xref: /linux/fs/exec.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
56 #include <asm/tlb.h>
57 
58 #ifdef CONFIG_KMOD
59 #include <linux/kmod.h>
60 #endif
61 
62 int core_uses_pid;
63 char core_pattern[CORENAME_MAX_SIZE] = "core";
64 int suid_dumpable = 0;
65 
66 EXPORT_SYMBOL(suid_dumpable);
67 /* The maximal length of core_pattern is also specified in sysctl.c */
68 
69 static struct linux_binfmt *formats;
70 static DEFINE_RWLOCK(binfmt_lock);
71 
72 int register_binfmt(struct linux_binfmt * fmt)
73 {
74 	struct linux_binfmt ** tmp = &formats;
75 
76 	if (!fmt)
77 		return -EINVAL;
78 	if (fmt->next)
79 		return -EBUSY;
80 	write_lock(&binfmt_lock);
81 	while (*tmp) {
82 		if (fmt == *tmp) {
83 			write_unlock(&binfmt_lock);
84 			return -EBUSY;
85 		}
86 		tmp = &(*tmp)->next;
87 	}
88 	fmt->next = formats;
89 	formats = fmt;
90 	write_unlock(&binfmt_lock);
91 	return 0;
92 }
93 
94 EXPORT_SYMBOL(register_binfmt);
95 
96 int unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 	struct linux_binfmt ** tmp = &formats;
99 
100 	write_lock(&binfmt_lock);
101 	while (*tmp) {
102 		if (fmt == *tmp) {
103 			*tmp = fmt->next;
104 			fmt->next = NULL;
105 			write_unlock(&binfmt_lock);
106 			return 0;
107 		}
108 		tmp = &(*tmp)->next;
109 	}
110 	write_unlock(&binfmt_lock);
111 	return -EINVAL;
112 }
113 
114 EXPORT_SYMBOL(unregister_binfmt);
115 
116 static inline void put_binfmt(struct linux_binfmt * fmt)
117 {
118 	module_put(fmt->module);
119 }
120 
121 /*
122  * Note that a shared library must be both readable and executable due to
123  * security reasons.
124  *
125  * Also note that we take the address to load from from the file itself.
126  */
127 asmlinkage long sys_uselib(const char __user * library)
128 {
129 	struct file * file;
130 	struct nameidata nd;
131 	int error;
132 
133 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
134 	if (error)
135 		goto out;
136 
137 	error = -EACCES;
138 	if (nd.mnt->mnt_flags & MNT_NOEXEC)
139 		goto exit;
140 	error = -EINVAL;
141 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
142 		goto exit;
143 
144 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
145 	if (error)
146 		goto exit;
147 
148 	file = nameidata_to_filp(&nd, O_RDONLY);
149 	error = PTR_ERR(file);
150 	if (IS_ERR(file))
151 		goto out;
152 
153 	error = -ENOEXEC;
154 	if(file->f_op) {
155 		struct linux_binfmt * fmt;
156 
157 		read_lock(&binfmt_lock);
158 		for (fmt = formats ; fmt ; fmt = fmt->next) {
159 			if (!fmt->load_shlib)
160 				continue;
161 			if (!try_module_get(fmt->module))
162 				continue;
163 			read_unlock(&binfmt_lock);
164 			error = fmt->load_shlib(file);
165 			read_lock(&binfmt_lock);
166 			put_binfmt(fmt);
167 			if (error != -ENOEXEC)
168 				break;
169 		}
170 		read_unlock(&binfmt_lock);
171 	}
172 	fput(file);
173 out:
174   	return error;
175 exit:
176 	release_open_intent(&nd);
177 	path_release(&nd);
178 	goto out;
179 }
180 
181 #ifdef CONFIG_MMU
182 
183 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
184 		int write)
185 {
186 	struct page *page;
187 	int ret;
188 
189 #ifdef CONFIG_STACK_GROWSUP
190 	if (write) {
191 		ret = expand_stack_downwards(bprm->vma, pos);
192 		if (ret < 0)
193 			return NULL;
194 	}
195 #endif
196 	ret = get_user_pages(current, bprm->mm, pos,
197 			1, write, 1, &page, NULL);
198 	if (ret <= 0)
199 		return NULL;
200 
201 	if (write) {
202 		struct rlimit *rlim = current->signal->rlim;
203 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
204 
205 		/*
206 		 * Limit to 1/4-th the stack size for the argv+env strings.
207 		 * This ensures that:
208 		 *  - the remaining binfmt code will not run out of stack space,
209 		 *  - the program will have a reasonable amount of stack left
210 		 *    to work from.
211 		 */
212 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
213 			put_page(page);
214 			return NULL;
215 		}
216 	}
217 
218 	return page;
219 }
220 
221 static void put_arg_page(struct page *page)
222 {
223 	put_page(page);
224 }
225 
226 static void free_arg_page(struct linux_binprm *bprm, int i)
227 {
228 }
229 
230 static void free_arg_pages(struct linux_binprm *bprm)
231 {
232 }
233 
234 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
235 		struct page *page)
236 {
237 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
238 }
239 
240 static int __bprm_mm_init(struct linux_binprm *bprm)
241 {
242 	int err = -ENOMEM;
243 	struct vm_area_struct *vma = NULL;
244 	struct mm_struct *mm = bprm->mm;
245 
246 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
247 	if (!vma)
248 		goto err;
249 
250 	down_write(&mm->mmap_sem);
251 	vma->vm_mm = mm;
252 
253 	/*
254 	 * Place the stack at the largest stack address the architecture
255 	 * supports. Later, we'll move this to an appropriate place. We don't
256 	 * use STACK_TOP because that can depend on attributes which aren't
257 	 * configured yet.
