1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/highmem.h> 36 #include <linux/spinlock.h> 37 #include <linux/key.h> 38 #include <linux/personality.h> 39 #include <linux/binfmts.h> 40 #include <linux/utsname.h> 41 #include <linux/pid_namespace.h> 42 #include <linux/module.h> 43 #include <linux/namei.h> 44 #include <linux/proc_fs.h> 45 #include <linux/ptrace.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 53 #include <asm/uaccess.h> 54 #include <asm/mmu_context.h> 55 #include <asm/tlb.h> 56 57 #ifdef CONFIG_KMOD 58 #include <linux/kmod.h> 59 #endif 60 61 #ifdef __alpha__ 62 /* for /sbin/loader handling in search_binary_handler() */ 63 #include <linux/a.out.h> 64 #endif 65 66 int core_uses_pid; 67 char core_pattern[CORENAME_MAX_SIZE] = "core"; 68 int suid_dumpable = 0; 69 70 /* The maximal length of core_pattern is also specified in sysctl.c */ 71 72 static LIST_HEAD(formats); 73 static DEFINE_RWLOCK(binfmt_lock); 74 75 int register_binfmt(struct linux_binfmt * fmt) 76 { 77 if (!fmt) 78 return -EINVAL; 79 write_lock(&binfmt_lock); 80 list_add(&fmt->lh, &formats); 81 write_unlock(&binfmt_lock); 82 return 0; 83 } 84 85 EXPORT_SYMBOL(register_binfmt); 86 87 void unregister_binfmt(struct linux_binfmt * fmt) 88 { 89 write_lock(&binfmt_lock); 90 list_del(&fmt->lh); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(unregister_binfmt); 95 96 static inline void put_binfmt(struct linux_binfmt * fmt) 97 { 98 module_put(fmt->module); 99 } 100 101 /* 102 * Note that a shared library must be both readable and executable due to 103 * security reasons. 104 * 105 * Also note that we take the address to load from from the file itself. 106 */ 107 asmlinkage long sys_uselib(const char __user * library) 108 { 109 struct file * file; 110 struct nameidata nd; 111 int error; 112 113 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 114 if (error) 115 goto out; 116 117 error = -EINVAL; 118 if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) 119 goto exit; 120 121 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 122 if (error) 123 goto exit; 124 125 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); 126 error = PTR_ERR(file); 127 if (IS_ERR(file)) 128 goto out; 129 130 error = -ENOEXEC; 131 if(file->f_op) { 132 struct linux_binfmt * fmt; 133 134 read_lock(&binfmt_lock); 135 list_for_each_entry(fmt, &formats, lh) { 136 if (!fmt->load_shlib) 137 continue; 138 if (!try_module_get(fmt->module)) 139 continue; 140 read_unlock(&binfmt_lock); 141 error = fmt->load_shlib(file); 142 read_lock(&binfmt_lock); 143 put_binfmt(fmt); 144 if (error != -ENOEXEC) 145 break; 146 } 147 read_unlock(&binfmt_lock); 148 } 149 fput(file); 150 out: 151 return error; 152 exit: 153 release_open_intent(&nd); 154 path_put(&nd.path); 155 goto out; 156 } 157 158 #ifdef CONFIG_MMU 159 160 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 161 int write) 162 { 163 struct page *page; 164 int ret; 165 166 #ifdef CONFIG_STACK_GROWSUP 167 if (write) { 168 ret = expand_stack_downwards(bprm->vma, pos); 169 if (ret < 0) 170 return NULL; 171 } 172 #endif 173 ret = get_user_pages(current, bprm->mm, pos, 174 1, write, 1, &page, NULL); 175 if (ret <= 0) 176 return NULL; 177 178 if (write) { 179 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 180 struct rlimit *rlim; 181 182 /* 183 * We've historically supported up to 32 pages (ARG_MAX) 184 * of argument strings even with small stacks 185 */ 186 if (size <= ARG_MAX) 187 return page; 188 189 /* 190 * Limit to 1/4-th the stack size for the argv+env strings. 191 * This ensures that: 192 * - the remaining binfmt code will not run out of stack space, 193 * - the program will have a reasonable amount of stack left 194 * to work from. 195 */ 196 rlim = current->signal->rlim; 197 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 198 put_page(page); 199 return NULL; 200 } 201 } 202 203 return page; 204 } 205 206 static void put_arg_page(struct page *page) 207 { 208 put_page(page); 209 } 210 211 static void free_arg_page(struct linux_binprm *bprm, int i) 212 { 213 } 214 215 static void free_arg_pages(struct linux_binprm *bprm) 216 { 217 } 218 219 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 220 struct page *page) 221 { 222 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 223 } 224 225 static int __bprm_mm_init(struct linux_binprm *bprm) 226 { 227 int err = -ENOMEM; 228 struct vm_area_struct *vma = NULL; 229 struct mm_struct *mm = bprm->mm; 230 231 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 232 if (!vma) 233 goto err; 234 235 down_write(&mm->mmap_sem); 236 vma->vm_mm = mm; 237 238 /* 239 * Place the stack at the largest stack address the architecture 240 * supports. Later, we'll move this to an appropriate place. We don't 241 * use STACK_TOP because that can depend on attributes which aren't 242 * configured yet. 243 */ 244 vma->vm_end = STACK_TOP_MAX; 245 vma->vm_start = vma->vm_end - PAGE_SIZE; 246 247 vma->vm_flags = VM_STACK_FLAGS; 248 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 249 err = insert_vm_struct(mm, vma); 250 if (err) { 251 up_write(&mm->mmap_sem); 252 goto err; 253 } 254 255 mm->stack_vm = mm->total_vm = 1; 256 up_write(&mm->mmap_sem); 257 258 bprm->p = vma->vm_end - sizeof(void *); 259 260 return 0; 261 262 err: 263 if (vma) { 264 bprm->vma = NULL; 265 kmem_cache_free(vm_area_cachep, vma); 266 } 267 268 return err; 269 } 270 271 static bool valid_arg_len(struct linux_binprm *bprm, long len) 272 { 273 return len <= MAX_ARG_STRLEN; 274 } 275 276 #else 277 278 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 