xref: /linux/fs/exec.c (revision 4485043a9bf83d1a03a62b460ef9d6eec643b0ad)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/fs/exec.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   */
7  
8  /*
9   * #!-checking implemented by tytso.
10   */
11  /*
12   * Demand-loading implemented 01.12.91 - no need to read anything but
13   * the header into memory. The inode of the executable is put into
14   * "current->executable", and page faults do the actual loading. Clean.
15   *
16   * Once more I can proudly say that linux stood up to being changed: it
17   * was less than 2 hours work to get demand-loading completely implemented.
18   *
19   * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20   * current->executable is only used by the procfs.  This allows a dispatch
21   * table to check for several different types  of binary formats.  We keep
22   * trying until we recognize the file or we run out of supported binary
23   * formats.
24   */
25  
26  #include <linux/kernel_read_file.h>
27  #include <linux/slab.h>
28  #include <linux/file.h>
29  #include <linux/fdtable.h>
30  #include <linux/mm.h>
31  #include <linux/stat.h>
32  #include <linux/fcntl.h>
33  #include <linux/swap.h>
34  #include <linux/string.h>
35  #include <linux/init.h>
36  #include <linux/sched/mm.h>
37  #include <linux/sched/coredump.h>
38  #include <linux/sched/signal.h>
39  #include <linux/sched/numa_balancing.h>
40  #include <linux/sched/task.h>
41  #include <linux/pagemap.h>
42  #include <linux/perf_event.h>
43  #include <linux/highmem.h>
44  #include <linux/spinlock.h>
45  #include <linux/key.h>
46  #include <linux/personality.h>
47  #include <linux/binfmts.h>
48  #include <linux/utsname.h>
49  #include <linux/pid_namespace.h>
50  #include <linux/module.h>
51  #include <linux/namei.h>
52  #include <linux/mount.h>
53  #include <linux/security.h>
54  #include <linux/syscalls.h>
55  #include <linux/tsacct_kern.h>
56  #include <linux/cn_proc.h>
57  #include <linux/audit.h>
58  #include <linux/kmod.h>
59  #include <linux/fsnotify.h>
60  #include <linux/fs_struct.h>
61  #include <linux/oom.h>
62  #include <linux/compat.h>
63  #include <linux/vmalloc.h>
64  #include <linux/io_uring.h>
65  #include <linux/syscall_user_dispatch.h>
66  #include <linux/coredump.h>
67  #include <linux/time_namespace.h>
68  #include <linux/user_events.h>
69  #include <linux/rseq.h>
70  #include <linux/ksm.h>
71  
72  #include <linux/uaccess.h>
73  #include <asm/mmu_context.h>
74  #include <asm/tlb.h>
75  
76  #include <trace/events/task.h>
77  #include "internal.h"
78  
79  #include <trace/events/sched.h>
80  
81  static int bprm_creds_from_file(struct linux_binprm *bprm);
82  
83  int suid_dumpable = 0;
84  
85  static LIST_HEAD(formats);
86  static DEFINE_RWLOCK(binfmt_lock);
87  
88  void __register_binfmt(struct linux_binfmt * fmt, int insert)
89  {
90  	write_lock(&binfmt_lock);
91  	insert ? list_add(&fmt->lh, &formats) :
92  		 list_add_tail(&fmt->lh, &formats);
93  	write_unlock(&binfmt_lock);
94  }
95  
96  EXPORT_SYMBOL(__register_binfmt);
97  
98  void unregister_binfmt(struct linux_binfmt * fmt)
99  {
100  	write_lock(&binfmt_lock);
101  	list_del(&fmt->lh);
102  	write_unlock(&binfmt_lock);
103  }
104  
105  EXPORT_SYMBOL(unregister_binfmt);
106  
107  static inline void put_binfmt(struct linux_binfmt * fmt)
108  {
109  	module_put(fmt->module);
110  }
111  
112  bool path_noexec(const struct path *path)
113  {
114  	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115  	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116  }
117  
118  #ifdef CONFIG_USELIB
119  /*
120   * Note that a shared library must be both readable and executable due to
121   * security reasons.
122   *
123   * Also note that we take the address to load from the file itself.
124   */
125  SYSCALL_DEFINE1(uselib, const char __user *, library)
126  {
127  	struct linux_binfmt *fmt;
128  	struct file *file;
129  	struct filename *tmp = getname(library);
130  	int error = PTR_ERR(tmp);
131  	static const struct open_flags uselib_flags = {
132  		.open_flag = O_LARGEFILE | O_RDONLY,
133  		.acc_mode = MAY_READ | MAY_EXEC,
134  		.intent = LOOKUP_OPEN,
135  		.lookup_flags = LOOKUP_FOLLOW,
136  	};
137  
138  	if (IS_ERR(tmp))
139  		goto out;
140  
141  	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142  	putname(tmp);
143  	error = PTR_ERR(file);
144  	if (IS_ERR(file))
145  		goto out;
146  
147  	/*
148  	 * Check do_open_execat() for an explanation.
149  	 */
150  	error = -EACCES;
151  	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
152  	    path_noexec(&file->f_path))
153  		goto exit;
154  
155  	error = -ENOEXEC;
156  
157  	read_lock(&binfmt_lock);
158  	list_for_each_entry(fmt, &formats, lh) {
159  		if (!fmt->load_shlib)
160  			continue;
161  		if (!try_module_get(fmt->module))
162  			continue;
163  		read_unlock(&binfmt_lock);
164  		error = fmt->load_shlib(file);
165  		read_lock(&binfmt_lock);
166  		put_binfmt(fmt);
167  		if (error != -ENOEXEC)
168  			break;
169  	}
170  	read_unlock(&binfmt_lock);
171  exit:
172  	fput(file);
173  out:
174  	return error;
175  }
176  #endif /* #ifdef CONFIG_USELIB */
177  
178  #ifdef CONFIG_MMU
179  /*
180   * The nascent bprm->mm is not visible until exec_mmap() but it can
181   * use a lot of memory, account these pages in current->mm temporary
182   * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183   * change the counter back via acct_arg_size(0).
184   */
185  static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
186  {
187  	struct mm_struct *mm = current->mm;
188  	long diff = (long)(pages - bprm->vma_pages);
189  
190  	if (!mm || !diff)
191  		return;
192  
193  	bprm->vma_pages = pages;
194  	add_mm_counter(mm, MM_ANONPAGES, diff);
195  }
196  
197  static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
198  		int write)
199  {
200  	struct page *page;
201  	struct vm_area_struct *vma = bprm->vma;
202  	struct mm_struct *mm = bprm->mm;
203  	int ret;
204  
205  	/*
206  	 * Avoid relying on expanding the stack down in GUP (which
207  	 * does not work for STACK_GROWSUP anyway), and just do it
208  	 * by hand ahead of time.
209  	 */
210  	if (write && pos < vma->vm_start) {
211  		mmap_write_lock(mm);
212  		ret = expand_downwards(vma, pos);
213  		if (unlikely(ret < 0)) {
214  			mmap_write_unlock(mm);
215  			return NULL;
216  		}
217  		mmap_write_downgrade(mm);
218  	} else
219  		mmap_read_lock(mm);
220  
221  	/*
222  	 * We are doing an exec().  'current' is the process
223  	 * doing the exec and 'mm' is the new process's mm.
224  	 */
225  	ret = get_user_pages_remote(mm, pos, 1,
226  			write ? FOLL_WRITE : 0,
227  			&page, NULL);
228  	mmap_read_unlock(mm);
229  	if (ret <= 0)
230  		return NULL;
231  
232  	if (write)
233  		acct_arg_size(bprm, vma_pages(vma));
234  
235  	return page;
236  }
237  
238  static void put_arg_page(struct page *page)
239  {
240  	put_page(page);
241  }
242  
243  static void free_arg_pages(struct linux_binprm *bprm)
244  {
245  }
246  
247  static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248  		struct page *page)
249  {
250  	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
251  }
252  
253  static int __bprm_mm_init(struct linux_binprm *bprm)
254  {
255  	int err;
256  	struct vm_area_struct *vma = NULL;
257  	struct mm_struct *mm = bprm->mm;
258  
259  	bprm->vma = vma = vm_area_alloc(mm);
260  	if (!vma)
261  		return -ENOMEM;
262  	vma_set_anonymous(vma);
263  
264  	if (mmap_write_lock_killable(mm)) {
265  		err = -EINTR;
266  		goto err_free;
267  	}
268  
269  	/*
270  	 * Need to be called with mmap write lock
271  	 * held, to avoid race with ksmd.
272  	 */
273  	err = ksm_execve(mm);
274  	if (err)
275  		goto err_ksm;
276  
277  	/*
278  	 * Place the stack at the largest stack address the architecture
279  	 * supports. Later, we'll move this to an appropriate place. We don't
280  	 * use STACK_TOP because that can depend on attributes which aren't
281  	 * configured yet.
