1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/mm.h> 30 #include <linux/vmacache.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/tracehook.h> 59 #include <linux/kmod.h> 60 #include <linux/fsnotify.h> 61 #include <linux/fs_struct.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/mmu_context.h> 68 #include <asm/tlb.h> 69 70 #include <trace/events/task.h> 71 #include "internal.h" 72 73 #include <trace/events/sched.h> 74 75 int suid_dumpable = 0; 76 77 static LIST_HEAD(formats); 78 static DEFINE_RWLOCK(binfmt_lock); 79 80 void __register_binfmt(struct linux_binfmt * fmt, int insert) 81 { 82 BUG_ON(!fmt); 83 if (WARN_ON(!fmt->load_binary)) 84 return; 85 write_lock(&binfmt_lock); 86 insert ? list_add(&fmt->lh, &formats) : 87 list_add_tail(&fmt->lh, &formats); 88 write_unlock(&binfmt_lock); 89 } 90 91 EXPORT_SYMBOL(__register_binfmt); 92 93 void unregister_binfmt(struct linux_binfmt * fmt) 94 { 95 write_lock(&binfmt_lock); 96 list_del(&fmt->lh); 97 write_unlock(&binfmt_lock); 98 } 99 100 EXPORT_SYMBOL(unregister_binfmt); 101 102 static inline void put_binfmt(struct linux_binfmt * fmt) 103 { 104 module_put(fmt->module); 105 } 106 107 bool path_noexec(const struct path *path) 108 { 109 return (path->mnt->mnt_flags & MNT_NOEXEC) || 110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 111 } 112 113 #ifdef CONFIG_USELIB 114 /* 115 * Note that a shared library must be both readable and executable due to 116 * security reasons. 117 * 118 * Also note that we take the address to load from from the file itself. 119 */ 120 SYSCALL_DEFINE1(uselib, const char __user *, library) 121 { 122 struct linux_binfmt *fmt; 123 struct file *file; 124 struct filename *tmp = getname(library); 125 int error = PTR_ERR(tmp); 126 static const struct open_flags uselib_flags = { 127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 128 .acc_mode = MAY_READ | MAY_EXEC, 129 .intent = LOOKUP_OPEN, 130 .lookup_flags = LOOKUP_FOLLOW, 131 }; 132 133 if (IS_ERR(tmp)) 134 goto out; 135 136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 137 putname(tmp); 138 error = PTR_ERR(file); 139 if (IS_ERR(file)) 140 goto out; 141 142 error = -EINVAL; 143 if (!S_ISREG(file_inode(file)->i_mode)) 144 goto exit; 145 146 error = -EACCES; 147 if (path_noexec(&file->f_path)) 148 goto exit; 149 150 fsnotify_open(file); 151 152 error = -ENOEXEC; 153 154 read_lock(&binfmt_lock); 155 list_for_each_entry(fmt, &formats, lh) { 156 if (!fmt->load_shlib) 157 continue; 158 if (!try_module_get(fmt->module)) 159 continue; 160 read_unlock(&binfmt_lock); 161 error = fmt->load_shlib(file); 162 read_lock(&binfmt_lock); 163 put_binfmt(fmt); 164 if (error != -ENOEXEC) 165 break; 166 } 167 read_unlock(&binfmt_lock); 168 exit: 169 fput(file); 170 out: 171 return error; 172 } 173 #endif /* #ifdef CONFIG_USELIB */ 174 175 #ifdef CONFIG_MMU 176 /* 177 * The nascent bprm->mm is not visible until exec_mmap() but it can 178 * use a lot of memory, account these pages in current->mm temporary 179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 180 * change the counter back via acct_arg_size(0). 181 */ 182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 183 { 184 struct mm_struct *mm = current->mm; 185 long diff = (long)(pages - bprm->vma_pages); 186 187 if (!mm || !diff) 188 return; 189 190 bprm->vma_pages = pages; 191 add_mm_counter(mm, MM_ANONPAGES, diff); 192 } 193 194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 195 int write) 196 { 197 struct page *page; 198 int ret; 199 unsigned int gup_flags = FOLL_FORCE; 200 201 #ifdef CONFIG_STACK_GROWSUP 202 if (write) { 203 ret = expand_downwards(bprm->vma, pos); 204 if (ret < 0) 205 return NULL; 206 } 207 #endif 208 209 if (write) 210 gup_flags |= FOLL_WRITE; 211 212 /* 213 * We are doing an exec(). 'current' is the process 214 * doing the exec and bprm->mm is the new process's mm. 215 */ 216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, 217 &page, NULL, NULL); 218 if (ret <= 0) 219 return NULL; 220 221 if (write) 222 acct_arg_size(bprm, vma_pages(bprm->vma)); 223 224 return page; 225 } 226 227 static void put_arg_page(struct page *page) 228 { 229 put_page(page); 230 } 231 232 static void free_arg_pages(struct linux_binprm *bprm) 233 { 234 } 235 236 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 237 struct page *page) 238 { 239 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 240 } 241 242 static int __bprm_mm_init(struct linux_binprm *bprm) 243 { 244 int err; 245 struct vm_area_struct *vma = NULL; 246 struct mm_struct *mm = bprm->mm; 247 248 bprm->vma = vma = vm_area_alloc(mm); 249 if (!vma) 250 return -ENOMEM; 251 vma_set_anonymous(vma); 252 253 if (down_write_killable(&mm->mmap_sem)) { 254 err = -EINTR; 255 goto err_free; 256 } 257 258 /* 259 * Place the stack at the largest stack address the architecture 260 * supports. Later, we'll move this to an appropriate place. We don't 261 * use STACK_TOP because that can depend on attributes which aren't 262 * configured yet. 263 */ 264 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 265 vma->vm_end = STACK_TOP_MAX; 266 vma->vm_start = vma->vm_end - PAGE_SIZE; 267 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 268 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 269 270 err = insert_vm_struct(mm, vma); 271 if (err) 272 goto err; 273 274 mm->stack_vm = mm->total_vm = 1; 275 up_write(&mm->mmap_sem); 276 bprm->p = vma->vm_end - sizeof(void *); 277 return 0; 278 err: 279 up_write(&mm->mmap_sem); 280 err_free: 281 bprm->vma = NULL; 282 vm_area_free(vma); 283 return err; 284 } 285 286 static bool valid_arg_len(struct linux_binprm *bprm, long len) 287 { 288 return len <= MAX_ARG_STRLEN; 289 } 290 291 #else 292 293 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 294 { 295 } 296 297 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 298 int write) 299 { 300 struct page *page; 301 302 page = bprm->page[pos / PAGE_SIZE]; 303 if (!page && write) { 304 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 305 if (!page) 306 return NULL; 307 bprm->page[pos / PAGE_SIZE] = page; 308 } 309 310 return page; 311 } 312 313 static void put_arg_page(struct page *page) 314 { 315 } 316 317 static void free_arg_page(struct linux_binprm *bprm, int i) 318 { 319 if (bprm->page[i]) { 320 __free_page(bprm->page[i]); 321 bprm->page[i] = NULL; 322 } 323 } 324 325 static void free_arg_pages(struct linux_binprm *bprm) 326 { 327 int i; 328 329 for (i = 0; i < MAX_ARG_PAGES; i++) 330 free_arg_page(bprm, i); 331 } 332 333 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 334 struct page *page) 335 { 336 } 337 338 static int __bprm_mm_init(struct linux_binprm *bprm) 339 { 340 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 341 return 0; 342 } 343 344 static bool valid_arg_len(struct linux_binprm *bprm, long len) 345 { 346 return len <= bprm->p; 347 } 348 349 #endif /* CONFIG_MMU */ 350 351 /* 352 * Create a new mm_struct and populate it with a temporary stack 353 * vm_area_struct. We don't have enough context at this point to set the stack 354 * flags, permissions, and offset, so we use temporary values. We'll update 355 * them later in setup_arg_pages(). 