xref: /linux/fs/exec.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
68 
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72 
73 #include <trace/events/task.h>
74 #include "internal.h"
75 
76 #include <trace/events/sched.h>
77 
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79 
80 int suid_dumpable = 0;
81 
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84 
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 	write_lock(&binfmt_lock);
88 	insert ? list_add(&fmt->lh, &formats) :
89 		 list_add_tail(&fmt->lh, &formats);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(__register_binfmt);
94 
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	write_lock(&binfmt_lock);
98 	list_del(&fmt->lh);
99 	write_unlock(&binfmt_lock);
100 }
101 
102 EXPORT_SYMBOL(unregister_binfmt);
103 
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 	module_put(fmt->module);
107 }
108 
109 bool path_noexec(const struct path *path)
110 {
111 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114 
115 #ifdef CONFIG_USELIB
116 /*
117  * Note that a shared library must be both readable and executable due to
118  * security reasons.
119  *
120  * Also note that we take the address to load from from the file itself.
121  */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 	struct linux_binfmt *fmt;
125 	struct file *file;
126 	struct filename *tmp = getname(library);
127 	int error = PTR_ERR(tmp);
128 	static const struct open_flags uselib_flags = {
129 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 		.acc_mode = MAY_READ | MAY_EXEC,
131 		.intent = LOOKUP_OPEN,
132 		.lookup_flags = LOOKUP_FOLLOW,
133 	};
134 
135 	if (IS_ERR(tmp))
136 		goto out;
137 
138 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 	putname(tmp);
140 	error = PTR_ERR(file);
141 	if (IS_ERR(file))
142 		goto out;
143 
144 	/*
145 	 * may_open() has already checked for this, so it should be
146 	 * impossible to trip now. But we need to be extra cautious
147 	 * and check again at the very end too.
148 	 */
149 	error = -EACCES;
150 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151 			 path_noexec(&file->f_path)))
152 		goto exit;
153 
154 	fsnotify_open(file);
155 
156 	error = -ENOEXEC;
157 
158 	read_lock(&binfmt_lock);
159 	list_for_each_entry(fmt, &formats, lh) {
160 		if (!fmt->load_shlib)
161 			continue;
162 		if (!try_module_get(fmt->module))
163 			continue;
164 		read_unlock(&binfmt_lock);
165 		error = fmt->load_shlib(file);
166 		read_lock(&binfmt_lock);
167 		put_binfmt(fmt);
168 		if (error != -ENOEXEC)
169 			break;
170 	}
171 	read_unlock(&binfmt_lock);
172 exit:
173 	fput(file);
174 out:
175   	return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178 
179 #ifdef CONFIG_MMU
180 /*
181  * The nascent bprm->mm is not visible until exec_mmap() but it can
182  * use a lot of memory, account these pages in current->mm temporary
183  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184  * change the counter back via acct_arg_size(0).
185  */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 	struct mm_struct *mm = current->mm;
189 	long diff = (long)(pages - bprm->vma_pages);
190 
191 	if (!mm || !diff)
192 		return;
193 
194 	bprm->vma_pages = pages;
195 	add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197 
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 		int write)
200 {
201 	struct page *page;
202 	int ret;
203 	unsigned int gup_flags = FOLL_FORCE;
204 
205 #ifdef CONFIG_STACK_GROWSUP
206 	if (write) {
207 		ret = expand_downwards(bprm->vma, pos);
208 		if (ret < 0)
209 			return NULL;
210 	}
211 #endif
212 
213 	if (write)
214 		gup_flags |= FOLL_WRITE;
215 
216 	/*
217 	 * We are doing an exec().  'current' is the process
218 	 * doing the exec and bprm->mm is the new process's mm.
219 	 */
220 	mmap_read_lock(bprm->mm);
221 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222 			&page, NULL, NULL);
223 	mmap_read_unlock(bprm->mm);
224 	if (ret <= 0)
225 		return NULL;
226 
227 	if (write)
228 		acct_arg_size(bprm, vma_pages(bprm->vma));
229 
230 	return page;
231 }
232 
233 static void put_arg_page(struct page *page)
234 {
235 	put_page(page);
236 }
237 
238 static void free_arg_pages(struct linux_binprm *bprm)
239 {
240 }
241 
242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243 		struct page *page)
244 {
245 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 }
247 
248 static int __bprm_mm_init(struct linux_binprm *bprm)
249 {
250 	int err;
251 	struct vm_area_struct *vma = NULL;
252 	struct mm_struct *mm = bprm->mm;
253 
254 	bprm->vma = vma = vm_area_alloc(mm);
255 	if (!vma)
256 		return -ENOMEM;
257 	vma_set_anonymous(vma);
258 
259 	if (mmap_write_lock_killable(mm)) {
260 		err = -EINTR;
261 		goto err_free;
262 	}
263 
264 	/*
265 	 * Place the stack at the largest stack address the architecture
266 	 * supports. Later, we'll move this to an appropriate place. We don't
267 	 * use STACK_TOP because that can depend on attributes which aren't
268 	 * configured yet.
269 	 */
270 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
271 	vma->vm_end = STACK_TOP_MAX;
272 	vma->vm_start = vma->vm_end - PAGE_SIZE;
273 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
274 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
275 
276 	err = insert_vm_struct(mm, vma);
277 	if (err)
278 		goto err;
279 
280 	mm->stack_vm = mm->total_vm = 1;
281 	mmap_write_unlock(mm);
282 	bprm->p = vma->vm_end - sizeof(void *);
283 	return 0;
284 err:
285 	mmap_write_unlock(mm);
286 err_free:
287 	bprm->vma = NULL;
288 	vm_area_free(vma);
289 	return err;
290 }
291 
292 static bool valid_arg_len(struct linux_binprm *bprm, long len)
293 {
294 	return len <= MAX_ARG_STRLEN;
295 }
296 
297 #else
298 
299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
300 {
301 }
302 
303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
304 		int write)
305 {
306 	struct page *page;
307 
308 	page = bprm->page[pos / PAGE_SIZE];
309 	if (!page && write) {
310 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
311 		if (!page)
312 			return NULL;
313 		bprm->page[pos / PAGE_SIZE] = page;
314 	}
315 
316 	return page;
317 }
318 
319 static void put_arg_page(struct page *page)
320 {
321 }
322 
323 static void free_arg_page(struct linux_binprm *bprm, int i)
324 {
325 	if (bprm->page[i]) {
326 		__free_page(bprm->page[i]);
327 		bprm->page[i] = NULL;
328 	}
329 }
330 
331 static void free_arg_pages(struct linux_binprm *bprm)
332 {
333 	int i;
334 
335 	for (i = 0; i < MAX_ARG_PAGES; i++)
336 		free_arg_page(bprm, i);
337 }
338 
339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
340 		struct page *page)
341 {
342 }
343 
344 static int __bprm_mm_init(struct linux_binprm *bprm)
345 {
346 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
347 	return 0;
348 }
349 
350 static bool valid_arg_len(struct linux_binprm *bprm, long len)
351 {
352 	return len <= bprm->p;
353 }
354 
355 #endif /* CONFIG_MMU */
356 
357 /*
358  * Create a new mm_struct and populate it with a temporary stack
359  * vm_area_struct.  We don't have enough context at this point to set the stack
360  * flags, permissions, and offset, so we use temporary values.  We'll update
361  * them later in setup_arg_pages().
