xref: /linux/fs/exec.c (revision 44a2db43eb715b54618bf01520cc5d46376cdbe2)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
58 
59 #ifdef CONFIG_KMOD
60 #include <linux/kmod.h>
61 #endif
62 
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
66 
67 EXPORT_SYMBOL(suid_dumpable);
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69 
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72 
73 int register_binfmt(struct linux_binfmt * fmt)
74 {
75 	if (!fmt)
76 		return -EINVAL;
77 	write_lock(&binfmt_lock);
78 	list_add(&fmt->lh, &formats);
79 	write_unlock(&binfmt_lock);
80 	return 0;
81 }
82 
83 EXPORT_SYMBOL(register_binfmt);
84 
85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87 	write_lock(&binfmt_lock);
88 	list_del(&fmt->lh);
89 	write_unlock(&binfmt_lock);
90 }
91 
92 EXPORT_SYMBOL(unregister_binfmt);
93 
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96 	module_put(fmt->module);
97 }
98 
99 /*
100  * Note that a shared library must be both readable and executable due to
101  * security reasons.
102  *
103  * Also note that we take the address to load from from the file itself.
104  */
105 asmlinkage long sys_uselib(const char __user * library)
106 {
107 	struct file * file;
108 	struct nameidata nd;
109 	int error;
110 
111 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
112 	if (error)
113 		goto out;
114 
115 	error = -EINVAL;
116 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
117 		goto exit;
118 
119 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
120 	if (error)
121 		goto exit;
122 
123 	file = nameidata_to_filp(&nd, O_RDONLY);
124 	error = PTR_ERR(file);
125 	if (IS_ERR(file))
126 		goto out;
127 
128 	error = -ENOEXEC;
129 	if(file->f_op) {
130 		struct linux_binfmt * fmt;
131 
132 		read_lock(&binfmt_lock);
133 		list_for_each_entry(fmt, &formats, lh) {
134 			if (!fmt->load_shlib)
135 				continue;
136 			if (!try_module_get(fmt->module))
137 				continue;
138 			read_unlock(&binfmt_lock);
139 			error = fmt->load_shlib(file);
140 			read_lock(&binfmt_lock);
141 			put_binfmt(fmt);
142 			if (error != -ENOEXEC)
143 				break;
144 		}
145 		read_unlock(&binfmt_lock);
146 	}
147 	fput(file);
148 out:
149   	return error;
150 exit:
151 	release_open_intent(&nd);
152 	path_release(&nd);
153 	goto out;
154 }
155 
156 #ifdef CONFIG_MMU
157 
158 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
159 		int write)
160 {
161 	struct page *page;
162 	int ret;
163 
164 #ifdef CONFIG_STACK_GROWSUP
165 	if (write) {
166 		ret = expand_stack_downwards(bprm->vma, pos);
167 		if (ret < 0)
168 			return NULL;
169 	}
170 #endif
171 	ret = get_user_pages(current, bprm->mm, pos,
172 			1, write, 1, &page, NULL);
173 	if (ret <= 0)
174 		return NULL;
175 
176 	if (write) {
177 		struct rlimit *rlim = current->signal->rlim;
178 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
179 
180 		/*
181 		 * Limit to 1/4-th the stack size for the argv+env strings.
182 		 * This ensures that:
183 		 *  - the remaining binfmt code will not run out of stack space,
184 		 *  - the program will have a reasonable amount of stack left
185 		 *    to work from.
186 		 */
187 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
188 			put_page(page);
189 			return NULL;
190 		}
191 	}
192 
193 	return page;
194 }
195 
196 static void put_arg_page(struct page *page)
197 {
198 	put_page(page);
199 }
200 
201 static void free_arg_page(struct linux_binprm *bprm, int i)
202 {
203 }
204 
205 static void free_arg_pages(struct linux_binprm *bprm)
206 {
207 }
208 
209 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
210 		struct page *page)
211 {
212 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
213 }
214 
215 static int __bprm_mm_init(struct linux_binprm *bprm)
216 {
217 	int err = -ENOMEM;
218 	struct vm_area_struct *vma = NULL;
219 	struct mm_struct *mm = bprm->mm;
220 
221 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
222 	if (!vma)
223 		goto err;
224 
225 	down_write(&mm->mmap_sem);
226 	vma->vm_mm = mm;
227 
228 	/*
229 	 * Place the stack at the largest stack address the architecture
230 	 * supports. Later, we'll move this to an appropriate place. We don't
231 	 * use STACK_TOP because that can depend on attributes which aren't
232 	 * configured yet.
233 	 */
234 	vma->vm_end = STACK_TOP_MAX;
235 	vma->vm_start = vma->vm_end - PAGE_SIZE;
236 
237 	vma->vm_flags = VM_STACK_FLAGS;
238 	vma->vm_page_prot = protection_map[vma->vm_flags & 0x7];
239 	err = insert_vm_struct(mm, vma);
240 	if (err) {
241 		up_write(&mm->mmap_sem);
242 		goto err;
243 	}
244 
245 	mm->stack_vm = mm->total_vm = 1;
246 	up_write(&mm->mmap_sem);
247 
248 	bprm->p = vma->vm_end - sizeof(void *);
249 
250 	return 0;
251 
252 err:
253 	if (vma) {
254 		bprm->vma = NULL;
255 		kmem_cache_free(vm_area_cachep, vma);
256 	}
257 
258 	return err;
259 }
260 
261 static bool valid_arg_len(struct linux_binprm *bprm, long len)
262 {
263 	return len <= MAX_ARG_STRLEN;
264 }
265 
266 #else
267 
268 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
269 		int write)
270 {
271 	struct page *page;
272 
273 	page = bprm->page[pos / PAGE_SIZE];
274 	if (!page && write) {
275 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
276 		if (!page)
277 			return NULL;
278 		bprm->page[pos / PAGE_SIZE] = page;
279 	}
280 
281 	return page;
282 }
283 
284 static void put_arg_page(struct page *page)
285 {
286 }
287 
288 static void free_arg_page(struct linux_binprm *bprm, int i)
289 {
290 	if (bprm->page[i]) {
291 		__free_page(bprm->page[i]);
292 		bprm->page[i] = NULL;
293 	}
294 }
295 
296 static void free_arg_pages(struct linux_binprm *bprm)
297 {
298 	int i;
299 
300 	for (i = 0; i < MAX_ARG_PAGES; i++)
301 		free_arg_page(bprm, i);
302 }
303 
304 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
305 		struct page *page)
306 {
307 }
308 
309 static int __bprm_mm_init(struct linux_binprm *bprm)
310 {
311 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
312 	return 0;
313 }
314 
315 static bool valid_arg_len(struct linux_binprm *bprm, long len)
316 {
317 	return len <= bprm->p;
318 }
319 
320 #endif /* CONFIG_MMU */
321 
322 /*
323  * Create a new mm_struct and populate it with a temporary stack
324  * vm_area_struct.  We don't have enough context at this point to set the stack
325  * flags, permissions, and offset, so we use temporary values.  We'll update
326  * them later in setup_arg_pages().
