xref: /linux/fs/exec.c (revision 36ca1195ad7f760a6af3814cb002bd3a3d4b4db1)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/config.h>
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/acct.h>
51 
52 #include <asm/uaccess.h>
53 #include <asm/mmu_context.h>
54 
55 #ifdef CONFIG_KMOD
56 #include <linux/kmod.h>
57 #endif
58 
59 int core_uses_pid;
60 char core_pattern[65] = "core";
61 /* The maximal length of core_pattern is also specified in sysctl.c */
62 
63 static struct linux_binfmt *formats;
64 static DEFINE_RWLOCK(binfmt_lock);
65 
66 int register_binfmt(struct linux_binfmt * fmt)
67 {
68 	struct linux_binfmt ** tmp = &formats;
69 
70 	if (!fmt)
71 		return -EINVAL;
72 	if (fmt->next)
73 		return -EBUSY;
74 	write_lock(&binfmt_lock);
75 	while (*tmp) {
76 		if (fmt == *tmp) {
77 			write_unlock(&binfmt_lock);
78 			return -EBUSY;
79 		}
80 		tmp = &(*tmp)->next;
81 	}
82 	fmt->next = formats;
83 	formats = fmt;
84 	write_unlock(&binfmt_lock);
85 	return 0;
86 }
87 
88 EXPORT_SYMBOL(register_binfmt);
89 
90 int unregister_binfmt(struct linux_binfmt * fmt)
91 {
92 	struct linux_binfmt ** tmp = &formats;
93 
94 	write_lock(&binfmt_lock);
95 	while (*tmp) {
96 		if (fmt == *tmp) {
97 			*tmp = fmt->next;
98 			write_unlock(&binfmt_lock);
99 			return 0;
100 		}
101 		tmp = &(*tmp)->next;
102 	}
103 	write_unlock(&binfmt_lock);
104 	return -EINVAL;
105 }
106 
107 EXPORT_SYMBOL(unregister_binfmt);
108 
109 static inline void put_binfmt(struct linux_binfmt * fmt)
110 {
111 	module_put(fmt->module);
112 }
113 
114 /*
115  * Note that a shared library must be both readable and executable due to
116  * security reasons.
117  *
118  * Also note that we take the address to load from from the file itself.
119  */
120 asmlinkage long sys_uselib(const char __user * library)
121 {
122 	struct file * file;
123 	struct nameidata nd;
124 	int error;
125 
126 	nd.intent.open.flags = FMODE_READ;
127 	error = __user_walk(library, LOOKUP_FOLLOW|LOOKUP_OPEN, &nd);
128 	if (error)
129 		goto out;
130 
131 	error = -EINVAL;
132 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
133 		goto exit;
134 
135 	error = permission(nd.dentry->d_inode, MAY_READ | MAY_EXEC, &nd);
136 	if (error)
137 		goto exit;
138 
139 	file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
140 	error = PTR_ERR(file);
141 	if (IS_ERR(file))
142 		goto out;
143 
144 	error = -ENOEXEC;
145 	if(file->f_op) {
146 		struct linux_binfmt * fmt;
147 
148 		read_lock(&binfmt_lock);
149 		for (fmt = formats ; fmt ; fmt = fmt->next) {
150 			if (!fmt->load_shlib)
151 				continue;
152 			if (!try_module_get(fmt->module))
153 				continue;
154 			read_unlock(&binfmt_lock);
155 			error = fmt->load_shlib(file);
156 			read_lock(&binfmt_lock);
157 			put_binfmt(fmt);
158 			if (error != -ENOEXEC)
159 				break;
160 		}
161 		read_unlock(&binfmt_lock);
162 	}
163 	fput(file);
164 out:
165   	return error;
166 exit:
167 	path_release(&nd);
168 	goto out;
169 }
170 
171 /*
172  * count() counts the number of strings in array ARGV.
173  */
174 static int count(char __user * __user * argv, int max)
175 {
176 	int i = 0;
177 
178 	if (argv != NULL) {
179 		for (;;) {
180 			char __user * p;
181 
182 			if (get_user(p, argv))
183 				return -EFAULT;
184 			if (!p)
185 				break;
186 			argv++;
187 			if(++i > max)
188 				return -E2BIG;
189 			cond_resched();
190 		}
191 	}
192 	return i;
193 }
194 
195 /*
196  * 'copy_strings()' copies argument/environment strings from user
197  * memory to free pages in kernel mem. These are in a format ready
198  * to be put directly into the top of new user memory.
199  */
200 static int copy_strings(int argc, char __user * __user * argv,
201 			struct linux_binprm *bprm)
202 {
203 	struct page *kmapped_page = NULL;
204 	char *kaddr = NULL;
205 	int ret;
206 
207 	while (argc-- > 0) {
208 		char __user *str;
209 		int len;
210 		unsigned long pos;
211 
212 		if (get_user(str, argv+argc) ||
213 				!(len = strnlen_user(str, bprm->p))) {
214 			ret = -EFAULT;
215 			goto out;
216 		}
217 
218 		if (bprm->p < len)  {
219 			ret = -E2BIG;
220 			goto out;
221 		}
222 
223 		bprm->p -= len;
224 		/* XXX: add architecture specific overflow check here. */
225 		pos = bprm->p;
226 
227 		while (len > 0) {
228 			int i, new, err;
229 			int offset, bytes_to_copy;
230 			struct page *page;
231 
232 			offset = pos % PAGE_SIZE;
233 			i = pos/PAGE_SIZE;
234 			page = bprm->page[i];
235 			new = 0;
236 			if (!page) {
237 				page = alloc_page(GFP_HIGHUSER);
238 				bprm->page[i] = page;
239 				if (!page) {
240 					ret = -ENOMEM;
241 					goto out;
242 				}
243 				new = 1;
244 			}
245 
246 			if (page != kmapped_page) {
247 				if (kmapped_page)
248 					kunmap(kmapped_page);
249 				kmapped_page = page;
250 				kaddr = kmap(kmapped_page);
251 			}
252 			if (new && offset)
253 				memset(kaddr, 0, offset);
254 			bytes_to_copy = PAGE_SIZE - offset;
255 			if (bytes_to_copy > len) {
256 				bytes_to_copy = len;
257 				if (new)
258 					memset(kaddr+offset+len, 0,
259 						PAGE_SIZE-offset-len);
260 			}
261 			err = copy_from_user(kaddr+offset, str, bytes_to_copy);
262 			if (err) {
263 				ret = -EFAULT;
264 				goto out;
265 			}
266 
267 			pos += bytes_to_copy;
268 			str += bytes_to_copy;
269 			len -= bytes_to_copy;
270 		}
271 	}
272 	ret = 0;
273 out:
274 	if (kmapped_page)
275 		kunmap(kmapped_page);
276 	return ret;
277 }
278 
279 /*
280  * Like copy_strings, but get argv and its values from kernel memory.
