xref: /linux/fs/exec.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
71 
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/tlb.h>
75 
76 #include <trace/events/task.h>
77 #include "internal.h"
78 
79 #include <trace/events/sched.h>
80 
81 /* For vma exec functions. */
82 #include "../mm/internal.h"
83 
84 static int bprm_creds_from_file(struct linux_binprm *bprm);
85 
86 int suid_dumpable = 0;
87 
88 static LIST_HEAD(formats);
89 static DEFINE_RWLOCK(binfmt_lock);
90 
91 void __register_binfmt(struct linux_binfmt * fmt, int insert)
92 {
93 	write_lock(&binfmt_lock);
94 	insert ? list_add(&fmt->lh, &formats) :
95 		 list_add_tail(&fmt->lh, &formats);
96 	write_unlock(&binfmt_lock);
97 }
98 
99 EXPORT_SYMBOL(__register_binfmt);
100 
101 void unregister_binfmt(struct linux_binfmt * fmt)
102 {
103 	write_lock(&binfmt_lock);
104 	list_del(&fmt->lh);
105 	write_unlock(&binfmt_lock);
106 }
107 
108 EXPORT_SYMBOL(unregister_binfmt);
109 
110 static inline void put_binfmt(struct linux_binfmt * fmt)
111 {
112 	module_put(fmt->module);
113 }
114 
115 bool path_noexec(const struct path *path)
116 {
117 	/* If it's an anonymous inode make sure that we catch any shenanigans. */
118 	VFS_WARN_ON_ONCE(IS_ANON_FILE(d_inode(path->dentry)) &&
119 			 !(path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC));
120 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
121 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
122 }
123 
124 #ifdef CONFIG_MMU
125 /*
126  * The nascent bprm->mm is not visible until exec_mmap() but it can
127  * use a lot of memory, account these pages in current->mm temporary
128  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
129  * change the counter back via acct_arg_size(0).
130  */
131 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
132 {
133 	struct mm_struct *mm = current->mm;
134 	long diff = (long)(pages - bprm->vma_pages);
135 
136 	if (!mm || !diff)
137 		return;
138 
139 	bprm->vma_pages = pages;
140 	add_mm_counter(mm, MM_ANONPAGES, diff);
141 }
142 
143 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
144 		int write)
145 {
146 	struct page *page;
147 	struct vm_area_struct *vma = bprm->vma;
148 	struct mm_struct *mm = bprm->mm;
149 	int ret;
150 
151 	/*
152 	 * Avoid relying on expanding the stack down in GUP (which
153 	 * does not work for STACK_GROWSUP anyway), and just do it
154 	 * ahead of time.
155 	 */
156 	if (!mmap_read_lock_maybe_expand(mm, vma, pos, write))
157 		return NULL;
158 
159 	/*
160 	 * We are doing an exec().  'current' is the process
161 	 * doing the exec and 'mm' is the new process's mm.
162 	 */
163 	ret = get_user_pages_remote(mm, pos, 1,
164 			write ? FOLL_WRITE : 0,
165 			&page, NULL);
166 	mmap_read_unlock(mm);
167 	if (ret <= 0)
168 		return NULL;
169 
170 	if (write)
171 		acct_arg_size(bprm, vma_pages(vma));
172 
173 	return page;
174 }
175 
176 static void put_arg_page(struct page *page)
177 {
178 	put_page(page);
179 }
180 
181 static void free_arg_pages(struct linux_binprm *bprm)
182 {
183 }
184 
185 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
186 		struct page *page)
187 {
188 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
189 }
190 
191 static bool valid_arg_len(struct linux_binprm *bprm, long len)
192 {
193 	return len <= MAX_ARG_STRLEN;
194 }
195 
196 #else
197 
198 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
199 {
200 }
201 
202 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
203 		int write)
204 {
205 	struct page *page;
206 
207 	page = bprm->page[pos / PAGE_SIZE];
208 	if (!page && write) {
209 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
210 		if (!page)
211 			return NULL;
212 		bprm->page[pos / PAGE_SIZE] = page;
213 	}
214 
215 	return page;
216 }
217 
218 static void put_arg_page(struct page *page)
219 {
220 }
221 
222 static void free_arg_page(struct linux_binprm *bprm, int i)
223 {
224 	if (bprm->page[i]) {
225 		__free_page(bprm->page[i]);
226 		bprm->page[i] = NULL;
227 	}
228 }
229 
230 static void free_arg_pages(struct linux_binprm *bprm)
231 {
232 	int i;
233 
234 	for (i = 0; i < MAX_ARG_PAGES; i++)
235 		free_arg_page(bprm, i);
236 }
237 
238 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
239 		struct page *page)
240 {
241 }
242 
243 static bool valid_arg_len(struct linux_binprm *bprm, long len)
244 {
245 	return len <= bprm->p;
246 }
247 
248 #endif /* CONFIG_MMU */
249 
250 /*
251  * Create a new mm_struct and populate it with a temporary stack
252  * vm_area_struct.  We don't have enough context at this point to set the stack
253  * flags, permissions, and offset, so we use temporary values.  We'll update
254  * them later in setup_arg_pages().
255  */
256 static int bprm_mm_init(struct linux_binprm *bprm)
257 {
258 	int err;
259 	struct mm_struct *mm = NULL;
260 
261 	bprm->mm = mm = mm_alloc();
262 	err = -ENOMEM;
263 	if (!mm)
264 		goto err;
265 
266 	/* Save current stack limit for all calculations made during exec. */
267 	task_lock(current->group_leader);
268 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
269 	task_unlock(current->group_leader);
270 
271 #ifndef CONFIG_MMU
272 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
273 #else
274 	err = create_init_stack_vma(bprm->mm, &bprm->vma, &bprm->p);
275 	if (err)
276 		goto err;
277 #endif
278 
279 	return 0;
280 
281 err:
282 	if (mm) {
283 		bprm->mm = NULL;
284 		mmdrop(mm);
285 	}
286 
287 	return err;
288 }
289 
290 struct user_arg_ptr {
291 #ifdef CONFIG_COMPAT
292 	bool is_compat;
293 #endif
294 	union {
295 		const char __user *const __user *native;
296 #ifdef CONFIG_COMPAT
297 		const compat_uptr_t __user *compat;
298 #endif
299 	} ptr;
300 };
301 
302 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
303 {
304 	const char __user *native;
305 
306 #ifdef CONFIG_COMPAT
307 	if (unlikely(argv.is_compat)) {
308 		compat_uptr_t compat;
309 
310 		if (get_user(compat, argv.ptr.compat + nr))
311 			return ERR_PTR(-EFAULT);
312 
313 		return compat_ptr(compat);
314 	}
315 #endif
316 
317 	if (get_user(native, argv.ptr.native + nr))
318 		return ERR_PTR(-EFAULT);
319 
320 	return native;
321 }
322 
323 /*
324  * count() counts the number of strings in array ARGV.