258 	 */
259 	vma->vm_end = STACK_TOP_MAX;
260 	vma->vm_start = vma->vm_end - PAGE_SIZE;
261 
262 	vma->vm_flags = VM_STACK_FLAGS;
263 	vma->vm_page_prot = protection_map[vma->vm_flags & 0x7];
264 	err = insert_vm_struct(mm, vma);
265 	if (err) {
266 		up_write(&mm->mmap_sem);
267 		goto err;
268 	}
269 
270 	mm->stack_vm = mm->total_vm = 1;
271 	up_write(&mm->mmap_sem);
272 
273 	bprm->p = vma->vm_end - sizeof(void *);
274 
275 	return 0;
276 
277 err:
278 	if (vma) {
279 		bprm->vma = NULL;
280 		kmem_cache_free(vm_area_cachep, vma);
281 	}
282 
283 	return err;
284 }
285 
286 static bool valid_arg_len(struct linux_binprm *bprm, long len)
287 {
288 	return len <= MAX_ARG_STRLEN;
289 }
290 
291 #else
292 
293 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
294 		int write)
295 {
296 	struct page *page;
297 
298 	page = bprm->page[pos / PAGE_SIZE];
299 	if (!page && write) {
300 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
301 		if (!page)
302 			return NULL;
303 		bprm->page[pos / PAGE_SIZE] = page;
304 	}
305 
306 	return page;
307 }
308 
309 static void put_arg_page(struct page *page)
310 {
311 }
312 
313 static void free_arg_page(struct linux_binprm *bprm, int i)
314 {
315 	if (bprm->page[i]) {
316 		__free_page(bprm->page[i]);
317 		bprm->page[i] = NULL;
318 	}
319 }
320 
321 static void free_arg_pages(struct linux_binprm *bprm)
322 {
323 	int i;
324 
325 	for (i = 0; i < MAX_ARG_PAGES; i++)
326 		free_arg_page(bprm, i);
327 }
328 
329 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
330 		struct page *page)
331 {
332 }
333 
334 static int __bprm_mm_init(struct linux_binprm *bprm)
335 {
336 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
337 	return 0;
338 }
339 
340 static bool valid_arg_len(struct linux_binprm *bprm, long len)
341 {
342 	return len <= bprm->p;
343 }
344 
345 #endif /* CONFIG_MMU */
346 
347 /*
348  * Create a new mm_struct and populate it with a temporary stack
349  * vm_area_struct.  We don't have enough context at this point to set the stack
350  * flags, permissions, and offset, so we use temporary values.  We'll update
351  * them later in setup_arg_pages().
352  */
353 int bprm_mm_init(struct linux_binprm *bprm)
354 {
355 	int err;
356 	struct mm_struct *mm = NULL;
357 
358 	bprm->mm = mm = mm_alloc();
359 	err = -ENOMEM;
360 	if (!mm)
361 		goto err;
362 
363 	err = init_new_context(current, mm);
364 	if (err)
365 		goto err;
366 
367 	err = __bprm_mm_init(bprm);
368 	if (err)
369 		goto err;
370 
371 	return 0;
372 
373 err:
374 	if (mm) {
375 		bprm->mm = NULL;
376 		mmdrop(mm);
377 	}
378 
379 	return err;
380 }
381 
382 /*
383  * count() counts the number of strings in array ARGV.
384  */
385 static int count(char __user * __user * argv, int max)
386 {
387 	int i = 0;
388 
389 	if (argv != NULL) {
390 		for (;;) {
391 			char __user * p;
392 
393 			if (get_user(p, argv))
394 				return -EFAULT;
395 			if (!p)
396 				break;
397 			argv++;
398 			if(++i > max)
399 				return -E2BIG;
400 			cond_resched();
401 		}
402 	}
403 	return i;
404 }
405 
406 /*
407  * 'copy_strings()' copies argument/environment strings from the old
408  * processes's memory to the new process's stack.  The call to get_user_pages()
409  * ensures the destination page is created and not swapped out.
410  */
411 static int copy_strings(int argc, char __user * __user * argv,
412 			struct linux_binprm *bprm)
413 {
414 	struct page *kmapped_page = NULL;
415 	char *kaddr = NULL;
416 	unsigned long kpos = 0;
417 	int ret;
418 
419 	while (argc-- > 0) {
420 		char __user *str;
421 		int len;
422 		unsigned long pos;
423 
424 		if (get_user(str, argv+argc) ||
425 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
426 			ret = -EFAULT;
427 			goto out;
428 		}
429 
430 		if (!valid_arg_len(bprm, len)) {
431 			ret = -E2BIG;
432 			goto out;
433 		}
434 
435 		/* We're going to work our way backwords. */
436 		pos = bprm->p;
437 		str += len;
438 		bprm->p -= len;
439 
440 		while (len > 0) {
441 			int offset, bytes_to_copy;
442 
443 			offset = pos % PAGE_SIZE;
444 			if (offset == 0)
445 				offset = PAGE_SIZE;
446 
447 			bytes_to_copy = offset;
448 			if (bytes_to_copy > len)
449 				bytes_to_copy = len;
450 
451 			offset -= bytes_to_copy;
452 			pos -= bytes_to_copy;
453 			str -= bytes_to_copy;
454 			len -= bytes_to_copy;
455 
456 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
457 				struct page *page;
458 
459 				page = get_arg_page(bprm, pos, 1);
460 				if (!page) {
461 					ret = -E2BIG;
462 					goto out;
463 				}
464 
465 				if (kmapped_page) {
466 					flush_kernel_dcache_page(kmapped_page);
467 					kunmap(kmapped_page);
468 					put_arg_page(kmapped_page);
469 				}
470 				kmapped_page = page;
471 				kaddr = kmap(kmapped_page);
472 				kpos = pos & PAGE_MASK;
473 				flush_arg_page(bprm, kpos, kmapped_page);
474 			}
475 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
476 				ret = -EFAULT;
477 				goto out;
478 			}
479 		}
480 	}
481 	ret = 0;
482 out:
483 	if (kmapped_page) {
484 		flush_kernel_dcache_page(kmapped_page);
485 		kunmap(kmapped_page);
486 		put_arg_page(kmapped_page);
487 	}
488 	return ret;
489 }
490 
491 /*
492  * Like copy_strings, but get argv and its values from kernel memory.
493  */
494 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
495 {
496 	int r;
497 	mm_segment_t oldfs = get_fs();
498 	set_fs(KERNEL_DS);
499 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
500 	set_fs(oldfs);
501 	return r;
502 }
503 EXPORT_SYMBOL(copy_strings_kernel);
504 
505 #ifdef CONFIG_MMU
506 
507 /*
508  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
509  * the binfmt code determines where the new stack should reside, we shift it to
510  * its final location.  The process proceeds as follows:
511  *
512  * 1) Use shift to calculate the new vma endpoints.
513  * 2) Extend vma to cover both the old and new ranges.  This ensures the
514  *    arguments passed to subsequent functions are consistent.
515  * 3) Move vma's page tables to the new range.
516  * 4) Free up any cleared pgd range.
517  * 5) Shrink the vma to cover only the new range.
518  */
519 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
520 {
521 	struct mm_struct *mm = vma->vm_mm;
522 	unsigned long old_start = vma->vm_start;
523 	unsigned long old_end = vma->vm_end;
524 	unsigned long length = old_end - old_start;
525 	unsigned long new_start = old_start - shift;
526 	unsigned long new_end = old_end - shift;
527 	struct mmu_gather *tlb;
528 
529 	BUG_ON(new_start > new_end);
530 
531 	/*
532 	 * ensure there are no vmas between where we want to go
533 	 * and where we are
534 	 */
535 	if (vma != find_vma(mm, new_start))
536 		return -EFAULT;
537 
538 	/*
539 	 * cover the whole range: [new_start, old_end)
540 	 */
541 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
542 
543 	/*
544 	 * move the page tables downwards, on failure we rely on
545 	 * process cleanup to remove whatever mess we made.
