xref: /linux/fs/exec.c (revision 40840afa53bed05b990b201d749dfee3bd6e7e42)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
71 
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/tlb.h>
75 
76 #include <trace/events/task.h>
77 #include "internal.h"
78 
79 #include <trace/events/sched.h>
80 
81 static int bprm_creds_from_file(struct linux_binprm *bprm);
82 
83 int suid_dumpable = 0;
84 
85 static LIST_HEAD(formats);
86 static DEFINE_RWLOCK(binfmt_lock);
87 
88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
89 {
90 	write_lock(&binfmt_lock);
91 	insert ? list_add(&fmt->lh, &formats) :
92 		 list_add_tail(&fmt->lh, &formats);
93 	write_unlock(&binfmt_lock);
94 }
95 
96 EXPORT_SYMBOL(__register_binfmt);
97 
98 void unregister_binfmt(struct linux_binfmt * fmt)
99 {
100 	write_lock(&binfmt_lock);
101 	list_del(&fmt->lh);
102 	write_unlock(&binfmt_lock);
103 }
104 
105 EXPORT_SYMBOL(unregister_binfmt);
106 
107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109 	module_put(fmt->module);
110 }
111 
112 bool path_noexec(const struct path *path)
113 {
114 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117 
118 #ifdef CONFIG_MMU
119 /*
120  * The nascent bprm->mm is not visible until exec_mmap() but it can
121  * use a lot of memory, account these pages in current->mm temporary
122  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
123  * change the counter back via acct_arg_size(0).
124  */
125 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
126 {
127 	struct mm_struct *mm = current->mm;
128 	long diff = (long)(pages - bprm->vma_pages);
129 
130 	if (!mm || !diff)
131 		return;
132 
133 	bprm->vma_pages = pages;
134 	add_mm_counter(mm, MM_ANONPAGES, diff);
135 }
136 
137 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
138 		int write)
139 {
140 	struct page *page;
141 	struct vm_area_struct *vma = bprm->vma;
142 	struct mm_struct *mm = bprm->mm;
143 	int ret;
144 
145 	/*
146 	 * Avoid relying on expanding the stack down in GUP (which
147 	 * does not work for STACK_GROWSUP anyway), and just do it
148 	 * ahead of time.
149 	 */
150 	if (!mmap_read_lock_maybe_expand(mm, vma, pos, write))
151 		return NULL;
152 
153 	/*
154 	 * We are doing an exec().  'current' is the process
155 	 * doing the exec and 'mm' is the new process's mm.
156 	 */
157 	ret = get_user_pages_remote(mm, pos, 1,
158 			write ? FOLL_WRITE : 0,
159 			&page, NULL);
160 	mmap_read_unlock(mm);
161 	if (ret <= 0)
162 		return NULL;
163 
164 	if (write)
165 		acct_arg_size(bprm, vma_pages(vma));
166 
167 	return page;
168 }
169 
170 static void put_arg_page(struct page *page)
171 {
172 	put_page(page);
173 }
174 
175 static void free_arg_pages(struct linux_binprm *bprm)
176 {
177 }
178 
179 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
180 		struct page *page)
181 {
182 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
183 }
184 
185 static int __bprm_mm_init(struct linux_binprm *bprm)
186 {
187 	int err;
188 	struct vm_area_struct *vma = NULL;
189 	struct mm_struct *mm = bprm->mm;
190 
191 	bprm->vma = vma = vm_area_alloc(mm);
192 	if (!vma)
193 		return -ENOMEM;
194 	vma_set_anonymous(vma);
195 
196 	if (mmap_write_lock_killable(mm)) {
197 		err = -EINTR;
198 		goto err_free;
199 	}
200 
201 	/*
202 	 * Need to be called with mmap write lock
203 	 * held, to avoid race with ksmd.
204 	 */
205 	err = ksm_execve(mm);
206 	if (err)
207 		goto err_ksm;
208 
209 	/*
210 	 * Place the stack at the largest stack address the architecture
211 	 * supports. Later, we'll move this to an appropriate place. We don't
212 	 * use STACK_TOP because that can depend on attributes which aren't
213 	 * configured yet.
214 	 */
215 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
216 	vma->vm_end = STACK_TOP_MAX;
217 	vma->vm_start = vma->vm_end - PAGE_SIZE;
218 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
219 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
220 
221 	err = insert_vm_struct(mm, vma);
222 	if (err)
223 		goto err;
224 
225 	mm->stack_vm = mm->total_vm = 1;
226 	mmap_write_unlock(mm);
227 	bprm->p = vma->vm_end - sizeof(void *);
228 	return 0;
229 err:
230 	ksm_exit(mm);
231 err_ksm:
232 	mmap_write_unlock(mm);
233 err_free:
234 	bprm->vma = NULL;
235 	vm_area_free(vma);
236 	return err;
237 }
238 
239 static bool valid_arg_len(struct linux_binprm *bprm, long len)
240 {
241 	return len <= MAX_ARG_STRLEN;
242 }
243 
244 #else
245 
246 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
247 {
248 }
249 
250 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
251 		int write)
252 {
253 	struct page *page;
254 
255 	page = bprm->page[pos / PAGE_SIZE];
256 	if (!page && write) {
257 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
258 		if (!page)
259 			return NULL;
260 		bprm->page[pos / PAGE_SIZE] = page;
261 	}
262 
263 	return page;
264 }
265 
266 static void put_arg_page(struct page *page)
267 {
268 }
269 
270 static void free_arg_page(struct linux_binprm *bprm, int i)
271 {
272 	if (bprm->page[i]) {
273 		__free_page(bprm->page[i]);
274 		bprm->page[i] = NULL;
275 	}
276 }
277 
278 static void free_arg_pages(struct linux_binprm *bprm)
279 {
280 	int i;
281 
282 	for (i = 0; i < MAX_ARG_PAGES; i++)
283 		free_arg_page(bprm, i);
284 }
285 
286 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
287 		struct page *page)
288 {
289 }
290 
291 static int __bprm_mm_init(struct linux_binprm *bprm)
292 {
293 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
294 	return 0;
295 }
296 
297 static bool valid_arg_len(struct linux_binprm *bprm, long len)
298 {
299 	return len <= bprm->p;
300 }
301 
302 #endif /* CONFIG_MMU */
303 
304 /*
305  * Create a new mm_struct and populate it with a temporary stack
306  * vm_area_struct.  We don't have enough context at this point to set the stack
307  * flags, permissions, and offset, so we use temporary values.  We'll update
308  * them later in setup_arg_pages().
309  */
310 static int bprm_mm_init(struct linux_binprm *bprm)
311 {
312 	int err;
313 	struct mm_struct *mm = NULL;
314 
315 	bprm->mm = mm = mm_alloc();
316 	err = -ENOMEM;
317 	if (!mm)
318 		goto err;
319 
320 	/* Save current stack limit for all calculations made during exec. */
321 	task_lock(current->group_leader);
322 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
323 	task_unlock(current->group_leader);
324 
325 	err = __bprm_mm_init(bprm);
326 	if (err)
327 		goto err;
328 
329 	return 0;
330 
331 err:
332 	if (mm) {
333 		bprm->mm = NULL;
334 		mmdrop(mm);
335 	}
336 
337 	return err;
338 }
339 
340 struct user_arg_ptr {
341 #ifdef CONFIG_COMPAT
342 	bool is_compat;
343 #endif
344 	union {
345 		const char __user *const __user *native;
346 #ifdef CONFIG_COMPAT
347 		const compat_uptr_t __user *compat;
348 #endif
349 	} ptr;
350 };
351 
352 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
353 {
354 	const char __user *native;
355 
356 #ifdef CONFIG_COMPAT
357 	if (unlikely(argv.is_compat)) {
358 		compat_uptr_t compat;
359 
360 		if (get_user(compat, argv.ptr.compat + nr))
361 			return ERR_PTR(-EFAULT);
362 
363 		return compat_ptr(compat);
364 	}
365 #endif
366 
367 	if (get_user(native, argv.ptr.native + nr))
368 		return ERR_PTR(-EFAULT);
369 
370 	return native;
371 }
372 
373 /*
374  * count() counts the number of strings in array ARGV.
