xref: /linux/fs/exec.c (revision 20d0021394c1b070bf04b22c5bc8fdb437edd4c5)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/config.h>
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/acct.h>
51 
52 #include <asm/uaccess.h>
53 #include <asm/mmu_context.h>
54 
55 #ifdef CONFIG_KMOD
56 #include <linux/kmod.h>
57 #endif
58 
59 int core_uses_pid;
60 char core_pattern[65] = "core";
61 int suid_dumpable = 0;
62 
63 EXPORT_SYMBOL(suid_dumpable);
64 /* The maximal length of core_pattern is also specified in sysctl.c */
65 
66 static struct linux_binfmt *formats;
67 static DEFINE_RWLOCK(binfmt_lock);
68 
69 int register_binfmt(struct linux_binfmt * fmt)
70 {
71 	struct linux_binfmt ** tmp = &formats;
72 
73 	if (!fmt)
74 		return -EINVAL;
75 	if (fmt->next)
76 		return -EBUSY;
77 	write_lock(&binfmt_lock);
78 	while (*tmp) {
79 		if (fmt == *tmp) {
80 			write_unlock(&binfmt_lock);
81 			return -EBUSY;
82 		}
83 		tmp = &(*tmp)->next;
84 	}
85 	fmt->next = formats;
86 	formats = fmt;
87 	write_unlock(&binfmt_lock);
88 	return 0;
89 }
90 
91 EXPORT_SYMBOL(register_binfmt);
92 
93 int unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 	struct linux_binfmt ** tmp = &formats;
96 
97 	write_lock(&binfmt_lock);
98 	while (*tmp) {
99 		if (fmt == *tmp) {
100 			*tmp = fmt->next;
101 			write_unlock(&binfmt_lock);
102 			return 0;
103 		}
104 		tmp = &(*tmp)->next;
105 	}
106 	write_unlock(&binfmt_lock);
107 	return -EINVAL;
108 }
109 
110 EXPORT_SYMBOL(unregister_binfmt);
111 
112 static inline void put_binfmt(struct linux_binfmt * fmt)
113 {
114 	module_put(fmt->module);
115 }
116 
117 /*
118  * Note that a shared library must be both readable and executable due to
119  * security reasons.
120  *
121  * Also note that we take the address to load from from the file itself.
122  */
123 asmlinkage long sys_uselib(const char __user * library)
124 {
125 	struct file * file;
126 	struct nameidata nd;
127 	int error;
128 
129 	nd.intent.open.flags = FMODE_READ;
130 	error = __user_walk(library, LOOKUP_FOLLOW|LOOKUP_OPEN, &nd);
131 	if (error)
132 		goto out;
133 
134 	error = -EINVAL;
135 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
136 		goto exit;
137 
138 	error = permission(nd.dentry->d_inode, MAY_READ | MAY_EXEC, &nd);
139 	if (error)
140 		goto exit;
141 
142 	file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	error = -ENOEXEC;
148 	if(file->f_op) {
149 		struct linux_binfmt * fmt;
150 
151 		read_lock(&binfmt_lock);
152 		for (fmt = formats ; fmt ; fmt = fmt->next) {
153 			if (!fmt->load_shlib)
154 				continue;
155 			if (!try_module_get(fmt->module))
156 				continue;
157 			read_unlock(&binfmt_lock);
158 			error = fmt->load_shlib(file);
159 			read_lock(&binfmt_lock);
160 			put_binfmt(fmt);
161 			if (error != -ENOEXEC)
162 				break;
163 		}
164 		read_unlock(&binfmt_lock);
165 	}
166 	fput(file);
167 out:
168   	return error;
169 exit:
170 	path_release(&nd);
171 	goto out;
172 }
173 
174 /*
175  * count() counts the number of strings in array ARGV.