546 	 */
547 	if (length != move_page_tables(vma, old_start,
548 				       vma, new_start, length))
549 		return -ENOMEM;
550 
551 	lru_add_drain();
552 	tlb = tlb_gather_mmu(mm, 0);
553 	if (new_end > old_start) {
554 		/*
555 		 * when the old and new regions overlap clear from new_end.
556 		 */
557 		free_pgd_range(&tlb, new_end, old_end, new_end,
558 			vma->vm_next ? vma->vm_next->vm_start : 0);
559 	} else {
560 		/*
561 		 * otherwise, clean from old_start; this is done to not touch
562 		 * the address space in [new_end, old_start) some architectures
563 		 * have constraints on va-space that make this illegal (IA64) -
564 		 * for the others its just a little faster.
565 		 */
566 		free_pgd_range(&tlb, old_start, old_end, new_end,
567 			vma->vm_next ? vma->vm_next->vm_start : 0);
568 	}
569 	tlb_finish_mmu(tlb, new_end, old_end);
570 
571 	/*
572 	 * shrink the vma to just the new range.
573 	 */
574 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
575 
576 	return 0;
577 }
578 
579 #define EXTRA_STACK_VM_PAGES	20	/* random */
580 
581 /*
582  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
583  * the stack is optionally relocated, and some extra space is added.
584  */
585 int setup_arg_pages(struct linux_binprm *bprm,
586 		    unsigned long stack_top,
587 		    int executable_stack)
588 {
589 	unsigned long ret;
590 	unsigned long stack_shift;
591 	struct mm_struct *mm = current->mm;
592 	struct vm_area_struct *vma = bprm->vma;
593 	struct vm_area_struct *prev = NULL;
594 	unsigned long vm_flags;
595 	unsigned long stack_base;
596 
597 #ifdef CONFIG_STACK_GROWSUP
598 	/* Limit stack size to 1GB */
599 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
600 	if (stack_base > (1 << 30))
601 		stack_base = 1 << 30;
602 
603 	/* Make sure we didn't let the argument array grow too large. */
604 	if (vma->vm_end - vma->vm_start > stack_base)
605 		return -ENOMEM;
606 
607 	stack_base = PAGE_ALIGN(stack_top - stack_base);
608 
609 	stack_shift = vma->vm_start - stack_base;
610 	mm->arg_start = bprm->p - stack_shift;
611 	bprm->p = vma->vm_end - stack_shift;
612 #else
613 	stack_top = arch_align_stack(stack_top);
614 	stack_top = PAGE_ALIGN(stack_top);
615 	stack_shift = vma->vm_end - stack_top;
616 
617 	bprm->p -= stack_shift;
618 	mm->arg_start = bprm->p;
619 #endif
620 
621 	if (bprm->loader)
622 		bprm->loader -= stack_shift;
623 	bprm->exec -= stack_shift;
624 
625 	down_write(&mm->mmap_sem);
626 	vm_flags = vma->vm_flags;
627 
628 	/*
629 	 * Adjust stack execute permissions; explicitly enable for
630 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
631 	 * (arch default) otherwise.
632 	 */
633 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
634 		vm_flags |= VM_EXEC;
635 	else if (executable_stack == EXSTACK_DISABLE_X)
636 		vm_flags &= ~VM_EXEC;
637 	vm_flags |= mm->def_flags;
638 
639 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
640 			vm_flags);
641 	if (ret)
642 		goto out_unlock;
643 	BUG_ON(prev != vma);
644 
645 	/* Move stack pages down in memory. */
646 	if (stack_shift) {
647 		ret = shift_arg_pages(vma, stack_shift);
648 		if (ret) {
649 			up_write(&mm->mmap_sem);
650 			return ret;
651 		}
652 	}
653 
654 #ifdef CONFIG_STACK_GROWSUP
655 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
656 #else
657 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
658 #endif
659 	ret = expand_stack(vma, stack_base);
660 	if (ret)
661 		ret = -EFAULT;
662 
663 out_unlock:
664 	up_write(&mm->mmap_sem);
665 	return 0;
666 }
667 EXPORT_SYMBOL(setup_arg_pages);
668 
669 #endif /* CONFIG_MMU */
670 
671 struct file *open_exec(const char *name)
672 {
673 	struct nameidata nd;
674 	int err;
675 	struct file *file;
676 
677 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
678 	file = ERR_PTR(err);
679 
680 	if (!err) {
681 		struct inode *inode = nd.dentry->d_inode;
682 		file = ERR_PTR(-EACCES);
683 		if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
684 		    S_ISREG(inode->i_mode)) {
685 			int err = vfs_permission(&nd, MAY_EXEC);
686 			file = ERR_PTR(err);
687 			if (!err) {
688 				file = nameidata_to_filp(&nd, O_RDONLY);
689 				if (!IS_ERR(file)) {
690 					err = deny_write_access(file);
691 					if (err) {
692 						fput(file);
693 						file = ERR_PTR(err);
694 					}
695 				}
696 out:
697 				return file;
698 			}
699 		}
700 		release_open_intent(&nd);
701 		path_release(&nd);
702 	}
703 	goto out;
704 }
705 
706 EXPORT_SYMBOL(open_exec);
707 
708 int kernel_read(struct file *file, unsigned long offset,
709 	char *addr, unsigned long count)
710 {
711 	mm_segment_t old_fs;
712 	loff_t pos = offset;
713 	int result;
714 
715 	old_fs = get_fs();
716 	set_fs(get_ds());
717 	/* The cast to a user pointer is valid due to the set_fs() */
718 	result = vfs_read(file, (void __user *)addr, count, &pos);
719 	set_fs(old_fs);
720 	return result;
721 }
722 
723 EXPORT_SYMBOL(kernel_read);
724 
725 static int exec_mmap(struct mm_struct *mm)
726 {
727 	struct task_struct *tsk;
728 	struct mm_struct * old_mm, *active_mm;
729 
730 	/* Notify parent that we're no longer interested in the old VM */
731 	tsk = current;
732 	old_mm = current->mm;
733 	mm_release(tsk, old_mm);
734 
735 	if (old_mm) {
736 		/*
737 		 * Make sure that if there is a core dump in progress
738 		 * for the old mm, we get out and die instead of going
739 		 * through with the exec.  We must hold mmap_sem around
740 		 * checking core_waiters and changing tsk->mm.  The
741 		 * core-inducing thread will increment core_waiters for
742 		 * each thread whose ->mm == old_mm.
743 		 */
744 		down_read(&old_mm->mmap_sem);
745 		if (unlikely(old_mm->core_waiters)) {
746 			up_read(&old_mm->mmap_sem);
747 			return -EINTR;
748 		}
749 	}
750 	task_lock(tsk);
751 	active_mm = tsk->active_mm;
752 	tsk->mm = mm;
753 	tsk->active_mm = mm;
754 	activate_mm(active_mm, mm);
755 	task_unlock(tsk);
756 	arch_pick_mmap_layout(mm);
757 	if (old_mm) {
758 		up_read(&old_mm->mmap_sem);
759 		BUG_ON(active_mm != old_mm);
760 		mmput(old_mm);
761 		return 0;
762 	}
763 	mmdrop(active_mm);
764 	return 0;
765 }
766 
767 /*
768  * This function makes sure the current process has its own signal table,
769  * so that flush_signal_handlers can later reset the handlers without
770  * disturbing other processes.  (Other processes might share the signal
771  * table via the CLONE_SIGHAND option to clone().)