375  */
376 static int count(struct user_arg_ptr argv, int max)
377 {
378 	int i = 0;
379 
380 	if (argv.ptr.native != NULL) {
381 		for (;;) {
382 			const char __user *p = get_user_arg_ptr(argv, i);
383 
384 			if (!p)
385 				break;
386 
387 			if (IS_ERR(p))
388 				return -EFAULT;
389 
390 			if (i >= max)
391 				return -E2BIG;
392 			++i;
393 
394 			if (fatal_signal_pending(current))
395 				return -ERESTARTNOHAND;
396 			cond_resched();
397 		}
398 	}
399 	return i;
400 }
401 
402 static int count_strings_kernel(const char *const *argv)
403 {
404 	int i;
405 
406 	if (!argv)
407 		return 0;
408 
409 	for (i = 0; argv[i]; ++i) {
410 		if (i >= MAX_ARG_STRINGS)
411 			return -E2BIG;
412 		if (fatal_signal_pending(current))
413 			return -ERESTARTNOHAND;
414 		cond_resched();
415 	}
416 	return i;
417 }
418 
419 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
420 				       unsigned long limit)
421 {
422 #ifdef CONFIG_MMU
423 	/* Avoid a pathological bprm->p. */
424 	if (bprm->p < limit)
425 		return -E2BIG;
426 	bprm->argmin = bprm->p - limit;
427 #endif
428 	return 0;
429 }
430 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
431 {
432 #ifdef CONFIG_MMU
433 	return bprm->p < bprm->argmin;
434 #else
435 	return false;
436 #endif
437 }
438 
439 /*
440  * Calculate bprm->argmin from:
441  * - _STK_LIM
442  * - ARG_MAX
443  * - bprm->rlim_stack.rlim_cur
444  * - bprm->argc
445  * - bprm->envc
446  * - bprm->p
447  */
448 static int bprm_stack_limits(struct linux_binprm *bprm)
449 {
450 	unsigned long limit, ptr_size;
451 
452 	/*
453 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
454 	 * (whichever is smaller) for the argv+env strings.
455 	 * This ensures that:
456 	 *  - the remaining binfmt code will not run out of stack space,
457 	 *  - the program will have a reasonable amount of stack left
458 	 *    to work from.
459 	 */
460 	limit = _STK_LIM / 4 * 3;
461 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
462 	/*
463 	 * We've historically supported up to 32 pages (ARG_MAX)
464 	 * of argument strings even with small stacks
465 	 */
466 	limit = max_t(unsigned long, limit, ARG_MAX);
467 	/* Reject totally pathological counts. */
468 	if (bprm->argc < 0 || bprm->envc < 0)
469 		return -E2BIG;
470 	/*
471 	 * We must account for the size of all the argv and envp pointers to
472 	 * the argv and envp strings, since they will also take up space in
473 	 * the stack. They aren't stored until much later when we can't
474 	 * signal to the parent that the child has run out of stack space.
475 	 * Instead, calculate it here so it's possible to fail gracefully.
476 	 *
477 	 * In the case of argc = 0, make sure there is space for adding a
478 	 * empty string (which will bump argc to 1), to ensure confused
479 	 * userspace programs don't start processing from argv[1], thinking
480 	 * argc can never be 0, to keep them from walking envp by accident.
481 	 * See do_execveat_common().
482 	 */
483 	if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
484 	    check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
485 		return -E2BIG;
486 	if (limit <= ptr_size)
487 		return -E2BIG;
488 	limit -= ptr_size;
489 
490 	return bprm_set_stack_limit(bprm, limit);
491 }
492 
493 /*
494  * 'copy_strings()' copies argument/environment strings from the old
495  * processes's memory to the new process's stack.  The call to get_user_pages()
496  * ensures the destination page is created and not swapped out.
497  */
498 static int copy_strings(int argc, struct user_arg_ptr argv,
499 			struct linux_binprm *bprm)
500 {
501 	struct page *kmapped_page = NULL;
502 	char *kaddr = NULL;
503 	unsigned long kpos = 0;
504 	int ret;
505 
506 	while (argc-- > 0) {
507 		const char __user *str;
508 		int len;
509 		unsigned long pos;
510 
511 		ret = -EFAULT;
512 		str = get_user_arg_ptr(argv, argc);
513 		if (IS_ERR(str))
514 			goto out;
515 
516 		len = strnlen_user(str, MAX_ARG_STRLEN);
517 		if (!len)
518 			goto out;
519 
520 		ret = -E2BIG;
521 		if (!valid_arg_len(bprm, len))
522 			goto out;
523 
524 		/* We're going to work our way backwards. */
525 		pos = bprm->p;
526 		str += len;
527 		bprm->p -= len;
528 		if (bprm_hit_stack_limit(bprm))
529 			goto out;
530 
531 		while (len > 0) {
532 			int offset, bytes_to_copy;
533 
534 			if (fatal_signal_pending(current)) {
535 				ret = -ERESTARTNOHAND;
536 				goto out;
537 			}
538 			cond_resched();
539 
540 			offset = pos % PAGE_SIZE;
541 			if (offset == 0)
542 				offset = PAGE_SIZE;
543 
544 			bytes_to_copy = offset;
545 			if (bytes_to_copy > len)
546 				bytes_to_copy = len;
547 
548 			offset -= bytes_to_copy;
549 			pos -= bytes_to_copy;
550 			str -= bytes_to_copy;
551 			len -= bytes_to_copy;
552 
553 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
554 				struct page *page;
555 
556 				page = get_arg_page(bprm, pos, 1);
557 				if (!page) {
558 					ret = -E2BIG;
559 					goto out;
560 				}
561 
562 				if (kmapped_page) {
563 					flush_dcache_page(kmapped_page);
564 					kunmap_local(kaddr);
565 					put_arg_page(kmapped_page);
566 				}
567 				kmapped_page = page;
568 				kaddr = kmap_local_page(kmapped_page);
569 				kpos = pos & PAGE_MASK;
570 				flush_arg_page(bprm, kpos, kmapped_page);
571 			}
572 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
573 				ret = -EFAULT;
574 				goto out;
575 			}
576 		}
577 	}
578 	ret = 0;
579 out:
580 	if (kmapped_page) {
581 		flush_dcache_page(kmapped_page);
582 		kunmap_local(kaddr);
583 		put_arg_page(kmapped_page);
584 	}
585 	return ret;
586 }
587 
588 /*
589  * Copy and argument/environment string from the kernel to the processes stack.
590  */
591 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
592 {
593 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
594 	unsigned long pos = bprm->p;
595 
596 	if (len == 0)
597 		return -EFAULT;
598 	if (!valid_arg_len(bprm, len))
599 		return -E2BIG;
600 
601 	/* We're going to work our way backwards. */
602 	arg += len;
603 	bprm->p -= len;
604 	if (bprm_hit_stack_limit(bprm))
605 		return -E2BIG;
606 
607 	while (len > 0) {
608 		unsigned int bytes_to_copy = min_t(unsigned int, len,
609 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
610 		struct page *page;
611 
612 		pos -= bytes_to_copy;
613 		arg -= bytes_to_copy;
614 		len -= bytes_to_copy;
615 
616 		page = get_arg_page(bprm, pos, 1);
617 		if (!page)
618 			return -E2BIG;
619 		flush_arg_page(bprm, pos & PAGE_MASK, page);
620 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
621 		put_arg_page(page);
622 	}
623 
624 	return 0;
625 }
626 EXPORT_SYMBOL(copy_string_kernel);
627 
628 static int copy_strings_kernel(int argc, const char *const *argv,
629 			       struct linux_binprm *bprm)
630 {
631 	while (argc-- > 0) {
632 		int ret = copy_string_kernel(argv[argc], bprm);
633 		if (ret < 0)
634 			return ret;
635 		if (fatal_signal_pending(current))
636 			return -ERESTARTNOHAND;
637 		cond_resched();
638 	}
639 	return 0;
640 }
641 
642 #ifdef CONFIG_MMU
643 
644 /*
645  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
646  * the stack is optionally relocated, and some extra space is added.
