1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/mman.h> 28 #include <linux/a.out.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/init.h> 33 #include <linux/pagemap.h> 34 #include <linux/highmem.h> 35 #include <linux/spinlock.h> 36 #include <linux/key.h> 37 #include <linux/personality.h> 38 #include <linux/binfmts.h> 39 #include <linux/swap.h> 40 #include <linux/utsname.h> 41 #include <linux/pid_namespace.h> 42 #include <linux/module.h> 43 #include <linux/namei.h> 44 #include <linux/proc_fs.h> 45 #include <linux/ptrace.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/rmap.h> 50 #include <linux/tsacct_kern.h> 51 #include <linux/cn_proc.h> 52 #include <linux/audit.h> 53 54 #include <asm/uaccess.h> 55 #include <asm/mmu_context.h> 56 #include <asm/tlb.h> 57 58 #ifdef CONFIG_KMOD 59 #include <linux/kmod.h> 60 #endif 61 62 int core_uses_pid; 63 char core_pattern[CORENAME_MAX_SIZE] = "core"; 64 int suid_dumpable = 0; 65 66 EXPORT_SYMBOL(suid_dumpable); 67 /* The maximal length of core_pattern is also specified in sysctl.c */ 68 69 static struct linux_binfmt *formats; 70 static DEFINE_RWLOCK(binfmt_lock); 71 72 int register_binfmt(struct linux_binfmt * fmt) 73 { 74 struct linux_binfmt ** tmp = &formats; 75 76 if (!fmt) 77 return -EINVAL; 78 if (fmt->next) 79 return -EBUSY; 80 write_lock(&binfmt_lock); 81 while (*tmp) { 82 if (fmt == *tmp) { 83 write_unlock(&binfmt_lock); 84 return -EBUSY; 85 } 86 tmp = &(*tmp)->next; 87 } 88 fmt->next = formats; 89 formats = fmt; 90 write_unlock(&binfmt_lock); 91 return 0; 92 } 93 94 EXPORT_SYMBOL(register_binfmt); 95 96 int unregister_binfmt(struct linux_binfmt * fmt) 97 { 98 struct linux_binfmt ** tmp = &formats; 99 100 write_lock(&binfmt_lock); 101 while (*tmp) { 102 if (fmt == *tmp) { 103 *tmp = fmt->next; 104 fmt->next = NULL; 105 write_unlock(&binfmt_lock); 106 return 0; 107 } 108 tmp = &(*tmp)->next; 109 } 110 write_unlock(&binfmt_lock); 111 return -EINVAL; 112 } 113 114 EXPORT_SYMBOL(unregister_binfmt); 115 116 static inline void put_binfmt(struct linux_binfmt * fmt) 117 { 118 module_put(fmt->module); 119 } 120 121 /* 122 * Note that a shared library must be both readable and executable due to 123 * security reasons. 124 * 125 * Also note that we take the address to load from from the file itself. 126 */ 127 asmlinkage long sys_uselib(const char __user * library) 128 { 129 struct file * file; 130 struct nameidata nd; 131 int error; 132 133 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 134 if (error) 135 goto out; 136 137 error = -EACCES; 138 if (nd.mnt->mnt_flags & MNT_NOEXEC) 139 goto exit; 140 error = -EINVAL; 141 if (!S_ISREG(nd.dentry->d_inode->i_mode)) 142 goto exit; 143 144 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 145 if (error) 146 goto exit; 147 148 file = nameidata_to_filp(&nd, O_RDONLY); 149 error = PTR_ERR(file); 150 if (IS_ERR(file)) 151 goto out; 152 153 error = -ENOEXEC; 154 if(file->f_op) { 155 struct linux_binfmt * fmt; 156 157 read_lock(&binfmt_lock); 158 for (fmt = formats ; fmt ; fmt = fmt->next) { 159 if (!fmt->load_shlib) 160 continue; 161 if (!try_module_get(fmt->module)) 162 continue; 163 read_unlock(&binfmt_lock); 164 error = fmt->load_shlib(file); 165 read_lock(&binfmt_lock); 166 put_binfmt(fmt); 167 if (error != -ENOEXEC) 168 break; 169 } 170 read_unlock(&binfmt_lock); 171 } 172 fput(file); 173 out: 174 return error; 175 exit: 176 release_open_intent(&nd); 177 path_release(&nd); 178 goto out; 179 } 180 181 #ifdef CONFIG_MMU 182 183 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 184 int write) 185 { 186 struct page *page; 187 int ret; 188 189 #ifdef CONFIG_STACK_GROWSUP 190 if (write) { 191 ret = expand_stack_downwards(bprm->vma, pos); 192 if (ret < 0) 193 return NULL; 194 } 195 #endif 196 ret = get_user_pages(current, bprm->mm, pos, 197 1, write, 1, &page, NULL); 198 if (ret <= 0) 199 return NULL; 200 201 if (write) { 202 struct rlimit *rlim = current->signal->rlim; 203 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 204 205 /* 206 * Limit to 1/4-th the stack size for the argv+env strings. 207 * This ensures that: 208 * - the remaining binfmt code will not run out of stack space, 209 * - the program will have a reasonable amount of stack left 210 * to work from. 211 */ 212 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 213 put_page(page); 214 return NULL; 215 } 216 } 217 218 return page; 219 } 220 221 static void put_arg_page(struct page *page) 222 { 223 put_page(page); 224 } 225 226 static void free_arg_page(struct linux_binprm *bprm, int i) 227 { 228 } 229 230 static void free_arg_pages(struct linux_binprm *bprm) 231 { 232 } 233 234 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 235 struct page *page) 236 { 237 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 238 } 239 240 static int __bprm_mm_init(struct linux_binprm *bprm) 241 { 242 int err = -ENOMEM; 243 struct vm_area_struct *vma = NULL; 244 struct mm_struct *mm = bprm->mm; 245 246 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 247 if (!vma) 248 goto err; 249 250 down_write(&mm->mmap_sem); 251 vma->vm_mm = mm; 252 253 /* 254 * Place the stack at the largest stack address the architecture 255 * supports. Later, we'll move this to an appropriate place. We don't 256 * use STACK_TOP because that can depend on attributes which aren't 257 * configured yet. 258 */ 259 vma->vm_end = STACK_TOP_MAX; 260 vma->vm_start = vma->vm_end - PAGE_SIZE; 261 262 vma->vm_flags = VM_STACK_FLAGS; 263 vma->vm_page_prot = protection_map[vma->vm_flags & 0x7]; 264 err = insert_vm_struct(mm, vma); 265 if (err) { 266 up_write(&mm->mmap_sem); 267 goto err; 268 } 269 270 mm->stack_vm = mm->total_vm = 1; 271 up_write(&mm->mmap_sem); 272 273 bprm->p = vma->vm_end - sizeof(void *); 274 275 return 0; 276 277 err: 278 if (vma) { 279 bprm->vma = NULL; 280 kmem_cache_free(vm_area_cachep, vma); 281 } 282 283 return err; 284 } 285 286 static bool valid_arg_len(struct linux_binprm *bprm, long len) 287 { 288 return len <= MAX_ARG_STRLEN; 289 } 290 291 #else 292 293 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 294 int write) 295 { 296 struct page *page; 297 298 page = bprm->page[pos / PAGE_SIZE]; 299 if (!page && write) { 300 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 301 if (!page) 302 return NULL; 303 bprm->page[pos / PAGE_SIZE] = page; 304 } 305 306 return page; 307 } 308 309 static void put_arg_page(struct page *page) 310 { 311 } 312 313 static void free_arg_page(struct linux_binprm *bprm, int i) 314 { 315 if (bprm->page[i]) { 316 __free_page(bprm->page[i]); 317 bprm->page[i] = NULL; 318 } 319 } 320 321 static void free_arg_pages(struct linux_binprm *bprm) 322 { 323 int i; 324 325 for (i = 0; i < MAX_ARG_PAGES; i++) 326 free_arg_page(bprm, i); 327 } 328 329 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 330 struct page *page) 331 { 332 } 333 334 static int __bprm_mm_init(struct linux_binprm *bprm) 335 { 336 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 337 return 0; 338 } 339 340 static bool valid_arg_len(struct linux_binprm *bprm, long len) 341 { 342 return len <= bprm->p; 343 } 344 345 #endif /* CONFIG_MMU */ 346 347 /* 348 * Create a new mm_struct and populate it with a temporary stack 349 * vm_area_struct. We don't have enough context at this point to set the stack 350 * flags, permissions, and offset, so we use temporary values. We'll update 351 * them later in setup_arg_pages(). 352 */ 353 int bprm_mm_init(struct linux_binprm *bprm) 354 { 355 int err; 356 struct mm_struct *mm = NULL; 357 358 bprm->mm = mm = mm_alloc(); 359 err = -ENOMEM; 360 if (!mm) 361 goto err; 362 363 err = init_new_context(current, mm); 364 if (err) 365 goto err; 366 367 err = __bprm_mm_init(bprm); 368 if (err) 369 goto err; 370 371 return 0; 372 373 err: 374 if (mm) { 375 bprm->mm = NULL; 376 mmdrop(mm); 377 } 378 379 return err; 380 } 381 382 /* 383 * count() counts the number of strings in array ARGV. 384 */ 385 static int count(char __user * __user * argv, int max) 386 { 387 int i = 0; 388 389 if (argv != NULL) { 390 for (;;) { 391 char __user * p; 392 393 if (get_user(p, argv)) 394 return -EFAULT; 395 if (!p) 396 break; 397 argv++; 398 if(++i > max) 399 return -E2BIG; 400 cond_resched(); 401 } 402 } 403 return i; 404 } 405 406 /* 407 * 'copy_strings()' copies argument/environment strings from the old 408 * processes's memory to the new process's stack. The call to get_user_pages() 409 * ensures the destination page is created and not swapped out. 410 */ 411 static int copy_strings(int argc, char __user * __user * argv, 412 struct linux_binprm *bprm) 413 { 414 struct page *kmapped_page = NULL; 415 char *kaddr = NULL; 416 unsigned long kpos = 0; 417 int ret; 418 419 while (argc-- > 0) { 420 char __user *str; 421 int len; 422 unsigned long pos; 423 424 if (get_user(str, argv+argc) || 425 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 426 ret = -EFAULT; 427 goto out; 428 } 429 430 if (!valid_arg_len(bprm, len)) { 431 ret = -E2BIG; 432 goto out; 433 } 434 435 /* We're going to work our way backwords. */ 436 pos = bprm->p; 437 str += len; 438 bprm->p -= len; 439 440 while (len > 0) { 441 int offset, bytes_to_copy; 442 443 offset = pos % PAGE_SIZE; 444 if (offset == 0) 445 offset = PAGE_SIZE; 446 447 bytes_to_copy = offset; 448 if (bytes_to_copy > len) 449 bytes_to_copy = len; 450 451 offset -= bytes_to_copy; 452 pos -= bytes_to_copy; 453 str -= bytes_to_copy; 454 len -= bytes_to_copy; 455 456 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 457 struct page *page; 458 459 page = get_arg_page(bprm, pos, 1); 460 if (!page) { 461 ret = -E2BIG; 462 goto out; 463 } 464 465 if (kmapped_page) { 466 flush_kernel_dcache_page(kmapped_page); 467 kunmap(kmapped_page); 468 put_arg_page(kmapped_page); 469 } 470 kmapped_page = page; 471 kaddr = kmap(kmapped_page); 472 kpos = pos & PAGE_MASK; 473 flush_arg_page(bprm, kpos, kmapped_page); 474 } 475 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 476 ret = -EFAULT; 477 goto out; 478 } 479 } 480 } 481 ret = 0; 482 out: 483 if (kmapped_page) { 484 flush_kernel_dcache_page(kmapped_page); 485 kunmap(kmapped_page); 486 put_arg_page(kmapped_page); 487 } 488 return ret; 489 } 490 491 /* 492 * Like copy_strings, but get argv and its values from kernel memory. 493 */ 494 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 495 { 496 int r; 497 mm_segment_t oldfs = get_fs(); 498 set_fs(KERNEL_DS); 499 r = copy_strings(argc, (char __user * __user *)argv, bprm); 500 set_fs(oldfs); 501 return r; 502 } 503 EXPORT_SYMBOL(copy_strings_kernel); 504 505 #ifdef CONFIG_MMU 506 507 /* 508 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 509 * the binfmt code determines where the new stack should reside, we shift it to 510 * its final location. The process proceeds as follows: 511 * 512 * 1) Use shift to calculate the new vma endpoints. 513 * 2) Extend vma to cover both the old and new ranges. This ensures the 514 * arguments passed to subsequent functions are consistent. 515 * 3) Move vma's page tables to the new range. 516 * 4) Free up any cleared pgd range. 517 * 5) Shrink the vma to cover only the new range. 