362  */
363 static int bprm_mm_init(struct linux_binprm *bprm)
364 {
365 	int err;
366 	struct mm_struct *mm = NULL;
367 
368 	bprm->mm = mm = mm_alloc();
369 	err = -ENOMEM;
370 	if (!mm)
371 		goto err;
372 
373 	/* Save current stack limit for all calculations made during exec. */
374 	task_lock(current->group_leader);
375 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
376 	task_unlock(current->group_leader);
377 
378 	err = __bprm_mm_init(bprm);
379 	if (err)
380 		goto err;
381 
382 	return 0;
383 
384 err:
385 	if (mm) {
386 		bprm->mm = NULL;
387 		mmdrop(mm);
388 	}
389 
390 	return err;
391 }
392 
393 struct user_arg_ptr {
394 #ifdef CONFIG_COMPAT
395 	bool is_compat;
396 #endif
397 	union {
398 		const char __user *const __user *native;
399 #ifdef CONFIG_COMPAT
400 		const compat_uptr_t __user *compat;
401 #endif
402 	} ptr;
403 };
404 
405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
406 {
407 	const char __user *native;
408 
409 #ifdef CONFIG_COMPAT
410 	if (unlikely(argv.is_compat)) {
411 		compat_uptr_t compat;
412 
413 		if (get_user(compat, argv.ptr.compat + nr))
414 			return ERR_PTR(-EFAULT);
415 
416 		return compat_ptr(compat);
417 	}
418 #endif
419 
420 	if (get_user(native, argv.ptr.native + nr))
421 		return ERR_PTR(-EFAULT);
422 
423 	return native;
424 }
425 
426 /*
427  * count() counts the number of strings in array ARGV.
428  */
429 static int count(struct user_arg_ptr argv, int max)
430 {
431 	int i = 0;
432 
433 	if (argv.ptr.native != NULL) {
434 		for (;;) {
435 			const char __user *p = get_user_arg_ptr(argv, i);
436 
437 			if (!p)
438 				break;
439 
440 			if (IS_ERR(p))
441 				return -EFAULT;
442 
443 			if (i >= max)
444 				return -E2BIG;
445 			++i;
446 
447 			if (fatal_signal_pending(current))
448 				return -ERESTARTNOHAND;
449 			cond_resched();
450 		}
451 	}
452 	return i;
453 }
454 
455 static int count_strings_kernel(const char *const *argv)
456 {
457 	int i;
458 
459 	if (!argv)
460 		return 0;
461 
462 	for (i = 0; argv[i]; ++i) {
463 		if (i >= MAX_ARG_STRINGS)
464 			return -E2BIG;
465 		if (fatal_signal_pending(current))
466 			return -ERESTARTNOHAND;
467 		cond_resched();
468 	}
469 	return i;
470 }
471 
472 static int bprm_stack_limits(struct linux_binprm *bprm)
473 {
474 	unsigned long limit, ptr_size;
475 
476 	/*
477 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
478 	 * (whichever is smaller) for the argv+env strings.
479 	 * This ensures that:
480 	 *  - the remaining binfmt code will not run out of stack space,
481 	 *  - the program will have a reasonable amount of stack left
482 	 *    to work from.
483 	 */
484 	limit = _STK_LIM / 4 * 3;
485 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
486 	/*
487 	 * We've historically supported up to 32 pages (ARG_MAX)
488 	 * of argument strings even with small stacks
489 	 */
490 	limit = max_t(unsigned long, limit, ARG_MAX);
491 	/*
492 	 * We must account for the size of all the argv and envp pointers to
493 	 * the argv and envp strings, since they will also take up space in
494 	 * the stack. They aren't stored until much later when we can't
495 	 * signal to the parent that the child has run out of stack space.
496 	 * Instead, calculate it here so it's possible to fail gracefully.
497 	 */
498 	ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
499 	if (limit <= ptr_size)
500 		return -E2BIG;
501 	limit -= ptr_size;
502 
503 	bprm->argmin = bprm->p - limit;
504 	return 0;
505 }
506 
507 /*
508  * 'copy_strings()' copies argument/environment strings from the old
509  * processes's memory to the new process's stack.  The call to get_user_pages()
510  * ensures the destination page is created and not swapped out.
511  */
512 static int copy_strings(int argc, struct user_arg_ptr argv,
513 			struct linux_binprm *bprm)
514 {
515 	struct page *kmapped_page = NULL;
516 	char *kaddr = NULL;
517 	unsigned long kpos = 0;
518 	int ret;
519 
520 	while (argc-- > 0) {
521 		const char __user *str;
522 		int len;
523 		unsigned long pos;
524 
525 		ret = -EFAULT;
526 		str = get_user_arg_ptr(argv, argc);
527 		if (IS_ERR(str))
528 			goto out;
529 
530 		len = strnlen_user(str, MAX_ARG_STRLEN);
531 		if (!len)
532 			goto out;
533 
534 		ret = -E2BIG;
535 		if (!valid_arg_len(bprm, len))
536 			goto out;
537 
538 		/* We're going to work our way backwords. */
539 		pos = bprm->p;
540 		str += len;
541 		bprm->p -= len;
542 #ifdef CONFIG_MMU
543 		if (bprm->p < bprm->argmin)
544 			goto out;
545 #endif
546 
547 		while (len > 0) {
548 			int offset, bytes_to_copy;
549 
550 			if (fatal_signal_pending(current)) {
551 				ret = -ERESTARTNOHAND;
552 				goto out;
553 			}
554 			cond_resched();
555 
556 			offset = pos % PAGE_SIZE;
557 			if (offset == 0)
558 				offset = PAGE_SIZE;
559 
560 			bytes_to_copy = offset;
561 			if (bytes_to_copy > len)
562 				bytes_to_copy = len;
563 
564 			offset -= bytes_to_copy;
565 			pos -= bytes_to_copy;
566 			str -= bytes_to_copy;
567 			len -= bytes_to_copy;
568 
569 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
570 				struct page *page;
571 
572 				page = get_arg_page(bprm, pos, 1);
573 				if (!page) {
574 					ret = -E2BIG;
575 					goto out;
576 				}
577 
578 				if (kmapped_page) {
579 					flush_dcache_page(kmapped_page);
580 					kunmap(kmapped_page);
581 					put_arg_page(kmapped_page);
582 				}
583 				kmapped_page = page;
584 				kaddr = kmap(kmapped_page);
585 				kpos = pos & PAGE_MASK;
586 				flush_arg_page(bprm, kpos, kmapped_page);
587 			}
588 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
589 				ret = -EFAULT;
590 				goto out;
591 			}
592 		}
593 	}
594 	ret = 0;
595 out:
596 	if (kmapped_page) {
597 		flush_dcache_page(kmapped_page);
598 		kunmap(kmapped_page);
599 		put_arg_page(kmapped_page);
600 	}
601 	return ret;
602 }
603 
604 /*
605  * Copy and argument/environment string from the kernel to the processes stack.
606  */
607 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
608 {
609 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
610 	unsigned long pos = bprm->p;
611 
612 	if (len == 0)
613 		return -EFAULT;
614 	if (!valid_arg_len(bprm, len))
615 		return -E2BIG;
616 
617 	/* We're going to work our way backwards. */
618 	arg += len;
619 	bprm->p -= len;
620 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
621 		return -E2BIG;
622 
623 	while (len > 0) {
624 		unsigned int bytes_to_copy = min_t(unsigned int, len,
625 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
626 		struct page *page;
627 		char *kaddr;
628 
629 		pos -= bytes_to_copy;
630 		arg -= bytes_to_copy;
631 		len -= bytes_to_copy;
632 
633 		page = get_arg_page(bprm, pos, 1);
634 		if (!page)
635 			return -E2BIG;
636 		kaddr = kmap_atomic(page);
637 		flush_arg_page(bprm, pos & PAGE_MASK, page);
638 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
639 		flush_dcache_page(page);
640 		kunmap_atomic(kaddr);
641 		put_arg_page(page);
642 	}
643 
644 	return 0;
645 }
646 EXPORT_SYMBOL(copy_string_kernel);
647 
648 static int copy_strings_kernel(int argc, const char *const *argv,
649 			       struct linux_binprm *bprm)
650 {
651 	while (argc-- > 0) {
652 		int ret = copy_string_kernel(argv[argc], bprm);
653 		if (ret < 0)
654 			return ret;
655 		if (fatal_signal_pending(current))
656 			return -ERESTARTNOHAND;
657 		cond_resched();
658 	}
659 	return 0;
660 }
661 
662 #ifdef CONFIG_MMU
663 
664 /*
665  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
666  * the binfmt code determines where the new stack should reside, we shift it to
667  * its final location.  The process proceeds as follows:
668  *
669  * 1) Use shift to calculate the new vma endpoints.