279 int write) 280 { 281 struct page *page; 282 283 page = bprm->page[pos / PAGE_SIZE]; 284 if (!page && write) { 285 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 286 if (!page) 287 return NULL; 288 bprm->page[pos / PAGE_SIZE] = page; 289 } 290 291 return page; 292 } 293 294 static void put_arg_page(struct page *page) 295 { 296 } 297 298 static void free_arg_page(struct linux_binprm *bprm, int i) 299 { 300 if (bprm->page[i]) { 301 __free_page(bprm->page[i]); 302 bprm->page[i] = NULL; 303 } 304 } 305 306 static void free_arg_pages(struct linux_binprm *bprm) 307 { 308 int i; 309 310 for (i = 0; i < MAX_ARG_PAGES; i++) 311 free_arg_page(bprm, i); 312 } 313 314 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 315 struct page *page) 316 { 317 } 318 319 static int __bprm_mm_init(struct linux_binprm *bprm) 320 { 321 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 322 return 0; 323 } 324 325 static bool valid_arg_len(struct linux_binprm *bprm, long len) 326 { 327 return len <= bprm->p; 328 } 329 330 #endif /* CONFIG_MMU */ 331 332 /* 333 * Create a new mm_struct and populate it with a temporary stack 334 * vm_area_struct. We don't have enough context at this point to set the stack 335 * flags, permissions, and offset, so we use temporary values. We'll update 336 * them later in setup_arg_pages(). 337 */ 338 int bprm_mm_init(struct linux_binprm *bprm) 339 { 340 int err; 341 struct mm_struct *mm = NULL; 342 343 bprm->mm = mm = mm_alloc(); 344 err = -ENOMEM; 345 if (!mm) 346 goto err; 347 348 err = init_new_context(current, mm); 349 if (err) 350 goto err; 351 352 err = __bprm_mm_init(bprm); 353 if (err) 354 goto err; 355 356 return 0; 357 358 err: 359 if (mm) { 360 bprm->mm = NULL; 361 mmdrop(mm); 362 } 363 364 return err; 365 } 366 367 /* 368 * count() counts the number of strings in array ARGV. 369 */ 370 static int count(char __user * __user * argv, int max) 371 { 372 int i = 0; 373 374 if (argv != NULL) { 375 for (;;) { 376 char __user * p; 377 378 if (get_user(p, argv)) 379 return -EFAULT; 380 if (!p) 381 break; 382 argv++; 383 if(++i > max) 384 return -E2BIG; 385 cond_resched(); 386 } 387 } 388 return i; 389 } 390 391 /* 392 * 'copy_strings()' copies argument/environment strings from the old 393 * processes's memory to the new process's stack. The call to get_user_pages() 394 * ensures the destination page is created and not swapped out. 395 */ 396 static int copy_strings(int argc, char __user * __user * argv, 397 struct linux_binprm *bprm) 398 { 399 struct page *kmapped_page = NULL; 400 char *kaddr = NULL; 401 unsigned long kpos = 0; 402 int ret; 403 404 while (argc-- > 0) { 405 char __user *str; 406 int len; 407 unsigned long pos; 408 409 if (get_user(str, argv+argc) || 410 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 411 ret = -EFAULT; 412 goto out; 413 } 414 415 if (!valid_arg_len(bprm, len)) { 416 ret = -E2BIG; 417 goto out; 418 } 419 420 /* We're going to work our way backwords. */ 421 pos = bprm->p; 422 str += len; 423 bprm->p -= len; 424 425 while (len > 0) { 426 int offset, bytes_to_copy; 427 428 offset = pos % PAGE_SIZE; 429 if (offset == 0) 430 offset = PAGE_SIZE; 431 432 bytes_to_copy = offset; 433 if (bytes_to_copy > len) 434 bytes_to_copy = len; 435 436 offset -= bytes_to_copy; 437 pos -= bytes_to_copy; 438 str -= bytes_to_copy; 439 len -= bytes_to_copy; 440 441 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 442 struct page *page; 443 444 page = get_arg_page(bprm, pos, 1); 445 if (!page) { 446 ret = -E2BIG; 447 goto out; 448 } 449 450 if (kmapped_page) { 451 flush_kernel_dcache_page(kmapped_page); 452 kunmap(kmapped_page); 453 put_arg_page(kmapped_page); 454 } 455 kmapped_page = page; 456 kaddr = kmap(kmapped_page); 457 kpos = pos & PAGE_MASK; 458 flush_arg_page(bprm, kpos, kmapped_page); 459 } 460 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 461 ret = -EFAULT; 462 goto out; 463 } 464 } 465 } 466 ret = 0; 467 out: 468 if (kmapped_page) { 469 flush_kernel_dcache_page(kmapped_page); 470 kunmap(kmapped_page); 471 put_arg_page(kmapped_page); 472 } 473 return ret; 474 } 475 476 /* 477 * Like copy_strings, but get argv and its values from kernel memory. 478 */ 479 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 480 { 481 int r; 482 mm_segment_t oldfs = get_fs(); 483 set_fs(KERNEL_DS); 484 r = copy_strings(argc, (char __user * __user *)argv, bprm); 485 set_fs(oldfs); 486 return r; 487 } 488 EXPORT_SYMBOL(copy_strings_kernel); 489 490 #ifdef CONFIG_MMU 491 492 /* 493 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 494 * the binfmt code determines where the new stack should reside, we shift it to 495 * its final location. The process proceeds as follows: 496 * 497 * 1) Use shift to calculate the new vma endpoints. 498 * 2) Extend vma to cover both the old and new ranges. This ensures the 499 * arguments passed to subsequent functions are consistent. 500 * 3) Move vma's page tables to the new range. 501 * 4) Free up any cleared pgd range. 502 * 5) Shrink the vma to cover only the new range. 