518 */ 519 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 520 { 521 struct mm_struct *mm = vma->vm_mm; 522 unsigned long old_start = vma->vm_start; 523 unsigned long old_end = vma->vm_end; 524 unsigned long length = old_end - old_start; 525 unsigned long new_start = old_start - shift; 526 unsigned long new_end = old_end - shift; 527 struct mmu_gather *tlb; 528 529 BUG_ON(new_start > new_end); 530 531 /* 532 * ensure there are no vmas between where we want to go 533 * and where we are 534 */ 535 if (vma != find_vma(mm, new_start)) 536 return -EFAULT; 537 538 /* 539 * cover the whole range: [new_start, old_end) 540 */ 541 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 542 543 /* 544 * move the page tables downwards, on failure we rely on 545 * process cleanup to remove whatever mess we made. 546 */ 547 if (length != move_page_tables(vma, old_start, 548 vma, new_start, length)) 549 return -ENOMEM; 550 551 lru_add_drain(); 552 tlb = tlb_gather_mmu(mm, 0); 553 if (new_end > old_start) { 554 /* 555 * when the old and new regions overlap clear from new_end. 556 */ 557 free_pgd_range(&tlb, new_end, old_end, new_end, 558 vma->vm_next ? vma->vm_next->vm_start : 0); 559 } else { 560 /* 561 * otherwise, clean from old_start; this is done to not touch 562 * the address space in [new_end, old_start) some architectures 563 * have constraints on va-space that make this illegal (IA64) - 564 * for the others its just a little faster. 565 */ 566 free_pgd_range(&tlb, old_start, old_end, new_end, 567 vma->vm_next ? vma->vm_next->vm_start : 0); 568 } 569 tlb_finish_mmu(tlb, new_end, old_end); 570 571 /* 572 * shrink the vma to just the new range. 573 */ 574 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 575 576 return 0; 577 } 578 579 #define EXTRA_STACK_VM_PAGES 20 /* random */ 580 581 /* 582 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 583 * the stack is optionally relocated, and some extra space is added. 584 */ 585 int setup_arg_pages(struct linux_binprm *bprm, 586 unsigned long stack_top, 587 int executable_stack) 588 { 589 unsigned long ret; 590 unsigned long stack_shift; 591 struct mm_struct *mm = current->mm; 592 struct vm_area_struct *vma = bprm->vma; 593 struct vm_area_struct *prev = NULL; 594 unsigned long vm_flags; 595 unsigned long stack_base; 596 597 #ifdef CONFIG_STACK_GROWSUP 598 /* Limit stack size to 1GB */ 599 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 600 if (stack_base > (1 << 30)) 601 stack_base = 1 << 30; 602 603 /* Make sure we didn't let the argument array grow too large. */ 604 if (vma->vm_end - vma->vm_start > stack_base) 605 return -ENOMEM; 606 607 stack_base = PAGE_ALIGN(stack_top - stack_base); 608 609 stack_shift = vma->vm_start - stack_base; 610 mm->arg_start = bprm->p - stack_shift; 611 bprm->p = vma->vm_end - stack_shift; 612 #else 613 stack_top = arch_align_stack(stack_top); 614 stack_top = PAGE_ALIGN(stack_top); 615 stack_shift = vma->vm_end - stack_top; 616 617 bprm->p -= stack_shift; 618 mm->arg_start = bprm->p; 619 #endif 620 621 if (bprm->loader) 622 bprm->loader -= stack_shift; 623 bprm->exec -= stack_shift; 624 625 down_write(&mm->mmap_sem); 626 vm_flags = vma->vm_flags; 627 628 /* 629 * Adjust stack execute permissions; explicitly enable for 630 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 631 * (arch default) otherwise. 632 */ 633 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 634 vm_flags |= VM_EXEC; 635 else if (executable_stack == EXSTACK_DISABLE_X) 636 vm_flags &= ~VM_EXEC; 637 vm_flags |= mm->def_flags; 638 639 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 640 vm_flags); 641 if (ret) 642 goto out_unlock; 643 BUG_ON(prev != vma); 644 645 /* Move stack pages down in memory. */ 646 if (stack_shift) { 647 ret = shift_arg_pages(vma, stack_shift); 648 if (ret) { 649 up_write(&mm->mmap_sem); 650 return ret; 651 } 652 } 653 654 #ifdef CONFIG_STACK_GROWSUP 655 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 656 #else 657 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 658 #endif 659 ret = expand_stack(vma, stack_base); 660 if (ret) 661 ret = -EFAULT; 662 663 out_unlock: 664 up_write(&mm->mmap_sem); 665 return 0; 666 } 667 EXPORT_SYMBOL(setup_arg_pages); 668 669 #endif /* CONFIG_MMU */ 670 671 struct file *open_exec(const char *name) 672 { 673 struct nameidata nd; 674 int err; 675 struct file *file; 676 677 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 678 file = ERR_PTR(err); 679 680 if (!err) { 681 struct inode *inode = nd.dentry->d_inode; 682 file = ERR_PTR(-EACCES); 683 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) && 684 S_ISREG(inode->i_mode)) { 685 int err = vfs_permission(&nd, MAY_EXEC); 686 file = ERR_PTR(err); 687 if (!err) { 688 file = nameidata_to_filp(&nd, O_RDONLY); 689 if (!IS_ERR(file)) { 690 err = deny_write_access(file); 691 if (err) { 692 fput(file); 693 file = ERR_PTR(err); 694 } 695 } 696 out: 697 return file; 698 } 699 } 700 release_open_intent(&nd); 701 path_release(&nd); 702 } 703 goto out; 704 } 705 706 EXPORT_SYMBOL(open_exec); 707 708 int kernel_read(struct file *file, unsigned long offset, 709 char *addr, unsigned long count) 710 { 711 mm_segment_t old_fs; 712 loff_t pos = offset; 713 int result; 714 715 old_fs = get_fs(); 716 set_fs(get_ds()); 717 /* The cast to a user pointer is valid due to the set_fs() */ 718 result = vfs_read(file, (void __user *)addr, count, &pos); 719 set_fs(old_fs); 720 return result; 721 } 722 723 EXPORT_SYMBOL(kernel_read); 724 725 static int exec_mmap(struct mm_struct *mm) 726 { 727 struct task_struct *tsk; 728 struct mm_struct * old_mm, *active_mm; 729 730 /* Notify parent that we're no longer interested in the old VM */ 731 tsk = current; 732 old_mm = current->mm; 733 mm_release(tsk, old_mm); 734 735 if (old_mm) { 736 /* 737 * Make sure that if there is a core dump