772  */
773 static int de_thread(struct task_struct *tsk)
774 {
775 	struct signal_struct *sig = tsk->signal;
776 	struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
777 	spinlock_t *lock = &oldsighand->siglock;
778 	struct task_struct *leader = NULL;
779 	int count;
780 
781 	/*
782 	 * If we don't share sighandlers, then we aren't sharing anything
783 	 * and we can just re-use it all.
784 	 */
785 	if (atomic_read(&oldsighand->count) <= 1) {
786 		exit_itimers(sig);
787 		return 0;
788 	}
789 
790 	newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
791 	if (!newsighand)
792 		return -ENOMEM;
793 
794 	if (thread_group_empty(tsk))
795 		goto no_thread_group;
796 
797 	/*
798 	 * Kill all other threads in the thread group.
799 	 * We must hold tasklist_lock to call zap_other_threads.
800 	 */
801 	read_lock(&tasklist_lock);
802 	spin_lock_irq(lock);
803 	if (sig->flags & SIGNAL_GROUP_EXIT) {
804 		/*
805 		 * Another group action in progress, just
806 		 * return so that the signal is processed.
807 		 */
808 		spin_unlock_irq(lock);
809 		read_unlock(&tasklist_lock);
810 		kmem_cache_free(sighand_cachep, newsighand);
811 		return -EAGAIN;
812 	}
813 
814 	/*
815 	 * child_reaper ignores SIGKILL, change it now.
816 	 * Reparenting needs write_lock on tasklist_lock,
817 	 * so it is safe to do it under read_lock.
818 	 */
819 	if (unlikely(tsk->group_leader == child_reaper(tsk)))
820 		tsk->nsproxy->pid_ns->child_reaper = tsk;
821 
822 	zap_other_threads(tsk);
823 	read_unlock(&tasklist_lock);
824 
825 	/*
826 	 * Account for the thread group leader hanging around:
827 	 */
828 	count = 1;
829 	if (!thread_group_leader(tsk)) {
830 		count = 2;
831 		/*
832 		 * The SIGALRM timer survives the exec, but needs to point
833 		 * at us as the new group leader now.  We have a race with
834 		 * a timer firing now getting the old leader, so we need to
835 		 * synchronize with any firing (by calling del_timer_sync)
836 		 * before we can safely let the old group leader die.
837 		 */
838 		sig->tsk = tsk;
839 		spin_unlock_irq(lock);
840 		if (hrtimer_cancel(&sig->real_timer))
841 			hrtimer_restart(&sig->real_timer);
842 		spin_lock_irq(lock);
843 	}
844 	while (atomic_read(&sig->count) > count) {
845 		sig->group_exit_task = tsk;
846 		sig->notify_count = count;
847 		__set_current_state(TASK_UNINTERRUPTIBLE);
848 		spin_unlock_irq(lock);
849 		schedule();
850 		spin_lock_irq(lock);
851 	}
852 	sig->group_exit_task = NULL;
853 	sig->notify_count = 0;
854 	spin_unlock_irq(lock);
855 
856 	/*
857 	 * At this point all other threads have exited, all we have to
858 	 * do is to wait for the thread group leader to become inactive,
859 	 * and to assume its PID:
860 	 */
861 	if (!thread_group_leader(tsk)) {
862 		/*
863 		 * Wait for the thread group leader to be a zombie.
864 		 * It should already be zombie at this point, most
865 		 * of the time.
866 		 */
867 		leader = tsk->group_leader;
868 		while (leader->exit_state != EXIT_ZOMBIE)
869 			yield();
870 
871 		/*
872 		 * The only record we have of the real-time age of a
873 		 * process, regardless of execs it's done, is start_time.
874 		 * All the past CPU time is accumulated in signal_struct
875 		 * from sister threads now dead.  But in this non-leader
876 		 * exec, nothing survives from the original leader thread,
877 		 * whose birth marks the true age of this process now.
878 		 * When we take on its identity by switching to its PID, we
879 		 * also take its birthdate (always earlier than our own).
880 		 */
881 		tsk->start_time = leader->start_time;
882 
883 		write_lock_irq(&tasklist_lock);
884 
885 		BUG_ON(leader->tgid != tsk->tgid);
886 		BUG_ON(tsk->pid == tsk->tgid);
887 		/*
888 		 * An exec() starts a new thread group with the
889 		 * TGID of the previous thread group. Rehash the
890 		 * two threads with a switched PID, and release
891 		 * the former thread group leader:
892 		 */
893 
894 		/* Become a process group leader with the old leader's pid.
895 		 * The old leader becomes a thread of the this thread group.
896 		 * Note: The old leader also uses this pid until release_task
897 		 *       is called.  Odd but simple and correct.
898 		 */
899 		detach_pid(tsk, PIDTYPE_PID);
900 		tsk->pid = leader->pid;
901 		attach_pid(tsk, PIDTYPE_PID,  find_pid(tsk->pid));
902 		transfer_pid(leader, tsk, PIDTYPE_PGID);
903 		transfer_pid(leader, tsk, PIDTYPE_SID);
904 		list_replace_rcu(&leader->tasks, &tsk->tasks);
905 
906 		tsk->group_leader = tsk;
907 		leader->group_leader = tsk;
908 
909 		tsk->exit_signal = SIGCHLD;
910 
911 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
912 		leader->exit_state = EXIT_DEAD;
913 
914 		write_unlock_irq(&tasklist_lock);
915         }
916 
917 	/*
918 	 * There may be one thread left which is just exiting,
919 	 * but it's safe to stop telling the group to kill themselves.
920 	 */
921 	sig->flags = 0;
922 
923 no_thread_group:
924 	exit_itimers(sig);
925 	if (leader)
926 		release_task(leader);
927 
928 	if (atomic_read(&oldsighand->count) == 1) {
929 		/*
930 		 * Now that we nuked the rest of the thread group,
931 		 * it turns out we are not sharing sighand any more either.
932 		 * So we can just keep it.
933 		 */
934 		kmem_cache_free(sighand_cachep, newsighand);
935 	} else {
936 		/*
937 		 * Move our state over to newsighand and switch it in.