281  */
282 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
283 {
284 	int r;
285 	mm_segment_t oldfs = get_fs();
286 	set_fs(KERNEL_DS);
287 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
288 	set_fs(oldfs);
289 	return r;
290 }
291 
292 EXPORT_SYMBOL(copy_strings_kernel);
293 
294 #ifdef CONFIG_MMU
295 /*
296  * This routine is used to map in a page into an address space: needed by
297  * execve() for the initial stack and environment pages.
298  *
299  * vma->vm_mm->mmap_sem is held for writing.
300  */
301 void install_arg_page(struct vm_area_struct *vma,
302 			struct page *page, unsigned long address)
303 {
304 	struct mm_struct *mm = vma->vm_mm;
305 	pgd_t * pgd;
306 	pud_t * pud;
307 	pmd_t * pmd;
308 	pte_t * pte;
309 
310 	if (unlikely(anon_vma_prepare(vma)))
311 		goto out_sig;
312 
313 	flush_dcache_page(page);
314 	pgd = pgd_offset(mm, address);
315 
316 	spin_lock(&mm->page_table_lock);
317 	pud = pud_alloc(mm, pgd, address);
318 	if (!pud)
319 		goto out;
320 	pmd = pmd_alloc(mm, pud, address);
321 	if (!pmd)
322 		goto out;
323 	pte = pte_alloc_map(mm, pmd, address);
324 	if (!pte)
325 		goto out;
326 	if (!pte_none(*pte)) {
327 		pte_unmap(pte);
328 		goto out;
329 	}
330 	inc_mm_counter(mm, rss);
331 	lru_cache_add_active(page);
332 	set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
333 					page, vma->vm_page_prot))));
334 	page_add_anon_rmap(page, vma, address);
335 	pte_unmap(pte);
336 	spin_unlock(&mm->page_table_lock);
337 
338 	/* no need for flush_tlb */
339 	return;
340 out:
341 	spin_unlock(&mm->page_table_lock);
342 out_sig:
343 	__free_page(page);
344 	force_sig(SIGKILL, current);
345 }
346 
347 #define EXTRA_STACK_VM_PAGES	20	/* random */
348 
349 int setup_arg_pages(struct linux_binprm *bprm,
350 		    unsigned long stack_top,
351 		    int executable_stack)
352 {
353 	unsigned long stack_base;
354 	struct vm_area_struct *mpnt;
355 	struct mm_struct *mm = current->mm;
356 	int i, ret;
357 	long arg_size;
358 
359 #ifdef CONFIG_STACK_GROWSUP
360 	/* Move the argument and environment strings to the bottom of the
361 	 * stack space.
362 	 */
363 	int offset, j;
364 	char *to, *from;
365 
366 	/* Start by shifting all the pages down */
367 	i = 0;
368 	for (j = 0; j < MAX_ARG_PAGES; j++) {
369 		struct page *page = bprm->page[j];
370 		if (!page)
371 			continue;
372 		bprm->page[i++] = page;
373 	}
374 
375 	/* Now move them within their pages */
376 	offset = bprm->p % PAGE_SIZE;
377 	to = kmap(bprm->page[0]);
378 	for (j = 1; j < i; j++) {
379 		memmove(to, to + offset, PAGE_SIZE - offset);
380 		from = kmap(bprm->page[j]);
381 		memcpy(to + PAGE_SIZE - offset, from, offset);
382 		kunmap(bprm->page[j - 1]);
383 		to = from;
384 	}
385 	memmove(to, to + offset, PAGE_SIZE - offset);
386 	kunmap(bprm->page[j - 1]);
387 
388 	/* Limit stack size to 1GB */
389 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
390 	if (stack_base > (1 << 30))
391 		stack_base = 1 << 30;
392 	stack_base = PAGE_ALIGN(stack_top - stack_base);
393 
394 	/* Adjust bprm->p to point to the end of the strings. */
395 	bprm->p = stack_base + PAGE_SIZE * i - offset;
396 
397 	mm->arg_start = stack_base;
398 	arg_size = i << PAGE_SHIFT;
399 
400 	/* zero pages that were copied above */
401 	while (i < MAX_ARG_PAGES)
402 		bprm->page[i++] = NULL;
403 #else
404 	stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
405 	stack_base = PAGE_ALIGN(stack_base);
406 	bprm->p += stack_base;
407 	mm->arg_start = bprm->p;
408 	arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
409 #endif
410 
411 	arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
412 
413 	if (bprm->loader)
414 		bprm->loader += stack_base;
415 	bprm->exec += stack_base;
416 
417 	mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
418 	if (!mpnt)
419 		return -ENOMEM;
420 
421 	if (security_vm_enough_memory(arg_size >> PAGE_SHIFT)) {
422 		kmem_cache_free(vm_area_cachep, mpnt);
423 		return -ENOMEM;
424 	}
425 
426 	memset(mpnt, 0, sizeof(*mpnt));
427 
428 	down_write(&mm->mmap_sem);
429 	{
430 		mpnt->vm_mm = mm;
431 #ifdef CONFIG_STACK_GROWSUP
432 		mpnt->vm_start = stack_base;
433 		mpnt->vm_end = stack_base + arg_size;
434 #else
435 		mpnt->vm_end = stack_top;
436 		mpnt->vm_start = mpnt->vm_end - arg_size;
437 #endif
438 		/* Adjust stack execute permissions; explicitly enable
439 		 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
440 		 * and leave alone (arch default) otherwise. */
441 		if (unlikely(executable_stack == EXSTACK_ENABLE_X))