503 */ 504 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 505 { 506 struct mm_struct *mm = vma->vm_mm; 507 unsigned long old_start = vma->vm_start; 508 unsigned long old_end = vma->vm_end; 509 unsigned long length = old_end - old_start; 510 unsigned long new_start = old_start - shift; 511 unsigned long new_end = old_end - shift; 512 struct mmu_gather *tlb; 513 514 BUG_ON(new_start > new_end); 515 516 /* 517 * ensure there are no vmas between where we want to go 518 * and where we are 519 */ 520 if (vma != find_vma(mm, new_start)) 521 return -EFAULT; 522 523 /* 524 * cover the whole range: [new_start, old_end) 525 */ 526 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 527 528 /* 529 * move the page tables downwards, on failure we rely on 530 * process cleanup to remove whatever mess we made. 531 */ 532 if (length != move_page_tables(vma, old_start, 533 vma, new_start, length)) 534 return -ENOMEM; 535 536 lru_add_drain(); 537 tlb = tlb_gather_mmu(mm, 0); 538 if (new_end > old_start) { 539 /* 540 * when the old and new regions overlap clear from new_end. 541 */ 542 free_pgd_range(tlb, new_end, old_end, new_end, 543 vma->vm_next ? vma->vm_next->vm_start : 0); 544 } else { 545 /* 546 * otherwise, clean from old_start; this is done to not touch 547 * the address space in [new_end, old_start) some architectures 548 * have constraints on va-space that make this illegal (IA64) - 549 * for the others its just a little faster. 550 */ 551 free_pgd_range(tlb, old_start, old_end, new_end, 552 vma->vm_next ? vma->vm_next->vm_start : 0); 553 } 554 tlb_finish_mmu(tlb, new_end, old_end); 555 556 /* 557 * shrink the vma to just the new range. 558 */ 559 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 560 561 return 0; 562 } 563 564 #define EXTRA_STACK_VM_PAGES 20 /* random */ 565 566 /* 567 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 568 * the stack is optionally relocated, and some extra space is added. 569 */ 570 int setup_arg_pages(struct linux_binprm *bprm, 571 unsigned long stack_top, 572 int executable_stack) 573 { 574 unsigned long ret; 575 unsigned long stack_shift; 576 struct mm_struct *mm = current->mm; 577 struct vm_area_struct *vma = bprm->vma; 578 struct vm_area_struct *prev = NULL; 579 unsigned long vm_flags; 580 unsigned long stack_base; 581 582 #ifdef CONFIG_STACK_GROWSUP 583 /* Limit stack size to 1GB */ 584 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 585 if (stack_base > (1 << 30)) 586 stack_base = 1 << 30; 587 588 /* Make sure we didn't let the argument array grow too large. */ 589 if (vma->vm_end - vma->vm_start > stack_base) 590 return -ENOMEM; 591 592 stack_base = PAGE_ALIGN(stack_top - stack_base); 593 594 stack_shift = vma->vm_start - stack_base; 595 mm->arg_start = bprm->p - stack_shift; 596 bprm->p = vma->vm_end - stack_shift; 597 #else 598 stack_top = arch_align_stack(stack_top); 599 stack_top = PAGE_ALIGN(stack_top); 600 stack_shift = vma->vm_end - stack_top; 601 602 bprm->p -= stack_shift; 603 mm->arg_start = bprm->p; 604 #endif 605 606 if (bprm->loader) 607 bprm->loader -= stack_shift; 608 bprm->exec -= stack_shift; 609 610 down_write(&mm->mmap_sem); 611 vm_flags = VM_STACK_FLAGS; 612 613 /* 614 * Adjust stack execute permissions; explicitly enable for 615 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 616 * (arch default) otherwise. 617 */ 618 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 619 vm_flags |= VM_EXEC; 620 else if (executable_stack == EXSTACK_DISABLE_X) 621 vm_flags &= ~VM_EXEC; 622 vm_flags |= mm->def_flags; 623 624 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 625 vm_flags); 626 if (ret) 627 goto out_unlock; 628 BUG_ON(prev != vma); 629 630 /* Move stack pages down in memory. */ 631 if (stack_shift) { 632 ret = shift_arg_pages(vma, stack_shift); 633 if (ret) { 634 up_write(&mm->mmap_sem); 635 return ret; 636 } 637 } 638 639 #ifdef CONFIG_STACK_GROWSUP 640 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 641 #else 642 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 643 #endif 644 ret = expand_stack(vma, stack_base); 645 if (ret) 646 ret = -EFAULT; 647 648 out_unlock: 649 up_write(&mm->mmap_sem); 650 return 0; 651 } 652 EXPORT_SYMBOL(setup_arg_pages); 653 654 #endif /* CONFIG_MMU */ 655 656 struct file *open_exec(const char *name) 657 { 658 struct nameidata nd; 659 int err; 660 struct file *file; 661 662 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 663 file = ERR_PTR(err); 664 665 if (!err) { 666 struct inode *inode = nd.path.dentry->d_inode; 667 file = ERR_PTR(-EACCES); 668 if (S_ISREG(inode->i_mode)) { 669 int err = vfs_permission(&nd, MAY_EXEC); 670 file = ERR_PTR(err); 671 if (!err) { 672 file = nameidata_to_filp(&nd, 673 O_RDONLY|O_LARGEFILE); 674 if (!IS_ERR(file)) { 675 err = deny_write_access(file); 676 if (err) { 677 fput(file); 678 file = ERR_PTR(err); 679 } 680 } 681 out: 682 return file; 683 } 684 } 685 release_open_intent(&nd); 686 path_put(&nd.path); 687 } 688 goto out; 689 } 690 691 EXPORT_SYMBOL(open_exec); 692 693 int kernel_read(struct file *file, unsigned long offset, 694 char *addr, unsigned long count) 695 { 696 mm_segment_t old_fs; 697 loff_t pos = offset; 698 int result; 699 700 old_fs = get_fs(); 701 set_fs(get_ds()); 702 /* The cast to a user pointer is valid due to the set_fs() */ 703 result = vfs_read(file, (void __user *)addr, count, &pos); 704 set_fs(old_fs); 705 return result; 706 } 707 708 EXPORT_SYMBOL(kernel_read); 709 710 static int exec_mmap(struct mm_struct *mm) 711 { 712 struct task_struct *tsk; 713 struct mm_struct * old_mm, *active_mm; 714 715 /* Notify parent that we're no longer interested in the old VM */ 716 tsk = current; 717 old_mm = current->mm; 718 mm_release(tsk, old_mm); 719 720 if (old_mm) { 721 /* 722 * Make sure that if there is a core dump in progress 723 * for the old mm, we get out and die instead of going 724 * through with the exec. We must hold mmap_sem around 725 * checking core_waiters and changing tsk->mm. The 726 * core-inducing thread will increment core_waiters for 727 * each thread whose ->mm == old_mm. 728 */ 729 down_read(&old_mm->mmap_sem); 730 if (unlikely(old_mm->core_waiters)) { 731 up_read(&old_mm->mmap_sem); 732 return -EINTR; 733 } 734 } 735 task_lock(tsk); 736 active_mm = tsk->active_mm; 737 tsk->mm = mm; 738 tsk->active_mm = mm; 739 activate_mm(active_mm, mm); 740 task_unlock(tsk); 741 mm_update_next_owner(old_mm); 742 arch_pick_mmap_layout(mm); 743 if (old_mm) { 744 up_read(&old_mm->mmap_sem); 745 BUG_ON(active_mm != old_mm); 746 mmput(old_mm); 747 return 0; 748 } 749 mmdrop(active_mm); 750 return 0; 751 } 752 753 /* 754 * This function makes sure the current process has its own signal table, 755 * so that flush_signal_handlers can later reset the handlers without 756 * disturbing other processes. (Other processes might share the signal 757 * table via the CLONE_SIGHAND option to clone().) 