356 */ 357 static int bprm_mm_init(struct linux_binprm *bprm) 358 { 359 int err; 360 struct mm_struct *mm = NULL; 361 362 bprm->mm = mm = mm_alloc(); 363 err = -ENOMEM; 364 if (!mm) 365 goto err; 366 367 /* Save current stack limit for all calculations made during exec. */ 368 task_lock(current->group_leader); 369 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 370 task_unlock(current->group_leader); 371 372 err = __bprm_mm_init(bprm); 373 if (err) 374 goto err; 375 376 return 0; 377 378 err: 379 if (mm) { 380 bprm->mm = NULL; 381 mmdrop(mm); 382 } 383 384 return err; 385 } 386 387 struct user_arg_ptr { 388 #ifdef CONFIG_COMPAT 389 bool is_compat; 390 #endif 391 union { 392 const char __user *const __user *native; 393 #ifdef CONFIG_COMPAT 394 const compat_uptr_t __user *compat; 395 #endif 396 } ptr; 397 }; 398 399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 400 { 401 const char __user *native; 402 403 #ifdef CONFIG_COMPAT 404 if (unlikely(argv.is_compat)) { 405 compat_uptr_t compat; 406 407 if (get_user(compat, argv.ptr.compat + nr)) 408 return ERR_PTR(-EFAULT); 409 410 return compat_ptr(compat); 411 } 412 #endif 413 414 if (get_user(native, argv.ptr.native + nr)) 415 return ERR_PTR(-EFAULT); 416 417 return native; 418 } 419 420 /* 421 * count() counts the number of strings in array ARGV. 422 */ 423 static int count(struct user_arg_ptr argv, int max) 424 { 425 int i = 0; 426 427 if (argv.ptr.native != NULL) { 428 for (;;) { 429 const char __user *p = get_user_arg_ptr(argv, i); 430 431 if (!p) 432 break; 433 434 if (IS_ERR(p)) 435 return -EFAULT; 436 437 if (i >= max) 438 return -E2BIG; 439 ++i; 440 441 if (fatal_signal_pending(current)) 442 return -ERESTARTNOHAND; 443 cond_resched(); 444 } 445 } 446 return i; 447 } 448 449 static int prepare_arg_pages(struct linux_binprm *bprm, 450 struct user_arg_ptr argv, struct user_arg_ptr envp) 451 { 452 unsigned long limit, ptr_size; 453 454 bprm->argc = count(argv, MAX_ARG_STRINGS); 455 if (bprm->argc < 0) 456 return bprm->argc; 457 458 bprm->envc = count(envp, MAX_ARG_STRINGS); 459 if (bprm->envc < 0) 460 return bprm->envc; 461 462 /* 463 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 464 * (whichever is smaller) for the argv+env strings. 465 * This ensures that: 466 * - the remaining binfmt code will not run out of stack space, 467 * - the program will have a reasonable amount of stack left 468 * to work from. 469 */ 470 limit = _STK_LIM / 4 * 3; 471 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 472 /* 473 * We've historically supported up to 32 pages (ARG_MAX) 474 * of argument strings even with small stacks 475 */ 476 limit = max_t(unsigned long, limit, ARG_MAX); 477 /* 478 * We must account for the size of all the argv and envp pointers to 479 * the argv and envp strings, since they will also take up space in 480 * the stack. They aren't stored until much later when we can't 481 * signal to the parent that the child has run out of stack space. 482 * Instead, calculate it here so it's possible to fail gracefully. 483 */ 484 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 485 if (limit <= ptr_size) 486 return -E2BIG; 487 limit -= ptr_size; 488 489 bprm->argmin = bprm->p - limit; 490 return 0; 491 } 492 493 /* 494 * 'copy_strings()' copies argument/environment strings from the old 495 * processes's memory to the new process's stack. The call to get_user_pages() 496 * ensures the destination page is created and not swapped out. 497 */ 498 static int copy_strings(int argc, struct user_arg_ptr argv, 499 struct linux_binprm *bprm) 500 { 501 struct page *kmapped_page = NULL; 502 char *kaddr = NULL; 503 unsigned long kpos = 0; 504 int ret; 505 506 while (argc-- > 0) { 507 const char __user *str; 508 int len; 509 unsigned long pos; 510 511 ret = -EFAULT; 512 str = get_user_arg_ptr(argv, argc); 513 if (IS_ERR(str)) 514 goto out; 515 516 len = strnlen_user(str, MAX_ARG_STRLEN); 517 if (!len) 518 goto out; 519 520 ret = -E2BIG; 521 if (!valid_arg_len(bprm, len)) 522 goto out; 523 524 /* We're going to work our way backwords. */ 525 pos = bprm->p; 526 str += len; 527 bprm->p -= len; 528 #ifdef CONFIG_MMU 529 if (bprm->p < bprm->argmin) 530 goto out; 531 #endif 532 533 while (len > 0) { 534 int offset, bytes_to_copy; 535 536 if (fatal_signal_pending(current)) { 537 ret = -ERESTARTNOHAND; 538 goto out; 539 } 540 cond_resched(); 541 542 offset = pos % PAGE_SIZE; 543 if (offset == 0) 544 offset = PAGE_SIZE; 545 546 bytes_to_copy = offset; 547 if (bytes_to_copy > len) 548 bytes_to_copy = len; 549 550 offset -= bytes_to_copy; 551 pos -= bytes_to_copy; 552 str -= bytes_to_copy; 553 len -= bytes_to_copy; 554 555 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 556 struct page *page; 557 558 page = get_arg_page(bprm, pos, 1); 559 if (!page) { 560 ret = -E2BIG; 561 goto out; 562 } 563 564 if (kmapped_page) { 565 flush_kernel_dcache_page(kmapped_page); 566 kunmap(kmapped_page); 567 put_arg_page(kmapped_page); 568 } 569 kmapped_page = page; 570 kaddr = kmap(kmapped_page); 571 kpos = pos & PAGE_MASK; 572 flush_arg_page(bprm, kpos, kmapped_page); 573 } 574 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 575 ret = -EFAULT; 576 goto out; 577 } 578 } 579 } 580 ret = 0; 581 out: 582 if (kmapped_page) { 583 flush_kernel_dcache_page(kmapped_page); 584 kunmap(kmapped_page); 585 put_arg_page(kmapped_page); 586 } 587 return ret; 588 } 589 590 /* 591 * Like copy_strings, but get argv and its values from kernel memory. 592 */ 593 int copy_strings_kernel(int argc, const char *const *__argv, 594 struct linux_binprm *bprm) 595 { 596 int r; 597 mm_segment_t oldfs = get_fs(); 598 struct user_arg_ptr argv = { 599 .ptr.native = (const char __user *const __user *)__argv, 600 }; 601 602 set_fs(KERNEL_DS); 603 r = copy_strings(argc, argv, bprm); 604 set_fs(oldfs); 605 606 return r; 607 } 608 EXPORT_SYMBOL(copy_strings_kernel); 609 610 #ifdef CONFIG_MMU 611 612 /* 613 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 614 * the binfmt code determines where the new stack should reside, we shift it to 615 * its final location. The process proceeds as follows: 616 * 617 * 1) Use shift to calculate the new vma endpoints. 