282  	 */
283  	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
284  	vma->vm_end = STACK_TOP_MAX;
285  	vma->vm_start = vma->vm_end - PAGE_SIZE;
286  	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
287  	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
288  
289  	err = insert_vm_struct(mm, vma);
290  	if (err)
291  		goto err;
292  
293  	mm->stack_vm = mm->total_vm = 1;
294  	mmap_write_unlock(mm);
295  	bprm->p = vma->vm_end - sizeof(void *);
296  	return 0;
297  err:
298  	ksm_exit(mm);
299  err_ksm:
300  	mmap_write_unlock(mm);
301  err_free:
302  	bprm->vma = NULL;
303  	vm_area_free(vma);
304  	return err;
305  }
306  
307  static bool valid_arg_len(struct linux_binprm *bprm, long len)
308  {
309  	return len <= MAX_ARG_STRLEN;
310  }
311  
312  #else
313  
314  static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
315  {
316  }
317  
318  static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
319  		int write)
320  {
321  	struct page *page;
322  
323  	page = bprm->page[pos / PAGE_SIZE];
324  	if (!page && write) {
325  		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
326  		if (!page)
327  			return NULL;
328  		bprm->page[pos / PAGE_SIZE] = page;
329  	}
330  
331  	return page;
332  }
333  
334  static void put_arg_page(struct page *page)
335  {
336  }
337  
338  static void free_arg_page(struct linux_binprm *bprm, int i)
339  {
340  	if (bprm->page[i]) {
341  		__free_page(bprm->page[i]);
342  		bprm->page[i] = NULL;
343  	}
344  }
345  
346  static void free_arg_pages(struct linux_binprm *bprm)
347  {
348  	int i;
349  
350  	for (i = 0; i < MAX_ARG_PAGES; i++)
351  		free_arg_page(bprm, i);
352  }
353  
354  static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
355  		struct page *page)
356  {
357  }
358  
359  static int __bprm_mm_init(struct linux_binprm *bprm)
360  {
361  	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
362  	return 0;
363  }
364  
365  static bool valid_arg_len(struct linux_binprm *bprm, long len)
366  {
367  	return len <= bprm->p;
368  }
369  
370  #endif /* CONFIG_MMU */
371  
372  /*
373   * Create a new mm_struct and populate it with a temporary stack
374   * vm_area_struct.  We don't have enough context at this point to set the stack
375   * flags, permissions, and offset, so we use temporary values.  We'll update
376   * them later in setup_arg_pages().
377   */
378  static int bprm_mm_init(struct linux_binprm *bprm)
379  {
380  	int err;
381  	struct mm_struct *mm = NULL;
382  
383  	bprm->mm = mm = mm_alloc();
384  	err = -ENOMEM;
385  	if (!mm)
386  		goto err;
387  
388  	/* Save current stack limit for all calculations made during exec. */
389  	task_lock(current->group_leader);
390  	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
391  	task_unlock(current->group_leader);
392  
393  	err = __bprm_mm_init(bprm);
394  	if (err)
395  		goto err;
396  
397  	return 0;
398  
399  err:
400  	if (mm) {
401  		bprm->mm = NULL;
402  		mmdrop(mm);
403  	}
404  
405  	return err;
406  }
407  
408  struct user_arg_ptr {
409  #ifdef CONFIG_COMPAT
410  	bool is_compat;
411  #endif
412  	union {
413  		const char __user *const __user *native;
414  #ifdef CONFIG_COMPAT
415  		const compat_uptr_t __user *compat;
416  #endif
417  	} ptr;
418  };
419  
420  static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
421  {
422  	const char __user *native;
423  
424  #ifdef CONFIG_COMPAT
425  	if (unlikely(argv.is_compat)) {
426  		compat_uptr_t compat;
427  
428  		if (get_user(compat, argv.ptr.compat + nr))
429  			return ERR_PTR(-EFAULT);
430  
431  		return compat_ptr(compat);
432  	}
433  #endif
434  
435  	if (get_user(native, argv.ptr.native + nr))
436  		return ERR_PTR(-EFAULT);
437  
438  	return native;
439  }
440  
441  /*
442   * count() counts the number of strings in array ARGV.
443   */
444  static int count(struct user_arg_ptr argv, int max)
445  {
446  	int i = 0;
447  
448  	if (argv.ptr.native != NULL) {
449  		for (;;) {
450  			const char __user *p = get_user_arg_ptr(argv, i);
451  
452  			if (!p)
453  				break;
454  
455  			if (IS_ERR(p))
456  				return -EFAULT;
457  
458  			if (i >= max)
459  				return -E2BIG;
460  			++i;
461  
462  			if (fatal_signal_pending(current))
463  				return -ERESTARTNOHAND;
464  			cond_resched();
465  		}
466  	}
467  	return i;
468  }
469  
470  static int count_strings_kernel(const char *const *argv)
471  {
472  	int i;
473  
474  	if (!argv)
475  		return 0;
476  
477  	for (i = 0; argv[i]; ++i) {
478  		if (i >= MAX_ARG_STRINGS)
479  			return -E2BIG;
480  		if (fatal_signal_pending(current))
481  			return -ERESTARTNOHAND;
482  		cond_resched();
483  	}
484  	return i;
485  }
486  
487  static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
488  				       unsigned long limit)
489  {
490  #ifdef CONFIG_MMU
491  	/* Avoid a pathological bprm->p. */
492  	if (bprm->p < limit)
493  		return -E2BIG;
494  	bprm->argmin = bprm->p - limit;
495  #endif
496  	return 0;
497  }
498  static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
499  {
500  #ifdef CONFIG_MMU
501  	return bprm->p < bprm->argmin;
502  #else
503  	return false;
504  #endif
505  }
506  
507  /*
508   * Calculate bprm->argmin from:
509   * - _STK_LIM
510   * - ARG_MAX
511   * - bprm->rlim_stack.rlim_cur
512   * - bprm->argc
513   * - bprm->envc
514   * - bprm->p
515   */
516  static int bprm_stack_limits(struct linux_binprm *bprm)
517  {
518  	unsigned long limit, ptr_size;
519  
520  	/*
521  	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
522  	 * (whichever is smaller) for the argv+env strings.
523  	 * This ensures that:
524  	 *  - the remaining binfmt code will not run out of stack space,
525  	 *  - the program will have a reasonable amount of stack left
526  	 *    to work from.
527  	 */
528  	limit = _STK_LIM / 4 * 3;
529  	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
530  	/*
531  	 * We've historically supported up to 32 pages (ARG_MAX)
532  	 * of argument strings even with small stacks
533  	 */
534  	limit = max_t(unsigned long, limit, ARG_MAX);
535  	/* Reject totally pathological counts. */
536  	if (bprm->argc < 0 || bprm->envc < 0)
537  		return -E2BIG;
538  	/*
539  	 * We must account for the size of all the argv and envp pointers to
540  	 * the argv and envp strings, since they will also take up space in
541  	 * the stack. They aren't stored until much later when we can't
542  	 * signal to the parent that the child has run out of stack space.
543  	 * Instead, calculate it here so it's possible to fail gracefully.
544  	 *
545  	 * In the case of argc = 0, make sure there is space for adding a
546  	 * empty string (which will bump argc to 1), to ensure confused
547  	 * userspace programs don't start processing from argv[1], thinking
548  	 * argc can never be 0, to keep them from walking envp by accident.
549  	 * See do_execveat_common().
550  	 */
551  	if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
552  	    check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
553  		return -E2BIG;
554  	if (limit <= ptr_size)
555  		return -E2BIG;
556  	limit -= ptr_size;
557  
558  	return bprm_set_stack_limit(bprm, limit);
559  }
560  
561  /*
562   * 'copy_strings()' copies argument/environment strings from the old
563   * processes's memory to the new process's stack.  The call to get_user_pages()
564   * ensures the destination page is created and not swapped out.