758 */ 759 static int de_thread(struct task_struct *tsk) 760 { 761 struct signal_struct *sig = tsk->signal; 762 struct sighand_struct *oldsighand = tsk->sighand; 763 spinlock_t *lock = &oldsighand->siglock; 764 struct task_struct *leader = NULL; 765 int count; 766 767 if (thread_group_empty(tsk)) 768 goto no_thread_group; 769 770 /* 771 * Kill all other threads in the thread group. 772 */ 773 spin_lock_irq(lock); 774 if (signal_group_exit(sig)) { 775 /* 776 * Another group action in progress, just 777 * return so that the signal is processed. 778 */ 779 spin_unlock_irq(lock); 780 return -EAGAIN; 781 } 782 sig->group_exit_task = tsk; 783 zap_other_threads(tsk); 784 785 /* Account for the thread group leader hanging around: */ 786 count = thread_group_leader(tsk) ? 1 : 2; 787 sig->notify_count = count; 788 while (atomic_read(&sig->count) > count) { 789 __set_current_state(TASK_UNINTERRUPTIBLE); 790 spin_unlock_irq(lock); 791 schedule(); 792 spin_lock_irq(lock); 793 } 794 spin_unlock_irq(lock); 795 796 /* 797 * At this point all other threads have exited, all we have to 798 * do is to wait for the thread group leader to become inactive, 799 * and to assume its PID: 800 */ 801 if (!thread_group_leader(tsk)) { 802 leader = tsk->group_leader; 803 804 sig->notify_count = -1; /* for exit_notify() */ 805 for (;;) { 806 write_lock_irq(&tasklist_lock); 807 if (likely(leader->exit_state)) 808 break; 809 __set_current_state(TASK_UNINTERRUPTIBLE); 810 write_unlock_irq(&tasklist_lock); 811 schedule(); 812 } 813 814 if (unlikely(task_child_reaper(tsk) == leader)) 815 task_active_pid_ns(tsk)->child_reaper = tsk; 816 /* 817 * The only record we have of the real-time age of a 818 * process, regardless of execs it's done, is start_time. 819 * All the past CPU time is accumulated in signal_struct 820 * from sister threads now dead. But in this non-leader 821 * exec, nothing survives from the original leader thread, 822 * whose birth marks the true age of this process now. 823 * When we take on its identity by switching to its PID, we 824 * also take its birthdate (always earlier than our own). 825 */ 826 tsk->start_time = leader->start_time; 827 828 BUG_ON(!same_thread_group(leader, tsk)); 829 BUG_ON(has_group_leader_pid(tsk)); 830 /* 831 * An exec() starts a new thread group with the 832 * TGID of the previous thread group. Rehash the 833 * two threads with a switched PID, and release 834 * the former thread group leader: 835 */ 836 837 /* Become a process group leader with the old leader's pid. 838 * The old leader becomes a thread of the this thread group. 839 * Note: The old leader also uses this pid until release_task 840 * is called. Odd but simple and correct. 841 */ 842 detach_pid(tsk, PIDTYPE_PID); 843 tsk->pid = leader->pid; 844 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 845 transfer_pid(leader, tsk, PIDTYPE_PGID); 846 transfer_pid(leader, tsk, PIDTYPE_SID); 847 list_replace_rcu(&leader->tasks, &tsk->tasks); 848 849 tsk->group_leader = tsk; 850 leader->group_leader = tsk; 851 852 tsk->exit_signal = SIGCHLD; 853 854 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 855 leader->exit_state = EXIT_DEAD; 856 857 write_unlock_irq(&tasklist_lock); 858 } 859 860 sig->group_exit_task = NULL; 861 sig->notify_count = 0; 862 863 no_thread_group: 864 exit_itimers(sig); 865 flush_itimer_signals(); 866 if (leader) 867 release_task(leader); 868 869 if (atomic_read(&oldsighand->count) != 1) { 870 struct sighand_struct *newsighand; 871 /* 872 * This ->sighand is shared with the CLONE_SIGHAND 873 * but not CLONE_THREAD task, switch to the new one. 874 */ 875 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 876 if (!newsighand) 877 return -ENOMEM; 878 879 atomic_set(&newsighand->count, 1); 880 memcpy(newsighand->action, oldsighand->action, 881 sizeof(newsighand->action)); 882 883 write_lock_irq(&tasklist_lock); 884 spin_lock(&oldsighand->siglock); 885 rcu_assign_pointer(tsk->sighand, newsighand); 886 spin_unlock(&oldsighand->siglock); 887 write_unlock_irq(&tasklist_lock); 888 889 __cleanup_sighand(oldsighand); 890 } 891 892 BUG_ON(!thread_group_leader(tsk)); 893 return 0; 894 } 895 896 /* 897 * These functions flushes out all traces of the currently running executable 898 * so that a new one can be started 899 */ 900 static void flush_old_files(struct files_struct * files) 901 { 902 long j = -1; 903 struct fdtable *fdt; 904 905 spin_lock(&files->file_lock); 906 for (;;) { 907 unsigned long set, i; 908 909 j++; 910 i = j * __NFDBITS; 911 fdt = files_fdtable(files); 912 if (i >= fdt->max_fds) 913 break; 914 set = fdt->close_on_exec->fds_bits[j]; 915 if (!set) 916 continue; 917 fdt->close_on_exec->fds_bits[j] = 0; 918 spin_unlock(&files->file_lock); 919 for ( ; set ; i++,set >>= 1) { 920 if (set & 1) { 921 sys_close(i); 922 } 923 } 924 spin_lock(&files->file_lock); 925 926 } 927 spin_unlock(&files->file_lock); 928 } 929 930 char *get_task_comm(char *buf, struct task_struct *tsk) 931 { 932 /* buf must be at least sizeof(tsk->comm) in size */ 933 task_lock(tsk); 934 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 935 task_unlock(tsk); 936 return buf; 937 } 938 939 void set_task_comm(struct task_struct *tsk, char *buf) 940 { 941 task_lock(tsk); 942 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 943 task_unlock(tsk); 944 } 945 946 int flush_old_exec(struct linux_binprm * bprm) 947 { 948 char * name; 949 int i, ch, retval; 950 char tcomm[sizeof(current->comm)]; 951 952 /* 953 * Make sure we have a private signal table and that 954 * we are unassociated from the previous thread group. 