in progress 738 * for the old mm, we get out and die instead of going 739 * through with the exec. We must hold mmap_sem around 740 * checking core_waiters and changing tsk->mm. The 741 * core-inducing thread will increment core_waiters for 742 * each thread whose ->mm == old_mm. 743 */ 744 down_read(&old_mm->mmap_sem); 745 if (unlikely(old_mm->core_waiters)) { 746 up_read(&old_mm->mmap_sem); 747 return -EINTR; 748 } 749 } 750 task_lock(tsk); 751 active_mm = tsk->active_mm; 752 tsk->mm = mm; 753 tsk->active_mm = mm; 754 activate_mm(active_mm, mm); 755 task_unlock(tsk); 756 arch_pick_mmap_layout(mm); 757 if (old_mm) { 758 up_read(&old_mm->mmap_sem); 759 BUG_ON(active_mm != old_mm); 760 mmput(old_mm); 761 return 0; 762 } 763 mmdrop(active_mm); 764 return 0; 765 } 766 767 /* 768 * This function makes sure the current process has its own signal table, 769 * so that flush_signal_handlers can later reset the handlers without 770 * disturbing other processes. (Other processes might share the signal 771 * table via the CLONE_SIGHAND option to clone().) 772 */ 773 static int de_thread(struct task_struct *tsk) 774 { 775 struct signal_struct *sig = tsk->signal; 776 struct sighand_struct *newsighand, *oldsighand = tsk->sighand; 777 spinlock_t *lock = &oldsighand->siglock; 778 struct task_struct *leader = NULL; 779 int count; 780 781 /* 782 * If we don't share sighandlers, then we aren't sharing anything 783 * and we can just re-use it all. 784 */ 785 if (atomic_read(&oldsighand->count) <= 1) { 786 exit_itimers(sig); 787 return 0; 788 } 789 790 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 791 if (!newsighand) 792 return -ENOMEM; 793 794 if (thread_group_empty(tsk)) 795 goto no_thread_group; 796 797 /* 798 * Kill all other threads in the thread group. 799 * We must hold tasklist_lock to call zap_other_threads. 800 */ 801 read_lock(&tasklist_lock); 802 spin_lock_irq(lock); 803 if (sig->flags & SIGNAL_GROUP_EXIT) { 804 /* 805 * Another group action in progress, just 806 * return so that the signal is processed. 807 */ 808 spin_unlock_irq(lock); 809 read_unlock(&tasklist_lock); 810 kmem_cache_free(sighand_cachep, newsighand); 811 return -EAGAIN; 812 } 813 814 /* 815 * child_reaper ignores SIGKILL, change it now. 816 * Reparenting needs write_lock on tasklist_lock, 817 * so it is safe to do it under read_lock. 818 */ 819 if (unlikely(tsk->group_leader == child_reaper(tsk))) 820 tsk->nsproxy->pid_ns->child_reaper = tsk; 821 822 zap_other_threads(tsk); 823 read_unlock(&tasklist_lock); 824 825 /* 826 * Account for the thread group leader hanging around: 827 */ 828 count = 1; 829 if (!thread_group_leader(tsk)) { 830 count = 2; 831 /* 832 * The SIGALRM timer survives the exec, but needs to point 833 * at us as the new group leader now. We have a race with 834 * a timer firing now getting the old leader, so we need to 835 * synchronize with any firing (by calling del_timer_sync) 836 * before we can safely let the old group leader die. 837 */ 838 sig->tsk = tsk; 839 spin_unlock_irq(lock); 840 if (hrtimer_cancel(&sig->real_timer)) 841 hrtimer_restart(&sig->real_timer); 842 spin_lock_irq(lock); 843 } 844 while (atomic_read(&sig->count) > count) { 845 sig->group_exit_task = tsk; 846 sig->notify_count = count; 847 __set_current_state(TASK_UNINTERRUPTIBLE); 848 spin_unlock_irq(lock); 849 schedule(); 850 spin_lock_irq(lock); 851 } 852 sig->group_exit_task = NULL; 853 sig->notify_count = 0; 854 spin_unlock_irq(lock); 855 856 /* 857 * At this point all other threads have exited, all we have to 858 * do is to wait for the thread group leader to become inactive, 859 * and to assume its PID: 860 */ 861 if (!thread_group_leader(tsk)) { 862 /* 863 * Wait for the thread group leader to be a zombie. 864 * It should already be zombie at this point, most 865 * of the time. 866 */ 867 leader = tsk->group_leader; 868 while (leader->exit_state != EXIT_ZOMBIE) 869 yield(); 870 871 /* 872 * The only record we have of the real-time age of a 873 * process, regardless of execs it's done, is start_time. 874 * All the past CPU time is accumulated in signal_struct 875 * from sister threads now dead. But in this non-leader 876 * exec, nothing survives from the original leader thread, 877 * whose birth marks the true age of this process now. 878 * When we take on its identity by switching to its PID, we 879 * also take its birthdate (always earlier than our own). 880 */ 881 tsk->start_time = leader->start_time; 882 883 write_lock_irq(&tasklist_lock); 884 885 BUG_ON(leader->tgid != tsk->tgid); 886 BUG_ON(tsk->pid == tsk->tgid); 887 /* 888 * An exec() starts a new thread group with the 889 * TGID of the previous thread group. Rehash the 890 * two threads with a switched PID, and release 891 * the former thread group leader: 892 */ 893 894 /* Become a process group leader with the old leader's pid. 895 * The old leader becomes a thread of the this thread group. 896 * Note: The old leader also uses this pid until release_task 897 * is called. Odd but simple and correct. 898 */ 899 detach_pid(tsk, PIDTYPE_PID); 900 tsk->pid = leader->pid; 901 attach_pid(tsk, PIDTYPE_PID, find_pid(tsk->pid)); 902 transfer_pid(leader, tsk, PIDTYPE_PGID); 903 transfer_pid(leader, tsk, PIDTYPE_SID); 904 list_replace_rcu(&leader->tasks, &tsk->tasks); 905 906 tsk->group_leader = tsk; 907 leader->group_leader = tsk; 908 909 tsk->exit_signal = SIGCHLD; 910 911 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 912 leader->exit_state = EXIT_DEAD; 913 914 write_unlock_irq(&tasklist_lock); 915 } 916 917 /* 918 * There may be one thread left which is just exiting, 919 * but it's safe to stop telling the group to kill themselves. 