565   */
566  static int copy_strings(int argc, struct user_arg_ptr argv,
567  			struct linux_binprm *bprm)
568  {
569  	struct page *kmapped_page = NULL;
570  	char *kaddr = NULL;
571  	unsigned long kpos = 0;
572  	int ret;
573  
574  	while (argc-- > 0) {
575  		const char __user *str;
576  		int len;
577  		unsigned long pos;
578  
579  		ret = -EFAULT;
580  		str = get_user_arg_ptr(argv, argc);
581  		if (IS_ERR(str))
582  			goto out;
583  
584  		len = strnlen_user(str, MAX_ARG_STRLEN);
585  		if (!len)
586  			goto out;
587  
588  		ret = -E2BIG;
589  		if (!valid_arg_len(bprm, len))
590  			goto out;
591  
592  		/* We're going to work our way backwards. */
593  		pos = bprm->p;
594  		str += len;
595  		bprm->p -= len;
596  		if (bprm_hit_stack_limit(bprm))
597  			goto out;
598  
599  		while (len > 0) {
600  			int offset, bytes_to_copy;
601  
602  			if (fatal_signal_pending(current)) {
603  				ret = -ERESTARTNOHAND;
604  				goto out;
605  			}
606  			cond_resched();
607  
608  			offset = pos % PAGE_SIZE;
609  			if (offset == 0)
610  				offset = PAGE_SIZE;
611  
612  			bytes_to_copy = offset;
613  			if (bytes_to_copy > len)
614  				bytes_to_copy = len;
615  
616  			offset -= bytes_to_copy;
617  			pos -= bytes_to_copy;
618  			str -= bytes_to_copy;
619  			len -= bytes_to_copy;
620  
621  			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
622  				struct page *page;
623  
624  				page = get_arg_page(bprm, pos, 1);
625  				if (!page) {
626  					ret = -E2BIG;
627  					goto out;
628  				}
629  
630  				if (kmapped_page) {
631  					flush_dcache_page(kmapped_page);
632  					kunmap_local(kaddr);
633  					put_arg_page(kmapped_page);
634  				}
635  				kmapped_page = page;
636  				kaddr = kmap_local_page(kmapped_page);
637  				kpos = pos & PAGE_MASK;
638  				flush_arg_page(bprm, kpos, kmapped_page);
639  			}
640  			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
641  				ret = -EFAULT;
642  				goto out;
643  			}
644  		}
645  	}
646  	ret = 0;
647  out:
648  	if (kmapped_page) {
649  		flush_dcache_page(kmapped_page);
650  		kunmap_local(kaddr);
651  		put_arg_page(kmapped_page);
652  	}
653  	return ret;
654  }
655  
656  /*
657   * Copy and argument/environment string from the kernel to the processes stack.
658   */
659  int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
660  {
661  	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
662  	unsigned long pos = bprm->p;
663  
664  	if (len == 0)
665  		return -EFAULT;
666  	if (!valid_arg_len(bprm, len))
667  		return -E2BIG;
668  
669  	/* We're going to work our way backwards. */
670  	arg += len;
671  	bprm->p -= len;
672  	if (bprm_hit_stack_limit(bprm))
673  		return -E2BIG;
674  
675  	while (len > 0) {
676  		unsigned int bytes_to_copy = min_t(unsigned int, len,
677  				min_not_zero(offset_in_page(pos), PAGE_SIZE));
678  		struct page *page;
679  
680  		pos -= bytes_to_copy;
681  		arg -= bytes_to_copy;
682  		len -= bytes_to_copy;
683  
684  		page = get_arg_page(bprm, pos, 1);
685  		if (!page)
686  			return -E2BIG;
687  		flush_arg_page(bprm, pos & PAGE_MASK, page);
688  		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
689  		put_arg_page(page);
690  	}
691  
692  	return 0;
693  }
694  EXPORT_SYMBOL(copy_string_kernel);
695  
696  static int copy_strings_kernel(int argc, const char *const *argv,
697  			       struct linux_binprm *bprm)
698  {
699  	while (argc-- > 0) {
700  		int ret = copy_string_kernel(argv[argc], bprm);
701  		if (ret < 0)
702  			return ret;
703  		if (fatal_signal_pending(current))
704  			return -ERESTARTNOHAND;
705  		cond_resched();
706  	}
707  	return 0;
708  }
709  
710  #ifdef CONFIG_MMU
711  
712  /*
713   * Finalizes the stack vm_area_struct. The flags and permissions are updated,
714   * the stack is optionally relocated, and some extra space is added.
715   */
716  int setup_arg_pages(struct linux_binprm *bprm,
717  		    unsigned long stack_top,
718  		    int executable_stack)
719  {
720  	unsigned long ret;
721  	unsigned long stack_shift;
722  	struct mm_struct *mm = current->mm;
723  	struct vm_area_struct *vma = bprm->vma;
724  	struct vm_area_struct *prev = NULL;
725  	unsigned long vm_flags;
726  	unsigned long stack_base;
727  	unsigned long stack_size;
728  	unsigned long stack_expand;
729  	unsigned long rlim_stack;
730  	struct mmu_gather tlb;
731  	struct vma_iterator vmi;
732  
733  #ifdef CONFIG_STACK_GROWSUP
734  	/* Limit stack size */
735  	stack_base = bprm->rlim_stack.rlim_max;
736  
737  	stack_base = calc_max_stack_size(stack_base);
738  
739  	/* Add space for stack randomization. */
740  	if (current->flags & PF_RANDOMIZE)
741  		stack_base += (STACK_RND_MASK << PAGE_SHIFT);
742  
743  	/* Make sure we didn't let the argument array grow too large. */
744  	if (vma->vm_end - vma->vm_start > stack_base)
745  		return -ENOMEM;
746  
747  	stack_base = PAGE_ALIGN(stack_top - stack_base);
748  
749  	stack_shift = vma->vm_start - stack_base;
750  	mm->arg_start = bprm->p - stack_shift;
751  	bprm->p = vma->vm_end - stack_shift;
752  #else
753  	stack_top = arch_align_stack(stack_top);
754  	stack_top = PAGE_ALIGN(stack_top);
755  
756  	if (unlikely(stack_top < mmap_min_addr) ||
757  	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
758  		return -ENOMEM;
759  
760  	stack_shift = vma->vm_end - stack_top;
761  
762  	bprm->p -= stack_shift;
763  	mm->arg_start = bprm->p;
764  #endif
765  
766  	if (bprm->loader)
767  		bprm->loader -= stack_shift;
768  	bprm->exec -= stack_shift;
769  
770  	if (mmap_write_lock_killable(mm))
771  		return -EINTR;
772  
773  	vm_flags = VM_STACK_FLAGS;
774  
775  	/*
776  	 * Adjust stack execute permissions; explicitly enable for
777  	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
778  	 * (arch default) otherwise.
779  	 */
780  	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
781  		vm_flags |= VM_EXEC;
782  	else if (executable_stack == EXSTACK_DISABLE_X)
783  		vm_flags &= ~VM_EXEC;
784  	vm_flags |= mm->def_flags;
785  	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
786  
787  	vma_iter_init(&vmi, mm, vma->vm_start);
788  
789  	tlb_gather_mmu(&tlb, mm);
790  	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
791  			vm_flags);
792  	tlb_finish_mmu(&tlb);
793  
794  	if (ret)
795  		goto out_unlock;
796  	BUG_ON(prev != vma);
797  
798  	if (unlikely(vm_flags & VM_EXEC)) {
799  		pr_warn_once("process '%pD4' started with executable stack\n",
800  			     bprm->file);
801  	}
802  
803  	/* Move stack pages down in memory. */
804  	if (stack_shift) {
805  		/*
806  		 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
807  		 * the binfmt code determines where the new stack should reside, we shift it to
808  		 * its final location.
809  		 */
810  		ret = relocate_vma_down(vma, stack_shift);
811  		if (ret)
812  			goto out_unlock;
813  	}
814  
815  	/* mprotect_fixup is overkill to remove the temporary stack flags */
816  	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
817  
818  	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
819  	stack_size = vma->vm_end - vma->vm_start;
820  	/*
821  	 * Align this down to a page boundary as expand_stack
822  	 * will align it up.
823  	 */
824  	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
825  
826  	stack_expand = min(rlim_stack, stack_size + stack_expand);
827  
828  #ifdef CONFIG_STACK_GROWSUP
829  	stack_base = vma->vm_start + stack_expand;
830  #else
831  	stack_base = vma->vm_end - stack_expand;
832  #endif
833  	current->mm->start_stack = bprm->p;
834  	ret = expand_stack_locked(vma, stack_base);
835  	if (ret)
836  		ret = -EFAULT;
837  
838  out_unlock:
839  	mmap_write_unlock(mm);
840  	return ret;
841  }
842  EXPORT_SYMBOL(setup_arg_pages);
843  
844  #else
845  
846  /*
847   * Transfer the program arguments and environment from the holding pages
848   * onto the stack. The provided stack pointer is adjusted accordingly.
849   */
850  int transfer_args_to_stack(struct linux_binprm *bprm,
851  			   unsigned long *sp_location)
852  {
853  	unsigned long index, stop, sp;
854  	int ret = 0;
855  
856  	stop = bprm->p >> PAGE_SHIFT;
857  	sp = *sp_location;
858  
859  	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
860  		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
861  		char *src = kmap_local_page(bprm->page[index]) + offset;
862  		sp -= PAGE_SIZE - offset;
863  		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
864  			ret = -EFAULT;
865  		kunmap_local(src);
866  		if (ret)
867  			goto out;
868  	}
869  
870  	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
871  	*sp_location = sp;
872  
873  out:
874  	return ret;
875  }
876  EXPORT_SYMBOL(transfer_args_to_stack);
877  
878  #endif /* CONFIG_MMU */
879  
880  /*
881   * On success, caller must call do_close_execat() on the returned
882   * struct file to close it.