327  */
328 int bprm_mm_init(struct linux_binprm *bprm)
329 {
330 	int err;
331 	struct mm_struct *mm = NULL;
332 
333 	bprm->mm = mm = mm_alloc();
334 	err = -ENOMEM;
335 	if (!mm)
336 		goto err;
337 
338 	err = init_new_context(current, mm);
339 	if (err)
340 		goto err;
341 
342 	err = __bprm_mm_init(bprm);
343 	if (err)
344 		goto err;
345 
346 	return 0;
347 
348 err:
349 	if (mm) {
350 		bprm->mm = NULL;
351 		mmdrop(mm);
352 	}
353 
354 	return err;
355 }
356 
357 /*
358  * count() counts the number of strings in array ARGV.
359  */
360 static int count(char __user * __user * argv, int max)
361 {
362 	int i = 0;
363 
364 	if (argv != NULL) {
365 		for (;;) {
366 			char __user * p;
367 
368 			if (get_user(p, argv))
369 				return -EFAULT;
370 			if (!p)
371 				break;
372 			argv++;
373 			if(++i > max)
374 				return -E2BIG;
375 			cond_resched();
376 		}
377 	}
378 	return i;
379 }
380 
381 /*
382  * 'copy_strings()' copies argument/environment strings from the old
383  * processes's memory to the new process's stack.  The call to get_user_pages()
384  * ensures the destination page is created and not swapped out.
385  */
386 static int copy_strings(int argc, char __user * __user * argv,
387 			struct linux_binprm *bprm)
388 {
389 	struct page *kmapped_page = NULL;
390 	char *kaddr = NULL;
391 	unsigned long kpos = 0;
392 	int ret;
393 
394 	while (argc-- > 0) {
395 		char __user *str;
396 		int len;
397 		unsigned long pos;
398 
399 		if (get_user(str, argv+argc) ||
400 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
401 			ret = -EFAULT;
402 			goto out;
403 		}
404 
405 		if (!valid_arg_len(bprm, len)) {
406 			ret = -E2BIG;
407 			goto out;
408 		}
409 
410 		/* We're going to work our way backwords. */
411 		pos = bprm->p;
412 		str += len;
413 		bprm->p -= len;
414 
415 		while (len > 0) {
416 			int offset, bytes_to_copy;
417 
418 			offset = pos % PAGE_SIZE;
419 			if (offset == 0)
420 				offset = PAGE_SIZE;
421 
422 			bytes_to_copy = offset;
423 			if (bytes_to_copy > len)
424 				bytes_to_copy = len;
425 
426 			offset -= bytes_to_copy;
427 			pos -= bytes_to_copy;
428 			str -= bytes_to_copy;
429 			len -= bytes_to_copy;
430 
431 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
432 				struct page *page;
433 
434 				page = get_arg_page(bprm, pos, 1);
435 				if (!page) {
436 					ret = -E2BIG;
437 					goto out;
438 				}
439 
440 				if (kmapped_page) {
441 					flush_kernel_dcache_page(kmapped_page);
442 					kunmap(kmapped_page);
443 					put_arg_page(kmapped_page);
444 				}
445 				kmapped_page = page;
446 				kaddr = kmap(kmapped_page);
447 				kpos = pos & PAGE_MASK;
448 				flush_arg_page(bprm, kpos, kmapped_page);
449 			}
450 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
451 				ret = -EFAULT;
452 				goto out;
453 			}
454 		}
455 	}
456 	ret = 0;
457 out:
458 	if (kmapped_page) {
459 		flush_kernel_dcache_page(kmapped_page);
460 		kunmap(kmapped_page);
461 		put_arg_page(kmapped_page);
462 	}
463 	return ret;
464 }
465 
466 /*
467  * Like copy_strings, but get argv and its values from kernel memory.
468  */
469 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
470 {
471 	int r;
472 	mm_segment_t oldfs = get_fs();
473 	set_fs(KERNEL_DS);
474 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
475 	set_fs(oldfs);
476 	return r;
477 }
478 EXPORT_SYMBOL(copy_strings_kernel);
479 
480 #ifdef CONFIG_MMU
481 
482 /*
483  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
484  * the binfmt code determines where the new stack should reside, we shift it to
485  * its final location.  The process proceeds as follows:
486  *
487  * 1) Use shift to calculate the new vma endpoints.
488  * 2) Extend vma to cover both the old and new ranges.  This ensures the
489  *    arguments passed to subsequent functions are consistent.
490  * 3) Move vma's page tables to the new range.
491  * 4) Free up any cleared pgd range.
492  * 5) Shrink the vma to cover only the new range.
493  */
494 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
495 {
496 	struct mm_struct *mm = vma->vm_mm;
497 	unsigned long old_start = vma->vm_start;
498 	unsigned long old_end = vma->vm_end;
499 	unsigned long length = old_end - old_start;
500 	unsigned long new_start = old_start - shift;
501 	unsigned long new_end = old_end - shift;
502 	struct mmu_gather *tlb;
503 
504 	BUG_ON(new_start > new_end);
505 
506 	/*
507 	 * ensure there are no vmas between where we want to go
508 	 * and where we are
509 	 */
510 	if (vma != find_vma(mm, new_start))
511 		return -EFAULT;
512 
513 	/*
514 	 * cover the whole range: [new_start, old_end)
515 	 */
516 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
517 
518 	/*
519 	 * move the page tables downwards, on failure we rely on
520 	 * process cleanup to remove whatever mess we made.
521 	 */
522 	if (length != move_page_tables(vma, old_start,
523 				       vma, new_start, length))
524 		return -ENOMEM;
525 
526 	lru_add_drain();
527 	tlb = tlb_gather_mmu(mm, 0);
528 	if (new_end > old_start) {
529 		/*
530 		 * when the old and new regions overlap clear from new_end.
531 		 */
532 		free_pgd_range(&tlb, new_end, old_end, new_end,
533 			vma->vm_next ? vma->vm_next->vm_start : 0);
534 	} else {
535 		/*
536 		 * otherwise, clean from old_start; this is done to not touch
537 		 * the address space in [new_end, old_start) some architectures
538 		 * have constraints on va-space that make this illegal (IA64) -
539 		 * for the others its just a little faster.
540 		 */
541 		free_pgd_range(&tlb, old_start, old_end, new_end,
542 			vma->vm_next ? vma->vm_next->vm_start : 0);
543 	}
544 	tlb_finish_mmu(tlb, new_end, old_end);
545 
546 	/*
547 	 * shrink the vma to just the new range.