442 			mpnt->vm_flags = VM_STACK_FLAGS |  VM_EXEC;
443 		else if (executable_stack == EXSTACK_DISABLE_X)
444 			mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
445 		else
446 			mpnt->vm_flags = VM_STACK_FLAGS;
447 		mpnt->vm_flags |= mm->def_flags;
448 		mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
449 		if ((ret = insert_vm_struct(mm, mpnt))) {
450 			up_write(&mm->mmap_sem);
451 			kmem_cache_free(vm_area_cachep, mpnt);
452 			return ret;
453 		}
454 		mm->stack_vm = mm->total_vm = vma_pages(mpnt);
455 	}
456 
457 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
458 		struct page *page = bprm->page[i];
459 		if (page) {
460 			bprm->page[i] = NULL;
461 			install_arg_page(mpnt, page, stack_base);
462 		}
463 		stack_base += PAGE_SIZE;
464 	}
465 	up_write(&mm->mmap_sem);
466 
467 	return 0;
468 }
469 
470 EXPORT_SYMBOL(setup_arg_pages);
471 
472 #define free_arg_pages(bprm) do { } while (0)
473 
474 #else
475 
476 static inline void free_arg_pages(struct linux_binprm *bprm)
477 {
478 	int i;
479 
480 	for (i = 0; i < MAX_ARG_PAGES; i++) {
481 		if (bprm->page[i])
482 			__free_page(bprm->page[i]);
483 		bprm->page[i] = NULL;
484 	}
485 }
486 
487 #endif /* CONFIG_MMU */
488 
489 struct file *open_exec(const char *name)
490 {
491 	struct nameidata nd;
492 	int err;
493 	struct file *file;
494 
495 	nd.intent.open.flags = FMODE_READ;
496 	err = path_lookup(name, LOOKUP_FOLLOW|LOOKUP_OPEN, &nd);
497 	file = ERR_PTR(err);
498 
499 	if (!err) {
500 		struct inode *inode = nd.dentry->d_inode;
501 		file = ERR_PTR(-EACCES);
502 		if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
503 		    S_ISREG(inode->i_mode)) {
504 			int err = permission(inode, MAY_EXEC, &nd);
505 			if (!err && !(inode->i_mode & 0111))
506 				err = -EACCES;
507 			file = ERR_PTR(err);
508 			if (!err) {
509 				file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
510 				if (!IS_ERR(file)) {
511 					err = deny_write_access(file);
512 					if (err) {
513 						fput(file);
514 						file = ERR_PTR(err);
515 					}
516 				}
517 out:
518 				return file;
519 			}
520 		}
521 		path_release(&nd);
522 	}
523 	goto out;
524 }
525 
526 EXPORT_SYMBOL(open_exec);
527 
528 int kernel_read(struct file *file, unsigned long offset,
529 	char *addr, unsigned long count)
530 {
531 	mm_segment_t old_fs;
532 	loff_t pos = offset;
533 	int result;
534 
535 	old_fs = get_fs();
536 	set_fs(get_ds());
537 	/* The cast to a user pointer is valid due to the set_fs() */
538 	result = vfs_read(file, (void __user *)addr, count, &pos);
539 	set_fs(old_fs);
540 	return result;
541 }
542 
543 EXPORT_SYMBOL(kernel_read);
544 
545 static int exec_mmap(struct mm_struct *mm)
546 {
547 	struct task_struct *tsk;
548 	struct mm_struct * old_mm, *active_mm;
549 
550 	/* Notify parent that we're no longer interested in the old VM */
551 	tsk = current;
552 	old_mm = current->mm;
553 	mm_release(tsk, old_mm);
554 
555 	if (old_mm) {
556 		/*
557 		 * Make sure that if there is a core dump in progress
558 		 * for the old mm, we get out and die instead of going
559 		 * through with the exec.  We must hold mmap_sem around
560 		 * checking core_waiters and changing tsk->mm.  The
561 		 * core-inducing thread will increment core_waiters for
562 		 * each thread whose ->mm == old_mm.
563 		 */
564 		down_read(&old_mm->mmap_sem);
565 		if (unlikely(old_mm->core_waiters)) {
566 			up_read(&old_mm->mmap_sem);
567 			return -EINTR;
568 		}
569 	}
570 	task_lock(tsk);
571 	active_mm = tsk->active_mm;
572 	tsk->mm = mm;
573 	tsk->active_mm = mm;
574 	activate_mm(active_mm, mm);
575 	task_unlock(tsk);
576 	arch_pick_mmap_layout(mm);
577 	if (old_mm) {
578 		up_read(&old_mm->mmap_sem);
579 		if (active_mm != old_mm) BUG();
580 		mmput(old_mm);
581 		return 0;
582 	}
583 	mmdrop(active_mm);
584 	return 0;
585 }
586 
587 /*
588  * This function makes sure the current process has its own signal table,
589  * so that flush_signal_handlers can later reset the handlers without
590  * disturbing other processes.  (Other processes might share the signal
591  * table via the CLONE_SIGHAND option to clone().)
592  */
593 static inline int de_thread(struct task_struct *tsk)
594 {
595 	struct signal_struct *sig = tsk->signal;
596 	struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
597 	spinlock_t *lock = &oldsighand->siglock;
598 	int count;
599 
600 	/*
601 	 * If we don't share sighandlers, then we aren't sharing anything
602 	 * and we can just re-use it all.