325  */
326 static int count(struct user_arg_ptr argv, int max)
327 {
328 	int i = 0;
329 
330 	if (argv.ptr.native != NULL) {
331 		for (;;) {
332 			const char __user *p = get_user_arg_ptr(argv, i);
333 
334 			if (!p)
335 				break;
336 
337 			if (IS_ERR(p))
338 				return -EFAULT;
339 
340 			if (i >= max)
341 				return -E2BIG;
342 			++i;
343 
344 			if (fatal_signal_pending(current))
345 				return -ERESTARTNOHAND;
346 			cond_resched();
347 		}
348 	}
349 	return i;
350 }
351 
352 static int count_strings_kernel(const char *const *argv)
353 {
354 	int i;
355 
356 	if (!argv)
357 		return 0;
358 
359 	for (i = 0; argv[i]; ++i) {
360 		if (i >= MAX_ARG_STRINGS)
361 			return -E2BIG;
362 		if (fatal_signal_pending(current))
363 			return -ERESTARTNOHAND;
364 		cond_resched();
365 	}
366 	return i;
367 }
368 
369 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
370 				       unsigned long limit)
371 {
372 #ifdef CONFIG_MMU
373 	/* Avoid a pathological bprm->p. */
374 	if (bprm->p < limit)
375 		return -E2BIG;
376 	bprm->argmin = bprm->p - limit;
377 #endif
378 	return 0;
379 }
380 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
381 {
382 #ifdef CONFIG_MMU
383 	return bprm->p < bprm->argmin;
384 #else
385 	return false;
386 #endif
387 }
388 
389 /*
390  * Calculate bprm->argmin from:
391  * - _STK_LIM
392  * - ARG_MAX
393  * - bprm->rlim_stack.rlim_cur
394  * - bprm->argc
395  * - bprm->envc
396  * - bprm->p
397  */
398 static int bprm_stack_limits(struct linux_binprm *bprm)
399 {
400 	unsigned long limit, ptr_size;
401 
402 	/*
403 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
404 	 * (whichever is smaller) for the argv+env strings.
405 	 * This ensures that:
406 	 *  - the remaining binfmt code will not run out of stack space,
407 	 *  - the program will have a reasonable amount of stack left
408 	 *    to work from.
409 	 */
410 	limit = _STK_LIM / 4 * 3;
411 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
412 	/*
413 	 * We've historically supported up to 32 pages (ARG_MAX)
414 	 * of argument strings even with small stacks
415 	 */
416 	limit = max_t(unsigned long, limit, ARG_MAX);
417 	/* Reject totally pathological counts. */
418 	if (bprm->argc < 0 || bprm->envc < 0)
419 		return -E2BIG;
420 	/*
421 	 * We must account for the size of all the argv and envp pointers to
422 	 * the argv and envp strings, since they will also take up space in
423 	 * the stack. They aren't stored until much later when we can't
424 	 * signal to the parent that the child has run out of stack space.
425 	 * Instead, calculate it here so it's possible to fail gracefully.
426 	 *
427 	 * In the case of argc = 0, make sure there is space for adding a
428 	 * empty string (which will bump argc to 1), to ensure confused
429 	 * userspace programs don't start processing from argv[1], thinking
430 	 * argc can never be 0, to keep them from walking envp by accident.
431 	 * See do_execveat_common().
432 	 */
433 	if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
434 	    check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
435 		return -E2BIG;
436 	if (limit <= ptr_size)
437 		return -E2BIG;
438 	limit -= ptr_size;
439 
440 	return bprm_set_stack_limit(bprm, limit);
441 }
442 
443 /*
444  * 'copy_strings()' copies argument/environment strings from the old
445  * processes's memory to the new process's stack.  The call to get_user_pages()
446  * ensures the destination page is created and not swapped out.
447  */
448 static int copy_strings(int argc, struct user_arg_ptr argv,
449 			struct linux_binprm *bprm)
450 {
451 	struct page *kmapped_page = NULL;
452 	char *kaddr = NULL;
453 	unsigned long kpos = 0;
454 	int ret;
455 
456 	while (argc-- > 0) {
457 		const char __user *str;
458 		int len;
459 		unsigned long pos;
460 
461 		ret = -EFAULT;
462 		str = get_user_arg_ptr(argv, argc);
463 		if (IS_ERR(str))
464 			goto out;
465 
466 		len = strnlen_user(str, MAX_ARG_STRLEN);
467 		if (!len)
468 			goto out;
469 
470 		ret = -E2BIG;
471 		if (!valid_arg_len(bprm, len))
472 			goto out;
473 
474 		/* We're going to work our way backwards. */
475 		pos = bprm->p;
476 		str += len;
477 		bprm->p -= len;
478 		if (bprm_hit_stack_limit(bprm))
479 			goto out;
480 
481 		while (len > 0) {
482 			int offset, bytes_to_copy;
483 
484 			if (fatal_signal_pending(current)) {
485 				ret = -ERESTARTNOHAND;
486 				goto out;
487 			}
488 			cond_resched();
489 
490 			offset = pos % PAGE_SIZE;
491 			if (offset == 0)
492 				offset = PAGE_SIZE;
493 
494 			bytes_to_copy = offset;
495 			if (bytes_to_copy > len)
496 				bytes_to_copy = len;
497 
498 			offset -= bytes_to_copy;
499 			pos -= bytes_to_copy;
500 			str -= bytes_to_copy;
501 			len -= bytes_to_copy;
502 
503 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
504 				struct page *page;
505 
506 				page = get_arg_page(bprm, pos, 1);
507 				if (!page) {
508 					ret = -E2BIG;
509 					goto out;
510 				}
511 
512 				if (kmapped_page) {
513 					flush_dcache_page(kmapped_page);
514 					kunmap_local(kaddr);
515 					put_arg_page(kmapped_page);
516 				}
517 				kmapped_page = page;
518 				kaddr = kmap_local_page(kmapped_page);
519 				kpos = pos & PAGE_MASK;
520 				flush_arg_page(bprm, kpos, kmapped_page);
521 			}
522 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
523 				ret = -EFAULT;
524 				goto out;
525 			}
526 		}
527 	}
528 	ret = 0;
529 out:
530 	if (kmapped_page) {
531 		flush_dcache_page(kmapped_page);
532 		kunmap_local(kaddr);
533 		put_arg_page(kmapped_page);
534 	}
535 	return ret;
536 }
537 
538 /*
539  * Copy and argument/environment string from the kernel to the processes stack.
540  */
541 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
542 {
543 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
544 	unsigned long pos = bprm->p;
545 
546 	if (len == 0)
547 		return -EFAULT;
548 	if (!valid_arg_len(bprm, len))
549 		return -E2BIG;
550 
551 	/* We're going to work our way backwards. */
552 	arg += len;
553 	bprm->p -= len;
554 	if (bprm_hit_stack_limit(bprm))
555 		return -E2BIG;
556 
557 	while (len > 0) {
558 		unsigned int bytes_to_copy = min(len,
559 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
560 		struct page *page;
561 
562 		pos -= bytes_to_copy;
563 		arg -= bytes_to_copy;
564 		len -= bytes_to_copy;
565 
566 		page = get_arg_page(bprm, pos, 1);
567 		if (!page)
568 			return -E2BIG;
569 		flush_arg_page(bprm, pos & PAGE_MASK, page);
570 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
571 		put_arg_page(page);
572 	}
573 
574 	return 0;
575 }
576 EXPORT_SYMBOL(copy_string_kernel);
577 
578 static int copy_strings_kernel(int argc, const char *const *argv,
579 			       struct linux_binprm *bprm)
580 {
581 	while (argc-- > 0) {
582 		int ret = copy_string_kernel(argv[argc], bprm);
583 		if (ret < 0)
584 			return ret;
585 		if (fatal_signal_pending(current))
586 			return -ERESTARTNOHAND;
587 		cond_resched();
588 	}
589 	return 0;
590 }
591 
592 #ifdef CONFIG_MMU
593 
594 /*
595  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
596  * the stack is optionally relocated, and some extra space is added.