670  * 2) Extend vma to cover both the old and new ranges.  This ensures the
671  *    arguments passed to subsequent functions are consistent.
672  * 3) Move vma's page tables to the new range.
673  * 4) Free up any cleared pgd range.
674  * 5) Shrink the vma to cover only the new range.
675  */
676 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
677 {
678 	struct mm_struct *mm = vma->vm_mm;
679 	unsigned long old_start = vma->vm_start;
680 	unsigned long old_end = vma->vm_end;
681 	unsigned long length = old_end - old_start;
682 	unsigned long new_start = old_start - shift;
683 	unsigned long new_end = old_end - shift;
684 	struct mmu_gather tlb;
685 
686 	BUG_ON(new_start > new_end);
687 
688 	/*
689 	 * ensure there are no vmas between where we want to go
690 	 * and where we are
691 	 */
692 	if (vma != find_vma(mm, new_start))
693 		return -EFAULT;
694 
695 	/*
696 	 * cover the whole range: [new_start, old_end)
697 	 */
698 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
699 		return -ENOMEM;
700 
701 	/*
702 	 * move the page tables downwards, on failure we rely on
703 	 * process cleanup to remove whatever mess we made.
704 	 */
705 	if (length != move_page_tables(vma, old_start,
706 				       vma, new_start, length, false))
707 		return -ENOMEM;
708 
709 	lru_add_drain();
710 	tlb_gather_mmu(&tlb, mm);
711 	if (new_end > old_start) {
712 		/*
713 		 * when the old and new regions overlap clear from new_end.
714 		 */
715 		free_pgd_range(&tlb, new_end, old_end, new_end,
716 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
717 	} else {
718 		/*
719 		 * otherwise, clean from old_start; this is done to not touch
720 		 * the address space in [new_end, old_start) some architectures
721 		 * have constraints on va-space that make this illegal (IA64) -
722 		 * for the others its just a little faster.
723 		 */
724 		free_pgd_range(&tlb, old_start, old_end, new_end,
725 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
726 	}
727 	tlb_finish_mmu(&tlb);
728 
729 	/*
730 	 * Shrink the vma to just the new range.  Always succeeds.
731 	 */
732 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
733 
734 	return 0;
735 }
736 
737 /*
738  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
739  * the stack is optionally relocated, and some extra space is added.
740  */
741 int setup_arg_pages(struct linux_binprm *bprm,
742 		    unsigned long stack_top,
743 		    int executable_stack)
744 {
745 	unsigned long ret;
746 	unsigned long stack_shift;
747 	struct mm_struct *mm = current->mm;
748 	struct vm_area_struct *vma = bprm->vma;
749 	struct vm_area_struct *prev = NULL;
750 	unsigned long vm_flags;
751 	unsigned long stack_base;
752 	unsigned long stack_size;
753 	unsigned long stack_expand;
754 	unsigned long rlim_stack;
755 
756 #ifdef CONFIG_STACK_GROWSUP
757 	/* Limit stack size */
758 	stack_base = bprm->rlim_stack.rlim_max;
759 
760 	stack_base = calc_max_stack_size(stack_base);
761 
762 	/* Add space for stack randomization. */
763 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
764 
765 	/* Make sure we didn't let the argument array grow too large. */
766 	if (vma->vm_end - vma->vm_start > stack_base)
767 		return -ENOMEM;
768 
769 	stack_base = PAGE_ALIGN(stack_top - stack_base);
770 
771 	stack_shift = vma->vm_start - stack_base;
772 	mm->arg_start = bprm->p - stack_shift;
773 	bprm->p = vma->vm_end - stack_shift;
774 #else
775 	stack_top = arch_align_stack(stack_top);
776 	stack_top = PAGE_ALIGN(stack_top);
777 
778 	if (unlikely(stack_top < mmap_min_addr) ||
779 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
780 		return -ENOMEM;
781 
782 	stack_shift = vma->vm_end - stack_top;
783 
784 	bprm->p -= stack_shift;
785 	mm->arg_start = bprm->p;
786 #endif
787 
788 	if (bprm->loader)
789 		bprm->loader -= stack_shift;
790 	bprm->exec -= stack_shift;
791 
792 	if (mmap_write_lock_killable(mm))
793 		return -EINTR;
794 
795 	vm_flags = VM_STACK_FLAGS;
796 
797 	/*
798 	 * Adjust stack execute permissions; explicitly enable for
799 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
800 	 * (arch default) otherwise.
801 	 */
802 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
803 		vm_flags |= VM_EXEC;
804 	else if (executable_stack == EXSTACK_DISABLE_X)
805 		vm_flags &= ~VM_EXEC;
806 	vm_flags |= mm->def_flags;
807 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
808 
809 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
810 			vm_flags);
811 	if (ret)
812 		goto out_unlock;
813 	BUG_ON(prev != vma);
814 
815 	if (unlikely(vm_flags & VM_EXEC)) {
816 		pr_warn_once("process '%pD4' started with executable stack\n",
817 			     bprm->file);
818 	}
819 
820 	/* Move stack pages down in memory. */
821 	if (stack_shift) {
822 		ret = shift_arg_pages(vma, stack_shift);
823 		if (ret)
824 			goto out_unlock;
825 	}
826 
827 	/* mprotect_fixup is overkill to remove the temporary stack flags */
828 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
829 
830 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
831 	stack_size = vma->vm_end - vma->vm_start;
832 	/*
833 	 * Align this down to a page boundary as expand_stack
834 	 * will align it up.
835 	 */
836 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
837 #ifdef CONFIG_STACK_GROWSUP
838 	if (stack_size + stack_expand > rlim_stack)
839 		stack_base = vma->vm_start + rlim_stack;
840 	else
841 		stack_base = vma->vm_end + stack_expand;
842 #else
843 	if (stack_size + stack_expand > rlim_stack)
844 		stack_base = vma->vm_end - rlim_stack;
845 	else
846 		stack_base = vma->vm_start - stack_expand;
847 #endif
848 	current->mm->start_stack = bprm->p;
849 	ret = expand_stack(vma, stack_base);
850 	if (ret)
851 		ret = -EFAULT;
852 
853 out_unlock:
854 	mmap_write_unlock(mm);
855 	return ret;
856 }
857 EXPORT_SYMBOL(setup_arg_pages);
858 
859 #else
860 
861 /*
862  * Transfer the program arguments and environment from the holding pages
863  * onto the stack. The provided stack pointer is adjusted accordingly.