603 	 */
604 	if (atomic_read(&oldsighand->count) <= 1) {
605 		BUG_ON(atomic_read(&sig->count) != 1);
606 		exit_itimers(sig);
607 		return 0;
608 	}
609 
610 	newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
611 	if (!newsighand)
612 		return -ENOMEM;
613 
614 	if (thread_group_empty(current))
615 		goto no_thread_group;
616 
617 	/*
618 	 * Kill all other threads in the thread group.
619 	 * We must hold tasklist_lock to call zap_other_threads.
620 	 */
621 	read_lock(&tasklist_lock);
622 	spin_lock_irq(lock);
623 	if (sig->flags & SIGNAL_GROUP_EXIT) {
624 		/*
625 		 * Another group action in progress, just
626 		 * return so that the signal is processed.
627 		 */
628 		spin_unlock_irq(lock);
629 		read_unlock(&tasklist_lock);
630 		kmem_cache_free(sighand_cachep, newsighand);
631 		return -EAGAIN;
632 	}
633 	zap_other_threads(current);
634 	read_unlock(&tasklist_lock);
635 
636 	/*
637 	 * Account for the thread group leader hanging around:
638 	 */
639 	count = 2;
640 	if (thread_group_leader(current))
641 		count = 1;
642 	while (atomic_read(&sig->count) > count) {
643 		sig->group_exit_task = current;
644 		sig->notify_count = count;
645 		__set_current_state(TASK_UNINTERRUPTIBLE);
646 		spin_unlock_irq(lock);
647 		schedule();
648 		spin_lock_irq(lock);
649 	}
650 	sig->group_exit_task = NULL;
651 	sig->notify_count = 0;
652 	spin_unlock_irq(lock);
653 
654 	/*
655 	 * At this point all other threads have exited, all we have to
656 	 * do is to wait for the thread group leader to become inactive,
657 	 * and to assume its PID:
658 	 */
659 	if (!thread_group_leader(current)) {
660 		struct task_struct *leader = current->group_leader, *parent;
661 		struct dentry *proc_dentry1, *proc_dentry2;
662 		unsigned long exit_state, ptrace;
663 
664 		/*
665 		 * Wait for the thread group leader to be a zombie.
666 		 * It should already be zombie at this point, most
667 		 * of the time.
668 		 */
669 		while (leader->exit_state != EXIT_ZOMBIE)
670 			yield();
671 
672 		spin_lock(&leader->proc_lock);
673 		spin_lock(&current->proc_lock);
674 		proc_dentry1 = proc_pid_unhash(current);
675 		proc_dentry2 = proc_pid_unhash(leader);
676 		write_lock_irq(&tasklist_lock);
677 
678 		if (leader->tgid != current->tgid)
679 			BUG();
680 		if (current->pid == current->tgid)
681 			BUG();
682 		/*
683 		 * An exec() starts a new thread group with the
684 		 * TGID of the previous thread group. Rehash the
685 		 * two threads with a switched PID, and release
686 		 * the former thread group leader:
687 		 */
688 		ptrace = leader->ptrace;
689 		parent = leader->parent;
690 		if (unlikely(ptrace) && unlikely(parent == current)) {
691 			/*
692 			 * Joker was ptracing his own group leader,
693 			 * and now he wants to be his own parent!
694 			 * We can't have that.
695 			 */
696 			ptrace = 0;
697 		}
698 
699 		ptrace_unlink(current);
700 		ptrace_unlink(leader);
701 		remove_parent(current);
702 		remove_parent(leader);
703 
704 		switch_exec_pids(leader, current);
705 
706 		current->parent = current->real_parent = leader->real_parent;
707 		leader->parent = leader->real_parent = child_reaper;
708 		current->group_leader = current;
709 		leader->group_leader = leader;
710 
711 		add_parent(current, current->parent);
712 		add_parent(leader, leader->parent);
713 		if (ptrace) {
714 			current->ptrace = ptrace;
715 			__ptrace_link(current, parent);
716 		}
717 
718 		list_del(&current->tasks);
719 		list_add_tail(&current->tasks, &init_task.tasks);
720 		current->exit_signal = SIGCHLD;
721 		exit_state = leader->exit_state;
722 
723 		write_unlock_irq(&tasklist_lock);
724 		spin_unlock(&leader->proc_lock);
725 		spin_unlock(&current->proc_lock);
726 		proc_pid_flush(proc_dentry1);
727 		proc_pid_flush(proc_dentry2);
728 
729 		if (exit_state != EXIT_ZOMBIE)
730 			BUG();
731 		release_task(leader);
732         }
733 
734 	/*
735 	 * Now there are really no other threads at all,
736 	 * so it's safe to stop telling them to kill themselves.
737 	 */
738 	sig->flags = 0;
739 
740 no_thread_group:
741 	BUG_ON(atomic_read(&sig->count) != 1);
742 	exit_itimers(sig);
743 
744 	if (atomic_read(&oldsighand->count) == 1) {
745 		/*
746 		 * Now that we nuked the rest of the thread group,
747 		 * it turns out we are not sharing sighand any more either.
748 		 * So we can just keep it.
749 		 */
750 		kmem_cache_free(sighand_cachep, newsighand);
751 	} else {
752 		/*
753 		 * Move our state over to newsighand and switch it in.