597  */
598 int setup_arg_pages(struct linux_binprm *bprm,
599 		    unsigned long stack_top,
600 		    int executable_stack)
601 {
602 	int ret;
603 	unsigned long stack_shift;
604 	struct mm_struct *mm = current->mm;
605 	struct vm_area_struct *vma = bprm->vma;
606 	struct vm_area_struct *prev = NULL;
607 	vm_flags_t vm_flags;
608 	unsigned long stack_base;
609 	unsigned long stack_size;
610 	unsigned long stack_expand;
611 	unsigned long rlim_stack;
612 	struct mmu_gather tlb;
613 	struct vma_iterator vmi;
614 
615 #ifdef CONFIG_STACK_GROWSUP
616 	/* Limit stack size */
617 	stack_base = bprm->rlim_stack.rlim_max;
618 
619 	stack_base = calc_max_stack_size(stack_base);
620 
621 	/* Add space for stack randomization. */
622 	if (current->flags & PF_RANDOMIZE)
623 		stack_base += (STACK_RND_MASK << PAGE_SHIFT);
624 
625 	/* Make sure we didn't let the argument array grow too large. */
626 	if (vma->vm_end - vma->vm_start > stack_base)
627 		return -ENOMEM;
628 
629 	stack_base = PAGE_ALIGN(stack_top - stack_base);
630 
631 	stack_shift = vma->vm_start - stack_base;
632 	mm->arg_start = bprm->p - stack_shift;
633 	bprm->p = vma->vm_end - stack_shift;
634 #else
635 	stack_top = arch_align_stack(stack_top);
636 	stack_top = PAGE_ALIGN(stack_top);
637 
638 	if (unlikely(stack_top < mmap_min_addr) ||
639 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
640 		return -ENOMEM;
641 
642 	stack_shift = vma->vm_end - stack_top;
643 
644 	bprm->p -= stack_shift;
645 	mm->arg_start = bprm->p;
646 #endif
647 
648 	bprm->exec -= stack_shift;
649 
650 	if (mmap_write_lock_killable(mm))
651 		return -EINTR;
652 
653 	vm_flags = VM_STACK_FLAGS;
654 
655 	/*
656 	 * Adjust stack execute permissions; explicitly enable for
657 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
658 	 * (arch default) otherwise.
659 	 */
660 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
661 		vm_flags |= VM_EXEC;
662 	else if (executable_stack == EXSTACK_DISABLE_X)
663 		vm_flags &= ~VM_EXEC;
664 	vm_flags |= mm->def_flags;
665 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
666 
667 	vma_iter_init(&vmi, mm, vma->vm_start);
668 
669 	tlb_gather_mmu(&tlb, mm);
670 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
671 			vm_flags);
672 	tlb_finish_mmu(&tlb);
673 
674 	if (ret)
675 		goto out_unlock;
676 	BUG_ON(prev != vma);
677 
678 	if (unlikely(vm_flags & VM_EXEC)) {
679 		pr_warn_once("process '%pD4' started with executable stack\n",
680 			     bprm->file);
681 	}
682 
683 	/* Move stack pages down in memory. */
684 	if (stack_shift) {
685 		/*
686 		 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
687 		 * the binfmt code determines where the new stack should reside, we shift it to
688 		 * its final location.
689 		 */
690 		ret = relocate_vma_down(vma, stack_shift);
691 		if (ret)
692 			goto out_unlock;
693 	}
694 
695 	/* mprotect_fixup is overkill to remove the temporary stack flags */
696 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
697 
698 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
699 	stack_size = vma->vm_end - vma->vm_start;
700 	/*
701 	 * Align this down to a page boundary as expand_stack
702 	 * will align it up.
703 	 */
704 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
705 
706 	stack_expand = min(rlim_stack, stack_size + stack_expand);
707 
708 #ifdef CONFIG_STACK_GROWSUP
709 	stack_base = vma->vm_start + stack_expand;
710 #else
711 	stack_base = vma->vm_end - stack_expand;
712 #endif
713 	current->mm->start_stack = bprm->p;
714 	ret = expand_stack_locked(vma, stack_base);
715 	if (ret)
716 		ret = -EFAULT;
717 
718 out_unlock:
719 	mmap_write_unlock(mm);
720 	return ret;
721 }
722 EXPORT_SYMBOL(setup_arg_pages);
723 
724 #else
725 
726 /*
727  * Transfer the program arguments and environment from the holding pages
728  * onto the stack. The provided stack pointer is adjusted accordingly.
729  */
730 int transfer_args_to_stack(struct linux_binprm *bprm,
731 			   unsigned long *sp_location)
732 {
733 	unsigned long index, stop, sp;
734 	int ret = 0;
735 
736 	stop = bprm->p >> PAGE_SHIFT;
737 	sp = *sp_location;
738 
739 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
740 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
741 		char *src = kmap_local_page(bprm->page[index]) + offset;
742 		sp -= PAGE_SIZE - offset;
743 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
744 			ret = -EFAULT;
745 		kunmap_local(src);
746 		if (ret)
747 			goto out;
748 	}
749 
750 	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
751 	*sp_location = sp;
752 
753 out:
754 	return ret;
755 }
756 EXPORT_SYMBOL(transfer_args_to_stack);
757 
758 #endif /* CONFIG_MMU */
759 
760 /*
761  * On success, caller must call do_close_execat() on the returned
762  * struct file to close it.
763  */
764 static struct file *do_open_execat(int fd, struct filename *name, int flags)
765 {
766 	int err;
767 	struct file *file __free(fput) = NULL;
768 	struct open_flags open_exec_flags = {
769 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
770 		.acc_mode = MAY_EXEC,
771 		.intent = LOOKUP_OPEN,
772 		.lookup_flags = LOOKUP_FOLLOW,
773 	};
774 
775 	if ((flags &
776 	     ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH | AT_EXECVE_CHECK)) != 0)
777 		return ERR_PTR(-EINVAL);
778 	if (flags & AT_SYMLINK_NOFOLLOW)
779 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
780 
781 	file = do_file_open(fd, name, &open_exec_flags);
782 	if (IS_ERR(file))
783 		return file;
784 
785 	if (path_noexec(&file->f_path))
786 		return ERR_PTR(-EACCES);
787 
788 	/*
789 	 * In the past the regular type check was here. It moved to may_open() in
790 	 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
791 	 * an invariant that all non-regular files error out before we get here.
792 	 */
793 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)))
794 		return ERR_PTR(-EACCES);
795 
796 	err = exe_file_deny_write_access(file);
797 	if (err)
798 		return ERR_PTR(err);
799 
800 	return no_free_ptr(file);
801 }
802 
803 /**
804  * open_exec - Open a path name for execution
805  *
806  * @name: path name to open with the intent of executing it.
807  *
808  * Returns ERR_PTR on failure or allocated struct file on success.
809  *
810  * As this is a wrapper for the internal do_open_execat(), callers
811  * must call exe_file_allow_write_access() before fput() on release. Also see
812  * do_close_execat().
813  */
814 struct file *open_exec(const char *name)
815 {
816 	CLASS(filename_kernel, filename)(name);
817 	return do_open_execat(AT_FDCWD, filename, 0);
818 }
819 EXPORT_SYMBOL(open_exec);
820 
821 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
822 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
823 {
824 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
825 	if (res > 0)
826 		flush_icache_user_range(addr, addr + len);
827 	return res;
828 }
829 EXPORT_SYMBOL(read_code);
830 #endif
831 
832 /*
833  * Maps the mm_struct mm into the current task struct.
834  * On success, this function returns with exec_update_lock
835  * held for writing.
836  */
837 static int exec_mmap(struct mm_struct *mm)
838 {
839 	struct task_struct *tsk;
840 	struct mm_struct *old_mm, *active_mm;
841 	int ret;
842 
843 	/* Notify parent that we're no longer interested in the old VM */
844 	tsk = current;
845 	old_mm = current->mm;
846 	exec_mm_release(tsk, old_mm);
847 
848 	ret = down_write_killable(&tsk->signal->exec_update_lock);
849 	if (ret)
850 		return ret;
851 
852 	if (old_mm) {
853 		/*
854 		 * If there is a pending fatal signal perhaps a signal
855 		 * whose default action is to create a coredump get
856 		 * out and die instead of going through with the exec.