176  */
177 static int count(char __user * __user * argv, int max)
178 {
179 	int i = 0;
180 
181 	if (argv != NULL) {
182 		for (;;) {
183 			char __user * p;
184 
185 			if (get_user(p, argv))
186 				return -EFAULT;
187 			if (!p)
188 				break;
189 			argv++;
190 			if(++i > max)
191 				return -E2BIG;
192 			cond_resched();
193 		}
194 	}
195 	return i;
196 }
197 
198 /*
199  * 'copy_strings()' copies argument/environment strings from user
200  * memory to free pages in kernel mem. These are in a format ready
201  * to be put directly into the top of new user memory.
202  */
203 static int copy_strings(int argc, char __user * __user * argv,
204 			struct linux_binprm *bprm)
205 {
206 	struct page *kmapped_page = NULL;
207 	char *kaddr = NULL;
208 	int ret;
209 
210 	while (argc-- > 0) {
211 		char __user *str;
212 		int len;
213 		unsigned long pos;
214 
215 		if (get_user(str, argv+argc) ||
216 				!(len = strnlen_user(str, bprm->p))) {
217 			ret = -EFAULT;
218 			goto out;
219 		}
220 
221 		if (bprm->p < len)  {
222 			ret = -E2BIG;
223 			goto out;
224 		}
225 
226 		bprm->p -= len;
227 		/* XXX: add architecture specific overflow check here. */
228 		pos = bprm->p;
229 
230 		while (len > 0) {
231 			int i, new, err;
232 			int offset, bytes_to_copy;
233 			struct page *page;
234 
235 			offset = pos % PAGE_SIZE;
236 			i = pos/PAGE_SIZE;
237 			page = bprm->page[i];
238 			new = 0;
239 			if (!page) {
240 				page = alloc_page(GFP_HIGHUSER);
241 				bprm->page[i] = page;
242 				if (!page) {
243 					ret = -ENOMEM;
244 					goto out;
245 				}
246 				new = 1;
247 			}
248 
249 			if (page != kmapped_page) {
250 				if (kmapped_page)
251 					kunmap(kmapped_page);
252 				kmapped_page = page;
253 				kaddr = kmap(kmapped_page);
254 			}
255 			if (new && offset)
256 				memset(kaddr, 0, offset);
257 			bytes_to_copy = PAGE_SIZE - offset;
258 			if (bytes_to_copy > len) {
259 				bytes_to_copy = len;
260 				if (new)
261 					memset(kaddr+offset+len, 0,
262 						PAGE_SIZE-offset-len);
263 			}
264 			err = copy_from_user(kaddr+offset, str, bytes_to_copy);
265 			if (err) {
266 				ret = -EFAULT;
267 				goto out;
268 			}
269 
270 			pos += bytes_to_copy;
271 			str += bytes_to_copy;
272 			len -= bytes_to_copy;
273 		}
274 	}
275 	ret = 0;
276 out:
277 	if (kmapped_page)
278 		kunmap(kmapped_page);
279 	return ret;
280 }
281 
282 /*
283  * Like copy_strings, but get argv and its values from kernel memory.
284  */
285 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
286 {
287 	int r;
288 	mm_segment_t oldfs = get_fs();
289 	set_fs(KERNEL_DS);
290 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
291 	set_fs(oldfs);
292 	return r;
293 }
294 
295 EXPORT_SYMBOL(copy_strings_kernel);
296 
297 #ifdef CONFIG_MMU
298 /*
299  * This routine is used to map in a page into an address space: needed by
300  * execve() for the initial stack and environment pages.
301  *
302  * vma->vm_mm->mmap_sem is held for writing.