938 		 */
939 		atomic_set(&newsighand->count, 1);
940 		memcpy(newsighand->action, oldsighand->action,
941 		       sizeof(newsighand->action));
942 
943 		write_lock_irq(&tasklist_lock);
944 		spin_lock(&oldsighand->siglock);
945 		spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING);
946 
947 		rcu_assign_pointer(tsk->sighand, newsighand);
948 		recalc_sigpending();
949 
950 		spin_unlock(&newsighand->siglock);
951 		spin_unlock(&oldsighand->siglock);
952 		write_unlock_irq(&tasklist_lock);
953 
954 		__cleanup_sighand(oldsighand);
955 	}
956 
957 	BUG_ON(!thread_group_leader(tsk));
958 	return 0;
959 }
960 
961 /*
962  * These functions flushes out all traces of the currently running executable
963  * so that a new one can be started
964  */
965 
966 static void flush_old_files(struct files_struct * files)
967 {
968 	long j = -1;
969 	struct fdtable *fdt;
970 
971 	spin_lock(&files->file_lock);
972 	for (;;) {
973 		unsigned long set, i;
974 
975 		j++;
976 		i = j * __NFDBITS;
977 		fdt = files_fdtable(files);
978 		if (i >= fdt->max_fds)
979 			break;
980 		set = fdt->close_on_exec->fds_bits[j];
981 		if (!set)
982 			continue;
983 		fdt->close_on_exec->fds_bits[j] = 0;
984 		spin_unlock(&files->file_lock);
985 		for ( ; set ; i++,set >>= 1) {
986 			if (set & 1) {
987 				sys_close(i);
988 			}
989 		}
990 		spin_lock(&files->file_lock);
991 
992 	}
993 	spin_unlock(&files->file_lock);
994 }
995 
996 void get_task_comm(char *buf, struct task_struct *tsk)
997 {
998 	/* buf must be at least sizeof(tsk->comm) in size */
999 	task_lock(tsk);
1000 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1001 	task_unlock(tsk);
1002 }
1003 
1004 void set_task_comm(struct task_struct *tsk, char *buf)
1005 {
1006 	task_lock(tsk);
1007 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1008 	task_unlock(tsk);
1009 }
1010 
1011 int flush_old_exec(struct linux_binprm * bprm)
1012 {
1013 	char * name;
1014 	int i, ch, retval;
1015 	struct files_struct *files;
1016 	char tcomm[sizeof(current->comm)];
1017 
1018 	/*
1019 	 * Make sure we have a private signal table and that
1020 	 * we are unassociated from the previous thread group.
1021 	 */
1022 	retval = de_thread(current);
1023 	if (retval)
1024 		goto out;
1025 
1026 	/*
1027 	 * Make sure we have private file handles. Ask the
1028 	 * fork helper to do the work for us and the exit
1029 	 * helper to do the cleanup of the old one.
1030 	 */
1031 	files = current->files;		/* refcounted so safe to hold */
1032 	retval = unshare_files();
1033 	if (retval)
1034 		goto out;
1035 	/*
1036 	 * Release all of the old mmap stuff
1037 	 */
1038 	retval = exec_mmap(bprm->mm);
1039 	if (retval)
1040 		goto mmap_failed;
1041 
1042 	bprm->mm = NULL;		/* We're using it now */
1043 
1044 	/* This is the point of no return */
1045 	put_files_struct(files);
1046 
1047 	current->sas_ss_sp = current->sas_ss_size = 0;
1048 
1049 	if (current->euid == current->uid && current->egid == current->gid)
1050 		set_dumpable(current->mm, 1);
1051 	else
1052 		set_dumpable(current->mm, suid_dumpable);
1053 
1054 	name = bprm->filename;
1055 
1056 	/* Copies the binary name from after last slash */
1057 	for (i=0; (ch = *(name++)) != '\0';) {
1058 		if (ch == '/')
1059 			i = 0; /* overwrite what we wrote */
1060 		else
1061 			if (i < (sizeof(tcomm) - 1))
1062 				tcomm[i++] = ch;
1063 	}
1064 	tcomm[i] = '\0';
1065 	set_task_comm(current, tcomm);
1066 
1067 	current->flags &= ~PF_RANDOMIZE;
1068 	flush_thread();
1069 
1070 	/* Set the new mm task size. We have to do that late because it may
1071 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1072 	 * some architectures like powerpc
1073 	 */
1074 	current->mm->task_size = TASK_SIZE;
1075 
1076 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1077 		suid_keys(current);
1078 		set_dumpable(current->mm, suid_dumpable);
1079 		current->pdeath_signal = 0;
1080 	} else if (file_permission(bprm->file, MAY_READ) ||
1081 			(bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1082 		suid_keys(current);
1083 		set_dumpable(current->mm, suid_dumpable);
1084 	}
1085 
1086 	/* An exec changes our domain. We are no longer part of the thread
1087 	   group */
1088 
1089 	current->self_exec_id++;
1090 
1091 	flush_signal_handlers(current, 0);
1092 	flush_old_files(current->files);
1093 
1094 	return 0;
1095 
1096 mmap_failed:
1097 	reset_files_struct(current, files);
1098 out:
1099 	return retval;
1100 }
1101 
1102 EXPORT_SYMBOL(flush_old_exec);
1103 
1104 /*
1105  * Fill the binprm structure from the inode.
1106  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1107  */
1108 int prepare_binprm(struct linux_binprm *bprm)
1109 {
1110 	int mode;
1111 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1112 	int retval;
1113 
1114 	mode = inode->i_mode;
1115 	if (bprm->file->f_op == NULL)
1116 		return -EACCES;
1117 
1118 	bprm->e_uid = current->euid;
1119 	bprm->e_gid = current->egid;
1120 
1121 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1122 		/* Set-uid? */
1123 		if (mode & S_ISUID) {
1124 			current->personality &= ~PER_CLEAR_ON_SETID;
1125 			bprm->e_uid = inode->i_uid;
1126 		}
1127 
1128 		/* Set-gid? */
1129 		/*
1130 		 * If setgid is set but no group execute bit then this
1131 		 * is a candidate for mandatory locking, not a setgid
1132 		 * executable.
1133 		 */
1134 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1135 			current->personality &= ~PER_CLEAR_ON_SETID;
1136 			bprm->e_gid = inode->i_gid;
1137 		}
1138 	}
1139 
1140 	/* fill in binprm security blob */
1141 	retval = security_bprm_set(bprm);
1142 	if (retval)
1143 		return retval;
1144 
1145 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
1146 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1147 }
1148 
1149 EXPORT_SYMBOL(prepare_binprm);
1150 
1151 static int unsafe_exec(struct task_struct *p)
1152 {
1153 	int unsafe = 0;
1154 	if (p->ptrace & PT_PTRACED) {
1155 		if (p->ptrace & PT_PTRACE_CAP)
1156 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
1157 		else
1158 			unsafe |= LSM_UNSAFE_PTRACE;
1159 	}
1160 	if (atomic_read(&p->fs->count) > 1 ||
1161 	    atomic_read(&p->files->count) > 1 ||
1162 	    atomic_read(&p->sighand->count) > 1)
1163 		unsafe |= LSM_UNSAFE_SHARE;
1164 
1165 	return unsafe;
1166 }
1167 
1168 void compute_creds(struct linux_binprm *bprm)
1169 {
1170 	int unsafe;
1171 
1172 	if (bprm->e_uid != current->uid) {
1173 		suid_keys(current);
1174 		current->pdeath_signal = 0;
1175 	}
1176 	exec_keys(current);
1177 
1178 	task_lock(current);
1179 	unsafe = unsafe_exec(current);
1180 	security_bprm_apply_creds(bprm, unsafe);
1181 	task_unlock(current);
1182 	security_bprm_post_apply_creds(bprm);
1183 }
1184 EXPORT_SYMBOL(compute_creds);
1185 
1186 /*
1187  * Arguments are '\0' separated strings found at the location bprm->p
1188  * points to; chop off the first by relocating brpm->p to right after
1189  * the first '\0' encountered.