955 */ 956 retval = de_thread(current); 957 if (retval) 958 goto out; 959 960 set_mm_exe_file(bprm->mm, bprm->file); 961 962 /* 963 * Release all of the old mmap stuff 964 */ 965 retval = exec_mmap(bprm->mm); 966 if (retval) 967 goto out; 968 969 bprm->mm = NULL; /* We're using it now */ 970 971 /* This is the point of no return */ 972 current->sas_ss_sp = current->sas_ss_size = 0; 973 974 if (current->euid == current->uid && current->egid == current->gid) 975 set_dumpable(current->mm, 1); 976 else 977 set_dumpable(current->mm, suid_dumpable); 978 979 name = bprm->filename; 980 981 /* Copies the binary name from after last slash */ 982 for (i=0; (ch = *(name++)) != '\0';) { 983 if (ch == '/') 984 i = 0; /* overwrite what we wrote */ 985 else 986 if (i < (sizeof(tcomm) - 1)) 987 tcomm[i++] = ch; 988 } 989 tcomm[i] = '\0'; 990 set_task_comm(current, tcomm); 991 992 current->flags &= ~PF_RANDOMIZE; 993 flush_thread(); 994 995 /* Set the new mm task size. We have to do that late because it may 996 * depend on TIF_32BIT which is only updated in flush_thread() on 997 * some architectures like powerpc 998 */ 999 current->mm->task_size = TASK_SIZE; 1000 1001 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { 1002 suid_keys(current); 1003 set_dumpable(current->mm, suid_dumpable); 1004 current->pdeath_signal = 0; 1005 } else if (file_permission(bprm->file, MAY_READ) || 1006 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1007 suid_keys(current); 1008 set_dumpable(current->mm, suid_dumpable); 1009 } 1010 1011 /* An exec changes our domain. We are no longer part of the thread 1012 group */ 1013 1014 current->self_exec_id++; 1015 1016 flush_signal_handlers(current, 0); 1017 flush_old_files(current->files); 1018 1019 return 0; 1020 1021 out: 1022 return retval; 1023 } 1024 1025 EXPORT_SYMBOL(flush_old_exec); 1026 1027 /* 1028 * Fill the binprm structure from the inode. 1029 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1030 */ 1031 int prepare_binprm(struct linux_binprm *bprm) 1032 { 1033 int mode; 1034 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1035 int retval; 1036 1037 mode = inode->i_mode; 1038 if (bprm->file->f_op == NULL) 1039 return -EACCES; 1040 1041 bprm->e_uid = current->euid; 1042 bprm->e_gid = current->egid; 1043 1044 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1045 /* Set-uid? */ 1046 if (mode & S_ISUID) { 1047 current->personality &= ~PER_CLEAR_ON_SETID; 1048 bprm->e_uid = inode->i_uid; 1049 } 1050 1051 /* Set-gid? */ 1052 /* 1053 * If setgid is set but no group execute bit then this 1054 * is a candidate for mandatory locking, not a setgid 1055 * executable. 1056 */ 1057 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1058 current->personality &= ~PER_CLEAR_ON_SETID; 1059 bprm->e_gid = inode->i_gid; 1060 } 1061 } 1062 1063 /* fill in binprm security blob */ 1064 retval = security_bprm_set(bprm); 1065 if (retval) 1066 return retval; 1067 1068 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1069 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1070 } 1071 1072 EXPORT_SYMBOL(prepare_binprm); 1073 1074 static int unsafe_exec(struct task_struct *p) 1075 { 1076 int unsafe = 0; 1077 if (p->ptrace & PT_PTRACED) { 1078 if (p->ptrace & PT_PTRACE_CAP) 1079 unsafe |= LSM_UNSAFE_PTRACE_CAP; 1080 else 1081 unsafe |= LSM_UNSAFE_PTRACE; 1082 } 1083 if (atomic_read(&p->fs->count) > 1 || 1084 atomic_read(&p->files->count) > 1 || 1085 atomic_read(&p->sighand->count) > 1) 1086 unsafe |= LSM_UNSAFE_SHARE; 1087 1088 return unsafe; 1089 } 1090 1091 void compute_creds(struct linux_binprm *bprm) 1092 { 1093 int unsafe; 1094 1095 if (bprm->e_uid != current->uid) { 1096 suid_keys(current); 1097 current->pdeath_signal = 0; 1098 } 1099 exec_keys(current); 1100 1101 task_lock(current); 1102 unsafe = unsafe_exec(current); 1103 security_bprm_apply_creds(bprm, unsafe); 1104 task_unlock(current); 1105 security_bprm_post_apply_creds(bprm); 1106 } 1107 EXPORT_SYMBOL(compute_creds); 1108 1109 /* 1110 * Arguments are '\0' separated strings found at the location bprm->p 1111 * points to; chop off the first by relocating brpm->p to right after 1112 * the first '\0' encountered. 