864  */
865 int transfer_args_to_stack(struct linux_binprm *bprm,
866 			   unsigned long *sp_location)
867 {
868 	unsigned long index, stop, sp;
869 	int ret = 0;
870 
871 	stop = bprm->p >> PAGE_SHIFT;
872 	sp = *sp_location;
873 
874 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
875 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
876 		char *src = kmap(bprm->page[index]) + offset;
877 		sp -= PAGE_SIZE - offset;
878 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
879 			ret = -EFAULT;
880 		kunmap(bprm->page[index]);
881 		if (ret)
882 			goto out;
883 	}
884 
885 	*sp_location = sp;
886 
887 out:
888 	return ret;
889 }
890 EXPORT_SYMBOL(transfer_args_to_stack);
891 
892 #endif /* CONFIG_MMU */
893 
894 static struct file *do_open_execat(int fd, struct filename *name, int flags)
895 {
896 	struct file *file;
897 	int err;
898 	struct open_flags open_exec_flags = {
899 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
900 		.acc_mode = MAY_EXEC,
901 		.intent = LOOKUP_OPEN,
902 		.lookup_flags = LOOKUP_FOLLOW,
903 	};
904 
905 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
906 		return ERR_PTR(-EINVAL);
907 	if (flags & AT_SYMLINK_NOFOLLOW)
908 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
909 	if (flags & AT_EMPTY_PATH)
910 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
911 
912 	file = do_filp_open(fd, name, &open_exec_flags);
913 	if (IS_ERR(file))
914 		goto out;
915 
916 	/*
917 	 * may_open() has already checked for this, so it should be
918 	 * impossible to trip now. But we need to be extra cautious
919 	 * and check again at the very end too.
920 	 */
921 	err = -EACCES;
922 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
923 			 path_noexec(&file->f_path)))
924 		goto exit;
925 
926 	err = deny_write_access(file);
927 	if (err)
928 		goto exit;
929 
930 	if (name->name[0] != '\0')
931 		fsnotify_open(file);
932 
933 out:
934 	return file;
935 
936 exit:
937 	fput(file);
938 	return ERR_PTR(err);
939 }
940 
941 struct file *open_exec(const char *name)
942 {
943 	struct filename *filename = getname_kernel(name);
944 	struct file *f = ERR_CAST(filename);
945 
946 	if (!IS_ERR(filename)) {
947 		f = do_open_execat(AT_FDCWD, filename, 0);
948 		putname(filename);
949 	}
950 	return f;
951 }
952 EXPORT_SYMBOL(open_exec);
953 
954 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
955     defined(CONFIG_BINFMT_ELF_FDPIC)
956 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
957 {
958 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
959 	if (res > 0)
960 		flush_icache_user_range(addr, addr + len);
961 	return res;
962 }
963 EXPORT_SYMBOL(read_code);
964 #endif
965 
966 /*
967  * Maps the mm_struct mm into the current task struct.
968  * On success, this function returns with exec_update_lock
969  * held for writing.
970  */
971 static int exec_mmap(struct mm_struct *mm)
972 {
973 	struct task_struct *tsk;
974 	struct mm_struct *old_mm, *active_mm;
975 	int ret;
976 
977 	/* Notify parent that we're no longer interested in the old VM */
978 	tsk = current;
979 	old_mm = current->mm;
980 	exec_mm_release(tsk, old_mm);
981 	if (old_mm)
982 		sync_mm_rss(old_mm);
983 
984 	ret = down_write_killable(&tsk->signal->exec_update_lock);
985 	if (ret)
986 		return ret;
987 
988 	if (old_mm) {
989 		/*
990 		 * If there is a pending fatal signal perhaps a signal
991 		 * whose default action is to create a coredump get
992 		 * out and die instead of going through with the exec.
993 		 */
994 		ret = mmap_read_lock_killable(old_mm);
995 		if (ret) {
996 			up_write(&tsk->signal->exec_update_lock);
997 			return ret;
998 		}
999 	}
1000 
1001 	task_lock(tsk);
1002 	membarrier_exec_mmap(mm);
1003 
1004 	local_irq_disable();
1005 	active_mm = tsk->active_mm;
1006 	tsk->active_mm = mm;
1007 	tsk->mm = mm;
1008 	/*
1009 	 * This prevents preemption while active_mm is being loaded and
1010 	 * it and mm are being updated, which could cause problems for
1011 	 * lazy tlb mm refcounting when these are updated by context
1012 	 * switches. Not all architectures can handle irqs off over
1013 	 * activate_mm yet.
1014 	 */
1015 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1016 		local_irq_enable();
1017 	activate_mm(active_mm, mm);
1018 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1019 		local_irq_enable();
1020 	tsk->mm->vmacache_seqnum = 0;
1021 	vmacache_flush(tsk);
1022 	task_unlock(tsk);
1023 	if (old_mm) {
1024 		mmap_read_unlock(old_mm);
1025 		BUG_ON(active_mm != old_mm);
1026 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1027 		mm_update_next_owner(old_mm);
1028 		mmput(old_mm);
1029 		return 0;
1030 	}
1031 	mmdrop(active_mm);
1032 	return 0;
1033 }
1034 
1035 static int de_thread(struct task_struct *tsk)
1036 {
1037 	struct signal_struct *sig = tsk->signal;
1038 	struct sighand_struct *oldsighand = tsk->sighand;
1039 	spinlock_t *lock = &oldsighand->siglock;
1040 
1041 	if (thread_group_empty(tsk))
1042 		goto no_thread_group;
1043 
1044 	/*
1045 	 * Kill all other threads in the thread group.
1046 	 */
1047 	spin_lock_irq(lock);
1048 	if (signal_group_exit(sig)) {
1049 		/*
1050 		 * Another group action in progress, just
1051 		 * return so that the signal is processed.
1052 		 */
1053 		spin_unlock_irq(lock);
1054 		return -EAGAIN;
1055 	}
1056 
1057 	sig->group_exit_task = tsk;
1058 	sig->notify_count = zap_other_threads(tsk);
1059 	if (!thread_group_leader(tsk))
1060 		sig->notify_count--;
1061 
1062 	while (sig->notify_count) {
1063 		__set_current_state(TASK_KILLABLE);
1064 		spin_unlock_irq(lock);
1065 		schedule();
1066 		if (__fatal_signal_pending(tsk))
1067 			goto killed;
1068 		spin_lock_irq(lock);
1069 	}
1070 	spin_unlock_irq(lock);
1071 
1072 	/*
1073 	 * At this point all other threads have exited, all we have to
1074 	 * do is to wait for the thread group leader to become inactive,
1075 	 * and to assume its PID:
1076 	 */
1077 	if (!thread_group_leader(tsk)) {
1078 		struct task_struct *leader = tsk->group_leader;
1079 
1080 		for (;;) {
1081 			cgroup_threadgroup_change_begin(tsk);
1082 			write_lock_irq(&tasklist_lock);
1083 			/*
1084 			 * Do this under tasklist_lock to ensure that
1085 			 * exit_notify() can't miss ->group_exit_task
1086 			 */
1087 			sig->notify_count = -1;
1088 			if (likely(leader->exit_state))
1089 				break;
1090 			__set_current_state(TASK_KILLABLE);
1091 			write_unlock_irq(&tasklist_lock);
1092 			cgroup_threadgroup_change_end(tsk);
1093 			schedule();
1094 			if (__fatal_signal_pending(tsk))
1095 				goto killed;
1096 		}
1097 
1098 		/*
1099 		 * The only record we have of the real-time age of a
1100 		 * process, regardless of execs it's done, is start_time.
1101 		 * All the past CPU time is accumulated in signal_struct
1102 		 * from sister threads now dead.  But in this non-leader
1103 		 * exec, nothing survives from the original leader thread,
1104 		 * whose birth marks the true age of this process now.
1105 		 * When we take on its identity by switching to its PID, we
1106 		 * also take its birthdate (always earlier than our own).
1107 		 */
1108 		tsk->start_time = leader->start_time;
1109 		tsk->start_boottime = leader->start_boottime;
1110 
1111 		BUG_ON(!same_thread_group(leader, tsk));
1112 		/*
1113 		 * An exec() starts a new thread group with the
1114 		 * TGID of the previous thread group. Rehash the
1115 		 * two threads with a switched PID, and release
1116 		 * the former thread group leader:
1117 		 */
1118 
1119 		/* Become a process group leader with the old leader's pid.
1120 		 * The old leader becomes a thread of the this thread group.