303  */
304 void install_arg_page(struct vm_area_struct *vma,
305 			struct page *page, unsigned long address)
306 {
307 	struct mm_struct *mm = vma->vm_mm;
308 	pgd_t * pgd;
309 	pud_t * pud;
310 	pmd_t * pmd;
311 	pte_t * pte;
312 
313 	if (unlikely(anon_vma_prepare(vma)))
314 		goto out_sig;
315 
316 	flush_dcache_page(page);
317 	pgd = pgd_offset(mm, address);
318 
319 	spin_lock(&mm->page_table_lock);
320 	pud = pud_alloc(mm, pgd, address);
321 	if (!pud)
322 		goto out;
323 	pmd = pmd_alloc(mm, pud, address);
324 	if (!pmd)
325 		goto out;
326 	pte = pte_alloc_map(mm, pmd, address);
327 	if (!pte)
328 		goto out;
329 	if (!pte_none(*pte)) {
330 		pte_unmap(pte);
331 		goto out;
332 	}
333 	inc_mm_counter(mm, rss);
334 	lru_cache_add_active(page);
335 	set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
336 					page, vma->vm_page_prot))));
337 	page_add_anon_rmap(page, vma, address);
338 	pte_unmap(pte);
339 	spin_unlock(&mm->page_table_lock);
340 
341 	/* no need for flush_tlb */
342 	return;
343 out:
344 	spin_unlock(&mm->page_table_lock);
345 out_sig:
346 	__free_page(page);
347 	force_sig(SIGKILL, current);
348 }
349 
350 #define EXTRA_STACK_VM_PAGES	20	/* random */
351 
352 int setup_arg_pages(struct linux_binprm *bprm,
353 		    unsigned long stack_top,
354 		    int executable_stack)
355 {
356 	unsigned long stack_base;
357 	struct vm_area_struct *mpnt;
358 	struct mm_struct *mm = current->mm;
359 	int i, ret;
360 	long arg_size;
361 
362 #ifdef CONFIG_STACK_GROWSUP
363 	/* Move the argument and environment strings to the bottom of the
364 	 * stack space.
365 	 */
366 	int offset, j;
367 	char *to, *from;
368 
369 	/* Start by shifting all the pages down */
370 	i = 0;
371 	for (j = 0; j < MAX_ARG_PAGES; j++) {
372 		struct page *page = bprm->page[j];
373 		if (!page)
374 			continue;
375 		bprm->page[i++] = page;
376 	}
377 
378 	/* Now move them within their pages */
379 	offset = bprm->p % PAGE_SIZE;
380 	to = kmap(bprm->page[0]);
381 	for (j = 1; j < i; j++) {
382 		memmove(to, to + offset, PAGE_SIZE - offset);
383 		from = kmap(bprm->page[j]);
384 		memcpy(to + PAGE_SIZE - offset, from, offset);
385 		kunmap(bprm->page[j - 1]);
386 		to = from;
387 	}
388 	memmove(to, to + offset, PAGE_SIZE - offset);
389 	kunmap(bprm->page[j - 1]);
390 
391 	/* Limit stack size to 1GB */
392 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
393 	if (stack_base > (1 << 30))
394 		stack_base = 1 << 30;
395 	stack_base = PAGE_ALIGN(stack_top - stack_base);
396 
397 	/* Adjust bprm->p to point to the end of the strings. */
398 	bprm->p = stack_base + PAGE_SIZE * i - offset;
399 
400 	mm->arg_start = stack_base;
401 	arg_size = i << PAGE_SHIFT;
402 
403 	/* zero pages that were copied above */
404 	while (i < MAX_ARG_PAGES)
405 		bprm->page[i++] = NULL;
406 #else
407 	stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
408 	stack_base = PAGE_ALIGN(stack_base);
409 	bprm->p += stack_base;
410 	mm->arg_start = bprm->p;
411 	arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
412 #endif
413 
414 	arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
415 
416 	if (bprm->loader)
417 		bprm->loader += stack_base;
418 	bprm->exec += stack_base;
419 
420 	mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
421 	if (!mpnt)
422 		return -ENOMEM;
423 
424 	if (security_vm_enough_memory(arg_size >> PAGE_SHIFT)) {
425 		kmem_cache_free(vm_area_cachep, mpnt);
426 		return -ENOMEM;
427 	}
428 
429 	memset(mpnt, 0, sizeof(*mpnt));
430 
431 	down_write(&mm->mmap_sem);
432 	{
433 		mpnt->vm_mm = mm;
434 #ifdef CONFIG_STACK_GROWSUP
435 		mpnt->vm_start = stack_base;
436 		mpnt->vm_end = stack_base + arg_size;