883   */
884  static struct file *do_open_execat(int fd, struct filename *name, int flags)
885  {
886  	int err;
887  	struct file *file __free(fput) = NULL;
888  	struct open_flags open_exec_flags = {
889  		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
890  		.acc_mode = MAY_EXEC,
891  		.intent = LOOKUP_OPEN,
892  		.lookup_flags = LOOKUP_FOLLOW,
893  	};
894  
895  	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
896  		return ERR_PTR(-EINVAL);
897  	if (flags & AT_SYMLINK_NOFOLLOW)
898  		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
899  	if (flags & AT_EMPTY_PATH)
900  		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
901  
902  	file = do_filp_open(fd, name, &open_exec_flags);
903  	if (IS_ERR(file))
904  		return file;
905  
906  	/*
907  	 * In the past the regular type check was here. It moved to may_open() in
908  	 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
909  	 * an invariant that all non-regular files error out before we get here.
910  	 */
911  	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
912  	    path_noexec(&file->f_path))
913  		return ERR_PTR(-EACCES);
914  
915  	err = deny_write_access(file);
916  	if (err)
917  		return ERR_PTR(err);
918  
919  	return no_free_ptr(file);
920  }
921  
922  /**
923   * open_exec - Open a path name for execution
924   *
925   * @name: path name to open with the intent of executing it.
926   *
927   * Returns ERR_PTR on failure or allocated struct file on success.
928   *
929   * As this is a wrapper for the internal do_open_execat(), callers
930   * must call allow_write_access() before fput() on release. Also see
931   * do_close_execat().
932   */
933  struct file *open_exec(const char *name)
934  {
935  	struct filename *filename = getname_kernel(name);
936  	struct file *f = ERR_CAST(filename);
937  
938  	if (!IS_ERR(filename)) {
939  		f = do_open_execat(AT_FDCWD, filename, 0);
940  		putname(filename);
941  	}
942  	return f;
943  }
944  EXPORT_SYMBOL(open_exec);
945  
946  #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
947  ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
948  {
949  	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
950  	if (res > 0)
951  		flush_icache_user_range(addr, addr + len);
952  	return res;
953  }
954  EXPORT_SYMBOL(read_code);
955  #endif
956  
957  /*
958   * Maps the mm_struct mm into the current task struct.
959   * On success, this function returns with exec_update_lock
960   * held for writing.
961   */
962  static int exec_mmap(struct mm_struct *mm)
963  {
964  	struct task_struct *tsk;
965  	struct mm_struct *old_mm, *active_mm;
966  	int ret;
967  
968  	/* Notify parent that we're no longer interested in the old VM */
969  	tsk = current;
970  	old_mm = current->mm;
971  	exec_mm_release(tsk, old_mm);
972  
973  	ret = down_write_killable(&tsk->signal->exec_update_lock);
974  	if (ret)
975  		return ret;
976  
977  	if (old_mm) {
978  		/*
979  		 * If there is a pending fatal signal perhaps a signal
980  		 * whose default action is to create a coredump get
981  		 * out and die instead of going through with the exec.
982  		 */
983  		ret = mmap_read_lock_killable(old_mm);
984  		if (ret) {
985  			up_write(&tsk->signal->exec_update_lock);
986  			return ret;
987  		}
988  	}
989  
990  	task_lock(tsk);
991  	membarrier_exec_mmap(mm);
992  
993  	local_irq_disable();
994  	active_mm = tsk->active_mm;
995  	tsk->active_mm = mm;
996  	tsk->mm = mm;
997  	mm_init_cid(mm, tsk);
998  	/*
999  	 * This prevents preemption while active_mm is being loaded and
1000  	 * it and mm are being updated, which could cause problems for
1001  	 * lazy tlb mm refcounting when these are updated by context
1002  	 * switches. Not all architectures can handle irqs off over
1003  	 * activate_mm yet.
1004  	 */
1005  	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1006  		local_irq_enable();
1007  	activate_mm(active_mm, mm);
1008  	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1009  		local_irq_enable();
1010  	lru_gen_add_mm(mm);
1011  	task_unlock(tsk);
1012  	lru_gen_use_mm(mm);
1013  	if (old_mm) {
1014  		mmap_read_unlock(old_mm);
1015  		BUG_ON(active_mm != old_mm);
1016  		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1017  		mm_update_next_owner(old_mm);
1018  		mmput(old_mm);
1019  		return 0;
1020  	}
1021  	mmdrop_lazy_tlb(active_mm);
1022  	return 0;
1023  }
1024  
1025  static int de_thread(struct task_struct *tsk)
1026  {
1027  	struct signal_struct *sig = tsk->signal;
1028  	struct sighand_struct *oldsighand = tsk->sighand;
1029  	spinlock_t *lock = &oldsighand->siglock;
1030  
1031  	if (thread_group_empty(tsk))
1032  		goto no_thread_group;
1033  
1034  	/*
1035  	 * Kill all other threads in the thread group.
1036  	 */
1037  	spin_lock_irq(lock);
1038  	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1039  		/*
1040  		 * Another group action in progress, just
1041  		 * return so that the signal is processed.
1042  		 */
1043  		spin_unlock_irq(lock);
1044  		return -EAGAIN;
1045  	}
1046  
1047  	sig->group_exec_task = tsk;
1048  	sig->notify_count = zap_other_threads(tsk);
1049  	if (!thread_group_leader(tsk))
1050  		sig->notify_count--;
1051  
1052  	while (sig->notify_count) {
1053  		__set_current_state(TASK_KILLABLE);
1054  		spin_unlock_irq(lock);
1055  		schedule();
1056  		if (__fatal_signal_pending(tsk))
1057  			goto killed;
1058  		spin_lock_irq(lock);
1059  	}
1060  	spin_unlock_irq(lock);
1061  
1062  	/*
1063  	 * At this point all other threads have exited, all we have to
1064  	 * do is to wait for the thread group leader to become inactive,
1065  	 * and to assume its PID:
1066  	 */
1067  	if (!thread_group_leader(tsk)) {
1068  		struct task_struct *leader = tsk->group_leader;
1069  
1070  		for (;;) {
1071  			cgroup_threadgroup_change_begin(tsk);
1072  			write_lock_irq(&tasklist_lock);
1073  			/*
1074  			 * Do this under tasklist_lock to ensure that
1075  			 * exit_notify() can't miss ->group_exec_task
1076  			 */
1077  			sig->notify_count = -1;
1078  			if (likely(leader->exit_state))
1079  				break;
1080  			__set_current_state(TASK_KILLABLE);
1081  			write_unlock_irq(&tasklist_lock);
1082  			cgroup_threadgroup_change_end(tsk);
1083  			schedule();
1084  			if (__fatal_signal_pending(tsk))
1085  				goto killed;
1086  		}
1087  
1088  		/*
1089  		 * The only record we have of the real-time age of a
1090  		 * process, regardless of execs it's done, is start_time.
1091  		 * All the past CPU time is accumulated in signal_struct
1092  		 * from sister threads now dead.  But in this non-leader
1093  		 * exec, nothing survives from the original leader thread,
1094  		 * whose birth marks the true age of this process now.
1095  		 * When we take on its identity by switching to its PID, we
1096  		 * also take its birthdate (always earlier than our own).
1097  		 */
1098  		tsk->start_time = leader->start_time;
1099  		tsk->start_boottime = leader->start_boottime;
1100  
1101  		BUG_ON(!same_thread_group(leader, tsk));
1102  		/*
1103  		 * An exec() starts a new thread group with the
1104  		 * TGID of the previous thread group. Rehash the
1105  		 * two threads with a switched PID, and release
1106  		 * the former thread group leader:
1107  		 */
1108  
1109  		/* Become a process group leader with the old leader's pid.
1110  		 * The old leader becomes a thread of the this thread group.
1111  		 */
1112  		exchange_tids(tsk, leader);
1113  		transfer_pid(leader, tsk, PIDTYPE_TGID);
1114  		transfer_pid(leader, tsk, PIDTYPE_PGID);
1115  		transfer_pid(leader, tsk, PIDTYPE_SID);
1116  
1117  		list_replace_rcu(&leader->tasks, &tsk->tasks);
1118  		list_replace_init(&leader->sibling, &tsk->sibling);
1119  
1120  		tsk->group_leader = tsk;
1121  		leader->group_leader = tsk;
1122  
1123  		tsk->exit_signal = SIGCHLD;
1124  		leader->exit_signal = -1;
1125  
1126  		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1127  		leader->exit_state = EXIT_DEAD;
1128  		/*
1129  		 * We are going to release_task()->ptrace_unlink() silently,
1130  		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1131  		 * the tracer won't block again waiting for this thread.