754 		 */
755 		spin_lock_init(&newsighand->siglock);
756 		atomic_set(&newsighand->count, 1);
757 		memcpy(newsighand->action, oldsighand->action,
758 		       sizeof(newsighand->action));
759 
760 		write_lock_irq(&tasklist_lock);
761 		spin_lock(&oldsighand->siglock);
762 		spin_lock(&newsighand->siglock);
763 
764 		current->sighand = newsighand;
765 		recalc_sigpending();
766 
767 		spin_unlock(&newsighand->siglock);
768 		spin_unlock(&oldsighand->siglock);
769 		write_unlock_irq(&tasklist_lock);
770 
771 		if (atomic_dec_and_test(&oldsighand->count))
772 			kmem_cache_free(sighand_cachep, oldsighand);
773 	}
774 
775 	if (!thread_group_empty(current))
776 		BUG();
777 	if (!thread_group_leader(current))
778 		BUG();
779 	return 0;
780 }
781 
782 /*
783  * These functions flushes out all traces of the currently running executable
784  * so that a new one can be started
785  */
786 
787 static inline void flush_old_files(struct files_struct * files)
788 {
789 	long j = -1;
790 
791 	spin_lock(&files->file_lock);
792 	for (;;) {
793 		unsigned long set, i;
794 
795 		j++;
796 		i = j * __NFDBITS;
797 		if (i >= files->max_fds || i >= files->max_fdset)
798 			break;
799 		set = files->close_on_exec->fds_bits[j];
800 		if (!set)
801 			continue;
802 		files->close_on_exec->fds_bits[j] = 0;
803 		spin_unlock(&files->file_lock);
804 		for ( ; set ; i++,set >>= 1) {
805 			if (set & 1) {
806 				sys_close(i);
807 			}
808 		}
809 		spin_lock(&files->file_lock);
810 
811 	}
812 	spin_unlock(&files->file_lock);
813 }
814 
815 void get_task_comm(char *buf, struct task_struct *tsk)
816 {
817 	/* buf must be at least sizeof(tsk->comm) in size */
818 	task_lock(tsk);
819 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
820 	task_unlock(tsk);
821 }
822 
823 void set_task_comm(struct task_struct *tsk, char *buf)
824 {
825 	task_lock(tsk);
826 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
827 	task_unlock(tsk);
828 }
829 
830 int flush_old_exec(struct linux_binprm * bprm)
831 {
832 	char * name;
833 	int i, ch, retval;
834 	struct files_struct *files;
835 	char tcomm[sizeof(current->comm)];
836 
837 	/*
838 	 * Make sure we have a private signal table and that
839 	 * we are unassociated from the previous thread group.
840 	 */
841 	retval = de_thread(current);
842 	if (retval)
843 		goto out;
844 
845 	/*
846 	 * Make sure we have private file handles. Ask the
847 	 * fork helper to do the work for us and the exit
848 	 * helper to do the cleanup of the old one.
849 	 */
850 	files = current->files;		/* refcounted so safe to hold */
851 	retval = unshare_files();
852 	if (retval)
853 		goto out;
854 	/*
855 	 * Release all of the old mmap stuff
856 	 */
857 	retval = exec_mmap(bprm->mm);
858 	if (retval)
859 		goto mmap_failed;
860 
861 	bprm->mm = NULL;		/* We're using it now */
862 
863 	/* This is the point of no return */
864 	steal_locks(files);
865 	put_files_struct(files);
866 
867 	current->sas_ss_sp = current->sas_ss_size = 0;
868 
869 	if (current->euid == current->uid && current->egid == current->gid)
870 		current->mm->dumpable = 1;
871 	name = bprm->filename;
872 
873 	/* Copies the binary name from after last slash */
874 	for (i=0; (ch = *(name++)) != '\0';) {
875 		if (ch == '/')
876 			i = 0; /* overwrite what we wrote */
877 		else
878 			if (i < (sizeof(tcomm) - 1))
879 				tcomm[i++] = ch;
880 	}
881 	tcomm[i] = '\0';
882 	set_task_comm(current, tcomm);
883 
884 	current->flags &= ~PF_RANDOMIZE;
885 	flush_thread();
886 
887 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
888 	    permission(bprm->file->f_dentry->d_inode,MAY_READ, NULL) ||
889 	    (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
890 		suid_keys(current);
891 		current->mm->dumpable = 0;
892 	}
893 
894 	/* An exec changes our domain. We are no longer part of the thread
895 	   group */
896 
897 	current->self_exec_id++;
898 
899 	flush_signal_handlers(current, 0);
900 	flush_old_files(current->files);
901 
902 	return 0;
903 
904 mmap_failed:
905 	put_files_struct(current->files);
906 	current->files = files;
907 out:
908 	return retval;
909 }
910 
911 EXPORT_SYMBOL(flush_old_exec);
912 
913 /*
914  * Fill the binprm structure from the inode.
915  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
916  */
917 int prepare_binprm(struct linux_binprm *bprm)
918 {
919 	int mode;
920 	struct inode * inode = bprm->file->f_dentry->d_inode;
921 	int retval;
922 
923 	mode = inode->i_mode;
924 	/*
925 	 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
926 	 * generic_permission lets a non-executable through
927 	 */
928 	if (!(mode & 0111))	/* with at least _one_ execute bit set */
929 		return -EACCES;
930 	if (bprm->file->f_op == NULL)
931 		return -EACCES;
932 
933 	bprm->e_uid = current->euid;
934 	bprm->e_gid = current->egid;
935 
936 	if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
937 		/* Set-uid? */
938 		if (mode & S_ISUID) {
939 			current->personality &= ~PER_CLEAR_ON_SETID;
940 			bprm->e_uid = inode->i_uid;
941 		}
942 
943 		/* Set-gid? */
944 		/*
945 		 * If setgid is set but no group execute bit then this
946 		 * is a candidate for mandatory locking, not a setgid
947 		 * executable.
