err = 0; 1556 } 1557 spin_unlock_irq(&tsk->sighand->siglock); 1558 if (err) 1559 return err; 1560 1561 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1562 goto done; 1563 1564 rcu_read_lock(); 1565 for_each_process(g) { 1566 if (g == tsk->group_leader) 1567 continue; 1568 1569 p = g; 1570 do { 1571 if (p->mm) { 1572 if (p->mm == mm) { 1573 /* 1574 * p->sighand can't disappear, but 1575 * may be changed by de_thread() 1576 */ 1577 lock_task_sighand(p, &flags); 1578 zap_process(p); 1579 unlock_task_sighand(p, &flags); 1580 } 1581 break; 1582 } 1583 } while ((p = next_thread(p)) != g); 1584 } 1585 rcu_read_unlock(); 1586 done: 1587 return mm->core_waiters; 1588 } 1589 1590 static int coredump_wait(int exit_code) 1591 { 1592 struct task_struct *tsk = current; 1593 struct mm_struct *mm = tsk->mm; 1594 struct completion startup_done; 1595 struct completion *vfork_done; 1596 int core_waiters; 1597 1598 init_completion(&mm->core_done); 1599 init_completion(&startup_done); 1600 mm->core_startup_done = &startup_done; 1601 1602 core_waiters = zap_threads(tsk, mm, exit_code); 1603 up_write(&mm->mmap_sem); 1604 1605 if (unlikely(core_waiters < 0)) 1606 goto fail; 1607 1608 /* 1609 * Make sure nobody is waiting for us to release the VM, 1610 * otherwise we can deadlock when we wait on each other 1611 */ 1612 vfork_done = tsk->vfork_done; 1613 if (vfork_done) { 1614 tsk->vfork_done = NULL; 1615 complete(vfork_done); 1616 } 1617 1618 if (core_waiters) 1619 wait_for_completion(&startup_done); 1620 fail: 1621 BUG_ON(mm->core_waiters); 1622 return core_waiters; 1623 } 1624 1625 /* 1626 * set_dumpable converts traditional three-value dumpable to two flags and 1627 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1628 * these bits are not changed atomically. So get_dumpable can observe the 1629 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1630 * return either old dumpable or new one by paying attention to the order of 1631 * modifying the bits. 1632 * 1633 * dumpable | mm->flags (binary) 1634 * old new | initial interim final 1635 * ---------+----------------------- 1636 * 0 1 | 00 01 01 1637 * 0 2 | 00 10(*) 11 1638 * 1 0 | 01 00 00 1639 * 1 2 | 01 11 11 1640 * 2 0 | 11 10(*) 00 1641 * 2 1 | 11 11 01 1642 * 1643 * (*) get_dumpable regards interim value of 10 as 11. 1644 */ 1645 void set_dumpable(struct mm_struct *mm, int value) 1646 { 1647 switch (value) { 1648 case 0: 1649 clear_bit(MMF_DUMPABLE, &mm->flags); 1650 smp_wmb(); 1651 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1652 break; 1653 case 1: 1654 set_bit(MMF_DUMPABLE, &mm->flags); 1655 smp_wmb(); 1656 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1657 break; 1658 case 2: 1659 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1660 smp_wmb(); 1661 set_bit(MMF_DUMPABLE, &mm->flags); 1662 break; 1663 } 1664 } 1665 EXPORT_SYMBOL_GPL(set_dumpable); 1666 1667 int get_dumpable(struct mm_struct *mm) 1668 { 1669 int ret; 1670 1671 ret = mm->flags & 0x3; 1672 return (ret >= 2) ? 2 : ret; 1673 } 1674 1675 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1676 { 1677 char corename[CORENAME_MAX_SIZE + 1]; 1678 struct mm_struct *mm = current->mm; 1679 struct linux_binfmt * binfmt; 1680 struct inode * inode; 1681 struct file * file; 1682 int retval = 0; 1683 int fsuid = current->fsuid; 1684 int flag = 0; 1685 int ispipe = 0; 1686 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; 1687 char **helper_argv = NULL; 1688 int helper_argc = 0; 1689 char *delimit; 1690 1691 audit_core_dumps(signr); 1692 1693 binfmt = current->binfmt; 1694 if (!binfmt || !binfmt->core_dump) 1695 goto fail; 1696 down_write(&mm->mmap_sem); 1697 if (!get_dumpable(mm)) { 1698 up_write(&mm->mmap_sem); 1699 goto fail; 1700 } 1701 1702 /* 1703 * We cannot trust fsuid as being the "true" uid of the 1704 * process nor do we know its entire history. We only know it 1705 * was tainted so we dump it as root in mode 2. 