618 * 2) Extend vma to cover both the old and new ranges. This ensures the 619 * arguments passed to subsequent functions are consistent. 620 * 3) Move vma's page tables to the new range. 621 * 4) Free up any cleared pgd range. 622 * 5) Shrink the vma to cover only the new range. 623 */ 624 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 625 { 626 struct mm_struct *mm = vma->vm_mm; 627 unsigned long old_start = vma->vm_start; 628 unsigned long old_end = vma->vm_end; 629 unsigned long length = old_end - old_start; 630 unsigned long new_start = old_start - shift; 631 unsigned long new_end = old_end - shift; 632 struct mmu_gather tlb; 633 634 BUG_ON(new_start > new_end); 635 636 /* 637 * ensure there are no vmas between where we want to go 638 * and where we are 639 */ 640 if (vma != find_vma(mm, new_start)) 641 return -EFAULT; 642 643 /* 644 * cover the whole range: [new_start, old_end) 645 */ 646 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 647 return -ENOMEM; 648 649 /* 650 * move the page tables downwards, on failure we rely on 651 * process cleanup to remove whatever mess we made. 652 */ 653 if (length != move_page_tables(vma, old_start, 654 vma, new_start, length, false)) 655 return -ENOMEM; 656 657 lru_add_drain(); 658 tlb_gather_mmu(&tlb, mm, old_start, old_end); 659 if (new_end > old_start) { 660 /* 661 * when the old and new regions overlap clear from new_end. 662 */ 663 free_pgd_range(&tlb, new_end, old_end, new_end, 664 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 665 } else { 666 /* 667 * otherwise, clean from old_start; this is done to not touch 668 * the address space in [new_end, old_start) some architectures 669 * have constraints on va-space that make this illegal (IA64) - 670 * for the others its just a little faster. 671 */ 672 free_pgd_range(&tlb, old_start, old_end, new_end, 673 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 674 } 675 tlb_finish_mmu(&tlb, old_start, old_end); 676 677 /* 678 * Shrink the vma to just the new range. Always succeeds. 679 */ 680 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 681 682 return 0; 683 } 684 685 /* 686 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 687 * the stack is optionally relocated, and some extra space is added. 688 */ 689 int setup_arg_pages(struct linux_binprm *bprm, 690 unsigned long stack_top, 691 int executable_stack) 692 { 693 unsigned long ret; 694 unsigned long stack_shift; 695 struct mm_struct *mm = current->mm; 696 struct vm_area_struct *vma = bprm->vma; 697 struct vm_area_struct *prev = NULL; 698 unsigned long vm_flags; 699 unsigned long stack_base; 700 unsigned long stack_size; 701 unsigned long stack_expand; 702 unsigned long rlim_stack; 703 704 #ifdef CONFIG_STACK_GROWSUP 705 /* Limit stack size */ 706 stack_base = bprm->rlim_stack.rlim_max; 707 if (stack_base > STACK_SIZE_MAX) 708 stack_base = STACK_SIZE_MAX; 709 710 /* Add space for stack randomization. */ 711 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 712 713 /* Make sure we didn't let the argument array grow too large. */ 714 if (vma->vm_end - vma->vm_start > stack_base) 715 return -ENOMEM; 716 717 stack_base = PAGE_ALIGN(stack_top - stack_base); 718 719 stack_shift = vma->vm_start - stack_base; 720 mm->arg_start = bprm->p - stack_shift; 721 bprm->p = vma->vm_end - stack_shift; 722 #else 723 stack_top = arch_align_stack(stack_top); 724 stack_top = PAGE_ALIGN(stack_top); 725 726 if (unlikely(stack_top < mmap_min_addr) || 727 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 728 return -ENOMEM; 729 730 stack_shift = vma->vm_end - stack_top; 731 732 bprm->p -= stack_shift; 733 mm->arg_start = bprm->p; 734 #endif 735 736 if (bprm->loader) 737 bprm->loader -= stack_shift; 738 bprm->exec -= stack_shift; 739 740 if (down_write_killable(&mm->mmap_sem)) 741 return -EINTR; 742 743 vm_flags = VM_STACK_FLAGS; 744 745 /* 746 * Adjust stack execute permissions; explicitly enable for 747 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 748 * (arch default) otherwise. 749 */ 750 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 751 vm_flags |= VM_EXEC; 752 else if (executable_stack == EXSTACK_DISABLE_X) 753 vm_flags &= ~VM_EXEC; 754 vm_flags |= mm->def_flags; 755 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 756 757 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 758 vm_flags); 759 if (ret) 760 goto out_unlock; 761 BUG_ON(prev != vma); 762 763 if (unlikely(vm_flags & VM_EXEC)) { 764 pr_warn_once("process '%pD4' started with executable stack\n", 765 bprm->file); 766 } 767 768 /* Move stack pages down in memory. */ 769 if (stack_shift) { 770 ret = shift_arg_pages(vma, stack_shift); 771 if (ret) 772 goto out_unlock; 773 } 774 775 /* mprotect_fixup is overkill to remove the temporary stack flags */ 776 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 777 778 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 779 stack_size = vma->vm_end - vma->vm_start; 780 /* 781 * Align this down to a page boundary as expand_stack 782 * will align it up. 783 */ 784 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 785 #ifdef CONFIG_STACK_GROWSUP 786 if (stack_size + stack_expand > rlim_stack) 787 stack_base = vma->vm_start + rlim_stack; 788 else 789 stack_base = vma->vm_end + stack_expand; 790 #else 791 if (stack_size + stack_expand > rlim_stack) 792 stack_base = vma->vm_end - rlim_stack; 793 else 794 stack_base = vma->vm_start - stack_expand; 795 #endif 796 current->mm->start_stack = bprm->p; 797 ret = expand_stack(vma, stack_base); 798 if (ret) 799 ret = -EFAULT; 800 801 out_unlock: 802 up_write(&mm->mmap_sem); 803 return ret; 804 } 805 EXPORT_SYMBOL(setup_arg_pages); 806 807 #else 808 809 /* 810 * Transfer the program arguments and environment from the holding pages 811 * onto the stack. The provided stack pointer is adjusted accordingly. 