948 		 */
949 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
950 			current->personality &= ~PER_CLEAR_ON_SETID;
951 			bprm->e_gid = inode->i_gid;
952 		}
953 	}
954 
955 	/* fill in binprm security blob */
956 	retval = security_bprm_set(bprm);
957 	if (retval)
958 		return retval;
959 
960 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
961 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
962 }
963 
964 EXPORT_SYMBOL(prepare_binprm);
965 
966 static inline int unsafe_exec(struct task_struct *p)
967 {
968 	int unsafe = 0;
969 	if (p->ptrace & PT_PTRACED) {
970 		if (p->ptrace & PT_PTRACE_CAP)
971 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
972 		else
973 			unsafe |= LSM_UNSAFE_PTRACE;
974 	}
975 	if (atomic_read(&p->fs->count) > 1 ||
976 	    atomic_read(&p->files->count) > 1 ||
977 	    atomic_read(&p->sighand->count) > 1)
978 		unsafe |= LSM_UNSAFE_SHARE;
979 
980 	return unsafe;
981 }
982 
983 void compute_creds(struct linux_binprm *bprm)
984 {
985 	int unsafe;
986 
987 	if (bprm->e_uid != current->uid)
988 		suid_keys(current);
989 	exec_keys(current);
990 
991 	task_lock(current);
992 	unsafe = unsafe_exec(current);
993 	security_bprm_apply_creds(bprm, unsafe);
994 	task_unlock(current);
995 	security_bprm_post_apply_creds(bprm);
996 }
997 
998 EXPORT_SYMBOL(compute_creds);
999 
1000 void remove_arg_zero(struct linux_binprm *bprm)
1001 {
1002 	if (bprm->argc) {
1003 		unsigned long offset;
1004 		char * kaddr;
1005 		struct page *page;
1006 
1007 		offset = bprm->p % PAGE_SIZE;
1008 		goto inside;
1009 
1010 		while (bprm->p++, *(kaddr+offset++)) {
1011 			if (offset != PAGE_SIZE)
1012 				continue;
1013 			offset = 0;
1014 			kunmap_atomic(kaddr, KM_USER0);
1015 inside:
1016 			page = bprm->page[bprm->p/PAGE_SIZE];
1017 			kaddr = kmap_atomic(page, KM_USER0);
1018 		}
1019 		kunmap_atomic(kaddr, KM_USER0);
1020 		bprm->argc--;
1021 	}
1022 }
1023 
1024 EXPORT_SYMBOL(remove_arg_zero);
1025 
1026 /*
1027  * cycle the list of binary formats handler, until one recognizes the image
1028  */
1029 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1030 {
1031 	int try,retval;
1032 	struct linux_binfmt *fmt;
1033 #ifdef __alpha__
1034 	/* handle /sbin/loader.. */
1035 	{
1036 	    struct exec * eh = (struct exec *) bprm->buf;
1037 
1038 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1039 		(eh->fh.f_flags & 0x3000) == 0x3000)
1040 	    {
1041 		struct file * file;
1042 		unsigned long loader;
1043 
1044 		allow_write_access(bprm->file);
1045 		fput(bprm->file);
1046 		bprm->file = NULL;
1047 
1048 	        loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1049 
1050 		file = open_exec("/sbin/loader");
1051 		retval = PTR_ERR(file);
1052 		if (IS_ERR(file))
1053 			return retval;
1054 
1055 		/* Remember if the application is TASO.  */
1056 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1057 
1058 		bprm->file = file;
1059 		bprm->loader = loader;
1060 		retval = prepare_binprm(bprm);
1061 		if (retval<0)
1062 			return retval;
1063 		/* should call search_binary_handler recursively here,
1064 		   but it does not matter */
1065 	    }
1066 	}
1067 #endif
1068 	retval = security_bprm_check(bprm);
1069 	if (retval)
1070 		return retval;
1071 
1072 	/* kernel module loader fixup */
1073 	/* so we don't try to load run modprobe in kernel space. */
1074 	set_fs(USER_DS);
1075 	retval = -ENOENT;
1076 	for (try=0; try<2; try++) {
1077 		read_lock(&binfmt_lock);
1078 		for (fmt = formats ; fmt ; fmt = fmt->next) {
1079 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1080 			if (!fn)
1081 				continue;
1082 			if (!try_module_get(fmt->module))
1083 				continue;
1084 			read_unlock(&binfmt_lock);
1085 			retval = fn(bprm, regs);
1086 			if (retval >= 0) {
1087 				put_binfmt(fmt);
1088 				allow_write_access(bprm->file);
1089 				if (bprm->file)
1090 					fput(bprm->file);
1091 				bprm->file = NULL;
1092 				current->did_exec = 1;
1093 				return retval;
1094 			}
1095 			read_lock(&binfmt_lock);
1096 			put_binfmt(fmt);
1097 			if (retval != -ENOEXEC || bprm->mm == NULL)
1098 				break;
1099 			if (!bprm->file) {
1100 				read_unlock(&binfmt_lock);
1101 				return retval;
1102 			}
1103 		}
1104 		read_unlock(&binfmt_lock);
1105 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1106 			break;
1107 #ifdef CONFIG_KMOD
1108 		}else{
1109 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1110 			if (printable(bprm->buf[0]) &&
1111 			    printable(bprm->buf[1]) &&
1112 			    printable(bprm->buf[2]) &&
1113 			    printable(bprm->buf[3]))
1114 				break; /* -ENOEXEC */
1115 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1116 #endif
1117 		}
1118 	}
1119 	return retval;
1120 }
1121 
1122 EXPORT_SYMBOL(search_binary_handler);
1123 
1124 /*
1125  * sys_execve() executes a new program.