548 	 */
549 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
550 
551 	return 0;
552 }
553 
554 #define EXTRA_STACK_VM_PAGES	20	/* random */
555 
556 /*
557  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
558  * the stack is optionally relocated, and some extra space is added.
559  */
560 int setup_arg_pages(struct linux_binprm *bprm,
561 		    unsigned long stack_top,
562 		    int executable_stack)
563 {
564 	unsigned long ret;
565 	unsigned long stack_shift;
566 	struct mm_struct *mm = current->mm;
567 	struct vm_area_struct *vma = bprm->vma;
568 	struct vm_area_struct *prev = NULL;
569 	unsigned long vm_flags;
570 	unsigned long stack_base;
571 
572 #ifdef CONFIG_STACK_GROWSUP
573 	/* Limit stack size to 1GB */
574 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
575 	if (stack_base > (1 << 30))
576 		stack_base = 1 << 30;
577 
578 	/* Make sure we didn't let the argument array grow too large. */
579 	if (vma->vm_end - vma->vm_start > stack_base)
580 		return -ENOMEM;
581 
582 	stack_base = PAGE_ALIGN(stack_top - stack_base);
583 
584 	stack_shift = vma->vm_start - stack_base;
585 	mm->arg_start = bprm->p - stack_shift;
586 	bprm->p = vma->vm_end - stack_shift;
587 #else
588 	stack_top = arch_align_stack(stack_top);
589 	stack_top = PAGE_ALIGN(stack_top);
590 	stack_shift = vma->vm_end - stack_top;
591 
592 	bprm->p -= stack_shift;
593 	mm->arg_start = bprm->p;
594 #endif
595 
596 	if (bprm->loader)
597 		bprm->loader -= stack_shift;
598 	bprm->exec -= stack_shift;
599 
600 	down_write(&mm->mmap_sem);
601 	vm_flags = vma->vm_flags;
602 
603 	/*
604 	 * Adjust stack execute permissions; explicitly enable for
605 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
606 	 * (arch default) otherwise.
607 	 */
608 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
609 		vm_flags |= VM_EXEC;
610 	else if (executable_stack == EXSTACK_DISABLE_X)
611 		vm_flags &= ~VM_EXEC;
612 	vm_flags |= mm->def_flags;
613 
614 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
615 			vm_flags);
616 	if (ret)
617 		goto out_unlock;
618 	BUG_ON(prev != vma);
619 
620 	/* Move stack pages down in memory. */
621 	if (stack_shift) {
622 		ret = shift_arg_pages(vma, stack_shift);
623 		if (ret) {
624 			up_write(&mm->mmap_sem);
625 			return ret;
626 		}
627 	}
628 
629 #ifdef CONFIG_STACK_GROWSUP
630 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
631 #else
632 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
633 #endif
634 	ret = expand_stack(vma, stack_base);
635 	if (ret)
636 		ret = -EFAULT;
637 
638 out_unlock:
639 	up_write(&mm->mmap_sem);
640 	return 0;
641 }
642 EXPORT_SYMBOL(setup_arg_pages);
643 
644 #endif /* CONFIG_MMU */
645 
646 struct file *open_exec(const char *name)
647 {
648 	struct nameidata nd;
649 	int err;
650 	struct file *file;
651 
652 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
653 	file = ERR_PTR(err);
654 
655 	if (!err) {
656 		struct inode *inode = nd.dentry->d_inode;
657 		file = ERR_PTR(-EACCES);
658 		if (S_ISREG(inode->i_mode)) {
659 			int err = vfs_permission(&nd, MAY_EXEC);
660 			file = ERR_PTR(err);
661 			if (!err) {
662 				file = nameidata_to_filp(&nd, O_RDONLY);
663 				if (!IS_ERR(file)) {
664 					err = deny_write_access(file);
665 					if (err) {
666 						fput(file);
667 						file = ERR_PTR(err);
668 					}
669 				}
670 out:
671 				return file;
672 			}
673 		}
674 		release_open_intent(&nd);
675 		path_release(&nd);
676 	}
677 	goto out;
678 }
679 
680 EXPORT_SYMBOL(open_exec);
681 
682 int kernel_read(struct file *file, unsigned long offset,
683 	char *addr, unsigned long count)
684 {
685 	mm_segment_t old_fs;
686 	loff_t pos = offset;
687 	int result;
688 
689 	old_fs = get_fs();
690 	set_fs(get_ds());
691 	/* The cast to a user pointer is valid due to the set_fs() */
692 	result = vfs_read(file, (void __user *)addr, count, &pos);
693 	set_fs(old_fs);
694 	return result;
695 }
696 
697 EXPORT_SYMBOL(kernel_read);
698 
699 static int exec_mmap(struct mm_struct *mm)
700 {
701 	struct task_struct *tsk;
702 	struct mm_struct * old_mm, *active_mm;
703 
704 	/* Notify parent that we're no longer interested in the old VM */
705 	tsk = current;
706 	old_mm = current->mm;
707 	mm_release(tsk, old_mm);
708 
709 	if (old_mm) {
710 		/*
711 		 * Make sure that if there is a core dump in progress
712 		 * for the old mm, we get out and die instead of going
713 		 * through with the exec.  We must hold mmap_sem around
714 		 * checking core_waiters and changing tsk->mm.  The
715 		 * core-inducing thread will increment core_waiters for
716 		 * each thread whose ->mm == old_mm.
717 		 */
718 		down_read(&old_mm->mmap_sem);
719 		if (unlikely(old_mm->core_waiters)) {
720 			up_read(&old_mm->mmap_sem);
721 			return -EINTR;
722 		}
723 	}
724 	task_lock(tsk);
725 	active_mm = tsk->active_mm;
726 	tsk->mm = mm;
727 	tsk->active_mm = mm;
728 	activate_mm(active_mm, mm);
729 	task_unlock(tsk);
730 	arch_pick_mmap_layout(mm);
731 	if (old_mm) {
732 		up_read(&old_mm->mmap_sem);
733 		BUG_ON(active_mm != old_mm);
734 		mmput(old_mm);
735 		return 0;
736 	}
737 	mmdrop(active_mm);
738 	return 0;
739 }
740 
741 /*
742  * This function makes sure the current process has its own signal table,
743  * so that flush_signal_handlers can later reset the handlers without
744  * disturbing other processes.  (Other processes might share the signal
745  * table via the CLONE_SIGHAND option to clone().)
746  */
747 static int de_thread(struct task_struct *tsk)
748 {
749 	struct signal_struct *sig = tsk->signal;
750 	struct sighand_struct *oldsighand = tsk->sighand;
751 	spinlock_t *lock = &oldsighand->siglock;
752 	struct task_struct *leader = NULL;
753 	int count;
754 
755 	if (thread_group_empty(tsk))
756 		goto no_thread_group;
757 
758 	/*
759 	 * Kill all other threads in the thread group.
760 	 * We must hold tasklist_lock to call zap_other_threads.