812 */ 813 int transfer_args_to_stack(struct linux_binprm *bprm, 814 unsigned long *sp_location) 815 { 816 unsigned long index, stop, sp; 817 int ret = 0; 818 819 stop = bprm->p >> PAGE_SHIFT; 820 sp = *sp_location; 821 822 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 823 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 824 char *src = kmap(bprm->page[index]) + offset; 825 sp -= PAGE_SIZE - offset; 826 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 827 ret = -EFAULT; 828 kunmap(bprm->page[index]); 829 if (ret) 830 goto out; 831 } 832 833 *sp_location = sp; 834 835 out: 836 return ret; 837 } 838 EXPORT_SYMBOL(transfer_args_to_stack); 839 840 #endif /* CONFIG_MMU */ 841 842 static struct file *do_open_execat(int fd, struct filename *name, int flags) 843 { 844 struct file *file; 845 int err; 846 struct open_flags open_exec_flags = { 847 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 848 .acc_mode = MAY_EXEC, 849 .intent = LOOKUP_OPEN, 850 .lookup_flags = LOOKUP_FOLLOW, 851 }; 852 853 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 854 return ERR_PTR(-EINVAL); 855 if (flags & AT_SYMLINK_NOFOLLOW) 856 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 857 if (flags & AT_EMPTY_PATH) 858 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 859 860 file = do_filp_open(fd, name, &open_exec_flags); 861 if (IS_ERR(file)) 862 goto out; 863 864 err = -EACCES; 865 if (!S_ISREG(file_inode(file)->i_mode)) 866 goto exit; 867 868 if (path_noexec(&file->f_path)) 869 goto exit; 870 871 err = deny_write_access(file); 872 if (err) 873 goto exit; 874 875 if (name->name[0] != '\0') 876 fsnotify_open(file); 877 878 out: 879 return file; 880 881 exit: 882 fput(file); 883 return ERR_PTR(err); 884 } 885 886 struct file *open_exec(const char *name) 887 { 888 struct filename *filename = getname_kernel(name); 889 struct file *f = ERR_CAST(filename); 890 891 if (!IS_ERR(filename)) { 892 f = do_open_execat(AT_FDCWD, filename, 0); 893 putname(filename); 894 } 895 return f; 896 } 897 EXPORT_SYMBOL(open_exec); 898 899 int kernel_read_file(struct file *file, void **buf, loff_t *size, 900 loff_t max_size, enum kernel_read_file_id id) 901 { 902 loff_t i_size, pos; 903 ssize_t bytes = 0; 904 int ret; 905 906 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 907 return -EINVAL; 908 909 ret = deny_write_access(file); 910 if (ret) 911 return ret; 912 913 ret = security_kernel_read_file(file, id); 914 if (ret) 915 goto out; 916 917 i_size = i_size_read(file_inode(file)); 918 if (i_size <= 0) { 919 ret = -EINVAL; 920 goto out; 921 } 922 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) { 923 ret = -EFBIG; 924 goto out; 925 } 926 927 if (id != READING_FIRMWARE_PREALLOC_BUFFER) 928 *buf = vmalloc(i_size); 929 if (!*buf) { 930 ret = -ENOMEM; 931 goto out; 932 } 933 934 pos = 0; 935 while (pos < i_size) { 936 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos); 937 if (bytes < 0) { 938 ret = bytes; 939 goto out_free; 940 } 941 942 if (bytes == 0) 943 break; 944 } 945 946 if (pos != i_size) { 947 ret = -EIO; 948 goto out_free; 949 } 950 951 ret = security_kernel_post_read_file(file, *buf, i_size, id); 952 if (!ret) 953 *size = pos; 954 955 out_free: 956 if (ret < 0) { 957 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { 958 vfree(*buf); 959 *buf = NULL; 960 } 961 } 962 963 out: 964 allow_write_access(file); 965 return ret; 966 } 967 EXPORT_SYMBOL_GPL(kernel_read_file); 968 969 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size, 970 loff_t max_size, enum kernel_read_file_id id) 971 { 972 struct file *file; 973 int ret; 974 975 if (!path || !*path) 976 return -EINVAL; 977 978 file = filp_open(path, O_RDONLY, 0); 979 if (IS_ERR(file)) 980 return PTR_ERR(file); 981 982 ret = kernel_read_file(file, buf, size, max_size, id); 983 fput(file); 984 return ret; 985 } 986 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 987 988 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 989 enum kernel_read_file_id id) 990 { 991 struct fd f = fdget(fd); 992 int ret = -EBADF; 993 994 if (!f.file) 995 goto out; 996 997 ret = kernel_read_file(f.file, buf, size, max_size, id); 998 out: 999 fdput(f); 1000 return ret; 1001 } 1002 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 1003 1004 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 1005 { 1006 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 1007 if (res > 0) 1008 flush_icache_range(addr, addr + len); 1009 return res; 1010 } 1011 EXPORT_SYMBOL(read_code); 1012 1013 /* 1014 * Maps the mm_struct mm into the current task struct. 1015 * On success, this function returns with the mutex 1016 * exec_update_mutex locked. 1017 */ 1018 static int exec_mmap(struct mm_struct *mm) 1019 { 1020 struct task_struct *tsk; 1021 struct mm_struct *old_mm, *active_mm; 1022 int ret; 1023 1024 /* Notify parent that we're no longer interested in the old VM */ 1025 tsk = current; 1026 old_mm = current->mm; 1027 exec_mm_release(tsk, old_mm); 1028 1029 ret = mutex_lock_killable(&tsk->signal->exec_update_mutex); 1030 if (ret) 1031 return ret; 1032 1033 if (old_mm) { 1034 sync_mm_rss(old_mm); 1035 /* 1036 * Make sure that if there is a core dump in progress 1037 * for the old mm, we get out and die instead of going 1038 * through with the exec. We must hold mmap_sem around 1039 * checking core_state and changing tsk->mm. 1040 */ 1041 down_read(&old_mm->mmap_sem); 1042 if (unlikely(old_mm->core_state)) { 1043 up_read(&old_mm->mmap_sem); 1044 mutex_unlock(&tsk->signal->exec_update_mutex); 1045 return -EINTR; 1046 } 1047 } 1048 1049 task_lock(tsk); 1050 active_mm = tsk->active_mm; 1051 membarrier_exec_mmap(mm); 1052 tsk->mm = mm; 1053 tsk->active_mm = mm; 1054 activate_mm(active_mm, mm); 1055 tsk->mm->vmacache_seqnum = 0; 1056 vmacache_flush(tsk); 1057 task_unlock(tsk); 1058 if (old_mm) { 1059 up_read(&old_mm->mmap_sem); 1060 BUG_ON(active_mm != old_mm); 1061 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1062 mm_update_next_owner(old_mm); 1063 mmput(old_mm); 1064 return 0; 1065 } 1066 mmdrop(active_mm); 1067 return 0; 1068 } 1069 1070 /* 1071 * This function makes sure the current process has its own signal table, 1072 * so that flush_signal_handlers can later reset the handlers without 1073 * disturbing other processes. (Other processes might share the signal 1074 * table via the CLONE_SIGHAND option to clone().) 1075 */ 1076 static int de_thread(struct task_struct *tsk) 1077 { 1078 struct signal_struct *sig = tsk->signal; 1079 struct sighand_struct *oldsighand = tsk->sighand; 1080 spinlock_t *lock = &oldsighand->siglock; 1081 1082 if (thread_group_empty(tsk)) 1083 goto no_thread_group; 1084 1085 /* 1086 * Kill all other threads in the thread group. 1087 */ 1088 spin_lock_irq(lock); 1089 if (signal_group_exit(sig)) { 1090 /* 1091 * Another group action in progress, just 1092 * return so that the signal is processed. 