647  */
648 int setup_arg_pages(struct linux_binprm *bprm,
649 		    unsigned long stack_top,
650 		    int executable_stack)
651 {
652 	unsigned long ret;
653 	unsigned long stack_shift;
654 	struct mm_struct *mm = current->mm;
655 	struct vm_area_struct *vma = bprm->vma;
656 	struct vm_area_struct *prev = NULL;
657 	unsigned long vm_flags;
658 	unsigned long stack_base;
659 	unsigned long stack_size;
660 	unsigned long stack_expand;
661 	unsigned long rlim_stack;
662 	struct mmu_gather tlb;
663 	struct vma_iterator vmi;
664 
665 #ifdef CONFIG_STACK_GROWSUP
666 	/* Limit stack size */
667 	stack_base = bprm->rlim_stack.rlim_max;
668 
669 	stack_base = calc_max_stack_size(stack_base);
670 
671 	/* Add space for stack randomization. */
672 	if (current->flags & PF_RANDOMIZE)
673 		stack_base += (STACK_RND_MASK << PAGE_SHIFT);
674 
675 	/* Make sure we didn't let the argument array grow too large. */
676 	if (vma->vm_end - vma->vm_start > stack_base)
677 		return -ENOMEM;
678 
679 	stack_base = PAGE_ALIGN(stack_top - stack_base);
680 
681 	stack_shift = vma->vm_start - stack_base;
682 	mm->arg_start = bprm->p - stack_shift;
683 	bprm->p = vma->vm_end - stack_shift;
684 #else
685 	stack_top = arch_align_stack(stack_top);
686 	stack_top = PAGE_ALIGN(stack_top);
687 
688 	if (unlikely(stack_top < mmap_min_addr) ||
689 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
690 		return -ENOMEM;
691 
692 	stack_shift = vma->vm_end - stack_top;
693 
694 	bprm->p -= stack_shift;
695 	mm->arg_start = bprm->p;
696 #endif
697 
698 	bprm->exec -= stack_shift;
699 
700 	if (mmap_write_lock_killable(mm))
701 		return -EINTR;
702 
703 	vm_flags = VM_STACK_FLAGS;
704 
705 	/*
706 	 * Adjust stack execute permissions; explicitly enable for
707 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
708 	 * (arch default) otherwise.
709 	 */
710 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
711 		vm_flags |= VM_EXEC;
712 	else if (executable_stack == EXSTACK_DISABLE_X)
713 		vm_flags &= ~VM_EXEC;
714 	vm_flags |= mm->def_flags;
715 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
716 
717 	vma_iter_init(&vmi, mm, vma->vm_start);
718 
719 	tlb_gather_mmu(&tlb, mm);
720 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
721 			vm_flags);
722 	tlb_finish_mmu(&tlb);
723 
724 	if (ret)
725 		goto out_unlock;
726 	BUG_ON(prev != vma);
727 
728 	if (unlikely(vm_flags & VM_EXEC)) {
729 		pr_warn_once("process '%pD4' started with executable stack\n",
730 			     bprm->file);
731 	}
732 
733 	/* Move stack pages down in memory. */
734 	if (stack_shift) {
735 		/*
736 		 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
737 		 * the binfmt code determines where the new stack should reside, we shift it to
738 		 * its final location.
739 		 */
740 		ret = relocate_vma_down(vma, stack_shift);
741 		if (ret)
742 			goto out_unlock;
743 	}
744 
745 	/* mprotect_fixup is overkill to remove the temporary stack flags */
746 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
747 
748 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
749 	stack_size = vma->vm_end - vma->vm_start;
750 	/*
751 	 * Align this down to a page boundary as expand_stack
752 	 * will align it up.
753 	 */
754 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
755 
756 	stack_expand = min(rlim_stack, stack_size + stack_expand);
757 
758 #ifdef CONFIG_STACK_GROWSUP
759 	stack_base = vma->vm_start + stack_expand;
760 #else
761 	stack_base = vma->vm_end - stack_expand;
762 #endif
763 	current->mm->start_stack = bprm->p;
764 	ret = expand_stack_locked(vma, stack_base);
765 	if (ret)
766 		ret = -EFAULT;
767 
768 out_unlock:
769 	mmap_write_unlock(mm);
770 	return ret;
771 }
772 EXPORT_SYMBOL(setup_arg_pages);
773 
774 #else
775 
776 /*
777  * Transfer the program arguments and environment from the holding pages
778  * onto the stack. The provided stack pointer is adjusted accordingly.
779  */
780 int transfer_args_to_stack(struct linux_binprm *bprm,
781 			   unsigned long *sp_location)
782 {
783 	unsigned long index, stop, sp;
784 	int ret = 0;
785 
786 	stop = bprm->p >> PAGE_SHIFT;
787 	sp = *sp_location;
788 
789 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
790 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
791 		char *src = kmap_local_page(bprm->page[index]) + offset;
792 		sp -= PAGE_SIZE - offset;
793 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
794 			ret = -EFAULT;
795 		kunmap_local(src);
796 		if (ret)
797 			goto out;
798 	}
799 
800 	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
801 	*sp_location = sp;
802 
803 out:
804 	return ret;
805 }
806 EXPORT_SYMBOL(transfer_args_to_stack);
807 
808 #endif /* CONFIG_MMU */
809 
810 /*
811  * On success, caller must call do_close_execat() on the returned
812  * struct file to close it.
813  */
814 static struct file *do_open_execat(int fd, struct filename *name, int flags)
815 {
816 	int err;
817 	struct file *file __free(fput) = NULL;
818 	struct open_flags open_exec_flags = {
819 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
820 		.acc_mode = MAY_EXEC,
821 		.intent = LOOKUP_OPEN,
822 		.lookup_flags = LOOKUP_FOLLOW,
823 	};
824 
825 	if ((flags &
826 	     ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH | AT_EXECVE_CHECK)) != 0)
827 		return ERR_PTR(-EINVAL);
828 	if (flags & AT_SYMLINK_NOFOLLOW)
829 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
830 	if (flags & AT_EMPTY_PATH)
831 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
832 
833 	file = do_filp_open(fd, name, &open_exec_flags);
834 	if (IS_ERR(file))
835 		return file;
836 
837 	/*
838 	 * In the past the regular type check was here. It moved to may_open() in
839 	 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
840 	 * an invariant that all non-regular files error out before we get here.
841 	 */
842 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
843 	    path_noexec(&file->f_path))
844 		return ERR_PTR(-EACCES);
845 
846 	err = exe_file_deny_write_access(file);
847 	if (err)
848 		return ERR_PTR(err);
849 
850 	return no_free_ptr(file);
851 }
852 
853 /**
854  * open_exec - Open a path name for execution
855  *
856  * @name: path name to open with the intent of executing it.
857  *
858  * Returns ERR_PTR on failure or allocated struct file on success.
859  *
860  * As this is a wrapper for the internal do_open_execat(), callers
861  * must call exe_file_allow_write_access() before fput() on release. Also see
862  * do_close_execat().
863  */
864 struct file *open_exec(const char *name)
865 {
866 	struct filename *filename = getname_kernel(name);
867 	struct file *f = ERR_CAST(filename);
868 
869 	if (!IS_ERR(filename)) {
870 		f = do_open_execat(AT_FDCWD, filename, 0);
871 		putname(filename);
872 	}
873 	return f;
874 }
875 EXPORT_SYMBOL(open_exec);
876 
877 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
878 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
879 {
880 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
881 	if (res > 0)
882 		flush_icache_user_range(addr, addr + len);
883 	return res;
884 }
885 EXPORT_SYMBOL(read_code);
886 #endif
887 
888 /*
889  * Maps the mm_struct mm into the current task struct.
890  * On success, this function returns with exec_update_lock
891  * held for writing.
892  */
893 static int exec_mmap(struct mm_struct *mm)
894 {
895 	struct task_struct *tsk;
896 	struct mm_struct *old_mm, *active_mm;
897 	int ret;
898 
899 	/* Notify parent that we're no longer interested in the old VM */
900 	tsk = current;
901 	old_mm = current->mm;
902 	exec_mm_release(tsk, old_mm);
903 
904 	ret = down_write_killable(&tsk->signal->exec_update_lock);
905 	if (ret)
906 		return ret;
907 
908 	if (old_mm) {
909 		/*
910 		 * If there is a pending fatal signal perhaps a signal
911 		 * whose default action is to create a coredump get
912 		 * out and die instead of going through with the exec.