1190  */
1191 int remove_arg_zero(struct linux_binprm *bprm)
1192 {
1193 	int ret = 0;
1194 	unsigned long offset;
1195 	char *kaddr;
1196 	struct page *page;
1197 
1198 	if (!bprm->argc)
1199 		return 0;
1200 
1201 	do {
1202 		offset = bprm->p & ~PAGE_MASK;
1203 		page = get_arg_page(bprm, bprm->p, 0);
1204 		if (!page) {
1205 			ret = -EFAULT;
1206 			goto out;
1207 		}
1208 		kaddr = kmap_atomic(page, KM_USER0);
1209 
1210 		for (; offset < PAGE_SIZE && kaddr[offset];
1211 				offset++, bprm->p++)
1212 			;
1213 
1214 		kunmap_atomic(kaddr, KM_USER0);
1215 		put_arg_page(page);
1216 
1217 		if (offset == PAGE_SIZE)
1218 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1219 	} while (offset == PAGE_SIZE);
1220 
1221 	bprm->p++;
1222 	bprm->argc--;
1223 	ret = 0;
1224 
1225 out:
1226 	return ret;
1227 }
1228 EXPORT_SYMBOL(remove_arg_zero);
1229 
1230 /*
1231  * cycle the list of binary formats handler, until one recognizes the image
1232  */
1233 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1234 {
1235 	int try,retval;
1236 	struct linux_binfmt *fmt;
1237 #ifdef __alpha__
1238 	/* handle /sbin/loader.. */
1239 	{
1240 	    struct exec * eh = (struct exec *) bprm->buf;
1241 
1242 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1243 		(eh->fh.f_flags & 0x3000) == 0x3000)
1244 	    {
1245 		struct file * file;
1246 		unsigned long loader;
1247 
1248 		allow_write_access(bprm->file);
1249 		fput(bprm->file);
1250 		bprm->file = NULL;
1251 
1252 		loader = bprm->vma->vm_end - sizeof(void *);
1253 
1254 		file = open_exec("/sbin/loader");
1255 		retval = PTR_ERR(file);
1256 		if (IS_ERR(file))
1257 			return retval;
1258 
1259 		/* Remember if the application is TASO.  */
1260 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1261 
1262 		bprm->file = file;
1263 		bprm->loader = loader;
1264 		retval = prepare_binprm(bprm);
1265 		if (retval<0)
1266 			return retval;
1267 		/* should call search_binary_handler recursively here,
1268 		   but it does not matter */
1269 	    }
1270 	}
1271 #endif
1272 	retval = security_bprm_check(bprm);
1273 	if (retval)
1274 		return retval;
1275 
1276 	/* kernel module loader fixup */
1277 	/* so we don't try to load run modprobe in kernel space. */
1278 	set_fs(USER_DS);
1279 
1280 	retval = audit_bprm(bprm);
1281 	if (retval)
1282 		return retval;
1283 
1284 	retval = -ENOENT;
1285 	for (try=0; try<2; try++) {
1286 		read_lock(&binfmt_lock);
1287 		for (fmt = formats ; fmt ; fmt = fmt->next) {
1288 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1289 			if (!fn)
1290 				continue;
1291 			if (!try_module_get(fmt->module))
1292 				continue;
1293 			read_unlock(&binfmt_lock);
1294 			retval = fn(bprm, regs);
1295 			if (retval >= 0) {
1296 				put_binfmt(fmt);
1297 				allow_write_access(bprm->file);
1298 				if (bprm->file)
1299 					fput(bprm->file);
1300 				bprm->file = NULL;
1301 				current->did_exec = 1;
1302 				proc_exec_connector(current);
1303 				return retval;
1304 			}
1305 			read_lock(&binfmt_lock);
1306 			put_binfmt(fmt);
1307 			if (retval != -ENOEXEC || bprm->mm == NULL)
1308 				break;
1309 			if (!bprm->file) {
1310 				read_unlock(&binfmt_lock);
1311 				return retval;
1312 			}
1313 		}
1314 		read_unlock(&binfmt_lock);
1315 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1316 			break;
1317 #ifdef CONFIG_KMOD
1318 		}else{
1319 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1320 			if (printable(bprm->buf[0]) &&
1321 			    printable(bprm->buf[1]) &&
1322 			    printable(bprm->buf[2]) &&
1323 			    printable(bprm->buf[3]))
1324 				break; /* -ENOEXEC */
1325 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1326 #endif
1327 		}
1328 	}
1329 	return retval;
1330 }
1331 
1332 EXPORT_SYMBOL(search_binary_handler);
1333 
1334 /*
1335  * sys_execve() executes a new program.