1113 */ 1114 int remove_arg_zero(struct linux_binprm *bprm) 1115 { 1116 int ret = 0; 1117 unsigned long offset; 1118 char *kaddr; 1119 struct page *page; 1120 1121 if (!bprm->argc) 1122 return 0; 1123 1124 do { 1125 offset = bprm->p & ~PAGE_MASK; 1126 page = get_arg_page(bprm, bprm->p, 0); 1127 if (!page) { 1128 ret = -EFAULT; 1129 goto out; 1130 } 1131 kaddr = kmap_atomic(page, KM_USER0); 1132 1133 for (; offset < PAGE_SIZE && kaddr[offset]; 1134 offset++, bprm->p++) 1135 ; 1136 1137 kunmap_atomic(kaddr, KM_USER0); 1138 put_arg_page(page); 1139 1140 if (offset == PAGE_SIZE) 1141 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1142 } while (offset == PAGE_SIZE); 1143 1144 bprm->p++; 1145 bprm->argc--; 1146 ret = 0; 1147 1148 out: 1149 return ret; 1150 } 1151 EXPORT_SYMBOL(remove_arg_zero); 1152 1153 /* 1154 * cycle the list of binary formats handler, until one recognizes the image 1155 */ 1156 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1157 { 1158 int try,retval; 1159 struct linux_binfmt *fmt; 1160 #ifdef __alpha__ 1161 /* handle /sbin/loader.. */ 1162 { 1163 struct exec * eh = (struct exec *) bprm->buf; 1164 1165 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1166 (eh->fh.f_flags & 0x3000) == 0x3000) 1167 { 1168 struct file * file; 1169 unsigned long loader; 1170 1171 allow_write_access(bprm->file); 1172 fput(bprm->file); 1173 bprm->file = NULL; 1174 1175 loader = bprm->vma->vm_end - sizeof(void *); 1176 1177 file = open_exec("/sbin/loader"); 1178 retval = PTR_ERR(file); 1179 if (IS_ERR(file)) 1180 return retval; 1181 1182 /* Remember if the application is TASO. */ 1183 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1184 1185 bprm->file = file; 1186 bprm->loader = loader; 1187 retval = prepare_binprm(bprm); 1188 if (retval<0) 1189 return retval; 1190 /* should call search_binary_handler recursively here, 1191 but it does not matter */ 1192 } 1193 } 1194 #endif 1195 retval = security_bprm_check(bprm); 1196 if (retval) 1197 return retval; 1198 1199 /* kernel module loader fixup */ 1200 /* so we don't try to load run modprobe in kernel space. */ 1201 set_fs(USER_DS); 1202 1203 retval = audit_bprm(bprm); 1204 if (retval) 1205 return retval; 1206 1207 retval = -ENOENT; 1208 for (try=0; try<2; try++) { 1209 read_lock(&binfmt_lock); 1210 list_for_each_entry(fmt, &formats, lh) { 1211 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1212 if (!fn) 1213 continue; 1214 if (!try_module_get(fmt->module)) 1215 continue; 1216 read_unlock(&binfmt_lock); 1217 retval = fn(bprm, regs); 1218 if (retval >= 0) { 1219 put_binfmt(fmt); 1220 allow_write_access(bprm->file); 1221 if (bprm->file) 1222 fput(bprm->file); 1223 bprm->file = NULL; 1224 current->did_exec = 1; 1225 proc_exec_connector(current); 1226 return retval; 1227 } 1228 read_lock(&binfmt_lock); 1229 put_binfmt(fmt); 1230 if (retval != -ENOEXEC || bprm->mm == NULL) 1231 break; 1232 if (!bprm->file) { 1233 read_unlock(&binfmt_lock); 1234 return retval; 1235 } 1236 } 1237 read_unlock(&binfmt_lock); 1238 if (retval != -ENOEXEC || bprm->mm == NULL) { 1239 break; 1240 #ifdef CONFIG_KMOD 1241 }else{ 1242 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1243 if (printable(bprm->buf[0]) && 1244 printable(bprm->buf[1]) && 1245 printable(bprm->buf[2]) && 1246 printable(bprm->buf[3])) 1247 break; /* -ENOEXEC */ 1248 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1249 #endif 1250 } 1251 } 1252 return retval; 1253 } 1254 1255 EXPORT_SYMBOL(search_binary_handler); 1256 1257 void free_bprm(struct linux_binprm *bprm) 1258 { 1259 free_arg_pages(bprm); 1260 kfree(bprm); 1261 } 1262 1263 /* 1264 * sys_execve() executes a new program. 1265 */ 1266 int do_execve(char * filename, 1267 char __user *__user *argv, 1268 char __user *__user *envp, 1269 struct pt_regs * regs) 1270 { 1271 struct linux_binprm *bprm; 1272 struct file *file; 1273 struct files_struct *displaced; 1274 int retval; 1275 1276 retval = unshare_files(&displaced); 1277 if (retval) 1278 goto out_ret; 1279 1280 retval = -ENOMEM; 1281 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1282 if (!bprm) 1283 goto out_files; 1284 1285 file = open_exec(filename); 1286 retval = PTR_ERR(file); 1287 if (IS_ERR(file)) 1288 goto out_kfree; 1289 1290 sched_exec(); 1291 1292 bprm->file = file; 1293 bprm->filename = filename; 1294 bprm->interp = filename; 1295 1296 retval = bprm_mm_init(bprm); 1297 if (retval) 1298 goto out_file; 1299 1300 bprm->argc = count(argv, MAX_ARG_STRINGS); 1301 if ((retval = bprm->argc) < 0) 1302 goto out_mm; 1303 1304 bprm->envc = count(envp, MAX_ARG_STRINGS); 1305 if ((retval = bprm->envc) < 0) 1306 goto out_mm; 1307 1308 retval = security_bprm_alloc(bprm); 1309 if (retval) 1310 goto out; 1311 1312 retval = prepare_binprm(bprm); 1313 if (retval < 0) 1314 goto out; 1315 1316 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1317 if (retval < 0) 1318 goto out; 1319 1320 bprm->exec = bprm->p; 1321 retval = copy_strings(bprm->envc, envp, bprm); 1322 if (retval < 0) 1323 goto out; 1324 1325 retval = copy_strings(bprm->argc, argv, bprm); 1326 if (retval < 0) 1327 goto out; 1328 1329 retval = search_binary_handler(bprm,regs); 1330 if (retval >= 0) { 1331 /* execve success */ 1332 security_bprm_free(bprm); 1333 acct_update_integrals(current); 1334 free_bprm(bprm); 1335 if (displaced) 1336 put_files_struct(displaced); 1337 return retval; 1338 } 1339 1340 out: 1341 if (bprm->security) 1342 security_bprm_free(bprm); 1343 1344 out_mm: 1345 if (bprm->mm) 1346 mmput (bprm->mm); 1347 1348 out_file: 1349 if (bprm->file) { 1350 allow_write_access(bprm->file); 1351 fput(bprm->file); 1352 } 1353 out_kfree: 1354 free_bprm(bprm); 1355 1356 out_files: 1357 if (displaced) 1358 reset_files_struct(displaced); 1359 out_ret: 1360 return retval; 1361 } 1362 1363 int set_binfmt(struct linux_binfmt *new) 1364 { 1365 struct linux_binfmt *old = current->binfmt; 1366 1367 if (new) { 1368 if (!try_module_get(new->module)) 1369 return -1; 1370 } 1371 current->binfmt = new; 1372 if (old) 1373 module_put(old->module); 1374 return 0; 1375 } 1376 1377 EXPORT_SYMBOL(set_binfmt); 1378 1379 /* format_corename will inspect the pattern parameter, and output a 1380 * name into