913 		 */
914 		ret = mmap_read_lock_killable(old_mm);
915 		if (ret) {
916 			up_write(&tsk->signal->exec_update_lock);
917 			return ret;
918 		}
919 	}
920 
921 	task_lock(tsk);
922 	membarrier_exec_mmap(mm);
923 
924 	local_irq_disable();
925 	active_mm = tsk->active_mm;
926 	tsk->active_mm = mm;
927 	tsk->mm = mm;
928 	mm_init_cid(mm, tsk);
929 	/*
930 	 * This prevents preemption while active_mm is being loaded and
931 	 * it and mm are being updated, which could cause problems for
932 	 * lazy tlb mm refcounting when these are updated by context
933 	 * switches. Not all architectures can handle irqs off over
934 	 * activate_mm yet.
935 	 */
936 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
937 		local_irq_enable();
938 	activate_mm(active_mm, mm);
939 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
940 		local_irq_enable();
941 	lru_gen_add_mm(mm);
942 	task_unlock(tsk);
943 	lru_gen_use_mm(mm);
944 	if (old_mm) {
945 		mmap_read_unlock(old_mm);
946 		BUG_ON(active_mm != old_mm);
947 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
948 		mm_update_next_owner(old_mm);
949 		mmput(old_mm);
950 		return 0;
951 	}
952 	mmdrop_lazy_tlb(active_mm);
953 	return 0;
954 }
955 
956 static int de_thread(struct task_struct *tsk)
957 {
958 	struct signal_struct *sig = tsk->signal;
959 	struct sighand_struct *oldsighand = tsk->sighand;
960 	spinlock_t *lock = &oldsighand->siglock;
961 
962 	if (thread_group_empty(tsk))
963 		goto no_thread_group;
964 
965 	/*
966 	 * Kill all other threads in the thread group.
967 	 */
968 	spin_lock_irq(lock);
969 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
970 		/*
971 		 * Another group action in progress, just
972 		 * return so that the signal is processed.
973 		 */
974 		spin_unlock_irq(lock);
975 		return -EAGAIN;
976 	}
977 
978 	sig->group_exec_task = tsk;
979 	sig->notify_count = zap_other_threads(tsk);
980 	if (!thread_group_leader(tsk))
981 		sig->notify_count--;
982 
983 	while (sig->notify_count) {
984 		__set_current_state(TASK_KILLABLE);
985 		spin_unlock_irq(lock);
986 		schedule();
987 		if (__fatal_signal_pending(tsk))
988 			goto killed;
989 		spin_lock_irq(lock);
990 	}
991 	spin_unlock_irq(lock);
992 
993 	/*
994 	 * At this point all other threads have exited, all we have to
995 	 * do is to wait for the thread group leader to become inactive,
996 	 * and to assume its PID:
997 	 */
998 	if (!thread_group_leader(tsk)) {
999 		struct task_struct *leader = tsk->group_leader;
1000 
1001 		for (;;) {
1002 			cgroup_threadgroup_change_begin(tsk);
1003 			write_lock_irq(&tasklist_lock);
1004 			/*
1005 			 * Do this under tasklist_lock to ensure that
1006 			 * exit_notify() can't miss ->group_exec_task
1007 			 */
1008 			sig->notify_count = -1;
1009 			if (likely(leader->exit_state))
1010 				break;
1011 			__set_current_state(TASK_KILLABLE);
1012 			write_unlock_irq(&tasklist_lock);
1013 			cgroup_threadgroup_change_end(tsk);
1014 			schedule();
1015 			if (__fatal_signal_pending(tsk))
1016 				goto killed;
1017 		}
1018 
1019 		/*
1020 		 * The only record we have of the real-time age of a
1021 		 * process, regardless of execs it's done, is start_time.
1022 		 * All the past CPU time is accumulated in signal_struct
1023 		 * from sister threads now dead.  But in this non-leader
1024 		 * exec, nothing survives from the original leader thread,
1025 		 * whose birth marks the true age of this process now.
1026 		 * When we take on its identity by switching to its PID, we
1027 		 * also take its birthdate (always earlier than our own).
1028 		 */
1029 		tsk->start_time = leader->start_time;
1030 		tsk->start_boottime = leader->start_boottime;
1031 
1032 		BUG_ON(!same_thread_group(leader, tsk));
1033 		/*
1034 		 * An exec() starts a new thread group with the
1035 		 * TGID of the previous thread group. Rehash the
1036 		 * two threads with a switched PID, and release
1037 		 * the former thread group leader:
1038 		 */
1039 
1040 		/* Become a process group leader with the old leader's pid.
1041 		 * The old leader becomes a thread of the this thread group.
1042 		 */
1043 		exchange_tids(tsk, leader);
1044 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1045 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1046 		transfer_pid(leader, tsk, PIDTYPE_SID);
1047 
1048 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1049 		list_replace_init(&leader->sibling, &tsk->sibling);
1050 
1051 		tsk->group_leader = tsk;
1052 		leader->group_leader = tsk;
1053 
1054 		tsk->exit_signal = SIGCHLD;
1055 		leader->exit_signal = -1;
1056 
1057 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1058 		leader->exit_state = EXIT_DEAD;
1059 		/*
1060 		 * We are going to release_task()->ptrace_unlink() silently,
1061 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1062 		 * the tracer won't block again waiting for this thread.
1063 		 */
1064 		if (unlikely(leader->ptrace))
1065 			__wake_up_parent(leader, leader->parent);
1066 		write_unlock_irq(&tasklist_lock);
1067 		cgroup_threadgroup_change_end(tsk);
1068 
1069 		release_task(leader);
1070 	}
1071 
1072 	sig->group_exec_task = NULL;
1073 	sig->notify_count = 0;
1074 
1075 no_thread_group:
1076 	/* we have changed execution domain */
1077 	tsk->exit_signal = SIGCHLD;
1078 
1079 	BUG_ON(!thread_group_leader(tsk));
1080 	return 0;
1081 
1082 killed:
1083 	/* protects against exit_notify() and __exit_signal() */
1084 	read_lock(&tasklist_lock);
1085 	sig->group_exec_task = NULL;
1086 	sig->notify_count = 0;
1087 	read_unlock(&tasklist_lock);
1088 	return -EAGAIN;
1089 }
1090 
1091 
1092 /*
1093  * This function makes sure the current process has its own signal table,
1094  * so that flush_signal_handlers can later reset the handlers without
1095  * disturbing other processes.  (Other processes might share the signal
1096  * table via the CLONE_SIGHAND option to clone().)
1097  */
1098 static int unshare_sighand(struct task_struct *me)
1099 {
1100 	struct sighand_struct *oldsighand = me->sighand;
1101 
1102 	if (refcount_read(&oldsighand->count) != 1) {
1103 		struct sighand_struct *newsighand;
1104 		/*
1105 		 * This ->sighand is shared with the CLONE_SIGHAND
1106 		 * but not CLONE_THREAD task, switch to the new one.
1107 		 */
1108 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1109 		if (!newsighand)
1110 			return -ENOMEM;
1111 
1112 		refcount_set(&newsighand->count, 1);
1113 
1114 		write_lock_irq(&tasklist_lock);
1115 		spin_lock(&oldsighand->siglock);
1116 		memcpy(newsighand->action, oldsighand->action,
1117 		       sizeof(newsighand->action));
1118 		rcu_assign_pointer(me->sighand, newsighand);
1119 		spin_unlock(&oldsighand->siglock);
1120 		write_unlock_irq(&tasklist_lock);
1121 
1122 		__cleanup_sighand(oldsighand);
1123 	}
1124 	return 0;
1125 }
1126 
1127 /*
1128  * This is unlocked -- the string will always be NUL-terminated, but
1129  * may show overlapping contents if racing concurrent reads.