920 */ 921 sig->flags = 0; 922 923 no_thread_group: 924 exit_itimers(sig); 925 if (leader) 926 release_task(leader); 927 928 if (atomic_read(&oldsighand->count) == 1) { 929 /* 930 * Now that we nuked the rest of the thread group, 931 * it turns out we are not sharing sighand any more either. 932 * So we can just keep it. 933 */ 934 kmem_cache_free(sighand_cachep, newsighand); 935 } else { 936 /* 937 * Move our state over to newsighand and switch it in. 938 */ 939 atomic_set(&newsighand->count, 1); 940 memcpy(newsighand->action, oldsighand->action, 941 sizeof(newsighand->action)); 942 943 write_lock_irq(&tasklist_lock); 944 spin_lock(&oldsighand->siglock); 945 spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING); 946 947 rcu_assign_pointer(tsk->sighand, newsighand); 948 recalc_sigpending(); 949 950 spin_unlock(&newsighand->siglock); 951 spin_unlock(&oldsighand->siglock); 952 write_unlock_irq(&tasklist_lock); 953 954 __cleanup_sighand(oldsighand); 955 } 956 957 BUG_ON(!thread_group_leader(tsk)); 958 return 0; 959 } 960 961 /* 962 * These functions flushes out all traces of the currently running executable 963 * so that a new one can be started 964 */ 965 966 static void flush_old_files(struct files_struct * files) 967 { 968 long j = -1; 969 struct fdtable *fdt; 970 971 spin_lock(&files->file_lock); 972 for (;;) { 973 unsigned long set, i; 974 975 j++; 976 i = j * __NFDBITS; 977 fdt = files_fdtable(files); 978 if (i >= fdt->max_fds) 979 break; 980 set = fdt->close_on_exec->fds_bits[j]; 981 if (!set) 982 continue; 983 fdt->close_on_exec->fds_bits[j] = 0; 984 spin_unlock(&files->file_lock); 985 for ( ; set ; i++,set >>= 1) { 986 if (set & 1) { 987 sys_close(i); 988 } 989 } 990 spin_lock(&files->file_lock); 991 992 } 993 spin_unlock(&files->file_lock); 994 } 995 996 void get_task_comm(char *buf, struct task_struct *tsk) 997 { 998 /* buf must be at least sizeof(tsk->comm) in size */ 999 task_lock(tsk); 1000 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1001 task_unlock(tsk); 1002 } 1003 1004 void set_task_comm(struct task_struct *tsk, char *buf) 1005 { 1006 task_lock(tsk); 1007 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1008 task_unlock(tsk); 1009 } 1010 1011 int flush_old_exec(struct linux_binprm * bprm) 1012 { 1013 char * name; 1014 int i, ch, retval; 1015 struct files_struct *files; 1016 char tcomm[sizeof(current->comm)]; 1017 1018 /* 1019 * Make sure we have a private signal table and that 1020 * we are unassociated from the previous thread group. 1021 */ 1022 retval = de_thread(current); 1023 if (retval) 1024 goto out; 1025 1026 /* 1027 * Make sure we have private file handles. Ask the 1028 * fork helper to do the work for us and the exit 1029 * helper to do the cleanup of the old one. 1030 */ 1031 files = current->files; /* refcounted so safe to hold */ 1032 retval = unshare_files(); 1033 if (retval) 1034 goto out; 1035 /* 1036 * Release all of the old mmap stuff 1037 */ 1038 retval = exec_mmap(bprm->mm); 1039 if (retval) 1040 goto mmap_failed; 1041 1042 bprm->mm = NULL; /* We're using it now */ 1043 1044 /* This is the point of no return */ 1045 put_files_struct(files); 1046 1047 current->sas_ss_sp = current->sas_ss_size = 0; 1048 1049 if (current->euid == current->uid && current->egid == current->gid) 1050 set_dumpable(current->mm, 1); 1051 else 1052 set_dumpable(current->mm, suid_dumpable); 1053 1054 name = bprm->filename; 1055 1056 /* Copies the binary name from after last slash */ 1057 for (i=0; (ch = *(name++)) != '\0';) { 1058 if (ch == '/') 1059 i = 0; /* overwrite what we wrote */ 1060 else 1061 if (i < (sizeof(tcomm) - 1)) 1062 tcomm[i++] = ch; 1063 } 1064 tcomm[i] = '\0'; 1065 set_task_comm(current, tcomm); 1066 1067 current->flags &= ~PF_RANDOMIZE; 1068 flush_thread(); 1069 1070 /* Set the new mm task size. We have to do that late because it may 1071 * depend on TIF_32BIT which is only updated in flush_thread() on 1072 * some architectures like powerpc 1073 */ 1074 current->mm->task_size = TASK_SIZE; 1075 1076 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { 1077 suid_keys(current); 1078 set_dumpable(current->mm, suid_dumpable); 1079 current->pdeath_signal = 0; 1080 } else if (file_permission(bprm->file, MAY_READ) || 1081 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1082 suid_keys(current); 1083 set_dumpable(current->mm, suid_dumpable); 1084 } 1085 1086 /* An exec changes our domain. We are no longer part of the thread 1087 group */ 1088 1089 current->self_exec_id++; 1090 1091 flush_signal_handlers(current, 0); 1092 flush_old_files(current->files); 1093 1094 return 0; 1095 1096 mmap_failed: 1097 reset_files_struct(current, files); 1098 out: 1099 return retval; 1100 } 1101 1102 EXPORT_SYMBOL(flush_old_exec); 1103 1104 /* 1105 * Fill the binprm structure from the inode. 1106 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1107 */ 1108 int prepare_binprm(struct linux_binprm *bprm) 1109 { 1110 int mode; 1111 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1112 int retval; 1113 1114 mode = inode->i_mode; 1115 if (bprm->file->f_op == NULL) 1116 return -EACCES; 1117 1118 bprm->e_uid = current->euid; 1119 bprm->e_gid = current->egid; 1120 1121 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1122 /* Set-uid? */ 1123 if (mode & S_ISUID) { 1124 current->personality &= ~PER_CLEAR_ON_SETID; 1125 bprm->e_uid = inode->i_uid; 1126 } 1127 1128 /* Set-gid? */ 1129 /* 1130 * If setgid is set but no group execute bit then this 1131 * is a candidate for mandatory locking, not a setgid 1132 * executable. 