1336  */
1337 int do_execve(char * filename,
1338 	char __user *__user *argv,
1339 	char __user *__user *envp,
1340 	struct pt_regs * regs)
1341 {
1342 	struct linux_binprm *bprm;
1343 	struct file *file;
1344 	unsigned long env_p;
1345 	int retval;
1346 
1347 	retval = -ENOMEM;
1348 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1349 	if (!bprm)
1350 		goto out_ret;
1351 
1352 	file = open_exec(filename);
1353 	retval = PTR_ERR(file);
1354 	if (IS_ERR(file))
1355 		goto out_kfree;
1356 
1357 	sched_exec();
1358 
1359 	bprm->file = file;
1360 	bprm->filename = filename;
1361 	bprm->interp = filename;
1362 
1363 	retval = bprm_mm_init(bprm);
1364 	if (retval)
1365 		goto out_file;
1366 
1367 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1368 	if ((retval = bprm->argc) < 0)
1369 		goto out_mm;
1370 
1371 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1372 	if ((retval = bprm->envc) < 0)
1373 		goto out_mm;
1374 
1375 	retval = security_bprm_alloc(bprm);
1376 	if (retval)
1377 		goto out;
1378 
1379 	retval = prepare_binprm(bprm);
1380 	if (retval < 0)
1381 		goto out;
1382 
1383 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1384 	if (retval < 0)
1385 		goto out;
1386 
1387 	bprm->exec = bprm->p;
1388 	retval = copy_strings(bprm->envc, envp, bprm);
1389 	if (retval < 0)
1390 		goto out;
1391 
1392 	env_p = bprm->p;
1393 	retval = copy_strings(bprm->argc, argv, bprm);
1394 	if (retval < 0)
1395 		goto out;
1396 	bprm->argv_len = env_p - bprm->p;
1397 
1398 	retval = search_binary_handler(bprm,regs);
1399 	if (retval >= 0) {
1400 		/* execve success */
1401 		free_arg_pages(bprm);
1402 		security_bprm_free(bprm);
1403 		acct_update_integrals(current);
1404 		kfree(bprm);
1405 		return retval;
1406 	}
1407 
1408 out:
1409 	free_arg_pages(bprm);
1410 	if (bprm->security)
1411 		security_bprm_free(bprm);
1412 
1413 out_mm:
1414 	if (bprm->mm)
1415 		mmput (bprm->mm);
1416 
1417 out_file:
1418 	if (bprm->file) {
1419 		allow_write_access(bprm->file);
1420 		fput(bprm->file);
1421 	}
1422 out_kfree:
1423 	kfree(bprm);
1424 
1425 out_ret:
1426 	return retval;
1427 }
1428 
1429 int set_binfmt(struct linux_binfmt *new)
1430 {
1431 	struct linux_binfmt *old = current->binfmt;
1432 
1433 	if (new) {
1434 		if (!try_module_get(new->module))
1435 			return -1;
1436 	}
1437 	current->binfmt = new;
1438 	if (old)
1439 		module_put(old->module);
1440 	return 0;
1441 }
1442 
1443 EXPORT_SYMBOL(set_binfmt);
1444 
1445 /* format_corename will inspect the pattern parameter, and output a
1446  * name into corename, which must have space for at least
1447  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1448  */
1449 static int format_corename(char *corename, const char *pattern, long signr)
1450 {
1451 	const char *pat_ptr = pattern;
1452 	char *out_ptr = corename;
1453 	char *const out_end = corename + CORENAME_MAX_SIZE;
1454 	int rc;
1455 	int pid_in_pattern = 0;
1456 	int ispipe = 0;
1457 
1458 	if (*pattern == '|')
1459 		ispipe = 1;
1460 
1461 	/* Repeat as long as we have more pattern to process and more output
1462 	   space */
1463 	while (*pat_ptr) {
1464 		if (*pat_ptr != '%') {
1465 			if (out_ptr == out_end)
1466 				goto out;
1467 			*out_ptr++ = *pat_ptr++;
1468 		} else {
1469 			switch (*++pat_ptr) {
1470 			case 0:
1471 				goto out;
1472 			/* Double percent, output one percent */
1473 			case '%':
1474 				if (out_ptr == out_end)
1475 					goto out;
1476 				*out_ptr++ = '%';
1477 				break;
1478 			/* pid */
1479 			case 'p':
1480 				pid_in_pattern = 1;
1481 				rc = snprintf(out_ptr, out_end - out_ptr,
1482 					      "%d", current->tgid);
1483 				if (rc > out_end - out_ptr)
1484 					goto out;
1485 				out_ptr += rc;
1486 				break;
1487 			/* uid */
1488 			case 'u':
1489 				rc = snprintf(out_ptr, out_end - out_ptr,
1490 					      "%d", current->uid);
1491 				if (rc > out_end - out_ptr)
1492 					goto out;
1493 				out_ptr += rc;
1494 				break;
1495 			/* gid */
1496 			case 'g':
1497 				rc = snprintf(out_ptr, out_end - out_ptr,
1498 					      "%d", current->gid);
1499 				if (rc > out_end - out_ptr)
1500 					goto out;
1501 				out_ptr += rc;
1502 				break;
1503 			/* signal that caused the coredump */
1504 			case 's':
1505 				rc = snprintf(out_ptr, out_end - out_ptr,
1506 					      "%ld", signr);
1507 				if (rc > out_end - out_ptr)
1508 					goto out;
1509 				out_ptr += rc;
1510 				break;
1511 			/* UNIX time of coredump */
1512 			case 't': {
1513 				struct timeval tv;
1514 				do_gettimeofday(&tv);
1515 				rc = snprintf(out_ptr, out_end - out_ptr,
1516 					      "%lu", tv.tv_sec);
1517 				if (rc > out_end - out_ptr)
1518 					goto out;
1519 				out_ptr += rc;
1520 				break;
1521 			}
1522 			/* hostname */
1523 			case 'h':
1524 				down_read(&uts_sem);
1525 				rc = snprintf(out_ptr, out_end - out_ptr,
1526 					      "%s", utsname()->nodename);
1527 				up_read(&uts_sem);
1528 				if (rc > out_end - out_ptr)
1529 					goto out;
1530 				out_ptr += rc;
1531 				break;
1532 			/* executable */
1533 			case 'e':
1534 				rc = snprintf(out_ptr, out_end - out_ptr,
1535 					      "%s", current->comm);
1536 				if (rc > out_end - out_ptr)
1537 					goto out;
1538 				out_ptr += rc;
1539 				break;
1540 			default:
1541 				break;
1542 			}
1543 			++pat_ptr;
1544 		}
1545 	}
1546 	/* Backward compatibility with core_uses_pid:
1547 	 *
1548 	 * If core_pattern does not include a %p (as is the default)
1549 	 * and core_uses_pid is set, then .%pid will be appended to
1550 	 * the filename. Do not do this for piped commands. */
1551 	if (!ispipe && !pid_in_pattern
1552             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1553 		rc = snprintf(out_ptr, out_end - out_ptr,
1554 			      ".%d", current->tgid);
1555 		if (rc > out_end - out_ptr)
1556 			goto out;
1557 		out_ptr += rc;
1558 	}
1559 out:
1560 	*out_ptr = 0;
1561 	return ispipe;
1562 }
1563 
1564 static void zap_process(struct task_struct *start)
1565 {
1566 	struct task_struct *t;
1567 
1568 	start->signal->flags = SIGNAL_GROUP_EXIT;
1569 	start->signal->group_stop_count = 0;
1570 
1571 	t = start;
1572 	do {
1573 		if (t != current && t->mm) {
1574 			t->mm->core_waiters++;
1575 			sigaddset(&t->pending.signal, SIGKILL);
1576 			signal_wake_up(t, 1);
1577 		}
1578 	} while ((t = next_thread(t)) != start);
1579 }
1580 
1581 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1582 				int exit_code)
1583 {
1584 	struct task_struct *g, *p;