761 	 */
762 	read_lock(&tasklist_lock);
763 	spin_lock_irq(lock);
764 	if (sig->flags & SIGNAL_GROUP_EXIT) {
765 		/*
766 		 * Another group action in progress, just
767 		 * return so that the signal is processed.
768 		 */
769 		spin_unlock_irq(lock);
770 		read_unlock(&tasklist_lock);
771 		return -EAGAIN;
772 	}
773 
774 	/*
775 	 * child_reaper ignores SIGKILL, change it now.
776 	 * Reparenting needs write_lock on tasklist_lock,
777 	 * so it is safe to do it under read_lock.
778 	 */
779 	if (unlikely(tsk->group_leader == child_reaper(tsk)))
780 		tsk->nsproxy->pid_ns->child_reaper = tsk;
781 
782 	zap_other_threads(tsk);
783 	read_unlock(&tasklist_lock);
784 
785 	/*
786 	 * Account for the thread group leader hanging around:
787 	 */
788 	count = 1;
789 	if (!thread_group_leader(tsk)) {
790 		count = 2;
791 		/*
792 		 * The SIGALRM timer survives the exec, but needs to point
793 		 * at us as the new group leader now.  We have a race with
794 		 * a timer firing now getting the old leader, so we need to
795 		 * synchronize with any firing (by calling del_timer_sync)
796 		 * before we can safely let the old group leader die.
797 		 */
798 		sig->tsk = tsk;
799 		spin_unlock_irq(lock);
800 		if (hrtimer_cancel(&sig->real_timer))
801 			hrtimer_restart(&sig->real_timer);
802 		spin_lock_irq(lock);
803 	}
804 
805 	sig->notify_count = count;
806 	sig->group_exit_task = tsk;
807 	while (atomic_read(&sig->count) > count) {
808 		__set_current_state(TASK_UNINTERRUPTIBLE);
809 		spin_unlock_irq(lock);
810 		schedule();
811 		spin_lock_irq(lock);
812 	}
813 	spin_unlock_irq(lock);
814 
815 	/*
816 	 * At this point all other threads have exited, all we have to
817 	 * do is to wait for the thread group leader to become inactive,
818 	 * and to assume its PID:
819 	 */
820 	if (!thread_group_leader(tsk)) {
821 		leader = tsk->group_leader;
822 
823 		sig->notify_count = -1;
824 		for (;;) {
825 			write_lock_irq(&tasklist_lock);
826 			if (likely(leader->exit_state))
827 				break;
828 			__set_current_state(TASK_UNINTERRUPTIBLE);
829 			write_unlock_irq(&tasklist_lock);
830 			schedule();
831 		}
832 
833 		/*
834 		 * The only record we have of the real-time age of a
835 		 * process, regardless of execs it's done, is start_time.
836 		 * All the past CPU time is accumulated in signal_struct
837 		 * from sister threads now dead.  But in this non-leader
838 		 * exec, nothing survives from the original leader thread,
839 		 * whose birth marks the true age of this process now.
840 		 * When we take on its identity by switching to its PID, we
841 		 * also take its birthdate (always earlier than our own).
842 		 */
843 		tsk->start_time = leader->start_time;
844 
845 		BUG_ON(leader->tgid != tsk->tgid);
846 		BUG_ON(tsk->pid == tsk->tgid);
847 		/*
848 		 * An exec() starts a new thread group with the
849 		 * TGID of the previous thread group. Rehash the
850 		 * two threads with a switched PID, and release
851 		 * the former thread group leader:
852 		 */
853 
854 		/* Become a process group leader with the old leader's pid.
855 		 * The old leader becomes a thread of the this thread group.
856 		 * Note: The old leader also uses this pid until release_task
857 		 *       is called.  Odd but simple and correct.
858 		 */
859 		detach_pid(tsk, PIDTYPE_PID);
860 		tsk->pid = leader->pid;
861 		attach_pid(tsk, PIDTYPE_PID,  find_pid(tsk->pid));
862 		transfer_pid(leader, tsk, PIDTYPE_PGID);
863 		transfer_pid(leader, tsk, PIDTYPE_SID);
864 		list_replace_rcu(&leader->tasks, &tsk->tasks);
865 
866 		tsk->group_leader = tsk;
867 		leader->group_leader = tsk;
868 
869 		tsk->exit_signal = SIGCHLD;
870 
871 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
872 		leader->exit_state = EXIT_DEAD;
873 
874 		write_unlock_irq(&tasklist_lock);
875         }
876 
877 	sig->group_exit_task = NULL;
878 	sig->notify_count = 0;
879 	/*
880 	 * There may be one thread left which is just exiting,
881 	 * but it's safe to stop telling the group to kill themselves.
882 	 */
883 	sig->flags = 0;
884 
885 no_thread_group:
886 	exit_itimers(sig);
887 	if (leader)
888 		release_task(leader);
889 
890 	if (atomic_read(&oldsighand->count) != 1) {
891 		struct sighand_struct *newsighand;
892 		/*
893 		 * This ->sighand is shared with the CLONE_SIGHAND
894 		 * but not CLONE_THREAD task, switch to the new one.
895 		 */
896 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
897 		if (!newsighand)
898 			return -ENOMEM;
899 
900 		atomic_set(&newsighand->count, 1);
901 		memcpy(newsighand->action, oldsighand->action,
902 		       sizeof(newsighand->action));
903 
904 		write_lock_irq(&tasklist_lock);
905 		spin_lock(&oldsighand->siglock);
906 		rcu_assign_pointer(tsk->sighand, newsighand);
907 		spin_unlock(&oldsighand->siglock);
908 		write_unlock_irq(&tasklist_lock);
909 
910 		__cleanup_sighand(oldsighand);
911 	}
912 
913 	BUG_ON(!thread_group_leader(tsk));
914 	return 0;
915 }
916 
917 /*
918  * These functions flushes out all traces of the currently running executable
919  * so that a new one can be started
920  */
921 static void flush_old_files(struct files_struct * files)
922 {
923 	long j = -1;
924 	struct fdtable *fdt;
925 
926 	spin_lock(&files->file_lock);
927 	for (;;) {
928 		unsigned long set, i;
929 
930 		j++;
931 		i = j * __NFDBITS;
932 		fdt = files_fdtable(files);
933 		if (i >= fdt->max_fds)
934 			break;
935 		set = fdt->close_on_exec->fds_bits[j];
936 		if (!set)
937 			continue;
938 		fdt->close_on_exec->fds_bits[j] = 0;
939 		spin_unlock(&files->file_lock);
940 		for ( ; set ; i++,set >>= 1) {
941 			if (set & 1) {
942 				sys_close(i);
943 			}
944 		}
945 		spin_lock(&files->file_lock);
946 
947 	}
948 	spin_unlock(&files->file_lock);
949 }
950 
951 void get_task_comm(char *buf, struct task_struct *tsk)
952 {
953 	/* buf must be at least sizeof(tsk->comm) in size */
954 	task_lock(tsk);
955 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
956 	task_unlock(tsk);
957 }
958 
959 void set_task_comm(struct task_struct *tsk, char *buf)
960 {
961 	task_lock(tsk);
962 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
963 	task_unlock(tsk);
964 }
965 
966 int flush_old_exec(struct linux_binprm * bprm)
967 {
968 	char * name;
969 	int i, ch, retval;
970 	struct files_struct *files;
971 	char tcomm[sizeof(current->comm)];
972 
973 	/*
974 	 * Make sure we have a private signal table and that
975 	 * we are unassociated from the previous thread group.