437 #else
438 		mpnt->vm_end = stack_top;
439 		mpnt->vm_start = mpnt->vm_end - arg_size;
440 #endif
441 		/* Adjust stack execute permissions; explicitly enable
442 		 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
443 		 * and leave alone (arch default) otherwise. */
444 		if (unlikely(executable_stack == EXSTACK_ENABLE_X))
445 			mpnt->vm_flags = VM_STACK_FLAGS |  VM_EXEC;
446 		else if (executable_stack == EXSTACK_DISABLE_X)
447 			mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
448 		else
449 			mpnt->vm_flags = VM_STACK_FLAGS;
450 		mpnt->vm_flags |= mm->def_flags;
451 		mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
452 		if ((ret = insert_vm_struct(mm, mpnt))) {
453 			up_write(&mm->mmap_sem);
454 			kmem_cache_free(vm_area_cachep, mpnt);
455 			return ret;
456 		}
457 		mm->stack_vm = mm->total_vm = vma_pages(mpnt);
458 	}
459 
460 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
461 		struct page *page = bprm->page[i];
462 		if (page) {
463 			bprm->page[i] = NULL;
464 			install_arg_page(mpnt, page, stack_base);
465 		}
466 		stack_base += PAGE_SIZE;
467 	}
468 	up_write(&mm->mmap_sem);
469 
470 	return 0;
471 }
472 
473 EXPORT_SYMBOL(setup_arg_pages);
474 
475 #define free_arg_pages(bprm) do { } while (0)
476 
477 #else
478 
479 static inline void free_arg_pages(struct linux_binprm *bprm)
480 {
481 	int i;
482 
483 	for (i = 0; i < MAX_ARG_PAGES; i++) {
484 		if (bprm->page[i])
485 			__free_page(bprm->page[i]);
486 		bprm->page[i] = NULL;
487 	}
488 }
489 
490 #endif /* CONFIG_MMU */
491 
492 struct file *open_exec(const char *name)
493 {
494 	struct nameidata nd;
495 	int err;
496 	struct file *file;
497 
498 	nd.intent.open.flags = FMODE_READ;
499 	err = path_lookup(name, LOOKUP_FOLLOW|LOOKUP_OPEN, &nd);
500 	file = ERR_PTR(err);
501 
502 	if (!err) {
503 		struct inode *inode = nd.dentry->d_inode;
504 		file = ERR_PTR(-EACCES);
505 		if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
506 		    S_ISREG(inode->i_mode)) {
507 			int err = permission(inode, MAY_EXEC, &nd);
508 			if (!err && !(inode->i_mode & 0111))
509 				err = -EACCES;
510 			file = ERR_PTR(err);
511 			if (!err) {
512 				file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
513 				if (!IS_ERR(file)) {
514 					err = deny_write_access(file);
515 					if (err) {
516 						fput(file);
517 						file = ERR_PTR(err);
518 					}
519 				}
520 out:
521 				return file;
522 			}
523 		}
524 		path_release(&nd);
525 	}
526 	goto out;
527 }
528 
529 EXPORT_SYMBOL(open_exec);
530 
531 int kernel_read(struct file *file, unsigned long offset,
532 	char *addr, unsigned long count)
533 {
534 	mm_segment_t old_fs;
535 	loff_t pos = offset;
536 	int result;
537 
538 	old_fs = get_fs();
539 	set_fs(get_ds());
540 	/* The cast to a user pointer is valid due to the set_fs() */
541 	result = vfs_read(file, (void __user *)addr, count, &pos);
542 	set_fs(old_fs);
543 	return result;
544 }
545 
546 EXPORT_SYMBOL(kernel_read);
547 
548 static int exec_mmap(struct mm_struct *mm)
549 {
550 	struct task_struct *tsk;
551 	struct mm_struct * old_mm, *active_mm;
552 
553 	/* Notify parent that we're no longer interested in the old VM */
554 	tsk = current;
555 	old_mm = current->mm;
556 	mm_release(tsk, old_mm);
557 
558 	if (old_mm) {
559 		/*
560 		 * Make sure that if there is a core dump in progress
561 		 * for the old mm, we get out and die instead of going
562 		 * through with the exec.  We must hold mmap_sem around
563 		 * checking core_waiters and changing tsk->mm.  The
564 		 * core-inducing thread will increment core_waiters for
565 		 * each thread whose ->mm == old_mm.