857 		 */
858 		ret = mmap_read_lock_killable(old_mm);
859 		if (ret) {
860 			up_write(&tsk->signal->exec_update_lock);
861 			return ret;
862 		}
863 	}
864 
865 	task_lock(tsk);
866 	membarrier_exec_mmap(mm);
867 
868 	local_irq_disable();
869 	active_mm = tsk->active_mm;
870 	tsk->active_mm = mm;
871 	tsk->mm = mm;
872 	mm_init_cid(mm, tsk);
873 	/*
874 	 * This prevents preemption while active_mm is being loaded and
875 	 * it and mm are being updated, which could cause problems for
876 	 * lazy tlb mm refcounting when these are updated by context
877 	 * switches. Not all architectures can handle irqs off over
878 	 * activate_mm yet.
879 	 */
880 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
881 		local_irq_enable();
882 	activate_mm(active_mm, mm);
883 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
884 		local_irq_enable();
885 	lru_gen_add_mm(mm);
886 	task_unlock(tsk);
887 	lru_gen_use_mm(mm);
888 	if (old_mm) {
889 		mmap_read_unlock(old_mm);
890 		BUG_ON(active_mm != old_mm);
891 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
892 		mm_update_next_owner(old_mm);
893 		mmput(old_mm);
894 		return 0;
895 	}
896 	mmdrop_lazy_tlb(active_mm);
897 	return 0;
898 }
899 
900 static int de_thread(struct task_struct *tsk)
901 {
902 	struct signal_struct *sig = tsk->signal;
903 	struct sighand_struct *oldsighand = tsk->sighand;
904 	spinlock_t *lock = &oldsighand->siglock;
905 
906 	if (thread_group_empty(tsk))
907 		goto no_thread_group;
908 
909 	/*
910 	 * Kill all other threads in the thread group.
911 	 */
912 	spin_lock_irq(lock);
913 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
914 		/*
915 		 * Another group action in progress, just
916 		 * return so that the signal is processed.
917 		 */
918 		spin_unlock_irq(lock);
919 		return -EAGAIN;
920 	}
921 
922 	sig->group_exec_task = tsk;
923 	sig->notify_count = zap_other_threads(tsk);
924 	if (!thread_group_leader(tsk))
925 		sig->notify_count--;
926 
927 	while (sig->notify_count) {
928 		__set_current_state(TASK_KILLABLE);
929 		spin_unlock_irq(lock);
930 		schedule();
931 		if (__fatal_signal_pending(tsk))
932 			goto killed;
933 		spin_lock_irq(lock);
934 	}
935 	spin_unlock_irq(lock);
936 
937 	/*
938 	 * At this point all other threads have exited, all we have to
939 	 * do is to wait for the thread group leader to become inactive,
940 	 * and to assume its PID:
941 	 */
942 	if (!thread_group_leader(tsk)) {
943 		struct task_struct *leader = tsk->group_leader;
944 
945 		for (;;) {
946 			cgroup_threadgroup_change_begin(tsk);
947 			write_lock_irq(&tasklist_lock);
948 			/*
949 			 * Do this under tasklist_lock to ensure that
950 			 * exit_notify() can't miss ->group_exec_task
951 			 */
952 			sig->notify_count = -1;
953 			if (likely(leader->exit_state))
954 				break;
955 			__set_current_state(TASK_KILLABLE);
956 			write_unlock_irq(&tasklist_lock);
957 			cgroup_threadgroup_change_end(tsk);
958 			schedule();
959 			if (__fatal_signal_pending(tsk))
960 				goto killed;
961 		}
962 
963 		/*
964 		 * The only record we have of the real-time age of a
965 		 * process, regardless of execs it's done, is start_time.
966 		 * All the past CPU time is accumulated in signal_struct
967 		 * from sister threads now dead.  But in this non-leader
968 		 * exec, nothing survives from the original leader thread,
969 		 * whose birth marks the true age of this process now.
970 		 * When we take on its identity by switching to its PID, we
971 		 * also take its birthdate (always earlier than our own).
972 		 */
973 		tsk->start_time = leader->start_time;
974 		tsk->start_boottime = leader->start_boottime;
975 
976 		BUG_ON(!same_thread_group(leader, tsk));
977 		/*
978 		 * An exec() starts a new thread group with the
979 		 * TGID of the previous thread group. Rehash the
980 		 * two threads with a switched PID, and release
981 		 * the former thread group leader:
982 		 */
983 
984 		/* Become a process group leader with the old leader's pid.
985 		 * The old leader becomes a thread of the this thread group.
986 		 */
987 		exchange_tids(tsk, leader);
988 		transfer_pid(leader, tsk, PIDTYPE_TGID);
989 		transfer_pid(leader, tsk, PIDTYPE_PGID);
990 		transfer_pid(leader, tsk, PIDTYPE_SID);
991 
992 		list_replace_rcu(&leader->tasks, &tsk->tasks);
993 		list_replace_init(&leader->sibling, &tsk->sibling);
994 
995 		tsk->group_leader = tsk;
996 		leader->group_leader = tsk;
997 
998 		tsk->exit_signal = SIGCHLD;
999 		leader->exit_signal = -1;
1000 
1001 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1002 		leader->exit_state = EXIT_DEAD;
1003 		/*
1004 		 * We are going to release_task()->ptrace_unlink() silently,
1005 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1006 		 * the tracer won't block again waiting for this thread.
1007 		 */
1008 		if (unlikely(leader->ptrace))
1009 			__wake_up_parent(leader, leader->parent);
1010 		write_unlock_irq(&tasklist_lock);
1011 		cgroup_threadgroup_change_end(tsk);
1012 
1013 		release_task(leader);
1014 	}
1015 
1016 	sig->group_exec_task = NULL;
1017 	sig->notify_count = 0;
1018 
1019 no_thread_group:
1020 	/* we have changed execution domain */
1021 	tsk->exit_signal = SIGCHLD;
1022 
1023 	BUG_ON(!thread_group_leader(tsk));
1024 	return 0;
1025 
1026 killed:
1027 	/* protects against exit_notify() and __exit_signal() */
1028 	read_lock(&tasklist_lock);
1029 	sig->group_exec_task = NULL;
1030 	sig->notify_count = 0;
1031 	read_unlock(&tasklist_lock);
1032 	return -EAGAIN;
1033 }
1034 
1035 
1036 /*
1037  * This function makes sure the current process has its own signal table,
1038  * so that flush_signal_handlers can later reset the handlers without
1039  * disturbing other processes.  (Other processes might share the signal
1040  * table via the CLONE_SIGHAND option to clone().)
1041  */
1042 static int unshare_sighand(struct task_struct *me)
1043 {
1044 	struct sighand_struct *oldsighand = me->sighand;
1045 
1046 	if (refcount_read(&oldsighand->count) != 1) {
1047 		struct sighand_struct *newsighand;
1048 		/*
1049 		 * This ->sighand is shared with the CLONE_SIGHAND
1050 		 * but not CLONE_THREAD task, switch to the new one.
1051 		 */
1052 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1053 		if (!newsighand)
1054 			return -ENOMEM;
1055 
1056 		refcount_set(&newsighand->count, 1);
1057 
1058 		write_lock_irq(&tasklist_lock);
1059 		spin_lock(&oldsighand->siglock);
1060 		memcpy(newsighand->action, oldsighand->action,
1061 		       sizeof(newsighand->action));
1062 		rcu_assign_pointer(me->sighand, newsighand);
1063 		spin_unlock(&oldsighand->siglock);
1064 		write_unlock_irq(&tasklist_lock);
1065 
1066 		__cleanup_sighand(oldsighand);
1067 	}
1068 	return 0;
1069 }
1070 
1071 /*
1072  * This is unlocked -- the string will always be NUL-terminated, but
1073  * may show overlapping contents if racing concurrent reads.