976 	 */
977 	retval = de_thread(current);
978 	if (retval)
979 		goto out;
980 
981 	/*
982 	 * Make sure we have private file handles. Ask the
983 	 * fork helper to do the work for us and the exit
984 	 * helper to do the cleanup of the old one.
985 	 */
986 	files = current->files;		/* refcounted so safe to hold */
987 	retval = unshare_files();
988 	if (retval)
989 		goto out;
990 	/*
991 	 * Release all of the old mmap stuff
992 	 */
993 	retval = exec_mmap(bprm->mm);
994 	if (retval)
995 		goto mmap_failed;
996 
997 	bprm->mm = NULL;		/* We're using it now */
998 
999 	/* This is the point of no return */
1000 	put_files_struct(files);
1001 
1002 	current->sas_ss_sp = current->sas_ss_size = 0;
1003 
1004 	if (current->euid == current->uid && current->egid == current->gid)
1005 		set_dumpable(current->mm, 1);
1006 	else
1007 		set_dumpable(current->mm, suid_dumpable);
1008 
1009 	name = bprm->filename;
1010 
1011 	/* Copies the binary name from after last slash */
1012 	for (i=0; (ch = *(name++)) != '\0';) {
1013 		if (ch == '/')
1014 			i = 0; /* overwrite what we wrote */
1015 		else
1016 			if (i < (sizeof(tcomm) - 1))
1017 				tcomm[i++] = ch;
1018 	}
1019 	tcomm[i] = '\0';
1020 	set_task_comm(current, tcomm);
1021 
1022 	current->flags &= ~PF_RANDOMIZE;
1023 	flush_thread();
1024 
1025 	/* Set the new mm task size. We have to do that late because it may
1026 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1027 	 * some architectures like powerpc
1028 	 */
1029 	current->mm->task_size = TASK_SIZE;
1030 
1031 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1032 		suid_keys(current);
1033 		set_dumpable(current->mm, suid_dumpable);
1034 		current->pdeath_signal = 0;
1035 	} else if (file_permission(bprm->file, MAY_READ) ||
1036 			(bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1037 		suid_keys(current);
1038 		set_dumpable(current->mm, suid_dumpable);
1039 	}
1040 
1041 	/* An exec changes our domain. We are no longer part of the thread
1042 	   group */
1043 
1044 	current->self_exec_id++;
1045 
1046 	flush_signal_handlers(current, 0);
1047 	flush_old_files(current->files);
1048 
1049 	return 0;
1050 
1051 mmap_failed:
1052 	reset_files_struct(current, files);
1053 out:
1054 	return retval;
1055 }
1056 
1057 EXPORT_SYMBOL(flush_old_exec);
1058 
1059 /*
1060  * Fill the binprm structure from the inode.
1061  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1062  */
1063 int prepare_binprm(struct linux_binprm *bprm)
1064 {
1065 	int mode;
1066 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1067 	int retval;
1068 
1069 	mode = inode->i_mode;
1070 	if (bprm->file->f_op == NULL)
1071 		return -EACCES;
1072 
1073 	bprm->e_uid = current->euid;
1074 	bprm->e_gid = current->egid;
1075 
1076 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1077 		/* Set-uid? */
1078 		if (mode & S_ISUID) {
1079 			current->personality &= ~PER_CLEAR_ON_SETID;
1080 			bprm->e_uid = inode->i_uid;
1081 		}
1082 
1083 		/* Set-gid? */
1084 		/*
1085 		 * If setgid is set but no group execute bit then this
1086 		 * is a candidate for mandatory locking, not a setgid
1087 		 * executable.
1088 		 */
1089 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1090 			current->personality &= ~PER_CLEAR_ON_SETID;
1091 			bprm->e_gid = inode->i_gid;
1092 		}
1093 	}
1094 
1095 	/* fill in binprm security blob */
1096 	retval = security_bprm_set(bprm);
1097 	if (retval)
1098 		return retval;
1099 
1100 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
1101 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1102 }
1103 
1104 EXPORT_SYMBOL(prepare_binprm);
1105 
1106 static int unsafe_exec(struct task_struct *p)
1107 {
1108 	int unsafe = 0;
1109 	if (p->ptrace & PT_PTRACED) {
1110 		if (p->ptrace & PT_PTRACE_CAP)
1111 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
1112 		else
1113 			unsafe |= LSM_UNSAFE_PTRACE;
1114 	}
1115 	if (atomic_read(&p->fs->count) > 1 ||
1116 	    atomic_read(&p->files->count) > 1 ||
1117 	    atomic_read(&p->sighand->count) > 1)
1118 		unsafe |= LSM_UNSAFE_SHARE;
1119 
1120 	return unsafe;
1121 }
1122 
1123 void compute_creds(struct linux_binprm *bprm)
1124 {
1125 	int unsafe;
1126 
1127 	if (bprm->e_uid != current->uid) {
1128 		suid_keys(current);
1129 		current->pdeath_signal = 0;
1130 	}
1131 	exec_keys(current);
1132 
1133 	task_lock(current);
1134 	unsafe = unsafe_exec(current);
1135 	security_bprm_apply_creds(bprm, unsafe);
1136 	task_unlock(current);
1137 	security_bprm_post_apply_creds(bprm);
1138 }
1139 EXPORT_SYMBOL(compute_creds);
1140 
1141 /*
1142  * Arguments are '\0' separated strings found at the location bprm->p
1143  * points to; chop off the first by relocating brpm->p to right after
1144  * the first '\0' encountered.