1130  */
1131 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1132 {
1133 	size_t len = min(strlen(buf), sizeof(tsk->comm) - 1);
1134 
1135 	trace_task_rename(tsk, buf);
1136 	memcpy(tsk->comm, buf, len);
1137 	memset(&tsk->comm[len], 0, sizeof(tsk->comm) - len);
1138 	perf_event_comm(tsk, exec);
1139 }
1140 
1141 /*
1142  * Calling this is the point of no return. None of the failures will be
1143  * seen by userspace since either the process is already taking a fatal
1144  * signal (via de_thread() or coredump), or will have SEGV raised
1145  * (after exec_mmap()) by search_binary_handler (see below).
1146  */
1147 int begin_new_exec(struct linux_binprm * bprm)
1148 {
1149 	struct task_struct *me = current;
1150 	int retval;
1151 
1152 	/* Once we are committed compute the creds */
1153 	retval = bprm_creds_from_file(bprm);
1154 	if (retval)
1155 		return retval;
1156 
1157 	/*
1158 	 * This tracepoint marks the point before flushing the old exec where
1159 	 * the current task is still unchanged, but errors are fatal (point of
1160 	 * no return). The later "sched_process_exec" tracepoint is called after
1161 	 * the current task has successfully switched to the new exec.
1162 	 */
1163 	trace_sched_prepare_exec(current, bprm);
1164 
1165 	/*
1166 	 * Ensure all future errors are fatal.
1167 	 */
1168 	bprm->point_of_no_return = true;
1169 
1170 	/* Make this the only thread in the thread group */
1171 	retval = de_thread(me);
1172 	if (retval)
1173 		goto out;
1174 	/* see the comment in check_unsafe_exec() */
1175 	current->fs->in_exec = 0;
1176 	/*
1177 	 * Cancel any io_uring activity across execve
1178 	 */
1179 	io_uring_task_cancel();
1180 
1181 	/* Ensure the files table is not shared. */
1182 	retval = unshare_files();
1183 	if (retval)
1184 		goto out;
1185 
1186 	/*
1187 	 * Must be called _before_ exec_mmap() as bprm->mm is
1188 	 * not visible until then. Doing it here also ensures
1189 	 * we don't race against replace_mm_exe_file().
1190 	 */
1191 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1192 	if (retval)
1193 		goto out;
1194 
1195 	/* If the binary is not readable then enforce mm->dumpable=0 */
1196 	would_dump(bprm, bprm->file);
1197 	if (bprm->have_execfd)
1198 		would_dump(bprm, bprm->executable);
1199 
1200 	/*
1201 	 * Release all of the old mmap stuff
1202 	 */
1203 	acct_arg_size(bprm, 0);
1204 	retval = exec_mmap(bprm->mm);
1205 	if (retval)
1206 		goto out;
1207 
1208 	bprm->mm = NULL;
1209 
1210 	retval = exec_task_namespaces();
1211 	if (retval)
1212 		goto out_unlock;
1213 
1214 #ifdef CONFIG_POSIX_TIMERS
1215 	spin_lock_irq(&me->sighand->siglock);
1216 	posix_cpu_timers_exit(me);
1217 	spin_unlock_irq(&me->sighand->siglock);
1218 	exit_itimers(me);
1219 	flush_itimer_signals();
1220 #endif
1221 
1222 	/*
1223 	 * Make the signal table private.
1224 	 */
1225 	retval = unshare_sighand(me);
1226 	if (retval)
1227 		goto out_unlock;
1228 
1229 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1230 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1231 	flush_thread();
1232 	me->personality &= ~bprm->per_clear;
1233 
1234 	clear_syscall_work_syscall_user_dispatch(me);
1235 
1236 	/*
1237 	 * We have to apply CLOEXEC before we change whether the process is
1238 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1239 	 * trying to access the should-be-closed file descriptors of a process
1240 	 * undergoing exec(2).
1241 	 */
1242 	do_close_on_exec(me->files);
1243 
1244 	if (bprm->secureexec) {
1245 		/* Make sure parent cannot signal privileged process. */
1246 		me->pdeath_signal = 0;
1247 
1248 		/*
1249 		 * For secureexec, reset the stack limit to sane default to
1250 		 * avoid bad behavior from the prior rlimits. This has to
1251 		 * happen before arch_pick_mmap_layout(), which examines
1252 		 * RLIMIT_STACK, but after the point of no return to avoid
1253 		 * needing to clean up the change on failure.
1254 		 */
1255 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1256 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1257 	}
1258 
1259 	me->sas_ss_sp = me->sas_ss_size = 0;
1260 
1261 	/*
1262 	 * Figure out dumpability. Note that this checking only of current
1263 	 * is wrong, but userspace depends on it. This should be testing
1264 	 * bprm->secureexec instead.
1265 	 */
1266 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1267 	    !(uid_eq(current_euid(), current_uid()) &&
1268 	      gid_eq(current_egid(), current_gid())))
1269 		set_dumpable(current->mm, suid_dumpable);
1270 	else
1271 		set_dumpable(current->mm, SUID_DUMP_USER);
1272 
1273 	perf_event_exec();
1274 
1275 	/*
1276 	 * If the original filename was empty, alloc_bprm() made up a path
1277 	 * that will probably not be useful to admins running ps or similar.
1278 	 * Let's fix it up to be something reasonable.
1279 	 */
1280 	if (bprm->comm_from_dentry) {
1281 		/*
1282 		 * Hold RCU lock to keep the name from being freed behind our back.
1283 		 * Use acquire semantics to make sure the terminating NUL from
1284 		 * __d_alloc() is seen.
1285 		 *
1286 		 * Note, we're deliberately sloppy here. We don't need to care about
1287 		 * detecting a concurrent rename and just want a terminated name.
1288 		 */
1289 		rcu_read_lock();
1290 		__set_task_comm(me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name),
1291 				true);
1292 		rcu_read_unlock();
1293 	} else {
1294 		__set_task_comm(me, kbasename(bprm->filename), true);
1295 	}
1296 
1297 	/* An exec changes our domain. We are no longer part of the thread
1298 	   group */
1299 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1300 	flush_signal_handlers(me, 0);
1301 
1302 	retval = set_cred_ucounts(bprm->cred);
1303 	if (retval < 0)
1304 		goto out_unlock;
1305 
1306 	/*
1307 	 * install the new credentials for this executable
1308 	 */
1309 	security_bprm_committing_creds(bprm);
1310 
1311 	commit_creds(bprm->cred);
1312 	bprm->cred = NULL;
1313 
1314 	/*
1315 	 * Disable monitoring for regular users
1316 	 * when executing setuid binaries. Must
1317 	 * wait until new credentials are committed
1318 	 * by commit_creds() above
1319 	 */
1320 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1321 		perf_event_exit_task(me);
1322 	/*
1323 	 * cred_guard_mutex must be held at least to this point to prevent
1324 	 * ptrace_attach() from altering our determination of the task's
1325 	 * credentials; any time after this it may be unlocked.
1326 	 */
1327 	security_bprm_committed_creds(bprm);
1328 
1329 	/* Pass the opened binary to the interpreter. */
1330 	if (bprm->have_execfd) {
1331 		retval = get_unused_fd_flags(0);
1332 		if (retval < 0)
1333 			goto out_unlock;
1334 		fd_install(retval, bprm->executable);
1335 		bprm->executable = NULL;
1336 		bprm->execfd = retval;
1337 	}
1338 	return 0;
1339 
1340 out_unlock:
1341 	up_write(&me->signal->exec_update_lock);
1342 	if (!bprm->cred)
1343 		mutex_unlock(&me->signal->cred_guard_mutex);
1344 
1345 out:
1346 	return retval;
1347 }
1348 EXPORT_SYMBOL(begin_new_exec);
1349 
1350 void would_dump(struct linux_binprm *bprm, struct file *file)
1351 {
1352 	struct inode *inode = file_inode(file);
1353 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1354 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1355 		struct user_namespace *old, *user_ns;
1356 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1357 
1358 		/* Ensure mm->user_ns contains the executable */
1359 		user_ns = old = bprm->mm->user_ns;
1360 		while ((user_ns != &init_user_ns) &&
1361 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1362 			user_ns = user_ns->parent;
1363 
1364 		if (old != user_ns) {
1365 			bprm->mm->user_ns = get_user_ns(user_ns);
1366 			put_user_ns(old);
1367 		}
1368 	}
1369 }
1370 EXPORT_SYMBOL(would_dump);
1371 
1372 void setup_new_exec(struct linux_binprm * bprm)
1373 {
1374 	/* Setup things that can depend upon the personality */
1375 	struct task_struct *me = current;
1376 
1377 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1378 
1379 	arch_setup_new_exec();
1380 
1381 	/* Set the new mm task size. We have to do that late because it may
1382 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1383 	 * some architectures like powerpc
1384 	 */
1385 	me->mm->task_size = TASK_SIZE;
1386 	up_write(&me->signal->exec_update_lock);
1387 	mutex_unlock(&me->signal->cred_guard_mutex);
1388 }
1389 EXPORT_SYMBOL(setup_new_exec);
1390 
1391 /* Runs immediately before start_thread() takes over. */
1392 void finalize_exec(struct linux_binprm *bprm)
1393 {
1394 	/* Store any stack rlimit changes before starting thread. */
1395 	task_lock(current->group_leader);
1396 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1397 	task_unlock(current->group_leader);
1398 }
1399 EXPORT_SYMBOL(finalize_exec);
1400 
1401 /*
1402  * Prepare credentials and lock ->cred_guard_mutex.