1121 		 */
1122 		exchange_tids(tsk, leader);
1123 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1124 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1125 		transfer_pid(leader, tsk, PIDTYPE_SID);
1126 
1127 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1128 		list_replace_init(&leader->sibling, &tsk->sibling);
1129 
1130 		tsk->group_leader = tsk;
1131 		leader->group_leader = tsk;
1132 
1133 		tsk->exit_signal = SIGCHLD;
1134 		leader->exit_signal = -1;
1135 
1136 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1137 		leader->exit_state = EXIT_DEAD;
1138 
1139 		/*
1140 		 * We are going to release_task()->ptrace_unlink() silently,
1141 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1142 		 * the tracer wont't block again waiting for this thread.
1143 		 */
1144 		if (unlikely(leader->ptrace))
1145 			__wake_up_parent(leader, leader->parent);
1146 		write_unlock_irq(&tasklist_lock);
1147 		cgroup_threadgroup_change_end(tsk);
1148 
1149 		release_task(leader);
1150 	}
1151 
1152 	sig->group_exit_task = NULL;
1153 	sig->notify_count = 0;
1154 
1155 no_thread_group:
1156 	/* we have changed execution domain */
1157 	tsk->exit_signal = SIGCHLD;
1158 
1159 	BUG_ON(!thread_group_leader(tsk));
1160 	return 0;
1161 
1162 killed:
1163 	/* protects against exit_notify() and __exit_signal() */
1164 	read_lock(&tasklist_lock);
1165 	sig->group_exit_task = NULL;
1166 	sig->notify_count = 0;
1167 	read_unlock(&tasklist_lock);
1168 	return -EAGAIN;
1169 }
1170 
1171 
1172 /*
1173  * This function makes sure the current process has its own signal table,
1174  * so that flush_signal_handlers can later reset the handlers without
1175  * disturbing other processes.  (Other processes might share the signal
1176  * table via the CLONE_SIGHAND option to clone().)
1177  */
1178 static int unshare_sighand(struct task_struct *me)
1179 {
1180 	struct sighand_struct *oldsighand = me->sighand;
1181 
1182 	if (refcount_read(&oldsighand->count) != 1) {
1183 		struct sighand_struct *newsighand;
1184 		/*
1185 		 * This ->sighand is shared with the CLONE_SIGHAND
1186 		 * but not CLONE_THREAD task, switch to the new one.
1187 		 */
1188 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1189 		if (!newsighand)
1190 			return -ENOMEM;
1191 
1192 		refcount_set(&newsighand->count, 1);
1193 		memcpy(newsighand->action, oldsighand->action,
1194 		       sizeof(newsighand->action));
1195 
1196 		write_lock_irq(&tasklist_lock);
1197 		spin_lock(&oldsighand->siglock);
1198 		rcu_assign_pointer(me->sighand, newsighand);
1199 		spin_unlock(&oldsighand->siglock);
1200 		write_unlock_irq(&tasklist_lock);
1201 
1202 		__cleanup_sighand(oldsighand);
1203 	}
1204 	return 0;
1205 }
1206 
1207 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1208 {
1209 	task_lock(tsk);
1210 	strncpy(buf, tsk->comm, buf_size);
1211 	task_unlock(tsk);
1212 	return buf;
1213 }
1214 EXPORT_SYMBOL_GPL(__get_task_comm);
1215 
1216 /*
1217  * These functions flushes out all traces of the currently running executable
1218  * so that a new one can be started
1219  */
1220 
1221 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1222 {
1223 	task_lock(tsk);
1224 	trace_task_rename(tsk, buf);
1225 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1226 	task_unlock(tsk);
1227 	perf_event_comm(tsk, exec);
1228 }
1229 
1230 /*
1231  * Calling this is the point of no return. None of the failures will be
1232  * seen by userspace since either the process is already taking a fatal
1233  * signal (via de_thread() or coredump), or will have SEGV raised
1234  * (after exec_mmap()) by search_binary_handler (see below).
1235  */
1236 int begin_new_exec(struct linux_binprm * bprm)
1237 {
1238 	struct task_struct *me = current;
1239 	int retval;
1240 
1241 	/* Once we are committed compute the creds */
1242 	retval = bprm_creds_from_file(bprm);
1243 	if (retval)
1244 		return retval;
1245 
1246 	/*
1247 	 * Ensure all future errors are fatal.
1248 	 */
1249 	bprm->point_of_no_return = true;
1250 
1251 	/*
1252 	 * Make this the only thread in the thread group.
1253 	 */
1254 	retval = de_thread(me);
1255 	if (retval)
1256 		goto out;
1257 
1258 	/*
1259 	 * Cancel any io_uring activity across execve
1260 	 */
1261 	io_uring_task_cancel();
1262 
1263 	/* Ensure the files table is not shared. */
1264 	retval = unshare_files();
1265 	if (retval)
1266 		goto out;
1267 
1268 	/*
1269 	 * Must be called _before_ exec_mmap() as bprm->mm is
1270 	 * not visibile until then. This also enables the update
1271 	 * to be lockless.
1272 	 */
1273 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1274 	if (retval)
1275 		goto out;
1276 
1277 	/* If the binary is not readable then enforce mm->dumpable=0 */
1278 	would_dump(bprm, bprm->file);
1279 	if (bprm->have_execfd)
1280 		would_dump(bprm, bprm->executable);
1281 
1282 	/*
1283 	 * Release all of the old mmap stuff
1284 	 */
1285 	acct_arg_size(bprm, 0);
1286 	retval = exec_mmap(bprm->mm);
1287 	if (retval)
1288 		goto out;
1289 
1290 	bprm->mm = NULL;
1291 
1292 #ifdef CONFIG_POSIX_TIMERS
1293 	exit_itimers(me->signal);
1294 	flush_itimer_signals();
1295 #endif
1296 
1297 	/*
1298 	 * Make the signal table private.
1299 	 */
1300 	retval = unshare_sighand(me);
1301 	if (retval)
1302 		goto out_unlock;
1303 
1304 	/*
1305 	 * Ensure that the uaccess routines can actually operate on userspace
1306 	 * pointers:
1307 	 */
1308 	force_uaccess_begin();
1309 
1310 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1311 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1312 	flush_thread();
1313 	me->personality &= ~bprm->per_clear;
1314 
1315 	clear_syscall_work_syscall_user_dispatch(me);
1316 
1317 	/*
1318 	 * We have to apply CLOEXEC before we change whether the process is
1319 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1320 	 * trying to access the should-be-closed file descriptors of a process
1321 	 * undergoing exec(2).
1322 	 */
1323 	do_close_on_exec(me->files);
1324 
1325 	if (bprm->secureexec) {
1326 		/* Make sure parent cannot signal privileged process. */
1327 		me->pdeath_signal = 0;
1328 
1329 		/*
1330 		 * For secureexec, reset the stack limit to sane default to
1331 		 * avoid bad behavior from the prior rlimits. This has to
1332 		 * happen before arch_pick_mmap_layout(), which examines
1333 		 * RLIMIT_STACK, but after the point of no return to avoid
1334 		 * needing to clean up the change on failure.
1335 		 */
1336 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1337 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1338 	}
1339 
1340 	me->sas_ss_sp = me->sas_ss_size = 0;
1341 
1342 	/*
1343 	 * Figure out dumpability. Note that this checking only of current
1344 	 * is wrong, but userspace depends on it. This should be testing
1345 	 * bprm->secureexec instead.