1132  		 */
1133  		if (unlikely(leader->ptrace))
1134  			__wake_up_parent(leader, leader->parent);
1135  		write_unlock_irq(&tasklist_lock);
1136  		cgroup_threadgroup_change_end(tsk);
1137  
1138  		release_task(leader);
1139  	}
1140  
1141  	sig->group_exec_task = NULL;
1142  	sig->notify_count = 0;
1143  
1144  no_thread_group:
1145  	/* we have changed execution domain */
1146  	tsk->exit_signal = SIGCHLD;
1147  
1148  	BUG_ON(!thread_group_leader(tsk));
1149  	return 0;
1150  
1151  killed:
1152  	/* protects against exit_notify() and __exit_signal() */
1153  	read_lock(&tasklist_lock);
1154  	sig->group_exec_task = NULL;
1155  	sig->notify_count = 0;
1156  	read_unlock(&tasklist_lock);
1157  	return -EAGAIN;
1158  }
1159  
1160  
1161  /*
1162   * This function makes sure the current process has its own signal table,
1163   * so that flush_signal_handlers can later reset the handlers without
1164   * disturbing other processes.  (Other processes might share the signal
1165   * table via the CLONE_SIGHAND option to clone().)
1166   */
1167  static int unshare_sighand(struct task_struct *me)
1168  {
1169  	struct sighand_struct *oldsighand = me->sighand;
1170  
1171  	if (refcount_read(&oldsighand->count) != 1) {
1172  		struct sighand_struct *newsighand;
1173  		/*
1174  		 * This ->sighand is shared with the CLONE_SIGHAND
1175  		 * but not CLONE_THREAD task, switch to the new one.
1176  		 */
1177  		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1178  		if (!newsighand)
1179  			return -ENOMEM;
1180  
1181  		refcount_set(&newsighand->count, 1);
1182  
1183  		write_lock_irq(&tasklist_lock);
1184  		spin_lock(&oldsighand->siglock);
1185  		memcpy(newsighand->action, oldsighand->action,
1186  		       sizeof(newsighand->action));
1187  		rcu_assign_pointer(me->sighand, newsighand);
1188  		spin_unlock(&oldsighand->siglock);
1189  		write_unlock_irq(&tasklist_lock);
1190  
1191  		__cleanup_sighand(oldsighand);
1192  	}
1193  	return 0;
1194  }
1195  
1196  /*
1197   * These functions flushes out all traces of the currently running executable
1198   * so that a new one can be started
1199   */
1200  
1201  void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1202  {
1203  	task_lock(tsk);
1204  	trace_task_rename(tsk, buf);
1205  	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1206  	task_unlock(tsk);
1207  	perf_event_comm(tsk, exec);
1208  }
1209  
1210  /*
1211   * Calling this is the point of no return. None of the failures will be
1212   * seen by userspace since either the process is already taking a fatal
1213   * signal (via de_thread() or coredump), or will have SEGV raised
1214   * (after exec_mmap()) by search_binary_handler (see below).
1215   */
1216  int begin_new_exec(struct linux_binprm * bprm)
1217  {
1218  	struct task_struct *me = current;
1219  	int retval;
1220  
1221  	/* Once we are committed compute the creds */
1222  	retval = bprm_creds_from_file(bprm);
1223  	if (retval)
1224  		return retval;
1225  
1226  	/*
1227  	 * This tracepoint marks the point before flushing the old exec where
1228  	 * the current task is still unchanged, but errors are fatal (point of
1229  	 * no return). The later "sched_process_exec" tracepoint is called after
1230  	 * the current task has successfully switched to the new exec.
1231  	 */
1232  	trace_sched_prepare_exec(current, bprm);
1233  
1234  	/*
1235  	 * Ensure all future errors are fatal.
1236  	 */
1237  	bprm->point_of_no_return = true;
1238  
1239  	/*
1240  	 * Make this the only thread in the thread group.
1241  	 */
1242  	retval = de_thread(me);
1243  	if (retval)
1244  		goto out;
1245  
1246  	/*
1247  	 * Cancel any io_uring activity across execve
1248  	 */
1249  	io_uring_task_cancel();
1250  
1251  	/* Ensure the files table is not shared. */
1252  	retval = unshare_files();
1253  	if (retval)
1254  		goto out;
1255  
1256  	/*
1257  	 * Must be called _before_ exec_mmap() as bprm->mm is
1258  	 * not visible until then. Doing it here also ensures
1259  	 * we don't race against replace_mm_exe_file().
1260  	 */
1261  	retval = set_mm_exe_file(bprm->mm, bprm->file);
1262  	if (retval)
1263  		goto out;
1264  
1265  	/* If the binary is not readable then enforce mm->dumpable=0 */
1266  	would_dump(bprm, bprm->file);
1267  	if (bprm->have_execfd)
1268  		would_dump(bprm, bprm->executable);
1269  
1270  	/*
1271  	 * Release all of the old mmap stuff
1272  	 */
1273  	acct_arg_size(bprm, 0);
1274  	retval = exec_mmap(bprm->mm);
1275  	if (retval)
1276  		goto out;
1277  
1278  	bprm->mm = NULL;
1279  
1280  	retval = exec_task_namespaces();
1281  	if (retval)
1282  		goto out_unlock;
1283  
1284  #ifdef CONFIG_POSIX_TIMERS
1285  	spin_lock_irq(&me->sighand->siglock);
1286  	posix_cpu_timers_exit(me);
1287  	spin_unlock_irq(&me->sighand->siglock);
1288  	exit_itimers(me);
1289  	flush_itimer_signals();
1290  #endif
1291  
1292  	/*
1293  	 * Make the signal table private.
1294  	 */
1295  	retval = unshare_sighand(me);
1296  	if (retval)
1297  		goto out_unlock;
1298  
1299  	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1300  					PF_NOFREEZE | PF_NO_SETAFFINITY);
1301  	flush_thread();
1302  	me->personality &= ~bprm->per_clear;
1303  
1304  	clear_syscall_work_syscall_user_dispatch(me);
1305  
1306  	/*
1307  	 * We have to apply CLOEXEC before we change whether the process is
1308  	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1309  	 * trying to access the should-be-closed file descriptors of a process
1310  	 * undergoing exec(2).
1311  	 */
1312  	do_close_on_exec(me->files);
1313  
1314  	if (bprm->secureexec) {
1315  		/* Make sure parent cannot signal privileged process. */
1316  		me->pdeath_signal = 0;
1317  
1318  		/*
1319  		 * For secureexec, reset the stack limit to sane default to
1320  		 * avoid bad behavior from the prior rlimits. This has to
1321  		 * happen before arch_pick_mmap_layout(), which examines
1322  		 * RLIMIT_STACK, but after the point of no return to avoid
1323  		 * needing to clean up the change on failure.
1324  		 */
1325  		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1326  			bprm->rlim_stack.rlim_cur = _STK_LIM;
1327  	}
1328  
1329  	me->sas_ss_sp = me->sas_ss_size = 0;
1330  
1331  	/*
1332  	 * Figure out dumpability. Note that this checking only of current
1333  	 * is wrong, but userspace depends on it. This should be testing
1334  	 * bprm->secureexec instead.
1335  	 */
1336  	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1337  	    !(uid_eq(current_euid(), current_uid()) &&
1338  	      gid_eq(current_egid(), current_gid())))
1339  		set_dumpable(current->mm, suid_dumpable);
1340  	else
1341  		set_dumpable(current->mm, SUID_DUMP_USER);
1342  
1343  	perf_event_exec();
1344  	__set_task_comm(me, kbasename(bprm->filename), true);
1345  
1346  	/* An exec changes our domain. We are no longer part of the thread
1347  	   group */
1348  	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1349  	flush_signal_handlers(me, 0);
1350  
1351  	retval = set_cred_ucounts(bprm->cred);
1352  	if (retval < 0)
1353  		goto out_unlock;
1354  
1355  	/*
1356  	 * install the new credentials for this executable
1357  	 */
1358  	security_bprm_committing_creds(bprm);
1359  
1360  	commit_creds(bprm->cred);
1361  	bprm->cred = NULL;
1362  
1363  	/*
1364  	 * Disable monitoring for regular users
1365  	 * when executing setuid binaries. Must
1366  	 * wait until new credentials are committed
1367  	 * by commit_creds() above
1368  	 */
1369  	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1370  		perf_event_exit_task(me);
1371  	/*
1372  	 * cred_guard_mutex must be held at least to this point to prevent
1373  	 * ptrace_attach() from altering our determination of the task's
1374  	 * credentials; any time after this it may be unlocked.