1093 */ 1094 spin_unlock_irq(lock); 1095 return -EAGAIN; 1096 } 1097 1098 sig->group_exit_task = tsk; 1099 sig->notify_count = zap_other_threads(tsk); 1100 if (!thread_group_leader(tsk)) 1101 sig->notify_count--; 1102 1103 while (sig->notify_count) { 1104 __set_current_state(TASK_KILLABLE); 1105 spin_unlock_irq(lock); 1106 schedule(); 1107 if (__fatal_signal_pending(tsk)) 1108 goto killed; 1109 spin_lock_irq(lock); 1110 } 1111 spin_unlock_irq(lock); 1112 1113 /* 1114 * At this point all other threads have exited, all we have to 1115 * do is to wait for the thread group leader to become inactive, 1116 * and to assume its PID: 1117 */ 1118 if (!thread_group_leader(tsk)) { 1119 struct task_struct *leader = tsk->group_leader; 1120 1121 for (;;) { 1122 cgroup_threadgroup_change_begin(tsk); 1123 write_lock_irq(&tasklist_lock); 1124 /* 1125 * Do this under tasklist_lock to ensure that 1126 * exit_notify() can't miss ->group_exit_task 1127 */ 1128 sig->notify_count = -1; 1129 if (likely(leader->exit_state)) 1130 break; 1131 __set_current_state(TASK_KILLABLE); 1132 write_unlock_irq(&tasklist_lock); 1133 cgroup_threadgroup_change_end(tsk); 1134 schedule(); 1135 if (__fatal_signal_pending(tsk)) 1136 goto killed; 1137 } 1138 1139 /* 1140 * The only record we have of the real-time age of a 1141 * process, regardless of execs it's done, is start_time. 1142 * All the past CPU time is accumulated in signal_struct 1143 * from sister threads now dead. But in this non-leader 1144 * exec, nothing survives from the original leader thread, 1145 * whose birth marks the true age of this process now. 1146 * When we take on its identity by switching to its PID, we 1147 * also take its birthdate (always earlier than our own). 1148 */ 1149 tsk->start_time = leader->start_time; 1150 tsk->start_boottime = leader->start_boottime; 1151 1152 BUG_ON(!same_thread_group(leader, tsk)); 1153 BUG_ON(has_group_leader_pid(tsk)); 1154 /* 1155 * An exec() starts a new thread group with the 1156 * TGID of the previous thread group. Rehash the 1157 * two threads with a switched PID, and release 1158 * the former thread group leader: 1159 */ 1160 1161 /* Become a process group leader with the old leader's pid. 1162 * The old leader becomes a thread of the this thread group. 1163 * Note: The old leader also uses this pid until release_task 1164 * is called. Odd but simple and correct. 1165 */ 1166 tsk->pid = leader->pid; 1167 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 1168 transfer_pid(leader, tsk, PIDTYPE_TGID); 1169 transfer_pid(leader, tsk, PIDTYPE_PGID); 1170 transfer_pid(leader, tsk, PIDTYPE_SID); 1171 1172 list_replace_rcu(&leader->tasks, &tsk->tasks); 1173 list_replace_init(&leader->sibling, &tsk->sibling); 1174 1175 tsk->group_leader = tsk; 1176 leader->group_leader = tsk; 1177 1178 tsk->exit_signal = SIGCHLD; 1179 leader->exit_signal = -1; 1180 1181 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1182 leader->exit_state = EXIT_DEAD; 1183 1184 /* 1185 * We are going to release_task()->ptrace_unlink() silently, 1186 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1187 * the tracer wont't block again waiting for this thread. 1188 */ 1189 if (unlikely(leader->ptrace)) 1190 __wake_up_parent(leader, leader->parent); 1191 write_unlock_irq(&tasklist_lock); 1192 cgroup_threadgroup_change_end(tsk); 1193 1194 release_task(leader); 1195 } 1196 1197 sig->group_exit_task = NULL; 1198 sig->notify_count = 0; 1199 1200 no_thread_group: 1201 /* we have changed execution domain */ 1202 tsk->exit_signal = SIGCHLD; 1203 1204 BUG_ON(!thread_group_leader(tsk)); 1205 return 0; 1206 1207 killed: 1208 /* protects against exit_notify() and __exit_signal() */ 1209 read_lock(&tasklist_lock); 1210 sig->group_exit_task = NULL; 1211 sig->notify_count = 0; 1212 read_unlock(&tasklist_lock); 1213 return -EAGAIN; 1214 } 1215 1216 1217 static int unshare_sighand(struct task_struct *me) 1218 { 1219 struct sighand_struct *oldsighand = me->sighand; 1220 1221 if (refcount_read(&oldsighand->count) != 1) { 1222 struct sighand_struct *newsighand; 1223 /* 1224 * This ->sighand is shared with the CLONE_SIGHAND 1225 * but not CLONE_THREAD task, switch to the new one. 1226 */ 1227 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1228 if (!newsighand) 1229 return -ENOMEM; 1230 1231 refcount_set(&newsighand->count, 1); 1232 memcpy(newsighand->action, oldsighand->action, 1233 sizeof(newsighand->action)); 1234 1235 write_lock_irq(&tasklist_lock); 1236 spin_lock(&oldsighand->siglock); 1237 rcu_assign_pointer(me->sighand, newsighand); 1238 spin_unlock(&oldsighand->siglock); 1239 write_unlock_irq(&tasklist_lock); 1240 1241 __cleanup_sighand(oldsighand); 1242 } 1243 return 0; 1244 } 1245 1246 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1247 { 1248 task_lock(tsk); 1249 strncpy(buf, tsk->comm, buf_size); 1250 task_unlock(tsk); 1251 return buf; 1252 } 1253 EXPORT_SYMBOL_GPL(__get_task_comm); 1254 1255 /* 1256 * These functions flushes out all traces of the currently running executable 1257 * so that a new one can be started 1258 */ 1259 1260 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1261 { 1262 task_lock(tsk); 1263 trace_task_rename(tsk, buf); 1264 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1265 task_unlock(tsk); 1266 perf_event_comm(tsk, exec); 1267 } 1268 1269 /* 1270 * Calling this is the point of no return. None of the failures will be 1271 * seen by userspace since either the process is already taking a fatal 1272 * signal (via de_thread() or coredump), or will have SEGV raised 1273 * (after exec_mmap()) by search_binary_handlers (see below). 1274 */ 1275 int flush_old_exec(struct linux_binprm * bprm) 1276 { 1277 struct task_struct *me = current; 1278 int retval; 1279 1280 /* 1281 * Make this the only thread in the thread group. 1282 */ 1283 retval = de_thread(me); 1284 if (retval) 1285 goto out; 1286 1287 /* 1288 * Must be called _before_ exec_mmap() as bprm->mm is 1289 * not visibile until then. This also enables the update 1290 * to be lockless. 1291 */ 1292 set_mm_exe_file(bprm->mm, bprm->file); 1293 1294 /* 1295 * Release all of the old mmap stuff 1296 */ 1297 acct_arg_size(bprm, 0); 1298 retval = exec_mmap(bprm->mm); 1299 if (retval) 1300 goto out; 1301 1302 /* 1303 * After setting bprm->called_exec_mmap (to mark that current is 1304 * using the prepared mm now), we have nothing left of the original 1305 * process. If anything from here on returns an error, the check 1306 * in search_binary_handler() will SEGV current. 1307 */ 1308 bprm->called_exec_mmap = 1; 1309 bprm->mm = NULL; 1310 1311 #ifdef CONFIG_POSIX_TIMERS 1312 exit_itimers(me->signal); 1313 flush_itimer_signals(); 1314 #endif 1315 1316 /* 1317 * Make the signal table private. 