1145  */
1146 int remove_arg_zero(struct linux_binprm *bprm)
1147 {
1148 	int ret = 0;
1149 	unsigned long offset;
1150 	char *kaddr;
1151 	struct page *page;
1152 
1153 	if (!bprm->argc)
1154 		return 0;
1155 
1156 	do {
1157 		offset = bprm->p & ~PAGE_MASK;
1158 		page = get_arg_page(bprm, bprm->p, 0);
1159 		if (!page) {
1160 			ret = -EFAULT;
1161 			goto out;
1162 		}
1163 		kaddr = kmap_atomic(page, KM_USER0);
1164 
1165 		for (; offset < PAGE_SIZE && kaddr[offset];
1166 				offset++, bprm->p++)
1167 			;
1168 
1169 		kunmap_atomic(kaddr, KM_USER0);
1170 		put_arg_page(page);
1171 
1172 		if (offset == PAGE_SIZE)
1173 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1174 	} while (offset == PAGE_SIZE);
1175 
1176 	bprm->p++;
1177 	bprm->argc--;
1178 	ret = 0;
1179 
1180 out:
1181 	return ret;
1182 }
1183 EXPORT_SYMBOL(remove_arg_zero);
1184 
1185 /*
1186  * cycle the list of binary formats handler, until one recognizes the image
1187  */
1188 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1189 {
1190 	int try,retval;
1191 	struct linux_binfmt *fmt;
1192 #ifdef __alpha__
1193 	/* handle /sbin/loader.. */
1194 	{
1195 	    struct exec * eh = (struct exec *) bprm->buf;
1196 
1197 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1198 		(eh->fh.f_flags & 0x3000) == 0x3000)
1199 	    {
1200 		struct file * file;
1201 		unsigned long loader;
1202 
1203 		allow_write_access(bprm->file);
1204 		fput(bprm->file);
1205 		bprm->file = NULL;
1206 
1207 		loader = bprm->vma->vm_end - sizeof(void *);
1208 
1209 		file = open_exec("/sbin/loader");
1210 		retval = PTR_ERR(file);
1211 		if (IS_ERR(file))
1212 			return retval;
1213 
1214 		/* Remember if the application is TASO.  */
1215 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1216 
1217 		bprm->file = file;
1218 		bprm->loader = loader;
1219 		retval = prepare_binprm(bprm);
1220 		if (retval<0)
1221 			return retval;
1222 		/* should call search_binary_handler recursively here,
1223 		   but it does not matter */
1224 	    }
1225 	}
1226 #endif
1227 	retval = security_bprm_check(bprm);
1228 	if (retval)
1229 		return retval;
1230 
1231 	/* kernel module loader fixup */
1232 	/* so we don't try to load run modprobe in kernel space. */
1233 	set_fs(USER_DS);
1234 
1235 	retval = audit_bprm(bprm);
1236 	if (retval)
1237 		return retval;
1238 
1239 	retval = -ENOENT;
1240 	for (try=0; try<2; try++) {
1241 		read_lock(&binfmt_lock);
1242 		list_for_each_entry(fmt, &formats, lh) {
1243 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1244 			if (!fn)
1245 				continue;
1246 			if (!try_module_get(fmt->module))
1247 				continue;
1248 			read_unlock(&binfmt_lock);
1249 			retval = fn(bprm, regs);
1250 			if (retval >= 0) {
1251 				put_binfmt(fmt);
1252 				allow_write_access(bprm->file);
1253 				if (bprm->file)
1254 					fput(bprm->file);
1255 				bprm->file = NULL;
1256 				current->did_exec = 1;
1257 				proc_exec_connector(current);
1258 				return retval;
1259 			}
1260 			read_lock(&binfmt_lock);
1261 			put_binfmt(fmt);
1262 			if (retval != -ENOEXEC || bprm->mm == NULL)
1263 				break;
1264 			if (!bprm->file) {
1265 				read_unlock(&binfmt_lock);
1266 				return retval;
1267 			}
1268 		}
1269 		read_unlock(&binfmt_lock);
1270 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1271 			break;
1272 #ifdef CONFIG_KMOD
1273 		}else{
1274 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1275 			if (printable(bprm->buf[0]) &&
1276 			    printable(bprm->buf[1]) &&
1277 			    printable(bprm->buf[2]) &&
1278 			    printable(bprm->buf[3]))
1279 				break; /* -ENOEXEC */
1280 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1281 #endif
1282 		}
1283 	}
1284 	return retval;
1285 }
1286 
1287 EXPORT_SYMBOL(search_binary_handler);
1288 
1289 /*
1290  * sys_execve() executes a new program.
1291  */
1292 int do_execve(char * filename,
1293 	char __user *__user *argv,
1294 	char __user *__user *envp,
1295 	struct pt_regs * regs)
1296 {
1297 	struct linux_binprm *bprm;
1298 	struct file *file;
1299 	unsigned long env_p;
1300 	int retval;
1301 
1302 	retval = -ENOMEM;
1303 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1304 	if (!bprm)
1305 		goto out_ret;
1306 
1307 	file = open_exec(filename);
1308 	retval = PTR_ERR(file);
1309 	if (IS_ERR(file))
1310 		goto out_kfree;
1311 
1312 	sched_exec();
1313 
1314 	bprm->file = file;
1315 	bprm->filename = filename;
1316 	bprm->interp = filename;
1317 
1318 	retval = bprm_mm_init(bprm);
1319 	if (retval)
1320 		goto out_file;
1321 
1322 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1323 	if ((retval = bprm->argc) < 0)
1324 		goto out_mm;
1325 
1326 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1327 	if ((retval = bprm->envc) < 0)
1328 		goto out_mm;
1329 
1330 	retval = security_bprm_alloc(bprm);
1331 	if (retval)
1332 		goto out;
1333 
1334 	retval = prepare_binprm(bprm);
1335 	if (retval < 0)
1336 		goto out;
1337 
1338 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1339 	if (retval < 0)
1340 		goto out;
1341 
1342 	bprm->exec = bprm->p;
1343 	retval = copy_strings(bprm->envc, envp, bprm);
1344 	if (retval < 0)
1345 		goto out;
1346 
1347 	env_p = bprm->p;
1348 	retval = copy_strings(bprm->argc, argv, bprm);
1349 	if (retval < 0)
1350 		goto out;
1351 	bprm->argv_len = env_p - bprm->p;
1352 
1353 	retval = search_binary_handler(bprm,regs);
1354 	if (retval >= 0) {
1355 		/* execve success */
1356 		free_arg_pages(bprm);
1357 		security_bprm_free(bprm);
1358 		acct_update_integrals(current);
1359 		kfree(bprm);
1360 		return retval;
1361 	}
1362 
1363 out:
1364 	free_arg_pages(bprm);
1365 	if (bprm->security)
1366 		security_bprm_free(bprm);
1367 
1368 out_mm:
1369 	if (bprm->mm)
1370 		mmput (bprm->mm);
1371 
1372 out_file:
1373 	if (bprm->file) {
1374 		allow_write_access(bprm->file);
1375 		fput(bprm->file);
1376 	}
1377 out_kfree:
1378 	kfree(bprm);
1379 
1380 out_ret:
1381 	return retval;
1382 }
1383 
1384 int set_binfmt(struct linux_binfmt *new)
1385 {
1386 	struct linux_binfmt *old = current->binfmt;
1387 
1388 	if (new) {
1389 		if (!try_module_get(new->module))
1390 			return -1;
1391 	}
1392 	current->binfmt = new;
1393 	if (old)
1394 		module_put(old->module);
1395 	return 0;
1396 }
1397 
1398 EXPORT_SYMBOL(set_binfmt);
1399 
1400 /* format_corename will inspect the pattern parameter, and output a
1401  * name into corename, which must have space for at least