1375  	 */
1376  	security_bprm_committed_creds(bprm);
1377  
1378  	/* Pass the opened binary to the interpreter. */
1379  	if (bprm->have_execfd) {
1380  		retval = get_unused_fd_flags(0);
1381  		if (retval < 0)
1382  			goto out_unlock;
1383  		fd_install(retval, bprm->executable);
1384  		bprm->executable = NULL;
1385  		bprm->execfd = retval;
1386  	}
1387  	return 0;
1388  
1389  out_unlock:
1390  	up_write(&me->signal->exec_update_lock);
1391  	if (!bprm->cred)
1392  		mutex_unlock(&me->signal->cred_guard_mutex);
1393  
1394  out:
1395  	return retval;
1396  }
1397  EXPORT_SYMBOL(begin_new_exec);
1398  
1399  void would_dump(struct linux_binprm *bprm, struct file *file)
1400  {
1401  	struct inode *inode = file_inode(file);
1402  	struct mnt_idmap *idmap = file_mnt_idmap(file);
1403  	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1404  		struct user_namespace *old, *user_ns;
1405  		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1406  
1407  		/* Ensure mm->user_ns contains the executable */
1408  		user_ns = old = bprm->mm->user_ns;
1409  		while ((user_ns != &init_user_ns) &&
1410  		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1411  			user_ns = user_ns->parent;
1412  
1413  		if (old != user_ns) {
1414  			bprm->mm->user_ns = get_user_ns(user_ns);
1415  			put_user_ns(old);
1416  		}
1417  	}
1418  }
1419  EXPORT_SYMBOL(would_dump);
1420  
1421  void setup_new_exec(struct linux_binprm * bprm)
1422  {
1423  	/* Setup things that can depend upon the personality */
1424  	struct task_struct *me = current;
1425  
1426  	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1427  
1428  	arch_setup_new_exec();
1429  
1430  	/* Set the new mm task size. We have to do that late because it may
1431  	 * depend on TIF_32BIT which is only updated in flush_thread() on
1432  	 * some architectures like powerpc
1433  	 */
1434  	me->mm->task_size = TASK_SIZE;
1435  	up_write(&me->signal->exec_update_lock);
1436  	mutex_unlock(&me->signal->cred_guard_mutex);
1437  }
1438  EXPORT_SYMBOL(setup_new_exec);
1439  
1440  /* Runs immediately before start_thread() takes over. */
1441  void finalize_exec(struct linux_binprm *bprm)
1442  {
1443  	/* Store any stack rlimit changes before starting thread. */
1444  	task_lock(current->group_leader);
1445  	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1446  	task_unlock(current->group_leader);
1447  }
1448  EXPORT_SYMBOL(finalize_exec);
1449  
1450  /*
1451   * Prepare credentials and lock ->cred_guard_mutex.
1452   * setup_new_exec() commits the new creds and drops the lock.
1453   * Or, if exec fails before, free_bprm() should release ->cred
1454   * and unlock.
1455   */
1456  static int prepare_bprm_creds(struct linux_binprm *bprm)
1457  {
1458  	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1459  		return -ERESTARTNOINTR;
1460  
1461  	bprm->cred = prepare_exec_creds();
1462  	if (likely(bprm->cred))
1463  		return 0;
1464  
1465  	mutex_unlock(&current->signal->cred_guard_mutex);
1466  	return -ENOMEM;
1467  }
1468  
1469  /* Matches do_open_execat() */
1470  static void do_close_execat(struct file *file)
1471  {
1472  	if (!file)
1473  		return;
1474  	allow_write_access(file);
1475  	fput(file);
1476  }
1477  
1478  static void free_bprm(struct linux_binprm *bprm)
1479  {
1480  	if (bprm->mm) {
1481  		acct_arg_size(bprm, 0);
1482  		mmput(bprm->mm);
1483  	}
1484  	free_arg_pages(bprm);
1485  	if (bprm->cred) {
1486  		mutex_unlock(&current->signal->cred_guard_mutex);
1487  		abort_creds(bprm->cred);
1488  	}
1489  	do_close_execat(bprm->file);
1490  	if (bprm->executable)
1491  		fput(bprm->executable);
1492  	/* If a binfmt changed the interp, free it. */
1493  	if (bprm->interp != bprm->filename)
1494  		kfree(bprm->interp);
1495  	kfree(bprm->fdpath);
1496  	kfree(bprm);
1497  }
1498  
1499  static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1500  {
1501  	struct linux_binprm *bprm;
1502  	struct file *file;
1503  	int retval = -ENOMEM;
1504  
1505  	file = do_open_execat(fd, filename, flags);
1506  	if (IS_ERR(file))
1507  		return ERR_CAST(file);
1508  
1509  	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1510  	if (!bprm) {
1511  		do_close_execat(file);
1512  		return ERR_PTR(-ENOMEM);
1513  	}
1514  
1515  	bprm->file = file;
1516  
1517  	if (fd == AT_FDCWD || filename->name[0] == '/') {
1518  		bprm->filename = filename->name;
1519  	} else {
1520  		if (filename->name[0] == '\0')
1521  			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1522  		else
1523  			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1524  						  fd, filename->name);
1525  		if (!bprm->fdpath)
1526  			goto out_free;
1527  
1528  		/*
1529  		 * Record that a name derived from an O_CLOEXEC fd will be
1530  		 * inaccessible after exec.  This allows the code in exec to
1531  		 * choose to fail when the executable is not mmaped into the
1532  		 * interpreter and an open file descriptor is not passed to
1533  		 * the interpreter.  This makes for a better user experience
1534  		 * than having the interpreter start and then immediately fail
1535  		 * when it finds the executable is inaccessible.
1536  		 */
1537  		if (get_close_on_exec(fd))
1538  			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1539  
1540  		bprm->filename = bprm->fdpath;
1541  	}
1542  	bprm->interp = bprm->filename;
1543  
1544  	retval = bprm_mm_init(bprm);
1545  	if (!retval)
1546  		return bprm;
1547  
1548  out_free:
1549  	free_bprm(bprm);
1550  	return ERR_PTR(retval);
1551  }
1552  
1553  int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1554  {
1555  	/* If a binfmt changed the interp, free it first. */
1556  	if (bprm->interp != bprm->filename)
1557  		kfree(bprm->interp);
1558  	bprm->interp = kstrdup(interp, GFP_KERNEL);
1559  	if (!bprm->interp)
1560  		return -ENOMEM;
1561  	return 0;
1562  }
1563  EXPORT_SYMBOL(bprm_change_interp);
1564  
1565  /*
1566   * determine how safe it is to execute the proposed program
1567   * - the caller must hold ->cred_guard_mutex to protect against
1568   *   PTRACE_ATTACH or seccomp thread-sync
1569   */
1570  static void check_unsafe_exec(struct linux_binprm *bprm)
1571  {
1572  	struct task_struct *p = current, *t;
1573  	unsigned n_fs;
1574  
1575  	if (p->ptrace)
1576  		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1577  
1578  	/*
1579  	 * This isn't strictly necessary, but it makes it harder for LSMs to
1580  	 * mess up.
1581  	 */
1582  	if (task_no_new_privs(current))
1583  		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1584  
1585  	/*
1586  	 * If another task is sharing our fs, we cannot safely
1587  	 * suid exec because the differently privileged task
1588  	 * will be able to manipulate the current directory, etc.
1589  	 * It would be nice to force an unshare instead...