1318 */ 1319 retval = unshare_sighand(me); 1320 if (retval) 1321 goto out; 1322 1323 set_fs(USER_DS); 1324 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1325 PF_NOFREEZE | PF_NO_SETAFFINITY); 1326 flush_thread(); 1327 me->personality &= ~bprm->per_clear; 1328 1329 /* 1330 * We have to apply CLOEXEC before we change whether the process is 1331 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1332 * trying to access the should-be-closed file descriptors of a process 1333 * undergoing exec(2). 1334 */ 1335 do_close_on_exec(me->files); 1336 return 0; 1337 1338 out: 1339 return retval; 1340 } 1341 EXPORT_SYMBOL(flush_old_exec); 1342 1343 void would_dump(struct linux_binprm *bprm, struct file *file) 1344 { 1345 struct inode *inode = file_inode(file); 1346 if (inode_permission(inode, MAY_READ) < 0) { 1347 struct user_namespace *old, *user_ns; 1348 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1349 1350 /* Ensure mm->user_ns contains the executable */ 1351 user_ns = old = bprm->mm->user_ns; 1352 while ((user_ns != &init_user_ns) && 1353 !privileged_wrt_inode_uidgid(user_ns, inode)) 1354 user_ns = user_ns->parent; 1355 1356 if (old != user_ns) { 1357 bprm->mm->user_ns = get_user_ns(user_ns); 1358 put_user_ns(old); 1359 } 1360 } 1361 } 1362 EXPORT_SYMBOL(would_dump); 1363 1364 void setup_new_exec(struct linux_binprm * bprm) 1365 { 1366 /* 1367 * Once here, prepare_binrpm() will not be called any more, so 1368 * the final state of setuid/setgid/fscaps can be merged into the 1369 * secureexec flag. 1370 */ 1371 bprm->secureexec |= bprm->cap_elevated; 1372 1373 if (bprm->secureexec) { 1374 /* Make sure parent cannot signal privileged process. */ 1375 current->pdeath_signal = 0; 1376 1377 /* 1378 * For secureexec, reset the stack limit to sane default to 1379 * avoid bad behavior from the prior rlimits. This has to 1380 * happen before arch_pick_mmap_layout(), which examines 1381 * RLIMIT_STACK, but after the point of no return to avoid 1382 * needing to clean up the change on failure. 1383 */ 1384 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1385 bprm->rlim_stack.rlim_cur = _STK_LIM; 1386 } 1387 1388 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack); 1389 1390 current->sas_ss_sp = current->sas_ss_size = 0; 1391 1392 /* 1393 * Figure out dumpability. Note that this checking only of current 1394 * is wrong, but userspace depends on it. This should be testing 1395 * bprm->secureexec instead. 1396 */ 1397 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1398 !(uid_eq(current_euid(), current_uid()) && 1399 gid_eq(current_egid(), current_gid()))) 1400 set_dumpable(current->mm, suid_dumpable); 1401 else 1402 set_dumpable(current->mm, SUID_DUMP_USER); 1403 1404 arch_setup_new_exec(); 1405 perf_event_exec(); 1406 __set_task_comm(current, kbasename(bprm->filename), true); 1407 1408 /* Set the new mm task size. We have to do that late because it may 1409 * depend on TIF_32BIT which is only updated in flush_thread() on 1410 * some architectures like powerpc 1411 */ 1412 current->mm->task_size = TASK_SIZE; 1413 1414 /* An exec changes our domain. We are no longer part of the thread 1415 group */ 1416 current->self_exec_id++; 1417 flush_signal_handlers(current, 0); 1418 } 1419 EXPORT_SYMBOL(setup_new_exec); 1420 1421 /* Runs immediately before start_thread() takes over. */ 1422 void finalize_exec(struct linux_binprm *bprm) 1423 { 1424 /* Store any stack rlimit changes before starting thread. */ 1425 task_lock(current->group_leader); 1426 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1427 task_unlock(current->group_leader); 1428 } 1429 EXPORT_SYMBOL(finalize_exec); 1430 1431 /* 1432 * Prepare credentials and lock ->cred_guard_mutex. 1433 * install_exec_creds() commits the new creds and drops the lock. 1434 * Or, if exec fails before, free_bprm() should release ->cred and 1435 * and unlock. 1436 */ 1437 static int prepare_bprm_creds(struct linux_binprm *bprm) 1438 { 1439 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1440 return -ERESTARTNOINTR; 1441 1442 bprm->cred = prepare_exec_creds(); 1443 if (likely(bprm->cred)) 1444 return 0; 1445 1446 mutex_unlock(¤t->signal->cred_guard_mutex); 1447 return -ENOMEM; 1448 } 1449 1450 static void free_bprm(struct linux_binprm *bprm) 1451 { 1452 free_arg_pages(bprm); 1453 if (bprm->cred) { 1454 if (bprm->called_exec_mmap) 1455 mutex_unlock(¤t->signal->exec_update_mutex); 1456 mutex_unlock(¤t->signal->cred_guard_mutex); 1457 abort_creds(bprm->cred); 1458 } 1459 if (bprm->file) { 1460 allow_write_access(bprm->file); 1461 fput(bprm->file); 1462 } 1463 /* If a binfmt changed the interp, free it. */ 1464 if (bprm->interp != bprm->filename) 1465 kfree(bprm->interp); 1466 kfree(bprm); 1467 } 1468 1469 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1470 { 1471 /* If a binfmt changed the interp, free it first. */ 1472 if (bprm->interp != bprm->filename) 1473 kfree(bprm->interp); 1474 bprm->interp = kstrdup(interp, GFP_KERNEL); 1475 if (!bprm->interp) 1476 return -ENOMEM; 1477 return 0; 1478 } 1479 EXPORT_SYMBOL(bprm_change_interp); 1480 1481 /* 1482 * install the new credentials for this executable 1483 */ 1484 void install_exec_creds(struct linux_binprm *bprm) 1485 { 1486 security_bprm_committing_creds(bprm); 1487 1488 commit_creds(bprm->cred); 1489 bprm->cred = NULL; 1490 1491 /* 1492 * Disable monitoring for regular users 1493 * when executing setuid binaries. Must 1494 * wait until new credentials are committed 1495 * by commit_creds() above 1496 */ 1497 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1498 perf_event_exit_task(current); 1499 /* 1500 * cred_guard_mutex must be held at least to this point to prevent 1501 * ptrace_attach() from altering our determination of the task's 1502 * credentials; any time after this it may be unlocked. 1503 */ 1504 security_bprm_committed_creds(bprm); 1505 mutex_unlock(¤t->signal->exec_update_mutex); 1506 mutex_unlock(¤t->signal->cred_guard_mutex); 1507 } 1508 EXPORT_SYMBOL(install_exec_creds); 1509 1510 /* 1511 * determine how safe it is to execute the proposed program 1512 * - the caller must hold ->cred_guard_mutex to protect against 1513 * PTRACE_ATTACH or seccomp thread-sync 1514 */ 1515 static void check_unsafe_exec(struct linux_binprm *bprm) 1516 { 1517 struct task_struct *p = current, *t; 1518 unsigned n_fs; 1519 1520 if (p->ptrace) 1521 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1522 1523 /* 1524 * This isn't strictly necessary, but it makes it harder for LSMs to 1525 * mess up. 1526 */ 1527 if (task_no_new_privs(current)) 1528 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1529 1530 t = p; 1531 n_fs = 1; 1532 spin_lock(&p->fs->lock); 1533 rcu_read_lock(); 1534 while_each_thread(p, t) { 1535 if (t->fs == p->fs) 1536 n_fs++; 1537 } 1538 rcu_read_unlock(); 1539 1540 if (p->fs->users > n_fs) 1541 bprm->unsafe |= LSM_UNSAFE_SHARE; 1542 else 1543 p->fs->in_exec = 1; 1544 spin_unlock(&p->fs->lock); 1545 } 1546 1547 static void bprm_fill_uid(struct linux_binprm *bprm) 1548 { 1549 struct inode *inode; 1550 unsigned int mode; 1551 kuid_t uid; 1552 kgid_t gid; 1553 1554 /* 1555 * Since this can be called multiple times (via prepare_binprm), 1556 * we must clear any previous work done when setting set[ug]id 1557 * bits from any earlier bprm->file uses (for example when run 1558 * first for a setuid script then again for its interpreter). 