corename, which must have space for at least 1381 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1382 */ 1383 static int format_corename(char *corename, const char *pattern, long signr) 1384 { 1385 const char *pat_ptr = pattern; 1386 char *out_ptr = corename; 1387 char *const out_end = corename + CORENAME_MAX_SIZE; 1388 int rc; 1389 int pid_in_pattern = 0; 1390 int ispipe = 0; 1391 1392 if (*pattern == '|') 1393 ispipe = 1; 1394 1395 /* Repeat as long as we have more pattern to process and more output 1396 space */ 1397 while (*pat_ptr) { 1398 if (*pat_ptr != '%') { 1399 if (out_ptr == out_end) 1400 goto out; 1401 *out_ptr++ = *pat_ptr++; 1402 } else { 1403 switch (*++pat_ptr) { 1404 case 0: 1405 goto out; 1406 /* Double percent, output one percent */ 1407 case '%': 1408 if (out_ptr == out_end) 1409 goto out; 1410 *out_ptr++ = '%'; 1411 break; 1412 /* pid */ 1413 case 'p': 1414 pid_in_pattern = 1; 1415 rc = snprintf(out_ptr, out_end - out_ptr, 1416 "%d", task_tgid_vnr(current)); 1417 if (rc > out_end - out_ptr) 1418 goto out; 1419 out_ptr += rc; 1420 break; 1421 /* uid */ 1422 case 'u': 1423 rc = snprintf(out_ptr, out_end - out_ptr, 1424 "%d", current->uid); 1425 if (rc > out_end - out_ptr) 1426 goto out; 1427 out_ptr += rc; 1428 break; 1429 /* gid */ 1430 case 'g': 1431 rc = snprintf(out_ptr, out_end - out_ptr, 1432 "%d", current->gid); 1433 if (rc > out_end - out_ptr) 1434 goto out; 1435 out_ptr += rc; 1436 break; 1437 /* signal that caused the coredump */ 1438 case 's': 1439 rc = snprintf(out_ptr, out_end - out_ptr, 1440 "%ld", signr); 1441 if (rc > out_end - out_ptr) 1442 goto out; 1443 out_ptr += rc; 1444 break; 1445 /* UNIX time of coredump */ 1446 case 't': { 1447 struct timeval tv; 1448 do_gettimeofday(&tv); 1449 rc = snprintf(out_ptr, out_end - out_ptr, 1450 "%lu", tv.tv_sec); 1451 if (rc > out_end - out_ptr) 1452 goto out; 1453 out_ptr += rc; 1454 break; 1455 } 1456 /* hostname */ 1457 case 'h': 1458 down_read(&uts_sem); 1459 rc = snprintf(out_ptr, out_end - out_ptr, 1460 "%s", utsname()->nodename); 1461 up_read(&uts_sem); 1462 if (rc > out_end - out_ptr) 1463 goto out; 1464 out_ptr += rc; 1465 break; 1466 /* executable */ 1467 case 'e': 1468 rc = snprintf(out_ptr, out_end - out_ptr, 1469 "%s", current->comm); 1470 if (rc > out_end - out_ptr) 1471 goto out; 1472 out_ptr += rc; 1473 break; 1474 /* core limit size */ 1475 case 'c': 1476 rc = snprintf(out_ptr, out_end - out_ptr, 1477 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1478 if (rc > out_end - out_ptr) 1479 goto out; 1480 out_ptr += rc; 1481 break; 1482 default: 1483 break; 1484 } 1485 ++pat_ptr; 1486 } 1487 } 1488 /* Backward compatibility with core_uses_pid: 1489 * 1490 * If core_pattern does not include a %p (as is the default) 1491 * and core_uses_pid is set, then .%pid will be appended to 1492 * the filename. Do not do this for piped commands. */ 1493 if (!ispipe && !pid_in_pattern 1494 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1495 rc = snprintf(out_ptr, out_end - out_ptr, 1496 ".%d", task_tgid_vnr(current)); 1497 if (rc > out_end - out_ptr) 1498 goto out; 1499 out_ptr += rc; 1500 } 1501 out: 1502 *out_ptr = 0; 1503 return ispipe; 1504 } 1505 1506 static void zap_process(struct task_struct *start) 1507 { 1508 struct task_struct *t; 1509 1510 start->signal->flags = SIGNAL_GROUP_EXIT; 1511 start->signal->group_stop_count = 0; 1512 1513 t = start; 1514 do { 1515 if (t != current && t->mm) { 1516 t->mm->core_waiters++; 1517 sigaddset(&t->pending.signal, SIGKILL); 1518 signal_wake_up(t, 1); 1519 } 1520 } while ((t = next_thread(t)) != start); 1521 } 1522 1523 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1524 int exit_code) 1525 { 1526 struct task_struct *g, *p; 1527 unsigned long flags; 1528 int err = -EAGAIN; 1529 1530 spin_lock_irq(&tsk->sighand->siglock); 1531 if (!signal_group_exit(tsk->signal)) { 1532 tsk->signal->group_exit_code = exit_code; 1533 zap_process(tsk); 1534 err = 0; 1535 } 1536 spin_unlock_irq(&tsk->sighand->siglock); 1537 if (err) 1538 return err; 1539 1540 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1541 goto done; 1542 1543 rcu_read_lock(); 1544 for_each_process(g) { 1545 if (g == tsk->group_leader) 1546 continue; 1547 1548 p = g; 1549 do { 1550 if (p->mm) { 1551 if (p->mm == mm) { 1552 /* 1553 * p->sighand can't disappear, but 1554 * may be changed by de_thread() 1555 */ 1556 lock_task_sighand(p, &flags); 1557 zap_process(p); 1558 unlock_task_sighand(p, &flags); 1559 } 1560 break; 1561 } 1562 } while ((p = next_thread(p)) != g); 1563 } 1564 rcu_read_unlock(); 1565 done: 1566 return mm->core_waiters; 1567 } 1568 1569 static int coredump_wait(int exit_code) 1570 { 1571 struct task_struct *tsk = current; 1572 struct mm_struct *mm = tsk->mm; 1573 struct completion startup_done; 1574 struct completion *vfork_done; 1575 int core_waiters; 1576 1577 init_completion(&mm->core_done); 1578 init_completion(&startup_done); 1579 mm->core_startup_done = &startup_done; 1580 1581 core_waiters = zap_threads(tsk, mm, exit_code); 1582 up_write(&mm->mmap_sem); 1583 1584 if (unlikely(core_waiters < 0)) 1585 goto fail; 1586 1587 /* 1588 * Make sure nobody is waiting for us to release the VM, 1589 * otherwise we can deadlock when we wait on each other 1590 */ 1591 vfork_done = tsk->vfork_done; 1592 if (vfork_done) { 1593 tsk->vfork_done = NULL; 1594 complete(vfork_done); 1595 } 1596 1597 if (core_waiters) 1598 wait_for_completion(&startup_done); 1599 fail: 1600 BUG_ON(mm->core_waiters); 1601 return core_waiters; 1602 } 1603 1604 /* 1605 * set_dumpable converts traditional three-value dumpable to two flags and 1606 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1607 * these bits are not changed atomically. So get_dumpable can observe the 1608 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1609 * return either old dumpable or new one by paying attention to the order of 1610 * modifying the bits. 1611 * 1612 * dumpable | mm->flags (binary) 1613 * old new | initial interim final 1614 * ---------+----------------------- 1615 * 0 1 | 00 01 01 1616 * 0 2 | 00 10(*) 11 1617 * 1 0 | 01 00 00 1618 * 1 2 | 01 11 11 1619 * 2 0 | 11 10(*) 00 1620 * 2 1 | 11 11 01 1621 * 1622 * (*) get_dumpable regards interim value of 10 as 11. 