1126  */
1127 int do_execve(char * filename,
1128 	char __user *__user *argv,
1129 	char __user *__user *envp,
1130 	struct pt_regs * regs)
1131 {
1132 	struct linux_binprm *bprm;
1133 	struct file *file;
1134 	int retval;
1135 	int i;
1136 
1137 	retval = -ENOMEM;
1138 	bprm = kmalloc(sizeof(*bprm), GFP_KERNEL);
1139 	if (!bprm)
1140 		goto out_ret;
1141 	memset(bprm, 0, sizeof(*bprm));
1142 
1143 	file = open_exec(filename);
1144 	retval = PTR_ERR(file);
1145 	if (IS_ERR(file))
1146 		goto out_kfree;
1147 
1148 	sched_exec();
1149 
1150 	bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1151 
1152 	bprm->file = file;
1153 	bprm->filename = filename;
1154 	bprm->interp = filename;
1155 	bprm->mm = mm_alloc();
1156 	retval = -ENOMEM;
1157 	if (!bprm->mm)
1158 		goto out_file;
1159 
1160 	retval = init_new_context(current, bprm->mm);
1161 	if (retval < 0)
1162 		goto out_mm;
1163 
1164 	bprm->argc = count(argv, bprm->p / sizeof(void *));
1165 	if ((retval = bprm->argc) < 0)
1166 		goto out_mm;
1167 
1168 	bprm->envc = count(envp, bprm->p / sizeof(void *));
1169 	if ((retval = bprm->envc) < 0)
1170 		goto out_mm;
1171 
1172 	retval = security_bprm_alloc(bprm);
1173 	if (retval)
1174 		goto out;
1175 
1176 	retval = prepare_binprm(bprm);
1177 	if (retval < 0)
1178 		goto out;
1179 
1180 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1181 	if (retval < 0)
1182 		goto out;
1183 
1184 	bprm->exec = bprm->p;
1185 	retval = copy_strings(bprm->envc, envp, bprm);
1186 	if (retval < 0)
1187 		goto out;
1188 
1189 	retval = copy_strings(bprm->argc, argv, bprm);
1190 	if (retval < 0)
1191 		goto out;
1192 
1193 	retval = search_binary_handler(bprm,regs);
1194 	if (retval >= 0) {
1195 		free_arg_pages(bprm);
1196 
1197 		/* execve success */
1198 		security_bprm_free(bprm);
1199 		acct_update_integrals(current);
1200 		update_mem_hiwater(current);
1201 		kfree(bprm);
1202 		return retval;
1203 	}
1204 
1205 out:
1206 	/* Something went wrong, return the inode and free the argument pages*/
1207 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1208 		struct page * page = bprm->page[i];
1209 		if (page)
1210 			__free_page(page);
1211 	}
1212 
1213 	if (bprm->security)
1214 		security_bprm_free(bprm);
1215 
1216 out_mm:
1217 	if (bprm->mm)
1218 		mmdrop(bprm->mm);
1219 
1220 out_file:
1221 	if (bprm->file) {
1222 		allow_write_access(bprm->file);
1223 		fput(bprm->file);
1224 	}
1225 
1226 out_kfree:
1227 	kfree(bprm);
1228 
1229 out_ret:
1230 	return retval;
1231 }
1232 
1233 int set_binfmt(struct linux_binfmt *new)
1234 {
1235 	struct linux_binfmt *old = current->binfmt;
1236 
1237 	if (new) {
1238 		if (!try_module_get(new->module))
1239 			return -1;
1240 	}
1241 	current->binfmt = new;
1242 	if (old)
1243 		module_put(old->module);
1244 	return 0;
1245 }
1246 
1247 EXPORT_SYMBOL(set_binfmt);
1248 
1249 #define CORENAME_MAX_SIZE 64
1250 
1251 /* format_corename will inspect the pattern parameter, and output a
1252  * name into corename, which must have space for at least
1253  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1254  */
1255 static void format_corename(char *corename, const char *pattern, long signr)
1256 {
1257 	const char *pat_ptr = pattern;
1258 	char *out_ptr = corename;
1259 	char *const out_end = corename + CORENAME_MAX_SIZE;
1260 	int rc;
1261 	int pid_in_pattern = 0;
1262 
1263 	/* Repeat as long as we have more pattern to process and more output
1264 	   space */
1265 	while (*pat_ptr) {
1266 		if (*pat_ptr != '%') {
1267 			if (out_ptr == out_end)
1268 				goto out;
1269 			*out_ptr++ = *pat_ptr++;
1270 		} else {
1271 			switch (*++pat_ptr) {
1272 			case 0:
1273 				goto out;
1274 			/* Double percent, output one percent */
1275 			case '%':
1276 				if (out_ptr == out_end)
1277 					goto out;
1278 				*out_ptr++ = '%';
1279 				break;
1280 			/* pid */
1281 			case 'p':
1282 				pid_in_pattern = 1;
1283 				rc = snprintf(out_ptr, out_end - out_ptr,
1284 					      "%d", current->tgid);
1285 				if (rc > out_end - out_ptr)
1286 					goto out;
1287 				out_ptr += rc;
1288 				break;
1289 			/* uid */
1290 			case 'u':
1291 				rc = snprintf(out_ptr, out_end - out_ptr,
1292 					      "%d", current->uid);
1293 				if (rc > out_end - out_ptr)
1294 					goto out;
1295 				out_ptr += rc;
1296 				break;
1297 			/* gid */
1298 			case 'g':
1299 				rc = snprintf(out_ptr, out_end - out_ptr,
1300 					      "%d", current->gid);
1301 				if (rc > out_end - out_ptr)
1302 					goto out;
1303 				out_ptr += rc;
1304 				break;
1305 			/* signal that caused the coredump */
1306 			case 's':
1307 				rc = snprintf(out_ptr, out_end - out_ptr,
1308 					      "%ld", signr);
1309 				if (rc > out_end - out_ptr)
1310 					goto out;
1311 				out_ptr += rc;
1312 				break;
1313 			/* UNIX time of coredump */
1314 			case 't': {
1315 				struct timeval tv;
1316 				do_gettimeofday(&tv);
1317 				rc = snprintf(out_ptr, out_end - out_ptr,
1318 					      "%lu", tv.tv_sec);
1319 				if (rc > out_end - out_ptr)
1320 					goto out;
1321 				out_ptr += rc;
1322 				break;
1323 			}
1324 			/* hostname */
1325 			case 'h':