1559 */ 1560 bprm->cred->euid = current_euid(); 1561 bprm->cred->egid = current_egid(); 1562 1563 if (!mnt_may_suid(bprm->file->f_path.mnt)) 1564 return; 1565 1566 if (task_no_new_privs(current)) 1567 return; 1568 1569 inode = bprm->file->f_path.dentry->d_inode; 1570 mode = READ_ONCE(inode->i_mode); 1571 if (!(mode & (S_ISUID|S_ISGID))) 1572 return; 1573 1574 /* Be careful if suid/sgid is set */ 1575 inode_lock(inode); 1576 1577 /* reload atomically mode/uid/gid now that lock held */ 1578 mode = inode->i_mode; 1579 uid = inode->i_uid; 1580 gid = inode->i_gid; 1581 inode_unlock(inode); 1582 1583 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1584 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1585 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1586 return; 1587 1588 if (mode & S_ISUID) { 1589 bprm->per_clear |= PER_CLEAR_ON_SETID; 1590 bprm->cred->euid = uid; 1591 } 1592 1593 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1594 bprm->per_clear |= PER_CLEAR_ON_SETID; 1595 bprm->cred->egid = gid; 1596 } 1597 } 1598 1599 /* 1600 * Fill the binprm structure from the inode. 1601 * Check permissions, then read the first BINPRM_BUF_SIZE bytes 1602 * 1603 * This may be called multiple times for binary chains (scripts for example). 1604 */ 1605 int prepare_binprm(struct linux_binprm *bprm) 1606 { 1607 int retval; 1608 loff_t pos = 0; 1609 1610 bprm_fill_uid(bprm); 1611 1612 /* fill in binprm security blob */ 1613 retval = security_bprm_set_creds(bprm); 1614 if (retval) 1615 return retval; 1616 bprm->called_set_creds = 1; 1617 1618 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1619 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1620 } 1621 1622 EXPORT_SYMBOL(prepare_binprm); 1623 1624 /* 1625 * Arguments are '\0' separated strings found at the location bprm->p 1626 * points to; chop off the first by relocating brpm->p to right after 1627 * the first '\0' encountered. 1628 */ 1629 int remove_arg_zero(struct linux_binprm *bprm) 1630 { 1631 int ret = 0; 1632 unsigned long offset; 1633 char *kaddr; 1634 struct page *page; 1635 1636 if (!bprm->argc) 1637 return 0; 1638 1639 do { 1640 offset = bprm->p & ~PAGE_MASK; 1641 page = get_arg_page(bprm, bprm->p, 0); 1642 if (!page) { 1643 ret = -EFAULT; 1644 goto out; 1645 } 1646 kaddr = kmap_atomic(page); 1647 1648 for (; offset < PAGE_SIZE && kaddr[offset]; 1649 offset++, bprm->p++) 1650 ; 1651 1652 kunmap_atomic(kaddr); 1653 put_arg_page(page); 1654 } while (offset == PAGE_SIZE); 1655 1656 bprm->p++; 1657 bprm->argc--; 1658 ret = 0; 1659 1660 out: 1661 return ret; 1662 } 1663 EXPORT_SYMBOL(remove_arg_zero); 1664 1665 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1666 /* 1667 * cycle the list of binary formats handler, until one recognizes the image 1668 */ 1669 int search_binary_handler(struct linux_binprm *bprm) 1670 { 1671 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1672 struct linux_binfmt *fmt; 1673 int retval; 1674 1675 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1676 if (bprm->recursion_depth > 5) 1677 return -ELOOP; 1678 1679 retval = security_bprm_check(bprm); 1680 if (retval) 1681 return retval; 1682 1683 retval = -ENOENT; 1684 retry: 1685 read_lock(&binfmt_lock); 1686 list_for_each_entry(fmt, &formats, lh) { 1687 if (!try_module_get(fmt->module)) 1688 continue; 1689 read_unlock(&binfmt_lock); 1690 1691 bprm->recursion_depth++; 1692 retval = fmt->load_binary(bprm); 1693 bprm->recursion_depth--; 1694 1695 read_lock(&binfmt_lock); 1696 put_binfmt(fmt); 1697 if (retval < 0 && bprm->called_exec_mmap) { 1698 /* we got to flush_old_exec() and failed after it */ 1699 read_unlock(&binfmt_lock); 1700 force_sigsegv(SIGSEGV); 1701 return retval; 1702 } 1703 if (retval != -ENOEXEC || !bprm->file) { 1704 read_unlock(&binfmt_lock); 1705 return retval; 1706 } 1707 } 1708 read_unlock(&binfmt_lock); 1709 1710 if (need_retry) { 1711 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1712 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1713 return retval; 1714 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1715 return retval; 1716 need_retry = false; 1717 goto retry; 1718 } 1719 1720 return retval; 1721 } 1722 EXPORT_SYMBOL(search_binary_handler); 1723 1724 static int exec_binprm(struct linux_binprm *bprm) 1725 { 1726 pid_t old_pid, old_vpid; 1727 int ret; 1728 1729 /* Need to fetch pid before load_binary changes it */ 1730 old_pid = current->pid; 1731 rcu_read_lock(); 1732 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1733 rcu_read_unlock(); 1734 1735 ret = search_binary_handler(bprm); 1736 if (ret >= 0) { 1737 audit_bprm(bprm); 1738 trace_sched_process_exec(current, old_pid, bprm); 1739 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1740 proc_exec_connector(current); 1741 } 1742 1743 return ret; 1744 } 1745 1746 /* 1747 * sys_execve() executes a new program. 1748 */ 1749 static int __do_execve_file(int fd, struct filename *filename, 1750 struct user_arg_ptr argv, 1751 struct user_arg_ptr envp, 1752 int flags, struct file *file) 1753 { 1754 char *pathbuf = NULL; 1755 struct linux_binprm *bprm; 1756 struct files_struct *displaced; 1757 int retval; 1758 1759 if (IS_ERR(filename)) 1760 return PTR_ERR(filename); 1761 1762 /* 1763 * We move the actual failure in case of RLIMIT_NPROC excess from 1764 * set*uid() to execve() because too many poorly written programs 1765 * don't check setuid() return code. Here we additionally recheck 1766 * whether NPROC limit is still exceeded. 