1074  */
1075 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1076 {
1077 	size_t len = min(strlen(buf), sizeof(tsk->comm) - 1);
1078 
1079 	trace_task_rename(tsk, buf);
1080 	memcpy(tsk->comm, buf, len);
1081 	memset(&tsk->comm[len], 0, sizeof(tsk->comm) - len);
1082 	perf_event_comm(tsk, exec);
1083 }
1084 
1085 /*
1086  * Calling this is the point of no return. None of the failures will be
1087  * seen by userspace since either the process is already taking a fatal
1088  * signal (via de_thread() or coredump), or will have SEGV raised
1089  * (after exec_mmap()) by search_binary_handler (see below).
1090  */
1091 int begin_new_exec(struct linux_binprm * bprm)
1092 {
1093 	struct task_struct *me = current;
1094 	int retval;
1095 
1096 	/* Once we are committed compute the creds */
1097 	retval = bprm_creds_from_file(bprm);
1098 	if (retval)
1099 		return retval;
1100 
1101 	/*
1102 	 * This tracepoint marks the point before flushing the old exec where
1103 	 * the current task is still unchanged, but errors are fatal (point of
1104 	 * no return). The later "sched_process_exec" tracepoint is called after
1105 	 * the current task has successfully switched to the new exec.
1106 	 */
1107 	trace_sched_prepare_exec(current, bprm);
1108 
1109 	/*
1110 	 * Ensure all future errors are fatal.
1111 	 */
1112 	bprm->point_of_no_return = true;
1113 
1114 	/* Make this the only thread in the thread group */
1115 	retval = de_thread(me);
1116 	if (retval)
1117 		goto out;
1118 	/* see the comment in check_unsafe_exec() */
1119 	current->fs->in_exec = 0;
1120 	/*
1121 	 * Cancel any io_uring activity across execve
1122 	 */
1123 	io_uring_task_cancel();
1124 
1125 	/* Ensure the files table is not shared. */
1126 	retval = unshare_files();
1127 	if (retval)
1128 		goto out;
1129 
1130 	/*
1131 	 * Must be called _before_ exec_mmap() as bprm->mm is
1132 	 * not visible until then. Doing it here also ensures
1133 	 * we don't race against replace_mm_exe_file().
1134 	 */
1135 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1136 	if (retval)
1137 		goto out;
1138 
1139 	/* If the binary is not readable then enforce mm->dumpable=0 */
1140 	would_dump(bprm, bprm->file);
1141 	if (bprm->have_execfd)
1142 		would_dump(bprm, bprm->executable);
1143 
1144 	/*
1145 	 * Release all of the old mmap stuff
1146 	 */
1147 	acct_arg_size(bprm, 0);
1148 	retval = exec_mmap(bprm->mm);
1149 	if (retval)
1150 		goto out;
1151 
1152 	bprm->mm = NULL;
1153 
1154 	retval = exec_task_namespaces();
1155 	if (retval)
1156 		goto out_unlock;
1157 
1158 #ifdef CONFIG_POSIX_TIMERS
1159 	spin_lock_irq(&me->sighand->siglock);
1160 	posix_cpu_timers_exit(me);
1161 	spin_unlock_irq(&me->sighand->siglock);
1162 	exit_itimers(me);
1163 	flush_itimer_signals();
1164 #endif
1165 
1166 	/*
1167 	 * Make the signal table private.
1168 	 */
1169 	retval = unshare_sighand(me);
1170 	if (retval)
1171 		goto out_unlock;
1172 
1173 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1174 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1175 	flush_thread();
1176 	me->personality &= ~bprm->per_clear;
1177 
1178 	clear_syscall_work_syscall_user_dispatch(me);
1179 
1180 	/*
1181 	 * We have to apply CLOEXEC before we change whether the process is
1182 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1183 	 * trying to access the should-be-closed file descriptors of a process
1184 	 * undergoing exec(2).
1185 	 */
1186 	do_close_on_exec(me->files);
1187 
1188 	if (bprm->secureexec) {
1189 		/* Make sure parent cannot signal privileged process. */
1190 		me->pdeath_signal = 0;
1191 
1192 		/*
1193 		 * For secureexec, reset the stack limit to sane default to
1194 		 * avoid bad behavior from the prior rlimits. This has to
1195 		 * happen before arch_pick_mmap_layout(), which examines
1196 		 * RLIMIT_STACK, but after the point of no return to avoid
1197 		 * needing to clean up the change on failure.
1198 		 */
1199 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1200 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1201 	}
1202 
1203 	me->sas_ss_sp = me->sas_ss_size = 0;
1204 
1205 	/*
1206 	 * Figure out dumpability. Note that this checking only of current
1207 	 * is wrong, but userspace depends on it. This should be testing
1208 	 * bprm->secureexec instead.
1209 	 */
1210 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1211 	    !(uid_eq(current_euid(), current_uid()) &&
1212 	      gid_eq(current_egid(), current_gid())))
1213 		set_dumpable(current->mm, suid_dumpable);
1214 	else
1215 		set_dumpable(current->mm, SUID_DUMP_USER);
1216 
1217 	perf_event_exec();
1218 
1219 	/*
1220 	 * If the original filename was empty, alloc_bprm() made up a path
1221 	 * that will probably not be useful to admins running ps or similar.
1222 	 * Let's fix it up to be something reasonable.
1223 	 */
1224 	if (bprm->comm_from_dentry) {
1225 		/*
1226 		 * Hold RCU lock to keep the name from being freed behind our back.
1227 		 * Use acquire semantics to make sure the terminating NUL from
1228 		 * __d_alloc() is seen.
1229 		 *
1230 		 * Note, we're deliberately sloppy here. We don't need to care about
1231 		 * detecting a concurrent rename and just want a terminated name.
1232 		 */
1233 		rcu_read_lock();
1234 		__set_task_comm(me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name),
1235 				true);
1236 		rcu_read_unlock();
1237 	} else {
1238 		__set_task_comm(me, kbasename(bprm->filename), true);
1239 	}
1240 
1241 	/* An exec changes our domain. We are no longer part of the thread
1242 	   group */
1243 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1244 	flush_signal_handlers(me, 0);
1245 
1246 	retval = set_cred_ucounts(bprm->cred);
1247 	if (retval < 0)
1248 		goto out_unlock;
1249 
1250 	/*
1251 	 * install the new credentials for this executable
1252 	 */
1253 	security_bprm_committing_creds(bprm);
1254 
1255 	commit_creds(bprm->cred);
1256 	bprm->cred = NULL;
1257 
1258 	/*
1259 	 * Disable monitoring for regular users
1260 	 * when executing setuid binaries. Must
1261 	 * wait until new credentials are committed
1262 	 * by commit_creds() above
1263 	 */
1264 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1265 		perf_event_exit_task(me);
1266 	/*
1267 	 * cred_guard_mutex must be held at least to this point to prevent
1268 	 * ptrace_attach() from altering our determination of the task's
1269 	 * credentials; any time after this it may be unlocked.