1590  	 */
1591  	n_fs = 1;
1592  	spin_lock(&p->fs->lock);
1593  	rcu_read_lock();
1594  	for_other_threads(p, t) {
1595  		if (t->fs == p->fs)
1596  			n_fs++;
1597  	}
1598  	rcu_read_unlock();
1599  
1600  	/* "users" and "in_exec" locked for copy_fs() */
1601  	if (p->fs->users > n_fs)
1602  		bprm->unsafe |= LSM_UNSAFE_SHARE;
1603  	else
1604  		p->fs->in_exec = 1;
1605  	spin_unlock(&p->fs->lock);
1606  }
1607  
1608  static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1609  {
1610  	/* Handle suid and sgid on files */
1611  	struct mnt_idmap *idmap;
1612  	struct inode *inode = file_inode(file);
1613  	unsigned int mode;
1614  	vfsuid_t vfsuid;
1615  	vfsgid_t vfsgid;
1616  	int err;
1617  
1618  	if (!mnt_may_suid(file->f_path.mnt))
1619  		return;
1620  
1621  	if (task_no_new_privs(current))
1622  		return;
1623  
1624  	mode = READ_ONCE(inode->i_mode);
1625  	if (!(mode & (S_ISUID|S_ISGID)))
1626  		return;
1627  
1628  	idmap = file_mnt_idmap(file);
1629  
1630  	/* Be careful if suid/sgid is set */
1631  	inode_lock(inode);
1632  
1633  	/* Atomically reload and check mode/uid/gid now that lock held. */
1634  	mode = inode->i_mode;
1635  	vfsuid = i_uid_into_vfsuid(idmap, inode);
1636  	vfsgid = i_gid_into_vfsgid(idmap, inode);
1637  	err = inode_permission(idmap, inode, MAY_EXEC);
1638  	inode_unlock(inode);
1639  
1640  	/* Did the exec bit vanish out from under us? Give up. */
1641  	if (err)
1642  		return;
1643  
1644  	/* We ignore suid/sgid if there are no mappings for them in the ns */
1645  	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1646  	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1647  		return;
1648  
1649  	if (mode & S_ISUID) {
1650  		bprm->per_clear |= PER_CLEAR_ON_SETID;
1651  		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1652  	}
1653  
1654  	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1655  		bprm->per_clear |= PER_CLEAR_ON_SETID;
1656  		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1657  	}
1658  }
1659  
1660  /*
1661   * Compute brpm->cred based upon the final binary.
1662   */
1663  static int bprm_creds_from_file(struct linux_binprm *bprm)
1664  {
1665  	/* Compute creds based on which file? */
1666  	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1667  
1668  	bprm_fill_uid(bprm, file);
1669  	return security_bprm_creds_from_file(bprm, file);
1670  }
1671  
1672  /*
1673   * Fill the binprm structure from the inode.
1674   * Read the first BINPRM_BUF_SIZE bytes
1675   *
1676   * This may be called multiple times for binary chains (scripts for example).
1677   */
1678  static int prepare_binprm(struct linux_binprm *bprm)
1679  {
1680  	loff_t pos = 0;
1681  
1682  	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1683  	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1684  }
1685  
1686  /*
1687   * Arguments are '\0' separated strings found at the location bprm->p
1688   * points to; chop off the first by relocating brpm->p to right after
1689   * the first '\0' encountered.
1690   */
1691  int remove_arg_zero(struct linux_binprm *bprm)
1692  {
1693  	unsigned long offset;
1694  	char *kaddr;
1695  	struct page *page;
1696  
1697  	if (!bprm->argc)
1698  		return 0;
1699  
1700  	do {
1701  		offset = bprm->p & ~PAGE_MASK;
1702  		page = get_arg_page(bprm, bprm->p, 0);
1703  		if (!page)
1704  			return -EFAULT;
1705  		kaddr = kmap_local_page(page);
1706  
1707  		for (; offset < PAGE_SIZE && kaddr[offset];
1708  				offset++, bprm->p++)
1709  			;
1710  
1711  		kunmap_local(kaddr);
1712  		put_arg_page(page);
1713  	} while (offset == PAGE_SIZE);
1714  
1715  	bprm->p++;
1716  	bprm->argc--;
1717  
1718  	return 0;
1719  }
1720  EXPORT_SYMBOL(remove_arg_zero);
1721  
1722  #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1723  /*
1724   * cycle the list of binary formats handler, until one recognizes the image
1725   */
1726  static int search_binary_handler(struct linux_binprm *bprm)
1727  {
1728  	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1729  	struct linux_binfmt *fmt;
1730  	int retval;
1731  
1732  	retval = prepare_binprm(bprm);
1733  	if (retval < 0)
1734  		return retval;
1735  
1736  	retval = security_bprm_check(bprm);
1737  	if (retval)
1738  		return retval;
1739  
1740  	retval = -ENOENT;
1741   retry:
1742  	read_lock(&binfmt_lock);
1743  	list_for_each_entry(fmt, &formats, lh) {
1744  		if (!try_module_get(fmt->module))
1745  			continue;
1746  		read_unlock(&binfmt_lock);
1747  
1748  		retval = fmt->load_binary(bprm);
1749  
1750  		read_lock(&binfmt_lock);
1751  		put_binfmt(fmt);
1752  		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1753  			read_unlock(&binfmt_lock);
1754  			return retval;
1755  		}
1756  	}
1757  	read_unlock(&binfmt_lock);
1758  
1759  	if (need_retry) {
1760  		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1761  		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1762  			return retval;
1763  		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1764  			return retval;
1765  		need_retry = false;
1766  		goto retry;
1767  	}
1768  
1769  	return retval;
1770  }
1771  
1772  /* binfmt handlers will call back into begin_new_exec() on success. */
1773  static int exec_binprm(struct linux_binprm *bprm)
1774  {
1775  	pid_t old_pid, old_vpid;
1776  	int ret, depth;
1777  
1778  	/* Need to fetch pid before load_binary changes it */
1779  	old_pid = current->pid;
1780  	rcu_read_lock();
1781  	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1782  	rcu_read_unlock();
1783  
1784  	/* This allows 4 levels of binfmt rewrites before failing hard. */
1785  	for (depth = 0;; depth++) {
1786  		struct file *exec;
1787  		if (depth > 5)
1788  			return -ELOOP;
1789  
1790  		ret = search_binary_handler(bprm);
1791  		if (ret < 0)
1792  			return ret;
1793  		if (!bprm->interpreter)
1794  			break;
1795  
1796  		exec = bprm->file;
1797  		bprm->file = bprm->interpreter;
1798  		bprm->interpreter = NULL;
1799  
1800  		allow_write_access(exec);
1801  		if (unlikely(bprm->have_execfd)) {
1802  			if (bprm->executable) {
1803  				fput(exec);
1804  				return -ENOEXEC;
1805  			}
1806  			bprm->executable = exec;
1807  		} else
1808  			fput(exec);
1809  	}
1810  
1811  	audit_bprm(bprm);
1812  	trace_sched_process_exec(current, old_pid, bprm);
1813  	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1814  	proc_exec_connector(current);
1815  	return 0;
1816  }
1817  
1818  static int bprm_execve(struct linux_binprm *bprm)
1819  {
1820  	int retval;
1821  
1822  	retval = prepare_bprm_creds(bprm);
1823  	if (retval)
1824  		return retval;
1825  
1826  	/*
1827  	 * Check for unsafe execution states before exec_binprm(), which
1828  	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1829  	 * where setuid-ness is evaluated.
1830  	 */
1831  	check_unsafe_exec(bprm);
1832  	current->in_execve = 1;
1833  	sched_mm_cid_before_execve(current);
1834  
1835  	sched_exec();
1836  
1837  	/* Set the unchanging part of bprm->cred */
1838  	retval = security_bprm_creds_for_exec(bprm);
1839  	if (retval)
1840  		goto out;
1841  
1842  	retval = exec_binprm(bprm);
1843  	if (retval < 0)
1844  		goto out;
1845  
1846  	sched_mm_cid_after_execve(current);
1847  	/* execve succeeded */
1848  	current->fs->in_exec = 0;
1849  	current->in_execve = 0;
1850  	rseq_execve(current);
1851  	user_events_execve(current);
1852  	acct_update_integrals(current);
1853  	task_numa_free(current, false);
1854  	return retval;
1855  
1856  out:
1857  	/*
1858  	 * If past the point of no return ensure the code never
1859  	 * returns to the userspace process.  Use an existing fatal
1860  	 * signal if present otherwise terminate the process with
1861  	 * SIGSEGV.
1862  	 */
1863  	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1864  		force_fatal_sig(SIGSEGV);
1865  
1866  	sched_mm_cid_after_execve(current);
1867  	current->fs->in_exec = 0;
1868  	current->in_execve = 0;
1869  
1870  	return retval;
1871  }
1872  
1873  static int do_execveat_common(int fd, struct filename *filename,
1874  			      struct user_arg_ptr argv,
1875  			      struct user_arg_ptr envp,
1876  			      int flags)
1877  {
1878  	struct linux_binprm *bprm;
1879  	int retval;
1880  
1881  	if (IS_ERR(filename))
1882  		return PTR_ERR(filename);
1883  
1884  	/*
1885  	 * We move the actual failure in case of RLIMIT_NPROC excess from
1886  	 * set*uid() to execve() because too many poorly written programs
1887  	 * don't check setuid() return code.  Here we additionally recheck
1888  	 * whether NPROC limit is still exceeded.