1326 				down_read(&uts_sem);
1327 				rc = snprintf(out_ptr, out_end - out_ptr,
1328 					      "%s", system_utsname.nodename);
1329 				up_read(&uts_sem);
1330 				if (rc > out_end - out_ptr)
1331 					goto out;
1332 				out_ptr += rc;
1333 				break;
1334 			/* executable */
1335 			case 'e':
1336 				rc = snprintf(out_ptr, out_end - out_ptr,
1337 					      "%s", current->comm);
1338 				if (rc > out_end - out_ptr)
1339 					goto out;
1340 				out_ptr += rc;
1341 				break;
1342 			default:
1343 				break;
1344 			}
1345 			++pat_ptr;
1346 		}
1347 	}
1348 	/* Backward compatibility with core_uses_pid:
1349 	 *
1350 	 * If core_pattern does not include a %p (as is the default)
1351 	 * and core_uses_pid is set, then .%pid will be appended to
1352 	 * the filename */
1353 	if (!pid_in_pattern
1354             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1355 		rc = snprintf(out_ptr, out_end - out_ptr,
1356 			      ".%d", current->tgid);
1357 		if (rc > out_end - out_ptr)
1358 			goto out;
1359 		out_ptr += rc;
1360 	}
1361       out:
1362 	*out_ptr = 0;
1363 }
1364 
1365 static void zap_threads (struct mm_struct *mm)
1366 {
1367 	struct task_struct *g, *p;
1368 	struct task_struct *tsk = current;
1369 	struct completion *vfork_done = tsk->vfork_done;
1370 	int traced = 0;
1371 
1372 	/*
1373 	 * Make sure nobody is waiting for us to release the VM,
1374 	 * otherwise we can deadlock when we wait on each other
1375 	 */
1376 	if (vfork_done) {
1377 		tsk->vfork_done = NULL;
1378 		complete(vfork_done);
1379 	}
1380 
1381 	read_lock(&tasklist_lock);
1382 	do_each_thread(g,p)
1383 		if (mm == p->mm && p != tsk) {
1384 			force_sig_specific(SIGKILL, p);
1385 			mm->core_waiters++;
1386 			if (unlikely(p->ptrace) &&
1387 			    unlikely(p->parent->mm == mm))
1388 				traced = 1;
1389 		}
1390 	while_each_thread(g,p);
1391 
1392 	read_unlock(&tasklist_lock);
1393 
1394 	if (unlikely(traced)) {
1395 		/*
1396 		 * We are zapping a thread and the thread it ptraces.
1397 		 * If the tracee went into a ptrace stop for exit tracing,
1398 		 * we could deadlock since the tracer is waiting for this
1399 		 * coredump to finish.  Detach them so they can both die.
1400 		 */
1401 		write_lock_irq(&tasklist_lock);
1402 		do_each_thread(g,p) {
1403 			if (mm == p->mm && p != tsk &&
1404 			    p->ptrace && p->parent->mm == mm) {
1405 				__ptrace_unlink(p);
1406 			}
1407 		} while_each_thread(g,p);
1408 		write_unlock_irq(&tasklist_lock);
1409 	}
1410 }
1411 
1412 static void coredump_wait(struct mm_struct *mm)
1413 {
1414 	DECLARE_COMPLETION(startup_done);
1415 
1416 	mm->core_waiters++; /* let other threads block */
1417 	mm->core_startup_done = &startup_done;
1418 
1419 	/* give other threads a chance to run: */
1420 	yield();
1421 
1422 	zap_threads(mm);
1423 	if (--mm->core_waiters) {
1424 		up_write(&mm->mmap_sem);
1425 		wait_for_completion(&startup_done);
1426 	} else
1427 		up_write(&mm->mmap_sem);
1428 	BUG_ON(mm->core_waiters);
1429 }
1430 
1431 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1432 {
1433 	char corename[CORENAME_MAX_SIZE + 1];
1434 	struct mm_struct *mm = current->mm;
1435 	struct linux_binfmt * binfmt;
1436 	struct inode * inode;
1437 	struct file * file;
1438 	int retval = 0;
1439 
1440 	binfmt = current->binfmt;
1441 	if (!binfmt || !binfmt->core_dump)
1442 		goto fail;
1443 	down_write(&mm->mmap_sem);
1444 	if (!mm->dumpable) {
1445 		up_write(&mm->mmap_sem);
1446 		goto fail;
1447 	}
1448 	mm->dumpable = 0;
1449 	init_completion(&mm->core_done);
1450 	spin_lock_irq(&current->sighand->siglock);
1451 	current->signal->flags = SIGNAL_GROUP_EXIT;
1452 	current->signal->group_exit_code = exit_code;
1453 	spin_unlock_irq(&current->sighand->siglock);
1454 	coredump_wait(mm);
1455 
1456 	/*
1457 	 * Clear any false indication of pending signals that might
1458 	 * be seen by the filesystem code called to write the core file.
1459 	 */
1460 	current->signal->group_stop_count = 0;
1461 	clear_thread_flag(TIF_SIGPENDING);
1462 
1463 	if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1464 		goto fail_unlock;
1465 
1466 	/*
1467 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1468 	 * uses lock_kernel()
1469 	 */
1470  	lock_kernel();
1471 	format_corename(corename, core_pattern, signr);
1472 	unlock_kernel();
1473 	file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE, 0600);
1474 	if (IS_ERR(file))
1475 		goto fail_unlock;
1476 	inode = file->f_dentry->d_inode;
1477 	if (inode->i_nlink > 1)
1478 		goto close_fail;	/* multiple links - don't dump */
1479 	if (d_unhashed(file->f_dentry))
1480 		goto close_fail;
1481 
1482 	if (!S_ISREG(inode->i_mode))
1483 		goto close_fail;
1484 	if (!file->f_op)
1485 		goto close_fail;
1486 	if (!file->f_op->write)
1487 		goto close_fail;
1488 	if (do_truncate(file->f_dentry, 0) != 0)
1489 		goto close_fail;
1490 
1491 	retval = binfmt->core_dump(signr, regs, file);
1492 
1493 	if (retval)
1494 		current->signal->group_exit_code |= 0x80;
1495 close_fail:
1496 	filp_close(file, NULL);
1497 fail_unlock:
1498 	complete_all(&mm->core_done);
1499 fail:
1500 	return retval;
1501 }
1502