1270 	 */
1271 	security_bprm_committed_creds(bprm);
1272 
1273 	/* Pass the opened binary to the interpreter. */
1274 	if (bprm->have_execfd) {
1275 		retval = FD_ADD(0, bprm->executable);
1276 		if (retval < 0)
1277 			goto out_unlock;
1278 		bprm->executable = NULL;
1279 		bprm->execfd = retval;
1280 	}
1281 	return 0;
1282 
1283 out_unlock:
1284 	up_write(&me->signal->exec_update_lock);
1285 	if (!bprm->cred)
1286 		mutex_unlock(&me->signal->cred_guard_mutex);
1287 
1288 out:
1289 	return retval;
1290 }
1291 EXPORT_SYMBOL(begin_new_exec);
1292 
1293 void would_dump(struct linux_binprm *bprm, struct file *file)
1294 {
1295 	struct inode *inode = file_inode(file);
1296 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1297 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1298 		struct user_namespace *old, *user_ns;
1299 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1300 
1301 		/* Ensure mm->user_ns contains the executable */
1302 		user_ns = old = bprm->mm->user_ns;
1303 		while ((user_ns != &init_user_ns) &&
1304 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1305 			user_ns = user_ns->parent;
1306 
1307 		if (old != user_ns) {
1308 			bprm->mm->user_ns = get_user_ns(user_ns);
1309 			put_user_ns(old);
1310 		}
1311 	}
1312 }
1313 EXPORT_SYMBOL(would_dump);
1314 
1315 void setup_new_exec(struct linux_binprm * bprm)
1316 {
1317 	/* Setup things that can depend upon the personality */
1318 	struct task_struct *me = current;
1319 
1320 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1321 
1322 	arch_setup_new_exec();
1323 
1324 	/* Set the new mm task size. We have to do that late because it may
1325 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1326 	 * some architectures like powerpc
1327 	 */
1328 	me->mm->task_size = TASK_SIZE;
1329 	up_write(&me->signal->exec_update_lock);
1330 	mutex_unlock(&me->signal->cred_guard_mutex);
1331 }
1332 EXPORT_SYMBOL(setup_new_exec);
1333 
1334 /* Runs immediately before start_thread() takes over. */
1335 void finalize_exec(struct linux_binprm *bprm)
1336 {
1337 	/* Store any stack rlimit changes before starting thread. */
1338 	task_lock(current->group_leader);
1339 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1340 	task_unlock(current->group_leader);
1341 }
1342 EXPORT_SYMBOL(finalize_exec);
1343 
1344 /*
1345  * Prepare credentials and lock ->cred_guard_mutex.
1346  * setup_new_exec() commits the new creds and drops the lock.
1347  * Or, if exec fails before, free_bprm() should release ->cred
1348  * and unlock.
1349  */
1350 static int prepare_bprm_creds(struct linux_binprm *bprm)
1351 {
1352 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1353 		return -ERESTARTNOINTR;
1354 
1355 	bprm->cred = prepare_exec_creds();
1356 	if (likely(bprm->cred))
1357 		return 0;
1358 
1359 	mutex_unlock(&current->signal->cred_guard_mutex);
1360 	return -ENOMEM;
1361 }
1362 
1363 /* Matches do_open_execat() */
1364 static void do_close_execat(struct file *file)
1365 {
1366 	if (!file)
1367 		return;
1368 	exe_file_allow_write_access(file);
1369 	fput(file);
1370 }
1371 
1372 static void free_bprm(struct linux_binprm *bprm)
1373 {
1374 	if (bprm->mm) {
1375 		acct_arg_size(bprm, 0);
1376 		mmput(bprm->mm);
1377 	}
1378 	free_arg_pages(bprm);
1379 	if (bprm->cred) {
1380 		/* in case exec fails before de_thread() succeeds */
1381 		current->fs->in_exec = 0;
1382 		mutex_unlock(&current->signal->cred_guard_mutex);
1383 		abort_creds(bprm->cred);
1384 	}
1385 	do_close_execat(bprm->file);
1386 	if (bprm->executable)
1387 		fput(bprm->executable);
1388 	/* If a binfmt changed the interp, free it. */
1389 	if (bprm->interp != bprm->filename)
1390 		kfree(bprm->interp);
1391 	kfree(bprm->fdpath);
1392 	kfree(bprm);
1393 }
1394 
1395 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1396 {
1397 	struct linux_binprm *bprm;
1398 	struct file *file;
1399 	int retval = -ENOMEM;
1400 
1401 	file = do_open_execat(fd, filename, flags);
1402 	if (IS_ERR(file))
1403 		return ERR_CAST(file);
1404 
1405 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1406 	if (!bprm) {
1407 		do_close_execat(file);
1408 		return ERR_PTR(-ENOMEM);
1409 	}
1410 
1411 	bprm->file = file;
1412 
1413 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1414 		bprm->filename = filename->name;
1415 	} else {
1416 		if (filename->name[0] == '\0') {
1417 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1418 			bprm->comm_from_dentry = 1;
1419 		} else {
1420 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1421 						  fd, filename->name);
1422 		}
1423 		if (!bprm->fdpath)
1424 			goto out_free;
1425 
1426 		/*
1427 		 * Record that a name derived from an O_CLOEXEC fd will be
1428 		 * inaccessible after exec.  This allows the code in exec to
1429 		 * choose to fail when the executable is not mmaped into the
1430 		 * interpreter and an open file descriptor is not passed to
1431 		 * the interpreter.  This makes for a better user experience
1432 		 * than having the interpreter start and then immediately fail
1433 		 * when it finds the executable is inaccessible.
1434 		 */
1435 		if (get_close_on_exec(fd))
1436 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1437 
1438 		bprm->filename = bprm->fdpath;
1439 	}
1440 	bprm->interp = bprm->filename;
1441 
1442 	/*
1443 	 * At this point, security_file_open() has already been called (with
1444 	 * __FMODE_EXEC) and access control checks for AT_EXECVE_CHECK will
1445 	 * stop just after the security_bprm_creds_for_exec() call in
1446 	 * bprm_execve().  Indeed, the kernel should not try to parse the
1447 	 * content of the file with exec_binprm() nor change the calling
1448 	 * thread, which means that the following security functions will not
1449 	 * be called:
1450 	 * - security_bprm_check()
1451 	 * - security_bprm_creds_from_file()
1452 	 * - security_bprm_committing_creds()
1453 	 * - security_bprm_committed_creds()
1454 	 */
1455 	bprm->is_check = !!(flags & AT_EXECVE_CHECK);
1456 
1457 	retval = bprm_mm_init(bprm);
1458 	if (!retval)
1459 		return bprm;
1460 
1461 out_free:
1462 	free_bprm(bprm);
1463 	return ERR_PTR(retval);
1464 }
1465 
1466 DEFINE_CLASS(bprm, struct linux_binprm *, if (!IS_ERR(_T)) free_bprm(_T),
1467 	alloc_bprm(fd, name, flags), int fd, struct filename *name, int flags)
1468 
1469 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1470 {
1471 	/* If a binfmt changed the interp, free it first. */
1472 	if (bprm->interp != bprm->filename)
1473 		kfree(bprm->interp);
1474 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1475 	if (!bprm->interp)
1476 		return -ENOMEM;
1477 	return 0;
1478 }
1479 EXPORT_SYMBOL(bprm_change_interp);
1480 
1481 /*
1482  * determine how safe it is to execute the proposed program
1483  * - the caller must hold ->cred_guard_mutex to protect against
1484  *   PTRACE_ATTACH or seccomp thread-sync
1485  */
1486 static void check_unsafe_exec(struct linux_binprm *bprm)
1487 {
1488 	struct task_struct *p = current, *t;
1489 	unsigned n_fs;
1490 
1491 	if (p->ptrace)
1492 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1493 
1494 	/*
1495 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1496 	 * mess up.
1497 	 */
1498 	if (task_no_new_privs(current))
1499 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1500 
1501 	/*
1502 	 * If another task is sharing our fs, we cannot safely
1503 	 * suid exec because the differently privileged task
1504 	 * will be able to manipulate the current directory, etc.
1505 	 * It would be nice to force an unshare instead...
1506 	 *
1507 	 * Otherwise we set fs->in_exec = 1 to deny clone(CLONE_FS)
1508 	 * from another sub-thread until de_thread() succeeds, this
1509 	 * state is protected by cred_guard_mutex we hold.