566 		 */
567 		down_read(&old_mm->mmap_sem);
568 		if (unlikely(old_mm->core_waiters)) {
569 			up_read(&old_mm->mmap_sem);
570 			return -EINTR;
571 		}
572 	}
573 	task_lock(tsk);
574 	active_mm = tsk->active_mm;
575 	tsk->mm = mm;
576 	tsk->active_mm = mm;
577 	activate_mm(active_mm, mm);
578 	task_unlock(tsk);
579 	arch_pick_mmap_layout(mm);
580 	if (old_mm) {
581 		up_read(&old_mm->mmap_sem);
582 		if (active_mm != old_mm) BUG();
583 		mmput(old_mm);
584 		return 0;
585 	}
586 	mmdrop(active_mm);
587 	return 0;
588 }
589 
590 /*
591  * This function makes sure the current process has its own signal table,
592  * so that flush_signal_handlers can later reset the handlers without
593  * disturbing other processes.  (Other processes might share the signal
594  * table via the CLONE_SIGHAND option to clone().)
595  */
596 static inline int de_thread(struct task_struct *tsk)
597 {
598 	struct signal_struct *sig = tsk->signal;
599 	struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
600 	spinlock_t *lock = &oldsighand->siglock;
601 	int count;
602 
603 	/*
604 	 * If we don't share sighandlers, then we aren't sharing anything
605 	 * and we can just re-use it all.
606 	 */
607 	if (atomic_read(&oldsighand->count) <= 1) {
608 		BUG_ON(atomic_read(&sig->count) != 1);
609 		exit_itimers(sig);
610 		return 0;
611 	}
612 
613 	newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
614 	if (!newsighand)
615 		return -ENOMEM;
616 
617 	if (thread_group_empty(current))
618 		goto no_thread_group;
619 
620 	/*
621 	 * Kill all other threads in the thread group.
622 	 * We must hold tasklist_lock to call zap_other_threads.
623 	 */
624 	read_lock(&tasklist_lock);
625 	spin_lock_irq(lock);
626 	if (sig->flags & SIGNAL_GROUP_EXIT) {
627 		/*
628 		 * Another group action in progress, just
629 		 * return so that the signal is processed.
630 		 */
631 		spin_unlock_irq(lock);
632 		read_unlock(&tasklist_lock);
633 		kmem_cache_free(sighand_cachep, newsighand);
634 		return -EAGAIN;
635 	}
636 	zap_other_threads(current);
637 	read_unlock(&tasklist_lock);
638 
639 	/*
640 	 * Account for the thread group leader hanging around:
641 	 */
642 	count = 2;
643 	if (thread_group_leader(current))
644 		count = 1;
645 	else {
646 		/*
647 		 * The SIGALRM timer survives the exec, but needs to point
648 		 * at us as the new group leader now.  We have a race with
649 		 * a timer firing now getting the old leader, so we need to
650 		 * synchronize with any firing (by calling del_timer_sync)
651 		 * before we can safely let the old group leader die.
652 		 */
653 		sig->real_timer.data = (unsigned long)current;
654 		if (del_timer_sync(&sig->real_timer))
655 			add_timer(&sig->real_timer);
656 	}
657 	while (atomic_read(&sig->count) > count) {
658 		sig->group_exit_task = current;
659 		sig->notify_count = count;
660 		__set_current_state(TASK_UNINTERRUPTIBLE);
661 		spin_unlock_irq(lock);
662 		schedule();
663 		spin_lock_irq(lock);
664 	}
665 	sig->group_exit_task = NULL;
666 	sig->notify_count = 0;
667 	sig->real_timer.data = (unsigned long)current;
668 	spin_unlock_irq(lock);
669 
670 	/*
671 	 * At this point all other threads have exited, all we have to
672 	 * do is to wait for the thread group leader to become inactive,
673 	 * and to assume its PID:
674 	 */
675 	if (!thread_group_leader(current)) {
676 		struct task_struct *leader = current->group_leader, *parent;
677 		struct dentry *proc_dentry1, *proc_dentry2;
678 		unsigned long exit_state, ptrace;
679 
680 		/*
681 		 * Wait for the thread group leader to be a zombie.