1402  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1403  */
1404 static int format_corename(char *corename, const char *pattern, long signr)
1405 {
1406 	const char *pat_ptr = pattern;
1407 	char *out_ptr = corename;
1408 	char *const out_end = corename + CORENAME_MAX_SIZE;
1409 	int rc;
1410 	int pid_in_pattern = 0;
1411 	int ispipe = 0;
1412 
1413 	if (*pattern == '|')
1414 		ispipe = 1;
1415 
1416 	/* Repeat as long as we have more pattern to process and more output
1417 	   space */
1418 	while (*pat_ptr) {
1419 		if (*pat_ptr != '%') {
1420 			if (out_ptr == out_end)
1421 				goto out;
1422 			*out_ptr++ = *pat_ptr++;
1423 		} else {
1424 			switch (*++pat_ptr) {
1425 			case 0:
1426 				goto out;
1427 			/* Double percent, output one percent */
1428 			case '%':
1429 				if (out_ptr == out_end)
1430 					goto out;
1431 				*out_ptr++ = '%';
1432 				break;
1433 			/* pid */
1434 			case 'p':
1435 				pid_in_pattern = 1;
1436 				rc = snprintf(out_ptr, out_end - out_ptr,
1437 					      "%d", current->tgid);
1438 				if (rc > out_end - out_ptr)
1439 					goto out;
1440 				out_ptr += rc;
1441 				break;
1442 			/* uid */
1443 			case 'u':
1444 				rc = snprintf(out_ptr, out_end - out_ptr,
1445 					      "%d", current->uid);
1446 				if (rc > out_end - out_ptr)
1447 					goto out;
1448 				out_ptr += rc;
1449 				break;
1450 			/* gid */
1451 			case 'g':
1452 				rc = snprintf(out_ptr, out_end - out_ptr,
1453 					      "%d", current->gid);
1454 				if (rc > out_end - out_ptr)
1455 					goto out;
1456 				out_ptr += rc;
1457 				break;
1458 			/* signal that caused the coredump */
1459 			case 's':
1460 				rc = snprintf(out_ptr, out_end - out_ptr,
1461 					      "%ld", signr);
1462 				if (rc > out_end - out_ptr)
1463 					goto out;
1464 				out_ptr += rc;
1465 				break;
1466 			/* UNIX time of coredump */
1467 			case 't': {
1468 				struct timeval tv;
1469 				do_gettimeofday(&tv);
1470 				rc = snprintf(out_ptr, out_end - out_ptr,
1471 					      "%lu", tv.tv_sec);
1472 				if (rc > out_end - out_ptr)
1473 					goto out;
1474 				out_ptr += rc;
1475 				break;
1476 			}
1477 			/* hostname */
1478 			case 'h':
1479 				down_read(&uts_sem);
1480 				rc = snprintf(out_ptr, out_end - out_ptr,
1481 					      "%s", utsname()->nodename);
1482 				up_read(&uts_sem);
1483 				if (rc > out_end - out_ptr)
1484 					goto out;
1485 				out_ptr += rc;
1486 				break;
1487 			/* executable */
1488 			case 'e':
1489 				rc = snprintf(out_ptr, out_end - out_ptr,
1490 					      "%s", current->comm);
1491 				if (rc > out_end - out_ptr)
1492 					goto out;
1493 				out_ptr += rc;
1494 				break;
1495 			/* core limit size */
1496 			case 'c':
1497 				rc = snprintf(out_ptr, out_end - out_ptr,
1498 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1499 				if (rc > out_end - out_ptr)
1500 					goto out;
1501 				out_ptr += rc;
1502 				break;
1503 			default:
1504 				break;
1505 			}
1506 			++pat_ptr;
1507 		}
1508 	}
1509 	/* Backward compatibility with core_uses_pid:
1510 	 *
1511 	 * If core_pattern does not include a %p (as is the default)
1512 	 * and core_uses_pid is set, then .%pid will be appended to
1513 	 * the filename. Do not do this for piped commands. */
1514 	if (!ispipe && !pid_in_pattern
1515             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1516 		rc = snprintf(out_ptr, out_end - out_ptr,
1517 			      ".%d", current->tgid);
1518 		if (rc > out_end - out_ptr)
1519 			goto out;
1520 		out_ptr += rc;
1521 	}
1522 out:
1523 	*out_ptr = 0;
1524 	return ispipe;
1525 }
1526 
1527 static void zap_process(struct task_struct *start)
1528 {
1529 	struct task_struct *t;
1530 
1531 	start->signal->flags = SIGNAL_GROUP_EXIT;
1532 	start->signal->group_stop_count = 0;
1533 
1534 	t = start;
1535 	do {
1536 		if (t != current && t->mm) {
1537 			t->mm->core_waiters++;
1538 			sigaddset(&t->pending.signal, SIGKILL);
1539 			signal_wake_up(t, 1);
1540 		}
1541 	} while ((t = next_thread(t)) != start);
1542 }
1543 
1544 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1545 				int exit_code)
1546 {
1547 	struct task_struct *g, *p;
1548 	unsigned long flags;
1549 	int err = -EAGAIN;
1550 
1551 	spin_lock_irq(&tsk->sighand->siglock);
1552 	if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1553 		tsk->signal->group_exit_code = exit_code;
1554 		zap_process(tsk);
1555 		err = 0;
1556 	}
1557 	spin_unlock_irq(&tsk->sighand->siglock);
1558 	if (err)
1559 		return err;
1560 
1561 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1562 		goto done;
1563 
1564 	rcu_read_lock();
1565 	for_each_process(g) {
1566 		if (g == tsk->group_leader)
1567 			continue;
1568 
1569 		p = g;
1570 		do {
1571 			if (p->mm) {
1572 				if (p->mm == mm) {
1573 					/*
1574 					 * p->sighand can't disappear, but
1575 					 * may be changed by de_thread()
1576 					 */
1577 					lock_task_sighand(p, &flags);
1578 					zap_process(p);
1579 					unlock_task_sighand(p, &flags);
1580 				}
1581 				break;
1582 			}
1583 		} while ((p = next_thread(p)) != g);
1584 	}
1585 	rcu_read_unlock();
1586 done:
1587 	return mm->core_waiters;
1588 }
1589 
1590 static int coredump_wait(int exit_code)
1591 {
1592 	struct task_struct *tsk = current;
1593 	struct mm_struct *mm = tsk->mm;
1594 	struct completion startup_done;
1595 	struct completion *vfork_done;
1596 	int core_waiters;
1597 
1598 	init_completion(&mm->core_done);
1599 	init_completion(&startup_done);
1600 	mm->core_startup_done = &startup_done;
1601 
1602 	core_waiters = zap_threads(tsk, mm, exit_code);
1603 	up_write(&mm->mmap_sem);
1604 
1605 	if (unlikely(core_waiters < 0))
1606 		goto fail;
1607 
1608 	/*
1609 	 * Make sure nobody is waiting for us to release the VM,
1610 	 * otherwise we can deadlock when we wait on each other
1611 	 */
1612 	vfork_done = tsk->vfork_done;
1613 	if (vfork_done) {
1614 		tsk->vfork_done = NULL;
1615 		complete(vfork_done);
1616 	}
1617 
1618 	if (core_waiters)
1619 		wait_for_completion(&startup_done);
1620 fail:
1621 	BUG_ON(mm->core_waiters);
1622 	return core_waiters;
1623 }
1624 
1625 /*
1626  * set_dumpable converts traditional three-value dumpable to two flags and
1627  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1628  * these bits are not changed atomically.  So get_dumpable can observe the
1629  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1630  * return either old dumpable or new one by paying attention to the order of
1631  * modifying the bits.