1510 	 */
1511 	n_fs = 1;
1512 	read_seqlock_excl(&p->fs->seq);
1513 	rcu_read_lock();
1514 	for_other_threads(p, t) {
1515 		if (t->fs == p->fs)
1516 			n_fs++;
1517 	}
1518 	rcu_read_unlock();
1519 
1520 	/* "users" and "in_exec" locked for copy_fs() */
1521 	if (p->fs->users > n_fs)
1522 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1523 	else
1524 		p->fs->in_exec = 1;
1525 	read_sequnlock_excl(&p->fs->seq);
1526 }
1527 
1528 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1529 {
1530 	/* Handle suid and sgid on files */
1531 	struct mnt_idmap *idmap;
1532 	struct inode *inode = file_inode(file);
1533 	unsigned int mode;
1534 	vfsuid_t vfsuid;
1535 	vfsgid_t vfsgid;
1536 	int err;
1537 
1538 	if (!mnt_may_suid(file->f_path.mnt))
1539 		return;
1540 
1541 	if (task_no_new_privs(current))
1542 		return;
1543 
1544 	mode = READ_ONCE(inode->i_mode);
1545 	if (!(mode & (S_ISUID|S_ISGID)))
1546 		return;
1547 
1548 	idmap = file_mnt_idmap(file);
1549 
1550 	/* Be careful if suid/sgid is set */
1551 	inode_lock(inode);
1552 
1553 	/* Atomically reload and check mode/uid/gid now that lock held. */
1554 	mode = inode->i_mode;
1555 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1556 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1557 	err = inode_permission(idmap, inode, MAY_EXEC);
1558 	inode_unlock(inode);
1559 
1560 	/* Did the exec bit vanish out from under us? Give up. */
1561 	if (err)
1562 		return;
1563 
1564 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1565 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1566 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1567 		return;
1568 
1569 	if (mode & S_ISUID) {
1570 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1571 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1572 	}
1573 
1574 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1575 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1576 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1577 	}
1578 }
1579 
1580 /*
1581  * Compute brpm->cred based upon the final binary.
1582  */
1583 static int bprm_creds_from_file(struct linux_binprm *bprm)
1584 {
1585 	/* Compute creds based on which file? */
1586 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1587 
1588 	bprm_fill_uid(bprm, file);
1589 	return security_bprm_creds_from_file(bprm, file);
1590 }
1591 
1592 /*
1593  * Fill the binprm structure from the inode.
1594  * Read the first BINPRM_BUF_SIZE bytes
1595  *
1596  * This may be called multiple times for binary chains (scripts for example).
1597  */
1598 static int prepare_binprm(struct linux_binprm *bprm)
1599 {
1600 	loff_t pos = 0;
1601 
1602 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1603 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1604 }
1605 
1606 /*
1607  * Arguments are '\0' separated strings found at the location bprm->p
1608  * points to; chop off the first by relocating brpm->p to right after
1609  * the first '\0' encountered.
1610  */
1611 int remove_arg_zero(struct linux_binprm *bprm)
1612 {
1613 	unsigned long offset;
1614 	char *kaddr;
1615 	struct page *page;
1616 
1617 	if (!bprm->argc)
1618 		return 0;
1619 
1620 	do {
1621 		offset = bprm->p & ~PAGE_MASK;
1622 		page = get_arg_page(bprm, bprm->p, 0);
1623 		if (!page)
1624 			return -EFAULT;
1625 		kaddr = kmap_local_page(page);
1626 
1627 		for (; offset < PAGE_SIZE && kaddr[offset];
1628 				offset++, bprm->p++)
1629 			;
1630 
1631 		kunmap_local(kaddr);
1632 		put_arg_page(page);
1633 	} while (offset == PAGE_SIZE);
1634 
1635 	bprm->p++;
1636 	bprm->argc--;
1637 
1638 	return 0;
1639 }
1640 EXPORT_SYMBOL(remove_arg_zero);
1641 
1642 /*
1643  * cycle the list of binary formats handler, until one recognizes the image
1644  */
1645 static int search_binary_handler(struct linux_binprm *bprm)
1646 {
1647 	struct linux_binfmt *fmt;
1648 	int retval;
1649 
1650 	retval = prepare_binprm(bprm);
1651 	if (retval < 0)
1652 		return retval;
1653 
1654 	retval = security_bprm_check(bprm);
1655 	if (retval)
1656 		return retval;
1657 
1658 	read_lock(&binfmt_lock);
1659 	list_for_each_entry(fmt, &formats, lh) {
1660 		if (!try_module_get(fmt->module))
1661 			continue;
1662 		read_unlock(&binfmt_lock);
1663 
1664 		retval = fmt->load_binary(bprm);
1665 
1666 		read_lock(&binfmt_lock);
1667 		put_binfmt(fmt);
1668 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1669 			read_unlock(&binfmt_lock);
1670 			return retval;
1671 		}
1672 	}
1673 	read_unlock(&binfmt_lock);
1674 
1675 	return -ENOEXEC;
1676 }
1677 
1678 /* binfmt handlers will call back into begin_new_exec() on success. */
1679 static int exec_binprm(struct linux_binprm *bprm)
1680 {
1681 	pid_t old_pid, old_vpid;
1682 	int ret, depth;
1683 
1684 	/* Need to fetch pid before load_binary changes it */
1685 	old_pid = current->pid;
1686 	rcu_read_lock();
1687 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1688 	rcu_read_unlock();
1689 
1690 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1691 	for (depth = 0;; depth++) {
1692 		struct file *exec;
1693 		if (depth > 5)
1694 			return -ELOOP;
1695 
1696 		ret = search_binary_handler(bprm);
1697 		if (ret < 0)
1698 			return ret;
1699 		if (!bprm->interpreter)
1700 			break;
1701 
1702 		exec = bprm->file;
1703 		bprm->file = bprm->interpreter;
1704 		bprm->interpreter = NULL;
1705 
1706 		exe_file_allow_write_access(exec);
1707 		if (unlikely(bprm->have_execfd)) {
1708 			if (bprm->executable) {
1709 				fput(exec);
1710 				return -ENOEXEC;
1711 			}
1712 			bprm->executable = exec;
1713 		} else
1714 			fput(exec);
1715 	}
1716 
1717 	audit_bprm(bprm);
1718 	trace_sched_process_exec(current, old_pid, bprm);
1719 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1720 	proc_exec_connector(current);
1721 	return 0;
1722 }
1723 
1724 static int bprm_execve(struct linux_binprm *bprm)
1725 {
1726 	int retval;
1727 
1728 	retval = prepare_bprm_creds(bprm);
1729 	if (retval)
1730 		return retval;
1731 
1732 	/*
1733 	 * Check for unsafe execution states before exec_binprm(), which
1734 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1735 	 * where setuid-ness is evaluated.
1736 	 */
1737 	check_unsafe_exec(bprm);
1738 	current->in_execve = 1;
1739 	sched_mm_cid_before_execve(current);
1740 
1741 	sched_exec();
1742 
1743 	/* Set the unchanging part of bprm->cred */
1744 	retval = security_bprm_creds_for_exec(bprm);
1745 	if (retval || bprm->is_check)
1746 		goto out;
1747 
1748 	retval = exec_binprm(bprm);
1749 	if (retval < 0)
1750 		goto out;
1751 
1752 	sched_mm_cid_after_execve(current);
1753 	rseq_execve(current);
1754 	/* execve succeeded */
1755 	current->in_execve = 0;
1756 	user_events_execve(current);
1757 	acct_update_integrals(current);
1758 	task_numa_free(current, false);
1759 	return retval;
1760 
1761 out:
1762 	/*
1763 	 * If past the point of no return ensure the code never
1764 	 * returns to the userspace process.  Use an existing fatal
1765 	 * signal if present otherwise terminate the process with
1766 	 * SIGSEGV.