1346 	 */
1347 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1348 	    !(uid_eq(current_euid(), current_uid()) &&
1349 	      gid_eq(current_egid(), current_gid())))
1350 		set_dumpable(current->mm, suid_dumpable);
1351 	else
1352 		set_dumpable(current->mm, SUID_DUMP_USER);
1353 
1354 	perf_event_exec();
1355 	__set_task_comm(me, kbasename(bprm->filename), true);
1356 
1357 	/* An exec changes our domain. We are no longer part of the thread
1358 	   group */
1359 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1360 	flush_signal_handlers(me, 0);
1361 
1362 	retval = set_cred_ucounts(bprm->cred);
1363 	if (retval < 0)
1364 		goto out_unlock;
1365 
1366 	/*
1367 	 * install the new credentials for this executable
1368 	 */
1369 	security_bprm_committing_creds(bprm);
1370 
1371 	commit_creds(bprm->cred);
1372 	bprm->cred = NULL;
1373 
1374 	/*
1375 	 * Disable monitoring for regular users
1376 	 * when executing setuid binaries. Must
1377 	 * wait until new credentials are committed
1378 	 * by commit_creds() above
1379 	 */
1380 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1381 		perf_event_exit_task(me);
1382 	/*
1383 	 * cred_guard_mutex must be held at least to this point to prevent
1384 	 * ptrace_attach() from altering our determination of the task's
1385 	 * credentials; any time after this it may be unlocked.
1386 	 */
1387 	security_bprm_committed_creds(bprm);
1388 
1389 	/* Pass the opened binary to the interpreter. */
1390 	if (bprm->have_execfd) {
1391 		retval = get_unused_fd_flags(0);
1392 		if (retval < 0)
1393 			goto out_unlock;
1394 		fd_install(retval, bprm->executable);
1395 		bprm->executable = NULL;
1396 		bprm->execfd = retval;
1397 	}
1398 	return 0;
1399 
1400 out_unlock:
1401 	up_write(&me->signal->exec_update_lock);
1402 out:
1403 	return retval;
1404 }
1405 EXPORT_SYMBOL(begin_new_exec);
1406 
1407 void would_dump(struct linux_binprm *bprm, struct file *file)
1408 {
1409 	struct inode *inode = file_inode(file);
1410 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1411 	if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1412 		struct user_namespace *old, *user_ns;
1413 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1414 
1415 		/* Ensure mm->user_ns contains the executable */
1416 		user_ns = old = bprm->mm->user_ns;
1417 		while ((user_ns != &init_user_ns) &&
1418 		       !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1419 			user_ns = user_ns->parent;
1420 
1421 		if (old != user_ns) {
1422 			bprm->mm->user_ns = get_user_ns(user_ns);
1423 			put_user_ns(old);
1424 		}
1425 	}
1426 }
1427 EXPORT_SYMBOL(would_dump);
1428 
1429 void setup_new_exec(struct linux_binprm * bprm)
1430 {
1431 	/* Setup things that can depend upon the personality */
1432 	struct task_struct *me = current;
1433 
1434 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1435 
1436 	arch_setup_new_exec();
1437 
1438 	/* Set the new mm task size. We have to do that late because it may
1439 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1440 	 * some architectures like powerpc
1441 	 */
1442 	me->mm->task_size = TASK_SIZE;
1443 	up_write(&me->signal->exec_update_lock);
1444 	mutex_unlock(&me->signal->cred_guard_mutex);
1445 }
1446 EXPORT_SYMBOL(setup_new_exec);
1447 
1448 /* Runs immediately before start_thread() takes over. */
1449 void finalize_exec(struct linux_binprm *bprm)
1450 {
1451 	/* Store any stack rlimit changes before starting thread. */
1452 	task_lock(current->group_leader);
1453 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1454 	task_unlock(current->group_leader);
1455 }
1456 EXPORT_SYMBOL(finalize_exec);
1457 
1458 /*
1459  * Prepare credentials and lock ->cred_guard_mutex.
1460  * setup_new_exec() commits the new creds and drops the lock.
1461  * Or, if exec fails before, free_bprm() should release ->cred
1462  * and unlock.
1463  */
1464 static int prepare_bprm_creds(struct linux_binprm *bprm)
1465 {
1466 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1467 		return -ERESTARTNOINTR;
1468 
1469 	bprm->cred = prepare_exec_creds();
1470 	if (likely(bprm->cred))
1471 		return 0;
1472 
1473 	mutex_unlock(&current->signal->cred_guard_mutex);
1474 	return -ENOMEM;
1475 }
1476 
1477 static void free_bprm(struct linux_binprm *bprm)
1478 {
1479 	if (bprm->mm) {
1480 		acct_arg_size(bprm, 0);
1481 		mmput(bprm->mm);
1482 	}
1483 	free_arg_pages(bprm);
1484 	if (bprm->cred) {
1485 		mutex_unlock(&current->signal->cred_guard_mutex);
1486 		abort_creds(bprm->cred);
1487 	}
1488 	if (bprm->file) {
1489 		allow_write_access(bprm->file);
1490 		fput(bprm->file);
1491 	}
1492 	if (bprm->executable)
1493 		fput(bprm->executable);
1494 	/* If a binfmt changed the interp, free it. */
1495 	if (bprm->interp != bprm->filename)
1496 		kfree(bprm->interp);
1497 	kfree(bprm->fdpath);
1498 	kfree(bprm);
1499 }
1500 
1501 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1502 {
1503 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1504 	int retval = -ENOMEM;
1505 	if (!bprm)
1506 		goto out;
1507 
1508 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1509 		bprm->filename = filename->name;
1510 	} else {
1511 		if (filename->name[0] == '\0')
1512 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1513 		else
1514 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1515 						  fd, filename->name);
1516 		if (!bprm->fdpath)
1517 			goto out_free;
1518 
1519 		bprm->filename = bprm->fdpath;
1520 	}
1521 	bprm->interp = bprm->filename;
1522 
1523 	retval = bprm_mm_init(bprm);
1524 	if (retval)
1525 		goto out_free;
1526 	return bprm;
1527 
1528 out_free:
1529 	free_bprm(bprm);
1530 out:
1531 	return ERR_PTR(retval);
1532 }
1533 
1534 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1535 {
1536 	/* If a binfmt changed the interp, free it first. */
1537 	if (bprm->interp != bprm->filename)
1538 		kfree(bprm->interp);
1539 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1540 	if (!bprm->interp)
1541 		return -ENOMEM;
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL(bprm_change_interp);
1545 
1546 /*
1547  * determine how safe it is to execute the proposed program
1548  * - the caller must hold ->cred_guard_mutex to protect against
1549  *   PTRACE_ATTACH or seccomp thread-sync
1550  */
1551 static void check_unsafe_exec(struct linux_binprm *bprm)
1552 {
1553 	struct task_struct *p = current, *t;
1554 	unsigned n_fs;
1555 
1556 	if (p->ptrace)
1557 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1558 
1559 	/*
1560 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1561 	 * mess up.
1562 	 */
1563 	if (task_no_new_privs(current))
1564 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1565 
1566 	t = p;
1567 	n_fs = 1;
1568 	spin_lock(&p->fs->lock);
1569 	rcu_read_lock();
1570 	while_each_thread(p, t) {
1571 		if (t->fs == p->fs)
1572 			n_fs++;
1573 	}
1574 	rcu_read_unlock();
1575 
1576 	if (p->fs->users > n_fs)
1577 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1578 	else
1579 		p->fs->in_exec = 1;
1580 	spin_unlock(&p->fs->lock);
1581 }
1582 
1583 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1584 {
1585 	/* Handle suid and sgid on files */
1586 	struct user_namespace *mnt_userns;
1587 	struct inode *inode;
1588 	unsigned int mode;
1589 	kuid_t uid;
1590 	kgid_t gid;
1591 
1592 	if (!mnt_may_suid(file->f_path.mnt))
1593 		return;
1594 
1595 	if (task_no_new_privs(current))
1596 		return;
1597 
1598 	inode = file->f_path.dentry->d_inode;
1599 	mode = READ_ONCE(inode->i_mode);
1600 	if (!(mode & (S_ISUID|S_ISGID)))
1601 		return;
1602 
1603 	mnt_userns = file_mnt_user_ns(file);
1604 
1605 	/* Be careful if suid/sgid is set */
1606 	inode_lock(inode);
1607 
1608 	/* reload atomically mode/uid/gid now that lock held */
1609 	mode = inode->i_mode;
1610 	uid = i_uid_into_mnt(mnt_userns, inode);
1611 	gid = i_gid_into_mnt(mnt_userns, inode);
1612 	inode_unlock(inode);
1613 
1614 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1615 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1616 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1617 		return;
1618 
1619 	if (mode & S_ISUID) {
1620 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1621 		bprm->cred->euid = uid;
1622 	}
1623 
1624 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1625 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1626 		bprm->cred->egid = gid;
1627 	}
1628 }
1629 
1630 /*
1631  * Compute brpm->cred based upon the final binary.