1767 */ 1768 if ((current->flags & PF_NPROC_EXCEEDED) && 1769 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1770 retval = -EAGAIN; 1771 goto out_ret; 1772 } 1773 1774 /* We're below the limit (still or again), so we don't want to make 1775 * further execve() calls fail. */ 1776 current->flags &= ~PF_NPROC_EXCEEDED; 1777 1778 retval = unshare_files(&displaced); 1779 if (retval) 1780 goto out_ret; 1781 1782 retval = -ENOMEM; 1783 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1784 if (!bprm) 1785 goto out_files; 1786 1787 retval = prepare_bprm_creds(bprm); 1788 if (retval) 1789 goto out_free; 1790 1791 check_unsafe_exec(bprm); 1792 current->in_execve = 1; 1793 1794 if (!file) 1795 file = do_open_execat(fd, filename, flags); 1796 retval = PTR_ERR(file); 1797 if (IS_ERR(file)) 1798 goto out_unmark; 1799 1800 sched_exec(); 1801 1802 bprm->file = file; 1803 if (!filename) { 1804 bprm->filename = "none"; 1805 } else if (fd == AT_FDCWD || filename->name[0] == '/') { 1806 bprm->filename = filename->name; 1807 } else { 1808 if (filename->name[0] == '\0') 1809 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1810 else 1811 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1812 fd, filename->name); 1813 if (!pathbuf) { 1814 retval = -ENOMEM; 1815 goto out_unmark; 1816 } 1817 /* 1818 * Record that a name derived from an O_CLOEXEC fd will be 1819 * inaccessible after exec. Relies on having exclusive access to 1820 * current->files (due to unshare_files above). 1821 */ 1822 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1823 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1824 bprm->filename = pathbuf; 1825 } 1826 bprm->interp = bprm->filename; 1827 1828 retval = bprm_mm_init(bprm); 1829 if (retval) 1830 goto out_unmark; 1831 1832 retval = prepare_arg_pages(bprm, argv, envp); 1833 if (retval < 0) 1834 goto out; 1835 1836 retval = prepare_binprm(bprm); 1837 if (retval < 0) 1838 goto out; 1839 1840 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1841 if (retval < 0) 1842 goto out; 1843 1844 bprm->exec = bprm->p; 1845 retval = copy_strings(bprm->envc, envp, bprm); 1846 if (retval < 0) 1847 goto out; 1848 1849 retval = copy_strings(bprm->argc, argv, bprm); 1850 if (retval < 0) 1851 goto out; 1852 1853 would_dump(bprm, bprm->file); 1854 1855 retval = exec_binprm(bprm); 1856 if (retval < 0) 1857 goto out; 1858 1859 /* execve succeeded */ 1860 current->fs->in_exec = 0; 1861 current->in_execve = 0; 1862 rseq_execve(current); 1863 acct_update_integrals(current); 1864 task_numa_free(current, false); 1865 free_bprm(bprm); 1866 kfree(pathbuf); 1867 if (filename) 1868 putname(filename); 1869 if (displaced) 1870 put_files_struct(displaced); 1871 return retval; 1872 1873 out: 1874 if (bprm->mm) { 1875 acct_arg_size(bprm, 0); 1876 mmput(bprm->mm); 1877 } 1878 1879 out_unmark: 1880 current->fs->in_exec = 0; 1881 current->in_execve = 0; 1882 1883 out_free: 1884 free_bprm(bprm); 1885 kfree(pathbuf); 1886 1887 out_files: 1888 if (displaced) 1889 reset_files_struct(displaced); 1890 out_ret: 1891 if (filename) 1892 putname(filename); 1893 return retval; 1894 } 1895 1896 static int do_execveat_common(int fd, struct filename *filename, 1897 struct user_arg_ptr argv, 1898 struct user_arg_ptr envp, 1899 int flags) 1900 { 1901 return __do_execve_file(fd, filename, argv, envp, flags, NULL); 1902 } 1903 1904 int do_execve_file(struct file *file, void *__argv, void *__envp) 1905 { 1906 struct user_arg_ptr argv = { .ptr.native = __argv }; 1907 struct user_arg_ptr envp = { .ptr.native = __envp }; 1908 1909 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file); 1910 } 1911 1912 int do_execve(struct filename *filename, 1913 const char __user *const __user *__argv, 1914 const char __user *const __user *__envp) 1915 { 1916 struct user_arg_ptr argv = { .ptr.native = __argv }; 1917 struct user_arg_ptr envp = { .ptr.native = __envp }; 1918 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1919 } 1920 1921 int do_execveat(int fd, struct filename *filename, 1922 const char __user *const __user *__argv, 1923 const char __user *const __user *__envp, 1924 int flags) 1925 { 1926 struct user_arg_ptr argv = { .ptr.native = __argv }; 1927 struct user_arg_ptr envp = { .ptr.native = __envp }; 1928 1929 return do_execveat_common(fd, filename, argv, envp, flags); 1930 } 1931 1932 #ifdef CONFIG_COMPAT 1933 static int compat_do_execve(struct filename *filename, 1934 const compat_uptr_t __user *__argv, 1935 const compat_uptr_t __user *__envp) 1936 { 1937 struct user_arg_ptr argv = { 1938 .is_compat = true, 1939 .ptr.compat = __argv, 1940 }; 1941 struct user_arg_ptr envp = { 1942 .is_compat = true, 1943 .ptr.compat = __envp, 1944 }; 1945 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1946 } 1947 1948 static int compat_do_execveat(int fd, struct filename *filename, 1949 const compat_uptr_t __user *__argv, 1950 const compat_uptr_t __user *__envp, 1951 int flags) 1952 { 1953 struct user_arg_ptr argv = { 1954 .is_compat = true, 1955 .ptr.compat = __argv, 1956 }; 1957 struct user_arg_ptr envp = { 1958 .is_compat = true, 1959 .ptr.compat = __envp, 1960 }; 1961 return do_execveat_common(fd, filename, argv, envp, flags); 1962 } 1963 #endif 1964 1965 void set_binfmt(struct linux_binfmt *new) 1966 { 1967 struct mm_struct *mm = current->mm; 1968 1969 if (mm->binfmt) 1970 module_put(mm->binfmt->module); 1971 1972 mm->binfmt = new; 1973 if (new) 1974 __module_get(new->module); 1975 } 1976 EXPORT_SYMBOL(set_binfmt); 1977 1978 /* 1979 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1980 */ 1981 void set_dumpable(struct mm_struct *mm, int value) 1982 { 1983 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1984 return; 1985 1986 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 1987 } 1988 1989 SYSCALL_DEFINE3(execve, 1990 const char __user *, filename, 1991 const char __user *const __user *, argv, 1992 const char __user *const __user *, envp) 1993 { 1994 return do_execve(getname(filename), argv, envp); 1995 } 1996 1997 SYSCALL_DEFINE5(execveat, 1998 int, fd, const char __user *, filename, 1999 const char __user *const __user *, argv, 2000 const char __user *const __user *, envp, 2001 int, flags) 2002 { 2003 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2004 2005 return do_execveat(fd, 2006 getname_flags(filename, lookup_flags, NULL), 2007 argv, envp, flags); 2008 } 2009 2010 #ifdef CONFIG_COMPAT 2011 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2012 const compat_uptr_t __user *, argv, 2013 const compat_uptr_t __user *, envp) 2014 { 2015 return compat_do_execve(getname(filename), argv, envp); 2016 } 2017 2018 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2019 const char __user *, filename, 2020 const compat_uptr_t __user *, argv, 2021 const compat_uptr_t __user *, envp, 2022 int, flags) 2023 { 2024 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2025 2026 return compat_do_execveat(fd, 2027 getname_flags(filename, lookup_flags, NULL), 2028 argv, envp, flags); 2029 } 2030 #endif 2031