1403  * setup_new_exec() commits the new creds and drops the lock.
1404  * Or, if exec fails before, free_bprm() should release ->cred
1405  * and unlock.
1406  */
1407 static int prepare_bprm_creds(struct linux_binprm *bprm)
1408 {
1409 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1410 		return -ERESTARTNOINTR;
1411 
1412 	bprm->cred = prepare_exec_creds();
1413 	if (likely(bprm->cred))
1414 		return 0;
1415 
1416 	mutex_unlock(&current->signal->cred_guard_mutex);
1417 	return -ENOMEM;
1418 }
1419 
1420 /* Matches do_open_execat() */
1421 static void do_close_execat(struct file *file)
1422 {
1423 	if (!file)
1424 		return;
1425 	exe_file_allow_write_access(file);
1426 	fput(file);
1427 }
1428 
1429 static void free_bprm(struct linux_binprm *bprm)
1430 {
1431 	if (bprm->mm) {
1432 		acct_arg_size(bprm, 0);
1433 		mmput(bprm->mm);
1434 	}
1435 	free_arg_pages(bprm);
1436 	if (bprm->cred) {
1437 		/* in case exec fails before de_thread() succeeds */
1438 		current->fs->in_exec = 0;
1439 		mutex_unlock(&current->signal->cred_guard_mutex);
1440 		abort_creds(bprm->cred);
1441 	}
1442 	do_close_execat(bprm->file);
1443 	if (bprm->executable)
1444 		fput(bprm->executable);
1445 	/* If a binfmt changed the interp, free it. */
1446 	if (bprm->interp != bprm->filename)
1447 		kfree(bprm->interp);
1448 	kfree(bprm->fdpath);
1449 	kfree(bprm);
1450 }
1451 
1452 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1453 {
1454 	struct linux_binprm *bprm;
1455 	struct file *file;
1456 	int retval = -ENOMEM;
1457 
1458 	file = do_open_execat(fd, filename, flags);
1459 	if (IS_ERR(file))
1460 		return ERR_CAST(file);
1461 
1462 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1463 	if (!bprm) {
1464 		do_close_execat(file);
1465 		return ERR_PTR(-ENOMEM);
1466 	}
1467 
1468 	bprm->file = file;
1469 
1470 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1471 		bprm->filename = filename->name;
1472 	} else {
1473 		if (filename->name[0] == '\0') {
1474 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1475 			bprm->comm_from_dentry = 1;
1476 		} else {
1477 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1478 						  fd, filename->name);
1479 		}
1480 		if (!bprm->fdpath)
1481 			goto out_free;
1482 
1483 		/*
1484 		 * Record that a name derived from an O_CLOEXEC fd will be
1485 		 * inaccessible after exec.  This allows the code in exec to
1486 		 * choose to fail when the executable is not mmaped into the
1487 		 * interpreter and an open file descriptor is not passed to
1488 		 * the interpreter.  This makes for a better user experience
1489 		 * than having the interpreter start and then immediately fail
1490 		 * when it finds the executable is inaccessible.
1491 		 */
1492 		if (get_close_on_exec(fd))
1493 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1494 
1495 		bprm->filename = bprm->fdpath;
1496 	}
1497 	bprm->interp = bprm->filename;
1498 
1499 	/*
1500 	 * At this point, security_file_open() has already been called (with
1501 	 * __FMODE_EXEC) and access control checks for AT_EXECVE_CHECK will
1502 	 * stop just after the security_bprm_creds_for_exec() call in
1503 	 * bprm_execve().  Indeed, the kernel should not try to parse the
1504 	 * content of the file with exec_binprm() nor change the calling
1505 	 * thread, which means that the following security functions will not
1506 	 * be called:
1507 	 * - security_bprm_check()
1508 	 * - security_bprm_creds_from_file()
1509 	 * - security_bprm_committing_creds()
1510 	 * - security_bprm_committed_creds()
1511 	 */
1512 	bprm->is_check = !!(flags & AT_EXECVE_CHECK);
1513 
1514 	retval = bprm_mm_init(bprm);
1515 	if (!retval)
1516 		return bprm;
1517 
1518 out_free:
1519 	free_bprm(bprm);
1520 	return ERR_PTR(retval);
1521 }
1522 
1523 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1524 {
1525 	/* If a binfmt changed the interp, free it first. */
1526 	if (bprm->interp != bprm->filename)
1527 		kfree(bprm->interp);
1528 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1529 	if (!bprm->interp)
1530 		return -ENOMEM;
1531 	return 0;
1532 }
1533 EXPORT_SYMBOL(bprm_change_interp);
1534 
1535 /*
1536  * determine how safe it is to execute the proposed program
1537  * - the caller must hold ->cred_guard_mutex to protect against
1538  *   PTRACE_ATTACH or seccomp thread-sync
1539  */
1540 static void check_unsafe_exec(struct linux_binprm *bprm)
1541 {
1542 	struct task_struct *p = current, *t;
1543 	unsigned n_fs;
1544 
1545 	if (p->ptrace)
1546 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1547 
1548 	/*
1549 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1550 	 * mess up.
1551 	 */
1552 	if (task_no_new_privs(current))
1553 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1554 
1555 	/*
1556 	 * If another task is sharing our fs, we cannot safely
1557 	 * suid exec because the differently privileged task
1558 	 * will be able to manipulate the current directory, etc.
1559 	 * It would be nice to force an unshare instead...
1560 	 *
1561 	 * Otherwise we set fs->in_exec = 1 to deny clone(CLONE_FS)
1562 	 * from another sub-thread until de_thread() succeeds, this
1563 	 * state is protected by cred_guard_mutex we hold.
1564 	 */
1565 	n_fs = 1;
1566 	spin_lock(&p->fs->lock);
1567 	rcu_read_lock();
1568 	for_other_threads(p, t) {
1569 		if (t->fs == p->fs)
1570 			n_fs++;
1571 	}
1572 	rcu_read_unlock();
1573 
1574 	/* "users" and "in_exec" locked for copy_fs() */
1575 	if (p->fs->users > n_fs)
1576 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1577 	else
1578 		p->fs->in_exec = 1;
1579 	spin_unlock(&p->fs->lock);
1580 }
1581 
1582 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1583 {
1584 	/* Handle suid and sgid on files */
1585 	struct mnt_idmap *idmap;
1586 	struct inode *inode = file_inode(file);
1587 	unsigned int mode;
1588 	vfsuid_t vfsuid;
1589 	vfsgid_t vfsgid;
1590 	int err;
1591 
1592 	if (!mnt_may_suid(file->f_path.mnt))
1593 		return;
1594 
1595 	if (task_no_new_privs(current))
1596 		return;
1597 
1598 	mode = READ_ONCE(inode->i_mode);
1599 	if (!(mode & (S_ISUID|S_ISGID)))
1600 		return;
1601 
1602 	idmap = file_mnt_idmap(file);
1603 
1604 	/* Be careful if suid/sgid is set */
1605 	inode_lock(inode);
1606 
1607 	/* Atomically reload and check mode/uid/gid now that lock held. */
1608 	mode = inode->i_mode;
1609 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1610 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1611 	err = inode_permission(idmap, inode, MAY_EXEC);
1612 	inode_unlock(inode);
1613 
1614 	/* Did the exec bit vanish out from under us? Give up. */
1615 	if (err)
1616 		return;
1617 
1618 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1619 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1620 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1621 		return;
1622 
1623 	if (mode & S_ISUID) {
1624 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1625 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1626 	}
1627 
1628 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1629 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1630 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1631 	}
1632 }
1633 
1634 /*
1635  * Compute brpm->cred based upon the final binary.