1767 	 */
1768 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1769 		force_fatal_sig(SIGSEGV);
1770 
1771 	sched_mm_cid_after_execve(current);
1772 	rseq_force_update();
1773 	current->in_execve = 0;
1774 
1775 	return retval;
1776 }
1777 
1778 static int do_execveat_common(int fd, struct filename *filename,
1779 			      struct user_arg_ptr argv,
1780 			      struct user_arg_ptr envp,
1781 			      int flags)
1782 {
1783 	int retval;
1784 
1785 	/*
1786 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1787 	 * set*uid() to execve() because too many poorly written programs
1788 	 * don't check setuid() return code.  Here we additionally recheck
1789 	 * whether NPROC limit is still exceeded.
1790 	 */
1791 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1792 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)))
1793 		return -EAGAIN;
1794 
1795 	/* We're below the limit (still or again), so we don't want to make
1796 	 * further execve() calls fail. */
1797 	current->flags &= ~PF_NPROC_EXCEEDED;
1798 
1799 	CLASS(bprm, bprm)(fd, filename, flags);
1800 	if (IS_ERR(bprm))
1801 		return PTR_ERR(bprm);
1802 
1803 	retval = count(argv, MAX_ARG_STRINGS);
1804 	if (retval < 0)
1805 		return retval;
1806 	bprm->argc = retval;
1807 
1808 	retval = count(envp, MAX_ARG_STRINGS);
1809 	if (retval < 0)
1810 		return retval;
1811 	bprm->envc = retval;
1812 
1813 	retval = bprm_stack_limits(bprm);
1814 	if (retval < 0)
1815 		return retval;
1816 
1817 	retval = copy_string_kernel(bprm->filename, bprm);
1818 	if (retval < 0)
1819 		return retval;
1820 	bprm->exec = bprm->p;
1821 
1822 	retval = copy_strings(bprm->envc, envp, bprm);
1823 	if (retval < 0)
1824 		return retval;
1825 
1826 	retval = copy_strings(bprm->argc, argv, bprm);
1827 	if (retval < 0)
1828 		return retval;
1829 
1830 	/*
1831 	 * When argv is empty, add an empty string ("") as argv[0] to
1832 	 * ensure confused userspace programs that start processing
1833 	 * from argv[1] won't end up walking envp. See also
1834 	 * bprm_stack_limits().
1835 	 */
1836 	if (bprm->argc == 0) {
1837 		retval = copy_string_kernel("", bprm);
1838 		if (retval < 0)
1839 			return retval;
1840 		bprm->argc = 1;
1841 
1842 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1843 			     current->comm, bprm->filename);
1844 	}
1845 
1846 	return bprm_execve(bprm);
1847 }
1848 
1849 int kernel_execve(const char *kernel_filename,
1850 		  const char *const *argv, const char *const *envp)
1851 {
1852 	int retval;
1853 
1854 	/* It is non-sense for kernel threads to call execve */
1855 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1856 		return -EINVAL;
1857 
1858 	CLASS(filename_kernel, filename)(kernel_filename);
1859 	CLASS(bprm, bprm)(AT_FDCWD, filename, 0);
1860 	if (IS_ERR(bprm))
1861 		return PTR_ERR(bprm);
1862 
1863 	retval = count_strings_kernel(argv);
1864 	if (WARN_ON_ONCE(retval == 0))
1865 		return -EINVAL;
1866 	if (retval < 0)
1867 		return retval;
1868 	bprm->argc = retval;
1869 
1870 	retval = count_strings_kernel(envp);
1871 	if (retval < 0)
1872 		return retval;
1873 	bprm->envc = retval;
1874 
1875 	retval = bprm_stack_limits(bprm);
1876 	if (retval < 0)
1877 		return retval;
1878 
1879 	retval = copy_string_kernel(bprm->filename, bprm);
1880 	if (retval < 0)
1881 		return retval;
1882 	bprm->exec = bprm->p;
1883 
1884 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
1885 	if (retval < 0)
1886 		return retval;
1887 
1888 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
1889 	if (retval < 0)
1890 		return retval;
1891 
1892 	return bprm_execve(bprm);
1893 }
1894 
1895 void set_binfmt(struct linux_binfmt *new)
1896 {
1897 	struct mm_struct *mm = current->mm;
1898 
1899 	if (mm->binfmt)
1900 		module_put(mm->binfmt->module);
1901 
1902 	mm->binfmt = new;
1903 	if (new)
1904 		__module_get(new->module);
1905 }
1906 EXPORT_SYMBOL(set_binfmt);
1907 
1908 /*
1909  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1910  */
1911 void set_dumpable(struct mm_struct *mm, int value)
1912 {
1913 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1914 		return;
1915 
1916 	__mm_flags_set_mask_dumpable(mm, value);
1917 }
1918 
1919 static inline struct user_arg_ptr native_arg(const char __user *const __user *p)
1920 {
1921 	return (struct user_arg_ptr){.ptr.native = p};
1922 }
1923 
1924 SYSCALL_DEFINE3(execve,
1925 		const char __user *, filename,
1926 		const char __user *const __user *, argv,
1927 		const char __user *const __user *, envp)
1928 {
1929 	CLASS(filename, name)(filename);
1930 	return do_execveat_common(AT_FDCWD, name,
1931 				  native_arg(argv), native_arg(envp), 0);
1932 }
1933 
1934 SYSCALL_DEFINE5(execveat,
1935 		int, fd, const char __user *, filename,
1936 		const char __user *const __user *, argv,
1937 		const char __user *const __user *, envp,
1938 		int, flags)
1939 {
1940 	CLASS(filename_uflags, name)(filename, flags);
1941 	return do_execveat_common(fd, name,
1942 				  native_arg(argv), native_arg(envp), flags);
1943 }
1944 
1945 #ifdef CONFIG_COMPAT
1946 
1947 static inline struct user_arg_ptr compat_arg(const compat_uptr_t __user *p)
1948 {
1949 	return (struct user_arg_ptr){.is_compat = true, .ptr.compat = p};
1950 }
1951 
1952 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1953 	const compat_uptr_t __user *, argv,
1954 	const compat_uptr_t __user *, envp)
1955 {
1956 	CLASS(filename, name)(filename);
1957 	return do_execveat_common(AT_FDCWD, name,
1958 				  compat_arg(argv), compat_arg(envp), 0);
1959 }
1960 
1961 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1962 		       const char __user *, filename,
1963 		       const compat_uptr_t __user *, argv,
1964 		       const compat_uptr_t __user *, envp,
1965 		       int,  flags)
1966 {
1967 	CLASS(filename_uflags, name)(filename, flags);
1968 	return do_execveat_common(fd, name,
1969 				  compat_arg(argv), compat_arg(envp), flags);
1970 }
1971 #endif
1972 
1973 #ifdef CONFIG_SYSCTL
1974 
1975 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
1976 		void *buffer, size_t *lenp, loff_t *ppos)
1977 {
1978 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1979 
1980 	if (!error && write)
1981 		validate_coredump_safety();
1982 	return error;
1983 }
1984 
1985 static const struct ctl_table fs_exec_sysctls[] = {
1986 	{
1987 		.procname	= "suid_dumpable",
1988 		.data		= &suid_dumpable,
1989 		.maxlen		= sizeof(int),
1990 		.mode		= 0644,
1991 		.proc_handler	= proc_dointvec_minmax_coredump,
1992 		.extra1		= SYSCTL_ZERO,
1993 		.extra2		= SYSCTL_TWO,
1994 	},
1995 };
1996 
1997 static int __init init_fs_exec_sysctls(void)
1998 {
1999 	register_sysctl_init("fs", fs_exec_sysctls);
2000 	return 0;
2001 }
2002 
2003 fs_initcall(init_fs_exec_sysctls);
2004 #endif /* CONFIG_SYSCTL */
2005 
2006 #ifdef CONFIG_EXEC_KUNIT_TEST
2007 #include "tests/exec_kunit.c"
2008 #endif
2009