1632  */
1633 static int bprm_creds_from_file(struct linux_binprm *bprm)
1634 {
1635 	/* Compute creds based on which file? */
1636 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1637 
1638 	bprm_fill_uid(bprm, file);
1639 	return security_bprm_creds_from_file(bprm, file);
1640 }
1641 
1642 /*
1643  * Fill the binprm structure from the inode.
1644  * Read the first BINPRM_BUF_SIZE bytes
1645  *
1646  * This may be called multiple times for binary chains (scripts for example).
1647  */
1648 static int prepare_binprm(struct linux_binprm *bprm)
1649 {
1650 	loff_t pos = 0;
1651 
1652 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1653 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1654 }
1655 
1656 /*
1657  * Arguments are '\0' separated strings found at the location bprm->p
1658  * points to; chop off the first by relocating brpm->p to right after
1659  * the first '\0' encountered.
1660  */
1661 int remove_arg_zero(struct linux_binprm *bprm)
1662 {
1663 	int ret = 0;
1664 	unsigned long offset;
1665 	char *kaddr;
1666 	struct page *page;
1667 
1668 	if (!bprm->argc)
1669 		return 0;
1670 
1671 	do {
1672 		offset = bprm->p & ~PAGE_MASK;
1673 		page = get_arg_page(bprm, bprm->p, 0);
1674 		if (!page) {
1675 			ret = -EFAULT;
1676 			goto out;
1677 		}
1678 		kaddr = kmap_atomic(page);
1679 
1680 		for (; offset < PAGE_SIZE && kaddr[offset];
1681 				offset++, bprm->p++)
1682 			;
1683 
1684 		kunmap_atomic(kaddr);
1685 		put_arg_page(page);
1686 	} while (offset == PAGE_SIZE);
1687 
1688 	bprm->p++;
1689 	bprm->argc--;
1690 	ret = 0;
1691 
1692 out:
1693 	return ret;
1694 }
1695 EXPORT_SYMBOL(remove_arg_zero);
1696 
1697 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1698 /*
1699  * cycle the list of binary formats handler, until one recognizes the image
1700  */
1701 static int search_binary_handler(struct linux_binprm *bprm)
1702 {
1703 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1704 	struct linux_binfmt *fmt;
1705 	int retval;
1706 
1707 	retval = prepare_binprm(bprm);
1708 	if (retval < 0)
1709 		return retval;
1710 
1711 	retval = security_bprm_check(bprm);
1712 	if (retval)
1713 		return retval;
1714 
1715 	retval = -ENOENT;
1716  retry:
1717 	read_lock(&binfmt_lock);
1718 	list_for_each_entry(fmt, &formats, lh) {
1719 		if (!try_module_get(fmt->module))
1720 			continue;
1721 		read_unlock(&binfmt_lock);
1722 
1723 		retval = fmt->load_binary(bprm);
1724 
1725 		read_lock(&binfmt_lock);
1726 		put_binfmt(fmt);
1727 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1728 			read_unlock(&binfmt_lock);
1729 			return retval;
1730 		}
1731 	}
1732 	read_unlock(&binfmt_lock);
1733 
1734 	if (need_retry) {
1735 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1736 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1737 			return retval;
1738 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1739 			return retval;
1740 		need_retry = false;
1741 		goto retry;
1742 	}
1743 
1744 	return retval;
1745 }
1746 
1747 static int exec_binprm(struct linux_binprm *bprm)
1748 {
1749 	pid_t old_pid, old_vpid;
1750 	int ret, depth;
1751 
1752 	/* Need to fetch pid before load_binary changes it */
1753 	old_pid = current->pid;
1754 	rcu_read_lock();
1755 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1756 	rcu_read_unlock();
1757 
1758 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1759 	for (depth = 0;; depth++) {
1760 		struct file *exec;
1761 		if (depth > 5)
1762 			return -ELOOP;
1763 
1764 		ret = search_binary_handler(bprm);
1765 		if (ret < 0)
1766 			return ret;
1767 		if (!bprm->interpreter)
1768 			break;
1769 
1770 		exec = bprm->file;
1771 		bprm->file = bprm->interpreter;
1772 		bprm->interpreter = NULL;
1773 
1774 		allow_write_access(exec);
1775 		if (unlikely(bprm->have_execfd)) {
1776 			if (bprm->executable) {
1777 				fput(exec);
1778 				return -ENOEXEC;
1779 			}
1780 			bprm->executable = exec;
1781 		} else
1782 			fput(exec);
1783 	}
1784 
1785 	audit_bprm(bprm);
1786 	trace_sched_process_exec(current, old_pid, bprm);
1787 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1788 	proc_exec_connector(current);
1789 	return 0;
1790 }
1791 
1792 /*
1793  * sys_execve() executes a new program.
1794  */
1795 static int bprm_execve(struct linux_binprm *bprm,
1796 		       int fd, struct filename *filename, int flags)
1797 {
1798 	struct file *file;
1799 	int retval;
1800 
1801 	retval = prepare_bprm_creds(bprm);
1802 	if (retval)
1803 		return retval;
1804 
1805 	check_unsafe_exec(bprm);
1806 	current->in_execve = 1;
1807 
1808 	file = do_open_execat(fd, filename, flags);
1809 	retval = PTR_ERR(file);
1810 	if (IS_ERR(file))
1811 		goto out_unmark;
1812 
1813 	sched_exec();
1814 
1815 	bprm->file = file;
1816 	/*
1817 	 * Record that a name derived from an O_CLOEXEC fd will be
1818 	 * inaccessible after exec.  This allows the code in exec to
1819 	 * choose to fail when the executable is not mmaped into the
1820 	 * interpreter and an open file descriptor is not passed to
1821 	 * the interpreter.  This makes for a better user experience
1822 	 * than having the interpreter start and then immediately fail
1823 	 * when it finds the executable is inaccessible.
1824 	 */
1825 	if (bprm->fdpath && get_close_on_exec(fd))
1826 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1827 
1828 	/* Set the unchanging part of bprm->cred */
1829 	retval = security_bprm_creds_for_exec(bprm);
1830 	if (retval)
1831 		goto out;
1832 
1833 	retval = exec_binprm(bprm);
1834 	if (retval < 0)
1835 		goto out;
1836 
1837 	/* execve succeeded */
1838 	current->fs->in_exec = 0;
1839 	current->in_execve = 0;
1840 	rseq_execve(current);
1841 	acct_update_integrals(current);
1842 	task_numa_free(current, false);
1843 	return retval;
1844 
1845 out:
1846 	/*
1847 	 * If past the point of no return ensure the code never
1848 	 * returns to the userspace process.  Use an existing fatal
1849 	 * signal if present otherwise terminate the process with
1850 	 * SIGSEGV.