1133 */ 1134 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1135 current->personality &= ~PER_CLEAR_ON_SETID; 1136 bprm->e_gid = inode->i_gid; 1137 } 1138 } 1139 1140 /* fill in binprm security blob */ 1141 retval = security_bprm_set(bprm); 1142 if (retval) 1143 return retval; 1144 1145 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1146 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1147 } 1148 1149 EXPORT_SYMBOL(prepare_binprm); 1150 1151 static int unsafe_exec(struct task_struct *p) 1152 { 1153 int unsafe = 0; 1154 if (p->ptrace & PT_PTRACED) { 1155 if (p->ptrace & PT_PTRACE_CAP) 1156 unsafe |= LSM_UNSAFE_PTRACE_CAP; 1157 else 1158 unsafe |= LSM_UNSAFE_PTRACE; 1159 } 1160 if (atomic_read(&p->fs->count) > 1 || 1161 atomic_read(&p->files->count) > 1 || 1162 atomic_read(&p->sighand->count) > 1) 1163 unsafe |= LSM_UNSAFE_SHARE; 1164 1165 return unsafe; 1166 } 1167 1168 void compute_creds(struct linux_binprm *bprm) 1169 { 1170 int unsafe; 1171 1172 if (bprm->e_uid != current->uid) { 1173 suid_keys(current); 1174 current->pdeath_signal = 0; 1175 } 1176 exec_keys(current); 1177 1178 task_lock(current); 1179 unsafe = unsafe_exec(current); 1180 security_bprm_apply_creds(bprm, unsafe); 1181 task_unlock(current); 1182 security_bprm_post_apply_creds(bprm); 1183 } 1184 EXPORT_SYMBOL(compute_creds); 1185 1186 /* 1187 * Arguments are '\0' separated strings found at the location bprm->p 1188 * points to; chop off the first by relocating brpm->p to right after 1189 * the first '\0' encountered. 1190 */ 1191 int remove_arg_zero(struct linux_binprm *bprm) 1192 { 1193 int ret = 0; 1194 unsigned long offset; 1195 char *kaddr; 1196 struct page *page; 1197 1198 if (!bprm->argc) 1199 return 0; 1200 1201 do { 1202 offset = bprm->p & ~PAGE_MASK; 1203 page = get_arg_page(bprm, bprm->p, 0); 1204 if (!page) { 1205 ret = -EFAULT; 1206 goto out; 1207 } 1208 kaddr = kmap_atomic(page, KM_USER0); 1209 1210 for (; offset < PAGE_SIZE && kaddr[offset]; 1211 offset++, bprm->p++) 1212 ; 1213 1214 kunmap_atomic(kaddr, KM_USER0); 1215 put_arg_page(page); 1216 1217 if (offset == PAGE_SIZE) 1218 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1219 } while (offset == PAGE_SIZE); 1220 1221 bprm->p++; 1222 bprm->argc--; 1223 ret = 0; 1224 1225 out: 1226 return ret; 1227 } 1228 EXPORT_SYMBOL(remove_arg_zero); 1229 1230 /* 1231 * cycle the list of binary formats handler, until one recognizes the image 1232 */ 1233 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1234 { 1235 int try,retval; 1236 struct linux_binfmt *fmt; 1237 #ifdef __alpha__ 1238 /* handle /sbin/loader.. */ 1239 { 1240 struct exec * eh = (struct exec *) bprm->buf; 1241 1242 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1243 (eh->fh.f_flags & 0x3000) == 0x3000) 1244 { 1245 struct file * file; 1246 unsigned long loader; 1247 1248 allow_write_access(bprm->file); 1249 fput(bprm->file); 1250 bprm->file = NULL; 1251 1252 loader = bprm->vma->vm_end - sizeof(void *); 1253 1254 file = open_exec("/sbin/loader"); 1255 retval = PTR_ERR(file); 1256 if (IS_ERR(file)) 1257 return retval; 1258 1259 /* Remember if the application is TASO. */ 1260 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1261 1262 bprm->file = file; 1263 bprm->loader = loader; 1264 retval = prepare_binprm(bprm); 1265 if (retval<0) 1266 return retval; 1267 /* should call search_binary_handler recursively here, 1268 but it does not matter */ 1269 } 1270 } 1271 #endif 1272 retval = security_bprm_check(bprm); 1273 if (retval) 1274 return retval; 1275 1276 /* kernel module loader fixup */ 1277 /* so we don't try to load run modprobe in kernel space. */ 1278 set_fs(USER_DS); 1279 1280 retval = audit_bprm(bprm); 1281 if (retval) 1282 return retval; 1283 1284 retval = -ENOENT; 1285 for (try=0; try<2; try++) { 1286 read_lock(&binfmt_lock); 1287 for (fmt = formats ; fmt ; fmt = fmt->next) { 1288 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1289 if (!fn) 1290 continue; 1291 if (!try_module_get(fmt->module)) 1292 continue; 1293 read_unlock(&binfmt_lock); 1294 retval = fn(bprm, regs); 1295 if (retval >= 0) { 1296 put_binfmt(fmt); 1297 allow_write_access(bprm->file); 1298 if (bprm->file) 1299 fput(bprm->file); 1300 bprm->file = NULL; 1301 current->did_exec = 1; 1302 proc_exec_connector(current); 1303 return retval; 1304 } 1305 read_lock(&binfmt_lock); 1306 put_binfmt(fmt); 1307 if (retval != -ENOEXEC || bprm->mm == NULL) 1308 break; 1309 if (!bprm->file) { 1310 read_unlock(&binfmt_lock); 1311 return retval; 1312 } 1313 } 1314 read_unlock(&binfmt_lock); 1315 if (retval != -ENOEXEC || bprm->mm == NULL) { 1316 break; 1317 #ifdef CONFIG_KMOD 1318 }else{ 1319 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1320 if (printable(bprm->buf[0]) && 1321 printable(bprm->buf[1]) && 1322 printable(bprm->buf[2]) && 1323 printable(bprm->buf[3])) 1324 break; /* -ENOEXEC */ 1325 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1326 #endif 1327 } 1328 } 1329 return retval; 1330 } 1331 1332 EXPORT_SYMBOL(search_binary_handler); 1333 1334 /* 1335 * sys_execve() executes a new program. 