1706 */ 1707 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1708 flag = O_EXCL; /* Stop rewrite attacks */ 1709 current->fsuid = 0; /* Dump root private */ 1710 } 1711 set_dumpable(mm, 0); 1712 1713 retval = coredump_wait(exit_code); 1714 if (retval < 0) 1715 goto fail; 1716 1717 /* 1718 * Clear any false indication of pending signals that might 1719 * be seen by the filesystem code called to write the core file. 1720 */ 1721 clear_thread_flag(TIF_SIGPENDING); 1722 1723 /* 1724 * lock_kernel() because format_corename() is controlled by sysctl, which 1725 * uses lock_kernel() 1726 */ 1727 lock_kernel(); 1728 ispipe = format_corename(corename, core_pattern, signr); 1729 unlock_kernel(); 1730 /* 1731 * Don't bother to check the RLIMIT_CORE value if core_pattern points 1732 * to a pipe. Since we're not writing directly to the filesystem 1733 * RLIMIT_CORE doesn't really apply, as no actual core file will be 1734 * created unless the pipe reader choses to write out the core file 1735 * at which point file size limits and permissions will be imposed 1736 * as it does with any other process 1737 */ 1738 if ((!ispipe) && (core_limit < binfmt->min_coredump)) 1739 goto fail_unlock; 1740 1741 if (ispipe) { 1742 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1743 /* Terminate the string before the first option */ 1744 delimit = strchr(corename, ' '); 1745 if (delimit) 1746 *delimit = '\0'; 1747 delimit = strrchr(helper_argv[0], '/'); 1748 if (delimit) 1749 delimit++; 1750 else 1751 delimit = helper_argv[0]; 1752 if (!strcmp(delimit, current->comm)) { 1753 printk(KERN_NOTICE "Recursive core dump detected, " 1754 "aborting\n"); 1755 goto fail_unlock; 1756 } 1757 1758 core_limit = RLIM_INFINITY; 1759 1760 /* SIGPIPE can happen, but it's just never processed */ 1761 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, 1762 &file)) { 1763 printk(KERN_INFO "Core dump to %s pipe failed\n", 1764 corename); 1765 goto fail_unlock; 1766 } 1767 } else 1768 file = filp_open(corename, 1769 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1770 0600); 1771 if (IS_ERR(file)) 1772 goto fail_unlock; 1773 inode = file->f_path.dentry->d_inode; 1774 if (inode->i_nlink > 1) 1775 goto close_fail; /* multiple links - don't dump */ 1776 if (!ispipe && d_unhashed(file->f_path.dentry)) 1777 goto close_fail; 1778 1779 /* AK: actually i see no reason to not allow this for named pipes etc., 1780 but keep the previous behaviour for now. */ 1781 if (!ispipe && !S_ISREG(inode->i_mode)) 1782 goto close_fail; 1783 if (!file->f_op) 1784 goto close_fail; 1785 if (!file->f_op->write) 1786 goto close_fail; 1787 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1788 goto close_fail; 1789 1790 retval = binfmt->core_dump(signr, regs, file, core_limit); 1791 1792 if (retval) 1793 current->signal->group_exit_code |= 0x80; 1794 close_fail: 1795 filp_close(file, NULL); 1796 fail_unlock: 1797 if (helper_argv) 1798 argv_free(helper_argv); 1799 1800 current->fsuid = fsuid; 1801 complete_all(&mm->core_done); 1802 fail: 1803 return retval; 1804 } 1805