1851 	 */
1852 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1853 		force_fatal_sig(SIGSEGV);
1854 
1855 out_unmark:
1856 	current->fs->in_exec = 0;
1857 	current->in_execve = 0;
1858 
1859 	return retval;
1860 }
1861 
1862 static int do_execveat_common(int fd, struct filename *filename,
1863 			      struct user_arg_ptr argv,
1864 			      struct user_arg_ptr envp,
1865 			      int flags)
1866 {
1867 	struct linux_binprm *bprm;
1868 	int retval;
1869 
1870 	if (IS_ERR(filename))
1871 		return PTR_ERR(filename);
1872 
1873 	/*
1874 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1875 	 * set*uid() to execve() because too many poorly written programs
1876 	 * don't check setuid() return code.  Here we additionally recheck
1877 	 * whether NPROC limit is still exceeded.
1878 	 */
1879 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1880 	    is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1881 		retval = -EAGAIN;
1882 		goto out_ret;
1883 	}
1884 
1885 	/* We're below the limit (still or again), so we don't want to make
1886 	 * further execve() calls fail. */
1887 	current->flags &= ~PF_NPROC_EXCEEDED;
1888 
1889 	bprm = alloc_bprm(fd, filename);
1890 	if (IS_ERR(bprm)) {
1891 		retval = PTR_ERR(bprm);
1892 		goto out_ret;
1893 	}
1894 
1895 	retval = count(argv, MAX_ARG_STRINGS);
1896 	if (retval < 0)
1897 		goto out_free;
1898 	bprm->argc = retval;
1899 
1900 	retval = count(envp, MAX_ARG_STRINGS);
1901 	if (retval < 0)
1902 		goto out_free;
1903 	bprm->envc = retval;
1904 
1905 	retval = bprm_stack_limits(bprm);
1906 	if (retval < 0)
1907 		goto out_free;
1908 
1909 	retval = copy_string_kernel(bprm->filename, bprm);
1910 	if (retval < 0)
1911 		goto out_free;
1912 	bprm->exec = bprm->p;
1913 
1914 	retval = copy_strings(bprm->envc, envp, bprm);
1915 	if (retval < 0)
1916 		goto out_free;
1917 
1918 	retval = copy_strings(bprm->argc, argv, bprm);
1919 	if (retval < 0)
1920 		goto out_free;
1921 
1922 	retval = bprm_execve(bprm, fd, filename, flags);
1923 out_free:
1924 	free_bprm(bprm);
1925 
1926 out_ret:
1927 	putname(filename);
1928 	return retval;
1929 }
1930 
1931 int kernel_execve(const char *kernel_filename,
1932 		  const char *const *argv, const char *const *envp)
1933 {
1934 	struct filename *filename;
1935 	struct linux_binprm *bprm;
1936 	int fd = AT_FDCWD;
1937 	int retval;
1938 
1939 	filename = getname_kernel(kernel_filename);
1940 	if (IS_ERR(filename))
1941 		return PTR_ERR(filename);
1942 
1943 	bprm = alloc_bprm(fd, filename);
1944 	if (IS_ERR(bprm)) {
1945 		retval = PTR_ERR(bprm);
1946 		goto out_ret;
1947 	}
1948 
1949 	retval = count_strings_kernel(argv);
1950 	if (retval < 0)
1951 		goto out_free;
1952 	bprm->argc = retval;
1953 
1954 	retval = count_strings_kernel(envp);
1955 	if (retval < 0)
1956 		goto out_free;
1957 	bprm->envc = retval;
1958 
1959 	retval = bprm_stack_limits(bprm);
1960 	if (retval < 0)
1961 		goto out_free;
1962 
1963 	retval = copy_string_kernel(bprm->filename, bprm);
1964 	if (retval < 0)
1965 		goto out_free;
1966 	bprm->exec = bprm->p;
1967 
1968 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
1969 	if (retval < 0)
1970 		goto out_free;
1971 
1972 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
1973 	if (retval < 0)
1974 		goto out_free;
1975 
1976 	retval = bprm_execve(bprm, fd, filename, 0);
1977 out_free:
1978 	free_bprm(bprm);
1979 out_ret:
1980 	putname(filename);
1981 	return retval;
1982 }
1983 
1984 static int do_execve(struct filename *filename,
1985 	const char __user *const __user *__argv,
1986 	const char __user *const __user *__envp)
1987 {
1988 	struct user_arg_ptr argv = { .ptr.native = __argv };
1989 	struct user_arg_ptr envp = { .ptr.native = __envp };
1990 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1991 }
1992 
1993 static int do_execveat(int fd, struct filename *filename,
1994 		const char __user *const __user *__argv,
1995 		const char __user *const __user *__envp,
1996 		int flags)
1997 {
1998 	struct user_arg_ptr argv = { .ptr.native = __argv };
1999 	struct user_arg_ptr envp = { .ptr.native = __envp };
2000 
2001 	return do_execveat_common(fd, filename, argv, envp, flags);
2002 }
2003 
2004 #ifdef CONFIG_COMPAT
2005 static int compat_do_execve(struct filename *filename,
2006 	const compat_uptr_t __user *__argv,
2007 	const compat_uptr_t __user *__envp)
2008 {
2009 	struct user_arg_ptr argv = {
2010 		.is_compat = true,
2011 		.ptr.compat = __argv,
2012 	};
2013 	struct user_arg_ptr envp = {
2014 		.is_compat = true,
2015 		.ptr.compat = __envp,
2016 	};
2017 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2018 }
2019 
2020 static int compat_do_execveat(int fd, struct filename *filename,
2021 			      const compat_uptr_t __user *__argv,
2022 			      const compat_uptr_t __user *__envp,
2023 			      int flags)
2024 {
2025 	struct user_arg_ptr argv = {
2026 		.is_compat = true,
2027 		.ptr.compat = __argv,
2028 	};
2029 	struct user_arg_ptr envp = {
2030 		.is_compat = true,
2031 		.ptr.compat = __envp,
2032 	};
2033 	return do_execveat_common(fd, filename, argv, envp, flags);
2034 }
2035 #endif
2036 
2037 void set_binfmt(struct linux_binfmt *new)
2038 {
2039 	struct mm_struct *mm = current->mm;
2040 
2041 	if (mm->binfmt)
2042 		module_put(mm->binfmt->module);
2043 
2044 	mm->binfmt = new;
2045 	if (new)
2046 		__module_get(new->module);
2047 }
2048 EXPORT_SYMBOL(set_binfmt);
2049 
2050 /*
2051  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2052  */
2053 void set_dumpable(struct mm_struct *mm, int value)
2054 {
2055 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2056 		return;
2057 
2058 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2059 }
2060 
2061 SYSCALL_DEFINE3(execve,
2062 		const char __user *, filename,
2063 		const char __user *const __user *, argv,
2064 		const char __user *const __user *, envp)
2065 {
2066 	return do_execve(getname(filename), argv, envp);
2067 }
2068 
2069 SYSCALL_DEFINE5(execveat,
2070 		int, fd, const char __user *, filename,
2071 		const char __user *const __user *, argv,
2072 		const char __user *const __user *, envp,
2073 		int, flags)
2074 {
2075 	return do_execveat(fd,
2076 			   getname_uflags(filename, flags),
2077 			   argv, envp, flags);
2078 }
2079 
2080 #ifdef CONFIG_COMPAT
2081 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2082 	const compat_uptr_t __user *, argv,
2083 	const compat_uptr_t __user *, envp)
2084 {
2085 	return compat_do_execve(getname(filename), argv, envp);
2086 }
2087 
2088 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2089 		       const char __user *, filename,
2090 		       const compat_uptr_t __user *, argv,
2091 		       const compat_uptr_t __user *, envp,
2092 		       int,  flags)
2093 {
2094 	return compat_do_execveat(fd,
2095 				  getname_uflags(filename, flags),
2096 				  argv, envp, flags);
2097 }
2098 #endif
2099