1632  *
1633  * dumpable |   mm->flags (binary)
1634  * old  new | initial interim  final
1635  * ---------+-----------------------
1636  *  0    1  |   00      01      01
1637  *  0    2  |   00      10(*)   11
1638  *  1    0  |   01      00      00
1639  *  1    2  |   01      11      11
1640  *  2    0  |   11      10(*)   00
1641  *  2    1  |   11      11      01
1642  *
1643  * (*) get_dumpable regards interim value of 10 as 11.
1644  */
1645 void set_dumpable(struct mm_struct *mm, int value)
1646 {
1647 	switch (value) {
1648 	case 0:
1649 		clear_bit(MMF_DUMPABLE, &mm->flags);
1650 		smp_wmb();
1651 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1652 		break;
1653 	case 1:
1654 		set_bit(MMF_DUMPABLE, &mm->flags);
1655 		smp_wmb();
1656 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1657 		break;
1658 	case 2:
1659 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1660 		smp_wmb();
1661 		set_bit(MMF_DUMPABLE, &mm->flags);
1662 		break;
1663 	}
1664 }
1665 EXPORT_SYMBOL_GPL(set_dumpable);
1666 
1667 int get_dumpable(struct mm_struct *mm)
1668 {
1669 	int ret;
1670 
1671 	ret = mm->flags & 0x3;
1672 	return (ret >= 2) ? 2 : ret;
1673 }
1674 
1675 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1676 {
1677 	char corename[CORENAME_MAX_SIZE + 1];
1678 	struct mm_struct *mm = current->mm;
1679 	struct linux_binfmt * binfmt;
1680 	struct inode * inode;
1681 	struct file * file;
1682 	int retval = 0;
1683 	int fsuid = current->fsuid;
1684 	int flag = 0;
1685 	int ispipe = 0;
1686 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1687 	char **helper_argv = NULL;
1688 	int helper_argc = 0;
1689 	char *delimit;
1690 
1691 	audit_core_dumps(signr);
1692 
1693 	binfmt = current->binfmt;
1694 	if (!binfmt || !binfmt->core_dump)
1695 		goto fail;
1696 	down_write(&mm->mmap_sem);
1697 	if (!get_dumpable(mm)) {
1698 		up_write(&mm->mmap_sem);
1699 		goto fail;
1700 	}
1701 
1702 	/*
1703 	 *	We cannot trust fsuid as being the "true" uid of the
1704 	 *	process nor do we know its entire history. We only know it
1705 	 *	was tainted so we dump it as root in mode 2.
1706 	 */
1707 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1708 		flag = O_EXCL;		/* Stop rewrite attacks */
1709 		current->fsuid = 0;	/* Dump root private */
1710 	}
1711 	set_dumpable(mm, 0);
1712 
1713 	retval = coredump_wait(exit_code);
1714 	if (retval < 0)
1715 		goto fail;
1716 
1717 	/*
1718 	 * Clear any false indication of pending signals that might
1719 	 * be seen by the filesystem code called to write the core file.
1720 	 */
1721 	clear_thread_flag(TIF_SIGPENDING);
1722 
1723 	/*
1724 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1725 	 * uses lock_kernel()
1726 	 */
1727  	lock_kernel();
1728 	ispipe = format_corename(corename, core_pattern, signr);
1729 	unlock_kernel();
1730 	/*
1731 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1732 	 * to a pipe.  Since we're not writing directly to the filesystem
1733 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1734 	 * created unless the pipe reader choses to write out the core file
1735 	 * at which point file size limits and permissions will be imposed
1736 	 * as it does with any other process
1737 	 */
1738 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1739 		goto fail_unlock;
1740 
1741  	if (ispipe) {
1742 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1743 		/* Terminate the string before the first option */
1744 		delimit = strchr(corename, ' ');
1745 		if (delimit)
1746 			*delimit = '\0';
1747 		delimit = strrchr(helper_argv[0], '/');
1748 		if (delimit)
1749 			delimit++;
1750 		else
1751 			delimit = helper_argv[0];
1752 		if (!strcmp(delimit, current->comm)) {
1753 			printk(KERN_NOTICE "Recursive core dump detected, "
1754 					"aborting\n");
1755 			goto fail_unlock;
1756 		}
1757 
1758 		core_limit = RLIM_INFINITY;
1759 
1760 		/* SIGPIPE can happen, but it's just never processed */
1761  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1762 				&file)) {
1763  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1764 			       corename);
1765  			goto fail_unlock;
1766  		}
1767  	} else
1768  		file = filp_open(corename,
1769 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1770 				 0600);
1771 	if (IS_ERR(file))
1772 		goto fail_unlock;
1773 	inode = file->f_path.dentry->d_inode;
1774 	if (inode->i_nlink > 1)
1775 		goto close_fail;	/* multiple links - don't dump */
1776 	if (!ispipe && d_unhashed(file->f_path.dentry))
1777 		goto close_fail;
1778 
1779 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1780 	   but keep the previous behaviour for now. */
1781 	if (!ispipe && !S_ISREG(inode->i_mode))
1782 		goto close_fail;
1783 	if (!file->f_op)
1784 		goto close_fail;
1785 	if (!file->f_op->write)
1786 		goto close_fail;
1787 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1788 		goto close_fail;
1789 
1790 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1791 
1792 	if (retval)
1793 		current->signal->group_exit_code |= 0x80;
1794 close_fail:
1795 	filp_close(file, NULL);
1796 fail_unlock:
1797 	if (helper_argv)
1798 		argv_free(helper_argv);
1799 
1800 	current->fsuid = fsuid;
1801 	complete_all(&mm->core_done);
1802 fail:
1803 	return retval;
1804 }
1805