1889  	 */
1890  	if ((current->flags & PF_NPROC_EXCEEDED) &&
1891  	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1892  		retval = -EAGAIN;
1893  		goto out_ret;
1894  	}
1895  
1896  	/* We're below the limit (still or again), so we don't want to make
1897  	 * further execve() calls fail. */
1898  	current->flags &= ~PF_NPROC_EXCEEDED;
1899  
1900  	bprm = alloc_bprm(fd, filename, flags);
1901  	if (IS_ERR(bprm)) {
1902  		retval = PTR_ERR(bprm);
1903  		goto out_ret;
1904  	}
1905  
1906  	retval = count(argv, MAX_ARG_STRINGS);
1907  	if (retval == 0)
1908  		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1909  			     current->comm, bprm->filename);
1910  	if (retval < 0)
1911  		goto out_free;
1912  	bprm->argc = retval;
1913  
1914  	retval = count(envp, MAX_ARG_STRINGS);
1915  	if (retval < 0)
1916  		goto out_free;
1917  	bprm->envc = retval;
1918  
1919  	retval = bprm_stack_limits(bprm);
1920  	if (retval < 0)
1921  		goto out_free;
1922  
1923  	retval = copy_string_kernel(bprm->filename, bprm);
1924  	if (retval < 0)
1925  		goto out_free;
1926  	bprm->exec = bprm->p;
1927  
1928  	retval = copy_strings(bprm->envc, envp, bprm);
1929  	if (retval < 0)
1930  		goto out_free;
1931  
1932  	retval = copy_strings(bprm->argc, argv, bprm);
1933  	if (retval < 0)
1934  		goto out_free;
1935  
1936  	/*
1937  	 * When argv is empty, add an empty string ("") as argv[0] to
1938  	 * ensure confused userspace programs that start processing
1939  	 * from argv[1] won't end up walking envp. See also
1940  	 * bprm_stack_limits().
1941  	 */
1942  	if (bprm->argc == 0) {
1943  		retval = copy_string_kernel("", bprm);
1944  		if (retval < 0)
1945  			goto out_free;
1946  		bprm->argc = 1;
1947  	}
1948  
1949  	retval = bprm_execve(bprm);
1950  out_free:
1951  	free_bprm(bprm);
1952  
1953  out_ret:
1954  	putname(filename);
1955  	return retval;
1956  }
1957  
1958  int kernel_execve(const char *kernel_filename,
1959  		  const char *const *argv, const char *const *envp)
1960  {
1961  	struct filename *filename;
1962  	struct linux_binprm *bprm;
1963  	int fd = AT_FDCWD;
1964  	int retval;
1965  
1966  	/* It is non-sense for kernel threads to call execve */
1967  	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1968  		return -EINVAL;
1969  
1970  	filename = getname_kernel(kernel_filename);
1971  	if (IS_ERR(filename))
1972  		return PTR_ERR(filename);
1973  
1974  	bprm = alloc_bprm(fd, filename, 0);
1975  	if (IS_ERR(bprm)) {
1976  		retval = PTR_ERR(bprm);
1977  		goto out_ret;
1978  	}
1979  
1980  	retval = count_strings_kernel(argv);
1981  	if (WARN_ON_ONCE(retval == 0))
1982  		retval = -EINVAL;
1983  	if (retval < 0)
1984  		goto out_free;
1985  	bprm->argc = retval;
1986  
1987  	retval = count_strings_kernel(envp);
1988  	if (retval < 0)
1989  		goto out_free;
1990  	bprm->envc = retval;
1991  
1992  	retval = bprm_stack_limits(bprm);
1993  	if (retval < 0)
1994  		goto out_free;
1995  
1996  	retval = copy_string_kernel(bprm->filename, bprm);
1997  	if (retval < 0)
1998  		goto out_free;
1999  	bprm->exec = bprm->p;
2000  
2001  	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2002  	if (retval < 0)
2003  		goto out_free;
2004  
2005  	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2006  	if (retval < 0)
2007  		goto out_free;
2008  
2009  	retval = bprm_execve(bprm);
2010  out_free:
2011  	free_bprm(bprm);
2012  out_ret:
2013  	putname(filename);
2014  	return retval;
2015  }
2016  
2017  static int do_execve(struct filename *filename,
2018  	const char __user *const __user *__argv,
2019  	const char __user *const __user *__envp)
2020  {
2021  	struct user_arg_ptr argv = { .ptr.native = __argv };
2022  	struct user_arg_ptr envp = { .ptr.native = __envp };
2023  	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2024  }
2025  
2026  static int do_execveat(int fd, struct filename *filename,
2027  		const char __user *const __user *__argv,
2028  		const char __user *const __user *__envp,
2029  		int flags)
2030  {
2031  	struct user_arg_ptr argv = { .ptr.native = __argv };
2032  	struct user_arg_ptr envp = { .ptr.native = __envp };
2033  
2034  	return do_execveat_common(fd, filename, argv, envp, flags);
2035  }
2036  
2037  #ifdef CONFIG_COMPAT
2038  static int compat_do_execve(struct filename *filename,
2039  	const compat_uptr_t __user *__argv,
2040  	const compat_uptr_t __user *__envp)
2041  {
2042  	struct user_arg_ptr argv = {
2043  		.is_compat = true,
2044  		.ptr.compat = __argv,
2045  	};
2046  	struct user_arg_ptr envp = {
2047  		.is_compat = true,
2048  		.ptr.compat = __envp,
2049  	};
2050  	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2051  }
2052  
2053  static int compat_do_execveat(int fd, struct filename *filename,
2054  			      const compat_uptr_t __user *__argv,
2055  			      const compat_uptr_t __user *__envp,
2056  			      int flags)
2057  {
2058  	struct user_arg_ptr argv = {
2059  		.is_compat = true,
2060  		.ptr.compat = __argv,
2061  	};
2062  	struct user_arg_ptr envp = {
2063  		.is_compat = true,
2064  		.ptr.compat = __envp,
2065  	};
2066  	return do_execveat_common(fd, filename, argv, envp, flags);
2067  }
2068  #endif
2069  
2070  void set_binfmt(struct linux_binfmt *new)
2071  {
2072  	struct mm_struct *mm = current->mm;
2073  
2074  	if (mm->binfmt)
2075  		module_put(mm->binfmt->module);
2076  
2077  	mm->binfmt = new;
2078  	if (new)
2079  		__module_get(new->module);
2080  }
2081  EXPORT_SYMBOL(set_binfmt);
2082  
2083  /*
2084   * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2085   */
2086  void set_dumpable(struct mm_struct *mm, int value)
2087  {
2088  	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2089  		return;
2090  
2091  	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2092  }
2093  
2094  SYSCALL_DEFINE3(execve,
2095  		const char __user *, filename,
2096  		const char __user *const __user *, argv,
2097  		const char __user *const __user *, envp)
2098  {
2099  	return do_execve(getname(filename), argv, envp);
2100  }
2101  
2102  SYSCALL_DEFINE5(execveat,
2103  		int, fd, const char __user *, filename,
2104  		const char __user *const __user *, argv,
2105  		const char __user *const __user *, envp,
2106  		int, flags)
2107  {
2108  	return do_execveat(fd,
2109  			   getname_uflags(filename, flags),
2110  			   argv, envp, flags);
2111  }
2112  
2113  #ifdef CONFIG_COMPAT
2114  COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2115  	const compat_uptr_t __user *, argv,
2116  	const compat_uptr_t __user *, envp)
2117  {
2118  	return compat_do_execve(getname(filename), argv, envp);
2119  }
2120  
2121  COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2122  		       const char __user *, filename,
2123  		       const compat_uptr_t __user *, argv,
2124  		       const compat_uptr_t __user *, envp,
2125  		       int,  flags)
2126  {
2127  	return compat_do_execveat(fd,
2128  				  getname_uflags(filename, flags),
2129  				  argv, envp, flags);
2130  }
2131  #endif
2132  
2133  #ifdef CONFIG_SYSCTL
2134  
2135  static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2136  		void *buffer, size_t *lenp, loff_t *ppos)
2137  {
2138  	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2139  
2140  	if (!error)
2141  		validate_coredump_safety();
2142  	return error;
2143  }
2144  
2145  static struct ctl_table fs_exec_sysctls[] = {
2146  	{
2147  		.procname	= "suid_dumpable",
2148  		.data		= &suid_dumpable,
2149  		.maxlen		= sizeof(int),
2150  		.mode		= 0644,
2151  		.proc_handler	= proc_dointvec_minmax_coredump,
2152  		.extra1		= SYSCTL_ZERO,
2153  		.extra2		= SYSCTL_TWO,
2154  	},
2155  };
2156  
2157  static int __init init_fs_exec_sysctls(void)
2158  {
2159  	register_sysctl_init("fs", fs_exec_sysctls);
2160  	return 0;
2161  }
2162  
2163  fs_initcall(init_fs_exec_sysctls);
2164  #endif /* CONFIG_SYSCTL */
2165  
2166  #ifdef CONFIG_EXEC_KUNIT_TEST
2167  #include "tests/exec_kunit.c"
2168  #endif
2169