1336 */ 1337 int do_execve(char * filename, 1338 char __user *__user *argv, 1339 char __user *__user *envp, 1340 struct pt_regs * regs) 1341 { 1342 struct linux_binprm *bprm; 1343 struct file *file; 1344 unsigned long env_p; 1345 int retval; 1346 1347 retval = -ENOMEM; 1348 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1349 if (!bprm) 1350 goto out_ret; 1351 1352 file = open_exec(filename); 1353 retval = PTR_ERR(file); 1354 if (IS_ERR(file)) 1355 goto out_kfree; 1356 1357 sched_exec(); 1358 1359 bprm->file = file; 1360 bprm->filename = filename; 1361 bprm->interp = filename; 1362 1363 retval = bprm_mm_init(bprm); 1364 if (retval) 1365 goto out_file; 1366 1367 bprm->argc = count(argv, MAX_ARG_STRINGS); 1368 if ((retval = bprm->argc) < 0) 1369 goto out_mm; 1370 1371 bprm->envc = count(envp, MAX_ARG_STRINGS); 1372 if ((retval = bprm->envc) < 0) 1373 goto out_mm; 1374 1375 retval = security_bprm_alloc(bprm); 1376 if (retval) 1377 goto out; 1378 1379 retval = prepare_binprm(bprm); 1380 if (retval < 0) 1381 goto out; 1382 1383 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1384 if (retval < 0) 1385 goto out; 1386 1387 bprm->exec = bprm->p; 1388 retval = copy_strings(bprm->envc, envp, bprm); 1389 if (retval < 0) 1390 goto out; 1391 1392 env_p = bprm->p; 1393 retval = copy_strings(bprm->argc, argv, bprm); 1394 if (retval < 0) 1395 goto out; 1396 bprm->argv_len = env_p - bprm->p; 1397 1398 retval = search_binary_handler(bprm,regs); 1399 if (retval >= 0) { 1400 /* execve success */ 1401 free_arg_pages(bprm); 1402 security_bprm_free(bprm); 1403 acct_update_integrals(current); 1404 kfree(bprm); 1405 return retval; 1406 } 1407 1408 out: 1409 free_arg_pages(bprm); 1410 if (bprm->security) 1411 security_bprm_free(bprm); 1412 1413 out_mm: 1414 if (bprm->mm) 1415 mmput (bprm->mm); 1416 1417 out_file: 1418 if (bprm->file) { 1419 allow_write_access(bprm->file); 1420 fput(bprm->file); 1421 } 1422 out_kfree: 1423 kfree(bprm); 1424 1425 out_ret: 1426 return retval; 1427 } 1428 1429 int set_binfmt(struct linux_binfmt *new) 1430 { 1431 struct linux_binfmt *old = current->binfmt; 1432 1433 if (new) { 1434 if (!try_module_get(new->module)) 1435 return -1; 1436 } 1437 current->binfmt = new; 1438 if (old) 1439 module_put(old->module); 1440 return 0; 1441 } 1442 1443 EXPORT_SYMBOL(set_binfmt); 1444 1445 /* format_corename will inspect the pattern parameter, and output a 1446 * name into corename, which must have space for at least 1447 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1448 */ 1449 static int format_corename(char *corename, const char *pattern, long signr) 1450 { 1451 const char *pat_ptr = pattern; 1452 char *out_ptr = corename; 1453 char *const out_end = corename + CORENAME_MAX_SIZE; 1454 int rc; 1455 int pid_in_pattern = 0; 1456 int ispipe = 0; 1457 1458 if (*pattern == '|') 1459 ispipe = 1; 1460 1461 /* Repeat as long as we have more pattern to process and more output 1462 space */ 1463 while (*pat_ptr) { 1464 if (*pat_ptr != '%') { 1465 if (out_ptr == out_end) 1466 goto out; 1467 *out_ptr++ = *pat_ptr++; 1468 } else { 1469 switch (*++pat_ptr) { 1470 case 0: 1471 goto out; 1472 /* Double percent, output one percent */ 1473 case '%': 1474 if (out_ptr == out_end) 1475 goto out; 1476 *out_ptr++ = '%'; 1477 break; 1478 /* pid */ 1479 case 'p': 1480 pid_in_pattern = 1; 1481 rc = snprintf(out_ptr, out_end - out_ptr, 1482 "%d", current->tgid); 1483 if (rc > out_end - out_ptr) 1484 goto out; 1485 out_ptr += rc; 1486 break; 1487 /* uid */ 1488 case 'u': 1489 rc = snprintf(out_ptr, out_end - out_ptr, 1490 "%d", current->uid); 1491 if (rc > out_end - out_ptr) 1492 goto out; 1493 out_ptr += rc; 1494 break; 1495 /* gid */ 1496 case 'g': 1497 rc = snprintf(out_ptr, out_end - out_ptr, 1498 "%d", current->gid); 1499 if (rc > out_end - out_ptr) 1500 goto out; 1501 out_ptr += rc; 1502 break; 1503 /* signal that caused the coredump */ 1504 case 's': 1505 rc = snprintf(out_ptr, out_end - out_ptr, 1506 "%ld", signr); 1507 if (rc > out_end - out_ptr) 1508 goto out; 1509 out_ptr += rc; 1510 break; 1511 /* UNIX time of coredump */ 1512 case 't': { 1513 struct timeval tv; 1514 do_gettimeofday(&tv); 1515 rc = snprintf(out_ptr, out_end - out_ptr, 1516 "%lu", tv.tv_sec); 1517 if (rc > out_end - out_ptr) 1518 goto out; 1519 out_ptr += rc; 1520 break; 1521 } 1522 /* hostname */ 1523 case 'h': 1524 down_read(&uts_sem); 1525 rc = snprintf(out_ptr, out_end - out_ptr, 1526 "%s", utsname()->nodename); 1527 up_read(&uts_sem); 1528 if (rc > out_end - out_ptr) 1529 goto out; 1530 out_ptr += rc; 1531 break; 1532 /* executable */ 1533 case 'e': 1534 rc = snprintf(out_ptr, out_end - out_ptr, 1535 "%s", current->comm); 1536 if (rc > out_end - out_ptr) 1537 goto out; 1538 out_ptr += rc; 1539 break; 1540 default: 1541 break; 1542 } 1543 ++pat_ptr; 1544 } 1545 } 1546 /* Backward compatibility with core_uses_pid: 1547 * 1548 * If core_pattern does not include a %p (as is the default) 1549 * and core_uses_pid is set, then .%pid will be appended to 1550 * the filename. Do not do this for piped commands. */ 1551 if (!ispipe && !pid_in_pattern 1552 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1553 rc = snprintf(out_ptr, out_end - out_ptr, 1554 ".%d", current->tgid); 1555 if (rc > out_end - out_ptr) 1556 goto out; 1557 out_ptr += rc; 1558 } 1559 out: 1560 *out_ptr = 0; 1561 return ispipe; 1562 } 1563 1564 static void zap_process(struct task_struct *start) 1565 { 1566 struct task_struct *t; 1567 1568 start->signal->flags = SIGNAL_GROUP_EXIT; 1569 start->signal->group_stop_count = 0; 1570 1571 t = start; 1572 do { 1573 if (t != current && t->mm) { 1574 t->mm->core_waiters++; 1575 sigaddset(&t->pending.signal, SIGKILL); 1576 signal_wake_up(t, 1); 1577 } 1578 } while ((t = next_thread(t)) != start); 1579 } 1580 1581 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1582 int exit_code) 1583 { 1584 struct task_struct *g, *p; 1585 unsigned long flags; 1586 int err = -EAGAIN; 1587 1588 spin_lock_irq(&tsk->sighand->siglock); 1589 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 1590 tsk->signal->group_exit_code = exit_code; 1591 zap_process(tsk); 1592 err = 0; 1593 } 1594 spin_unlock_irq(&tsk->sighand->siglock); 1595 if (err) 1596 return err; 1597 1598 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1599 goto done; 1600 1601 rcu_read_lock(); 