1636  */
1637 static int bprm_creds_from_file(struct linux_binprm *bprm)
1638 {
1639 	/* Compute creds based on which file? */
1640 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1641 
1642 	bprm_fill_uid(bprm, file);
1643 	return security_bprm_creds_from_file(bprm, file);
1644 }
1645 
1646 /*
1647  * Fill the binprm structure from the inode.
1648  * Read the first BINPRM_BUF_SIZE bytes
1649  *
1650  * This may be called multiple times for binary chains (scripts for example).
1651  */
1652 static int prepare_binprm(struct linux_binprm *bprm)
1653 {
1654 	loff_t pos = 0;
1655 
1656 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1657 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1658 }
1659 
1660 /*
1661  * Arguments are '\0' separated strings found at the location bprm->p
1662  * points to; chop off the first by relocating brpm->p to right after
1663  * the first '\0' encountered.
1664  */
1665 int remove_arg_zero(struct linux_binprm *bprm)
1666 {
1667 	unsigned long offset;
1668 	char *kaddr;
1669 	struct page *page;
1670 
1671 	if (!bprm->argc)
1672 		return 0;
1673 
1674 	do {
1675 		offset = bprm->p & ~PAGE_MASK;
1676 		page = get_arg_page(bprm, bprm->p, 0);
1677 		if (!page)
1678 			return -EFAULT;
1679 		kaddr = kmap_local_page(page);
1680 
1681 		for (; offset < PAGE_SIZE && kaddr[offset];
1682 				offset++, bprm->p++)
1683 			;
1684 
1685 		kunmap_local(kaddr);
1686 		put_arg_page(page);
1687 	} while (offset == PAGE_SIZE);
1688 
1689 	bprm->p++;
1690 	bprm->argc--;
1691 
1692 	return 0;
1693 }
1694 EXPORT_SYMBOL(remove_arg_zero);
1695 
1696 /*
1697  * cycle the list of binary formats handler, until one recognizes the image
1698  */
1699 static int search_binary_handler(struct linux_binprm *bprm)
1700 {
1701 	struct linux_binfmt *fmt;
1702 	int retval;
1703 
1704 	retval = prepare_binprm(bprm);
1705 	if (retval < 0)
1706 		return retval;
1707 
1708 	retval = security_bprm_check(bprm);
1709 	if (retval)
1710 		return retval;
1711 
1712 	read_lock(&binfmt_lock);
1713 	list_for_each_entry(fmt, &formats, lh) {
1714 		if (!try_module_get(fmt->module))
1715 			continue;
1716 		read_unlock(&binfmt_lock);
1717 
1718 		retval = fmt->load_binary(bprm);
1719 
1720 		read_lock(&binfmt_lock);
1721 		put_binfmt(fmt);
1722 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1723 			read_unlock(&binfmt_lock);
1724 			return retval;
1725 		}
1726 	}
1727 	read_unlock(&binfmt_lock);
1728 
1729 	return -ENOEXEC;
1730 }
1731 
1732 /* binfmt handlers will call back into begin_new_exec() on success. */
1733 static int exec_binprm(struct linux_binprm *bprm)
1734 {
1735 	pid_t old_pid, old_vpid;
1736 	int ret, depth;
1737 
1738 	/* Need to fetch pid before load_binary changes it */
1739 	old_pid = current->pid;
1740 	rcu_read_lock();
1741 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1742 	rcu_read_unlock();
1743 
1744 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1745 	for (depth = 0;; depth++) {
1746 		struct file *exec;
1747 		if (depth > 5)
1748 			return -ELOOP;
1749 
1750 		ret = search_binary_handler(bprm);
1751 		if (ret < 0)
1752 			return ret;
1753 		if (!bprm->interpreter)
1754 			break;
1755 
1756 		exec = bprm->file;
1757 		bprm->file = bprm->interpreter;
1758 		bprm->interpreter = NULL;
1759 
1760 		exe_file_allow_write_access(exec);
1761 		if (unlikely(bprm->have_execfd)) {
1762 			if (bprm->executable) {
1763 				fput(exec);
1764 				return -ENOEXEC;
1765 			}
1766 			bprm->executable = exec;
1767 		} else
1768 			fput(exec);
1769 	}
1770 
1771 	audit_bprm(bprm);
1772 	trace_sched_process_exec(current, old_pid, bprm);
1773 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1774 	proc_exec_connector(current);
1775 	return 0;
1776 }
1777 
1778 static int bprm_execve(struct linux_binprm *bprm)
1779 {
1780 	int retval;
1781 
1782 	retval = prepare_bprm_creds(bprm);
1783 	if (retval)
1784 		return retval;
1785 
1786 	/*
1787 	 * Check for unsafe execution states before exec_binprm(), which
1788 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1789 	 * where setuid-ness is evaluated.
1790 	 */
1791 	check_unsafe_exec(bprm);
1792 	current->in_execve = 1;
1793 	sched_mm_cid_before_execve(current);
1794 
1795 	sched_exec();
1796 
1797 	/* Set the unchanging part of bprm->cred */
1798 	retval = security_bprm_creds_for_exec(bprm);
1799 	if (retval || bprm->is_check)
1800 		goto out;
1801 
1802 	retval = exec_binprm(bprm);
1803 	if (retval < 0)
1804 		goto out;
1805 
1806 	sched_mm_cid_after_execve(current);
1807 	rseq_execve(current);
1808 	/* execve succeeded */
1809 	current->in_execve = 0;
1810 	user_events_execve(current);
1811 	acct_update_integrals(current);
1812 	task_numa_free(current, false);
1813 	return retval;
1814 
1815 out:
1816 	/*
1817 	 * If past the point of no return ensure the code never
1818 	 * returns to the userspace process.  Use an existing fatal
1819 	 * signal if present otherwise terminate the process with
1820 	 * SIGSEGV.
1821 	 */
1822 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1823 		force_fatal_sig(SIGSEGV);
1824 
1825 	sched_mm_cid_after_execve(current);
1826 	rseq_set_notify_resume(current);
1827 	current->in_execve = 0;
1828 
1829 	return retval;
1830 }
1831 
1832 static int do_execveat_common(int fd, struct filename *filename,
1833 			      struct user_arg_ptr argv,
1834 			      struct user_arg_ptr envp,
1835 			      int flags)
1836 {
1837 	struct linux_binprm *bprm;
1838 	int retval;
1839 
1840 	if (IS_ERR(filename))
1841 		return PTR_ERR(filename);
1842 
1843 	/*
1844 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1845 	 * set*uid() to execve() because too many poorly written programs
1846 	 * don't check setuid() return code.  Here we additionally recheck
1847 	 * whether NPROC limit is still exceeded.