1623 */ 1624 void set_dumpable(struct mm_struct *mm, int value) 1625 { 1626 switch (value) { 1627 case 0: 1628 clear_bit(MMF_DUMPABLE, &mm->flags); 1629 smp_wmb(); 1630 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1631 break; 1632 case 1: 1633 set_bit(MMF_DUMPABLE, &mm->flags); 1634 smp_wmb(); 1635 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1636 break; 1637 case 2: 1638 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1639 smp_wmb(); 1640 set_bit(MMF_DUMPABLE, &mm->flags); 1641 break; 1642 } 1643 } 1644 1645 int get_dumpable(struct mm_struct *mm) 1646 { 1647 int ret; 1648 1649 ret = mm->flags & 0x3; 1650 return (ret >= 2) ? 2 : ret; 1651 } 1652 1653 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1654 { 1655 char corename[CORENAME_MAX_SIZE + 1]; 1656 struct mm_struct *mm = current->mm; 1657 struct linux_binfmt * binfmt; 1658 struct inode * inode; 1659 struct file * file; 1660 int retval = 0; 1661 int fsuid = current->fsuid; 1662 int flag = 0; 1663 int ispipe = 0; 1664 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; 1665 char **helper_argv = NULL; 1666 int helper_argc = 0; 1667 char *delimit; 1668 1669 audit_core_dumps(signr); 1670 1671 binfmt = current->binfmt; 1672 if (!binfmt || !binfmt->core_dump) 1673 goto fail; 1674 down_write(&mm->mmap_sem); 1675 /* 1676 * If another thread got here first, or we are not dumpable, bail out. 1677 */ 1678 if (mm->core_waiters || !get_dumpable(mm)) { 1679 up_write(&mm->mmap_sem); 1680 goto fail; 1681 } 1682 1683 /* 1684 * We cannot trust fsuid as being the "true" uid of the 1685 * process nor do we know its entire history. We only know it 1686 * was tainted so we dump it as root in mode 2. 1687 */ 1688 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1689 flag = O_EXCL; /* Stop rewrite attacks */ 1690 current->fsuid = 0; /* Dump root private */ 1691 } 1692 1693 retval = coredump_wait(exit_code); 1694 if (retval < 0) 1695 goto fail; 1696 1697 /* 1698 * Clear any false indication of pending signals that might 1699 * be seen by the filesystem code called to write the core file. 1700 */ 1701 clear_thread_flag(TIF_SIGPENDING); 1702 1703 /* 1704 * lock_kernel() because format_corename() is controlled by sysctl, which 1705 * uses lock_kernel() 1706 */ 1707 lock_kernel(); 1708 ispipe = format_corename(corename, core_pattern, signr); 1709 unlock_kernel(); 1710 /* 1711 * Don't bother to check the RLIMIT_CORE value if core_pattern points 1712 * to a pipe. Since we're not writing directly to the filesystem 1713 * RLIMIT_CORE doesn't really apply, as no actual core file will be 1714 * created unless the pipe reader choses to write out the core file 1715 * at which point file size limits and permissions will be imposed 1716 * as it does with any other process 1717 */ 1718 if ((!ispipe) && (core_limit < binfmt->min_coredump)) 1719 goto fail_unlock; 1720 1721 if (ispipe) { 1722 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1723 /* Terminate the string before the first option */ 1724 delimit = strchr(corename, ' '); 1725 if (delimit) 1726 *delimit = '\0'; 1727 delimit = strrchr(helper_argv[0], '/'); 1728 if (delimit) 1729 delimit++; 1730 else 1731 delimit = helper_argv[0]; 1732 if (!strcmp(delimit, current->comm)) { 1733 printk(KERN_NOTICE "Recursive core dump detected, " 1734 "aborting\n"); 1735 goto fail_unlock; 1736 } 1737 1738 core_limit = RLIM_INFINITY; 1739 1740 /* SIGPIPE can happen, but it's just never processed */ 1741 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, 1742 &file)) { 1743 printk(KERN_INFO "Core dump to %s pipe failed\n", 1744 corename); 1745 goto fail_unlock; 1746 } 1747 } else 1748 file = filp_open(corename, 1749 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1750 0600); 1751 if (IS_ERR(file)) 1752 goto fail_unlock; 1753 inode = file->f_path.dentry->d_inode; 1754 if (inode->i_nlink > 1) 1755 goto close_fail; /* multiple links - don't dump */ 1756 if (!ispipe && d_unhashed(file->f_path.dentry)) 1757 goto close_fail; 1758 1759 /* AK: actually i see no reason to not allow this for named pipes etc., 1760 but keep the previous behaviour for now. */ 1761 if (!ispipe && !S_ISREG(inode->i_mode)) 1762 goto close_fail; 1763 /* 1764 * Dont allow local users get cute and trick others to coredump 1765 * into their pre-created files: 1766 */ 1767 if (inode->i_uid != current->fsuid) 1768 goto close_fail; 1769 if (!file->f_op) 1770 goto close_fail; 1771 if (!file->f_op->write) 1772 goto close_fail; 1773 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1774 goto close_fail; 1775 1776 retval = binfmt->core_dump(signr, regs, file, core_limit); 1777 1778 if (retval) 1779 current->signal->group_exit_code |= 0x80; 1780 close_fail: 1781 filp_close(file, NULL); 1782 fail_unlock: 1783 if (helper_argv) 1784 argv_free(helper_argv); 1785 1786 current->fsuid = fsuid; 1787 complete_all(&mm->core_done); 1788 fail: 1789 return retval; 1790 } 1791