1585 	unsigned long flags;
1586 	int err = -EAGAIN;
1587 
1588 	spin_lock_irq(&tsk->sighand->siglock);
1589 	if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1590 		tsk->signal->group_exit_code = exit_code;
1591 		zap_process(tsk);
1592 		err = 0;
1593 	}
1594 	spin_unlock_irq(&tsk->sighand->siglock);
1595 	if (err)
1596 		return err;
1597 
1598 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1599 		goto done;
1600 
1601 	rcu_read_lock();
1602 	for_each_process(g) {
1603 		if (g == tsk->group_leader)
1604 			continue;
1605 
1606 		p = g;
1607 		do {
1608 			if (p->mm) {
1609 				if (p->mm == mm) {
1610 					/*
1611 					 * p->sighand can't disappear, but
1612 					 * may be changed by de_thread()
1613 					 */
1614 					lock_task_sighand(p, &flags);
1615 					zap_process(p);
1616 					unlock_task_sighand(p, &flags);
1617 				}
1618 				break;
1619 			}
1620 		} while ((p = next_thread(p)) != g);
1621 	}
1622 	rcu_read_unlock();
1623 done:
1624 	return mm->core_waiters;
1625 }
1626 
1627 static int coredump_wait(int exit_code)
1628 {
1629 	struct task_struct *tsk = current;
1630 	struct mm_struct *mm = tsk->mm;
1631 	struct completion startup_done;
1632 	struct completion *vfork_done;
1633 	int core_waiters;
1634 
1635 	init_completion(&mm->core_done);
1636 	init_completion(&startup_done);
1637 	mm->core_startup_done = &startup_done;
1638 
1639 	core_waiters = zap_threads(tsk, mm, exit_code);
1640 	up_write(&mm->mmap_sem);
1641 
1642 	if (unlikely(core_waiters < 0))
1643 		goto fail;
1644 
1645 	/*
1646 	 * Make sure nobody is waiting for us to release the VM,
1647 	 * otherwise we can deadlock when we wait on each other
1648 	 */
1649 	vfork_done = tsk->vfork_done;
1650 	if (vfork_done) {
1651 		tsk->vfork_done = NULL;
1652 		complete(vfork_done);
1653 	}
1654 
1655 	if (core_waiters)
1656 		wait_for_completion(&startup_done);
1657 fail:
1658 	BUG_ON(mm->core_waiters);
1659 	return core_waiters;
1660 }
1661 
1662 /*
1663  * set_dumpable converts traditional three-value dumpable to two flags and
1664  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1665  * these bits are not changed atomically.  So get_dumpable can observe the
1666  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1667  * return either old dumpable or new one by paying attention to the order of
1668  * modifying the bits.
1669  *
1670  * dumpable |   mm->flags (binary)
1671  * old  new | initial interim  final
1672  * ---------+-----------------------
1673  *  0    1  |   00      01      01
1674  *  0    2  |   00      10(*)   11
1675  *  1    0  |   01      00      00
1676  *  1    2  |   01      11      11
1677  *  2    0  |   11      10(*)   00
1678  *  2    1  |   11      11      01
1679  *
1680  * (*) get_dumpable regards interim value of 10 as 11.
1681  */
1682 void set_dumpable(struct mm_struct *mm, int value)
1683 {
1684 	switch (value) {
1685 	case 0:
1686 		clear_bit(MMF_DUMPABLE, &mm->flags);
1687 		smp_wmb();
1688 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1689 		break;
1690 	case 1:
1691 		set_bit(MMF_DUMPABLE, &mm->flags);
1692 		smp_wmb();
1693 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1694 		break;
1695 	case 2:
1696 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1697 		smp_wmb();
1698 		set_bit(MMF_DUMPABLE, &mm->flags);
1699 		break;
1700 	}
1701 }
1702 EXPORT_SYMBOL_GPL(set_dumpable);
1703 
1704 int get_dumpable(struct mm_struct *mm)
1705 {
1706 	int ret;
1707 
1708 	ret = mm->flags & 0x3;
1709 	return (ret >= 2) ? 2 : ret;
1710 }
1711 
1712 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1713 {
1714 	char corename[CORENAME_MAX_SIZE + 1];
1715 	struct mm_struct *mm = current->mm;
1716 	struct linux_binfmt * binfmt;
1717 	struct inode * inode;
1718 	struct file * file;
1719 	int retval = 0;
1720 	int fsuid = current->fsuid;
1721 	int flag = 0;
1722 	int ispipe = 0;
1723 
1724 	audit_core_dumps(signr);
1725 
1726 	binfmt = current->binfmt;
1727 	if (!binfmt || !binfmt->core_dump)
1728 		goto fail;
1729 	down_write(&mm->mmap_sem);
1730 	if (!get_dumpable(mm)) {
1731 		up_write(&mm->mmap_sem);
1732 		goto fail;
1733 	}
1734 
1735 	/*
1736 	 *	We cannot trust fsuid as being the "true" uid of the
1737 	 *	process nor do we know its entire history. We only know it
1738 	 *	was tainted so we dump it as root in mode 2.
1739 	 */
1740 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1741 		flag = O_EXCL;		/* Stop rewrite attacks */
1742 		current->fsuid = 0;	/* Dump root private */
1743 	}
1744 	set_dumpable(mm, 0);
1745 
1746 	retval = coredump_wait(exit_code);
1747 	if (retval < 0)
1748 		goto fail;
1749 
1750 	/*
1751 	 * Clear any false indication of pending signals that might
1752 	 * be seen by the filesystem code called to write the core file.
1753 	 */
1754 	clear_thread_flag(TIF_SIGPENDING);
1755 
1756 	if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1757 		goto fail_unlock;
1758 
1759 	/*
1760 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1761 	 * uses lock_kernel()
1762 	 */
1763  	lock_kernel();
1764 	ispipe = format_corename(corename, core_pattern, signr);
1765 	unlock_kernel();
1766  	if (ispipe) {
1767 		/* SIGPIPE can happen, but it's just never processed */
1768  		if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) {
1769  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1770 			       corename);
1771  			goto fail_unlock;
1772  		}
1773  	} else
1774  		file = filp_open(corename,
1775 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1776 				 0600);
1777 	if (IS_ERR(file))
1778 		goto fail_unlock;
1779 	inode = file->f_path.dentry->d_inode;
1780 	if (inode->i_nlink > 1)
1781 		goto close_fail;	/* multiple links - don't dump */
1782 	if (!ispipe && d_unhashed(file->f_path.dentry))
1783 		goto close_fail;
1784 
1785 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1786 	   but keep the previous behaviour for now. */
1787 	if (!ispipe && !S_ISREG(inode->i_mode))
1788 		goto close_fail;
1789 	if (!file->f_op)
1790 		goto close_fail;
1791 	if (!file->f_op->write)
1792 		goto close_fail;
1793 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1794 		goto close_fail;
1795 
1796 	retval = binfmt->core_dump(signr, regs, file);
1797 
1798 	if (retval)
1799 		current->signal->group_exit_code |= 0x80;
1800 close_fail:
1801 	filp_close(file, NULL);
1802 fail_unlock:
1803 	current->fsuid = fsuid;
1804 	complete_all(&mm->core_done);
1805 fail:
1806 	return retval;
1807 }
1808