1602 for_each_process(g) { 1603 if (g == tsk->group_leader) 1604 continue; 1605 1606 p = g; 1607 do { 1608 if (p->mm) { 1609 if (p->mm == mm) { 1610 /* 1611 * p->sighand can't disappear, but 1612 * may be changed by de_thread() 1613 */ 1614 lock_task_sighand(p, &flags); 1615 zap_process(p); 1616 unlock_task_sighand(p, &flags); 1617 } 1618 break; 1619 } 1620 } while ((p = next_thread(p)) != g); 1621 } 1622 rcu_read_unlock(); 1623 done: 1624 return mm->core_waiters; 1625 } 1626 1627 static int coredump_wait(int exit_code) 1628 { 1629 struct task_struct *tsk = current; 1630 struct mm_struct *mm = tsk->mm; 1631 struct completion startup_done; 1632 struct completion *vfork_done; 1633 int core_waiters; 1634 1635 init_completion(&mm->core_done); 1636 init_completion(&startup_done); 1637 mm->core_startup_done = &startup_done; 1638 1639 core_waiters = zap_threads(tsk, mm, exit_code); 1640 up_write(&mm->mmap_sem); 1641 1642 if (unlikely(core_waiters < 0)) 1643 goto fail; 1644 1645 /* 1646 * Make sure nobody is waiting for us to release the VM, 1647 * otherwise we can deadlock when we wait on each other 1648 */ 1649 vfork_done = tsk->vfork_done; 1650 if (vfork_done) { 1651 tsk->vfork_done = NULL; 1652 complete(vfork_done); 1653 } 1654 1655 if (core_waiters) 1656 wait_for_completion(&startup_done); 1657 fail: 1658 BUG_ON(mm->core_waiters); 1659 return core_waiters; 1660 } 1661 1662 /* 1663 * set_dumpable converts traditional three-value dumpable to two flags and 1664 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1665 * these bits are not changed atomically. So get_dumpable can observe the 1666 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1667 * return either old dumpable or new one by paying attention to the order of 1668 * modifying the bits. 1669 * 1670 * dumpable | mm->flags (binary) 1671 * old new | initial interim final 1672 * ---------+----------------------- 1673 * 0 1 | 00 01 01 1674 * 0 2 | 00 10(*) 11 1675 * 1 0 | 01 00 00 1676 * 1 2 | 01 11 11 1677 * 2 0 | 11 10(*) 00 1678 * 2 1 | 11 11 01 1679 * 1680 * (*) get_dumpable regards interim value of 10 as 11. 1681 */ 1682 void set_dumpable(struct mm_struct *mm, int value) 1683 { 1684 switch (value) { 1685 case 0: 1686 clear_bit(MMF_DUMPABLE, &mm->flags); 1687 smp_wmb(); 1688 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1689 break; 1690 case 1: 1691 set_bit(MMF_DUMPABLE, &mm->flags); 1692 smp_wmb(); 1693 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1694 break; 1695 case 2: 1696 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1697 smp_wmb(); 1698 set_bit(MMF_DUMPABLE, &mm->flags); 1699 break; 1700 } 1701 } 1702 EXPORT_SYMBOL_GPL(set_dumpable); 1703 1704 int get_dumpable(struct mm_struct *mm) 1705 { 1706 int ret; 1707 1708 ret = mm->flags & 0x3; 1709 return (ret >= 2) ? 2 : ret; 1710 } 1711 1712 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1713 { 1714 char corename[CORENAME_MAX_SIZE + 1]; 1715 struct mm_struct *mm = current->mm; 1716 struct linux_binfmt * binfmt; 1717 struct inode * inode; 1718 struct file * file; 1719 int retval = 0; 1720 int fsuid = current->fsuid; 1721 int flag = 0; 1722 int ispipe = 0; 1723 1724 audit_core_dumps(signr); 1725 1726 binfmt = current->binfmt; 1727 if (!binfmt || !binfmt->core_dump) 1728 goto fail; 1729 down_write(&mm->mmap_sem); 1730 if (!get_dumpable(mm)) { 1731 up_write(&mm->mmap_sem); 1732 goto fail; 1733 } 1734 1735 /* 1736 * We cannot trust fsuid as being the "true" uid of the 1737 * process nor do we know its entire history. We only know it 1738 * was tainted so we dump it as root in mode 2. 1739 */ 1740 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1741 flag = O_EXCL; /* Stop rewrite attacks */ 1742 current->fsuid = 0; /* Dump root private */ 1743 } 1744 set_dumpable(mm, 0); 1745 1746 retval = coredump_wait(exit_code); 1747 if (retval < 0) 1748 goto fail; 1749 1750 /* 1751 * Clear any false indication of pending signals that might 1752 * be seen by the filesystem code called to write the core file. 1753 */ 1754 clear_thread_flag(TIF_SIGPENDING); 1755 1756 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump) 1757 goto fail_unlock; 1758 1759 /* 1760 * lock_kernel() because format_corename() is controlled by sysctl, which 1761 * uses lock_kernel() 1762 */ 1763 lock_kernel(); 1764 ispipe = format_corename(corename, core_pattern, signr); 1765 unlock_kernel(); 1766 if (ispipe) { 1767 /* SIGPIPE can happen, but it's just never processed */ 1768 if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) { 1769 printk(KERN_INFO "Core dump to %s pipe failed\n", 1770 corename); 1771 goto fail_unlock; 1772 } 1773 } else 1774 file = filp_open(corename, 1775 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1776 0600); 1777 if (IS_ERR(file)) 1778 goto fail_unlock; 1779 inode = file->f_path.dentry->d_inode; 1780 if (inode->i_nlink > 1) 1781 goto close_fail; /* multiple links - don't dump */ 1782 if (!ispipe && d_unhashed(file->f_path.dentry)) 1783 goto close_fail; 1784 1785 /* AK: actually i see no reason to not allow this for named pipes etc., 1786 but keep the previous behaviour for now. */ 1787 if (!ispipe && !S_ISREG(inode->i_mode)) 1788 goto close_fail; 1789 if (!file->f_op) 1790 goto close_fail; 1791 if (!file->f_op->write) 1792 goto close_fail; 1793 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1794 goto close_fail; 1795 1796 retval = binfmt->core_dump(signr, regs, file); 1797 1798 if (retval) 1799 current->signal->group_exit_code |= 0x80; 1800 close_fail: 1801 filp_close(file, NULL); 1802 fail_unlock: 1803 current->fsuid = fsuid; 1804 complete_all(&mm->core_done); 1805 fail: 1806 return retval; 1807 } 1808