1848 	 */
1849 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1850 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1851 		retval = -EAGAIN;
1852 		goto out_ret;
1853 	}
1854 
1855 	/* We're below the limit (still or again), so we don't want to make
1856 	 * further execve() calls fail. */
1857 	current->flags &= ~PF_NPROC_EXCEEDED;
1858 
1859 	bprm = alloc_bprm(fd, filename, flags);
1860 	if (IS_ERR(bprm)) {
1861 		retval = PTR_ERR(bprm);
1862 		goto out_ret;
1863 	}
1864 
1865 	retval = count(argv, MAX_ARG_STRINGS);
1866 	if (retval < 0)
1867 		goto out_free;
1868 	bprm->argc = retval;
1869 
1870 	retval = count(envp, MAX_ARG_STRINGS);
1871 	if (retval < 0)
1872 		goto out_free;
1873 	bprm->envc = retval;
1874 
1875 	retval = bprm_stack_limits(bprm);
1876 	if (retval < 0)
1877 		goto out_free;
1878 
1879 	retval = copy_string_kernel(bprm->filename, bprm);
1880 	if (retval < 0)
1881 		goto out_free;
1882 	bprm->exec = bprm->p;
1883 
1884 	retval = copy_strings(bprm->envc, envp, bprm);
1885 	if (retval < 0)
1886 		goto out_free;
1887 
1888 	retval = copy_strings(bprm->argc, argv, bprm);
1889 	if (retval < 0)
1890 		goto out_free;
1891 
1892 	/*
1893 	 * When argv is empty, add an empty string ("") as argv[0] to
1894 	 * ensure confused userspace programs that start processing
1895 	 * from argv[1] won't end up walking envp. See also
1896 	 * bprm_stack_limits().
1897 	 */
1898 	if (bprm->argc == 0) {
1899 		retval = copy_string_kernel("", bprm);
1900 		if (retval < 0)
1901 			goto out_free;
1902 		bprm->argc = 1;
1903 
1904 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1905 			     current->comm, bprm->filename);
1906 	}
1907 
1908 	retval = bprm_execve(bprm);
1909 out_free:
1910 	free_bprm(bprm);
1911 
1912 out_ret:
1913 	putname(filename);
1914 	return retval;
1915 }
1916 
1917 int kernel_execve(const char *kernel_filename,
1918 		  const char *const *argv, const char *const *envp)
1919 {
1920 	struct filename *filename;
1921 	struct linux_binprm *bprm;
1922 	int fd = AT_FDCWD;
1923 	int retval;
1924 
1925 	/* It is non-sense for kernel threads to call execve */
1926 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1927 		return -EINVAL;
1928 
1929 	filename = getname_kernel(kernel_filename);
1930 	if (IS_ERR(filename))
1931 		return PTR_ERR(filename);
1932 
1933 	bprm = alloc_bprm(fd, filename, 0);
1934 	if (IS_ERR(bprm)) {
1935 		retval = PTR_ERR(bprm);
1936 		goto out_ret;
1937 	}
1938 
1939 	retval = count_strings_kernel(argv);
1940 	if (WARN_ON_ONCE(retval == 0))
1941 		retval = -EINVAL;
1942 	if (retval < 0)
1943 		goto out_free;
1944 	bprm->argc = retval;
1945 
1946 	retval = count_strings_kernel(envp);
1947 	if (retval < 0)
1948 		goto out_free;
1949 	bprm->envc = retval;
1950 
1951 	retval = bprm_stack_limits(bprm);
1952 	if (retval < 0)
1953 		goto out_free;
1954 
1955 	retval = copy_string_kernel(bprm->filename, bprm);
1956 	if (retval < 0)
1957 		goto out_free;
1958 	bprm->exec = bprm->p;
1959 
1960 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
1961 	if (retval < 0)
1962 		goto out_free;
1963 
1964 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
1965 	if (retval < 0)
1966 		goto out_free;
1967 
1968 	retval = bprm_execve(bprm);
1969 out_free:
1970 	free_bprm(bprm);
1971 out_ret:
1972 	putname(filename);
1973 	return retval;
1974 }
1975 
1976 static int do_execve(struct filename *filename,
1977 	const char __user *const __user *__argv,
1978 	const char __user *const __user *__envp)
1979 {
1980 	struct user_arg_ptr argv = { .ptr.native = __argv };
1981 	struct user_arg_ptr envp = { .ptr.native = __envp };
1982 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1983 }
1984 
1985 static int do_execveat(int fd, struct filename *filename,
1986 		const char __user *const __user *__argv,
1987 		const char __user *const __user *__envp,
1988 		int flags)
1989 {
1990 	struct user_arg_ptr argv = { .ptr.native = __argv };
1991 	struct user_arg_ptr envp = { .ptr.native = __envp };
1992 
1993 	return do_execveat_common(fd, filename, argv, envp, flags);
1994 }
1995 
1996 #ifdef CONFIG_COMPAT
1997 static int compat_do_execve(struct filename *filename,
1998 	const compat_uptr_t __user *__argv,
1999 	const compat_uptr_t __user *__envp)
2000 {
2001 	struct user_arg_ptr argv = {
2002 		.is_compat = true,
2003 		.ptr.compat = __argv,
2004 	};
2005 	struct user_arg_ptr envp = {
2006 		.is_compat = true,
2007 		.ptr.compat = __envp,
2008 	};
2009 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2010 }
2011 
2012 static int compat_do_execveat(int fd, struct filename *filename,
2013 			      const compat_uptr_t __user *__argv,
2014 			      const compat_uptr_t __user *__envp,
2015 			      int flags)
2016 {
2017 	struct user_arg_ptr argv = {
2018 		.is_compat = true,
2019 		.ptr.compat = __argv,
2020 	};
2021 	struct user_arg_ptr envp = {
2022 		.is_compat = true,
2023 		.ptr.compat = __envp,
2024 	};
2025 	return do_execveat_common(fd, filename, argv, envp, flags);
2026 }
2027 #endif
2028 
2029 void set_binfmt(struct linux_binfmt *new)
2030 {
2031 	struct mm_struct *mm = current->mm;
2032 
2033 	if (mm->binfmt)
2034 		module_put(mm->binfmt->module);
2035 
2036 	mm->binfmt = new;
2037 	if (new)
2038 		__module_get(new->module);
2039 }
2040 EXPORT_SYMBOL(set_binfmt);
2041 
2042 /*
2043  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2044  */
2045 void set_dumpable(struct mm_struct *mm, int value)
2046 {
2047 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2048 		return;
2049 
2050 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2051 }
2052 
2053 SYSCALL_DEFINE3(execve,
2054 		const char __user *, filename,
2055 		const char __user *const __user *, argv,
2056 		const char __user *const __user *, envp)
2057 {
2058 	return do_execve(getname(filename), argv, envp);
2059 }
2060 
2061 SYSCALL_DEFINE5(execveat,
2062 		int, fd, const char __user *, filename,
2063 		const char __user *const __user *, argv,
2064 		const char __user *const __user *, envp,
2065 		int, flags)
2066 {
2067 	return do_execveat(fd,
2068 			   getname_uflags(filename, flags),
2069 			   argv, envp, flags);
2070 }
2071 
2072 #ifdef CONFIG_COMPAT
2073 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2074 	const compat_uptr_t __user *, argv,
2075 	const compat_uptr_t __user *, envp)
2076 {
2077 	return compat_do_execve(getname(filename), argv, envp);
2078 }
2079 
2080 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2081 		       const char __user *, filename,
2082 		       const compat_uptr_t __user *, argv,
2083 		       const compat_uptr_t __user *, envp,
2084 		       int,  flags)
2085 {
2086 	return compat_do_execveat(fd,
2087 				  getname_uflags(filename, flags),
2088 				  argv, envp, flags);
2089 }
2090 #endif
2091 
2092 #ifdef CONFIG_SYSCTL
2093 
2094 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2095 		void *buffer, size_t *lenp, loff_t *ppos)
2096 {
2097 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2098 
2099 	if (!error)
2100 		validate_coredump_safety();
2101 	return error;
2102 }
2103 
2104 static const struct ctl_table fs_exec_sysctls[] = {
2105 	{
2106 		.procname	= "suid_dumpable",
2107 		.data		= &suid_dumpable,
2108 		.maxlen		= sizeof(int),
2109 		.mode		= 0644,
2110 		.proc_handler	= proc_dointvec_minmax_coredump,
2111 		.extra1		= SYSCTL_ZERO,
2112 		.extra2		= SYSCTL_TWO,
2113 	},
2114 };
2115 
2116 static int __init init_fs_exec_sysctls(void)
2117 {
2118 	register_sysctl_init("fs", fs_exec_sysctls);
2119 	return 0;
2120 }
2121 
2122 fs_initcall(init_fs_exec_sysctls);
2123 #endif /* CONFIG_SYSCTL */
2124 
2125 #ifdef CONFIG_EXEC_KUNIT_TEST
2126 #include "tests/exec_kunit.c"
2127 #endif
2128