682 		 * It should already be zombie at this point, most
683 		 * of the time.
684 		 */
685 		while (leader->exit_state != EXIT_ZOMBIE)
686 			yield();
687 
688 		spin_lock(&leader->proc_lock);
689 		spin_lock(&current->proc_lock);
690 		proc_dentry1 = proc_pid_unhash(current);
691 		proc_dentry2 = proc_pid_unhash(leader);
692 		write_lock_irq(&tasklist_lock);
693 
694 		BUG_ON(leader->tgid != current->tgid);
695 		BUG_ON(current->pid == current->tgid);
696 		/*
697 		 * An exec() starts a new thread group with the
698 		 * TGID of the previous thread group. Rehash the
699 		 * two threads with a switched PID, and release
700 		 * the former thread group leader:
701 		 */
702 		ptrace = leader->ptrace;
703 		parent = leader->parent;
704 		if (unlikely(ptrace) && unlikely(parent == current)) {
705 			/*
706 			 * Joker was ptracing his own group leader,
707 			 * and now he wants to be his own parent!
708 			 * We can't have that.
709 			 */
710 			ptrace = 0;
711 		}
712 
713 		ptrace_unlink(current);
714 		ptrace_unlink(leader);
715 		remove_parent(current);
716 		remove_parent(leader);
717 
718 		switch_exec_pids(leader, current);
719 
720 		current->parent = current->real_parent = leader->real_parent;
721 		leader->parent = leader->real_parent = child_reaper;
722 		current->group_leader = current;
723 		leader->group_leader = leader;
724 
725 		add_parent(current, current->parent);
726 		add_parent(leader, leader->parent);
727 		if (ptrace) {
728 			current->ptrace = ptrace;
729 			__ptrace_link(current, parent);
730 		}
731 
732 		list_del(&current->tasks);
733 		list_add_tail(&current->tasks, &init_task.tasks);
734 		current->exit_signal = SIGCHLD;
735 		exit_state = leader->exit_state;
736 
737 		write_unlock_irq(&tasklist_lock);
738 		spin_unlock(&leader->proc_lock);
739 		spin_unlock(&current->proc_lock);
740 		proc_pid_flush(proc_dentry1);
741 		proc_pid_flush(proc_dentry2);
742 
743 		BUG_ON(exit_state != EXIT_ZOMBIE);
744 		release_task(leader);
745         }
746 
747 	/*
748 	 * Now there are really no other threads at all,
749 	 * so it's safe to stop telling them to kill themselves.
750 	 */
751 	sig->flags = 0;
752 
753 no_thread_group:
754 	BUG_ON(atomic_read(&sig->count) != 1);
755 	exit_itimers(sig);
756 
757 	if (atomic_read(&oldsighand->count) == 1) {
758 		/*
759 		 * Now that we nuked the rest of the thread group,
760 		 * it turns out we are not sharing sighand any more either.
761 		 * So we can just keep it.
762 		 */
763 		kmem_cache_free(sighand_cachep, newsighand);
764 	} else {
765 		/*
766 		 * Move our state over to newsighand and switch it in.
767 		 */
768 		spin_lock_init(&newsighand->siglock);
769 		atomic_set(&newsighand->count, 1);
770 		memcpy(newsighand->action, oldsighand->action,
771 		       sizeof(newsighand->action));
772 
773 		write_lock_irq(&tasklist_lock);
774 		spin_lock(&oldsighand->siglock);
775 		spin_lock(&newsighand->siglock);
776 
777 		current->sighand = newsighand;
778 		recalc_sigpending();
779 
780 		spin_unlock(&newsighand->siglock);
781 		spin_unlock(&oldsighand->siglock);
782 		write_unlock_irq(&tasklist_lock);
783 
784 		if (atomic_dec_and_test(&oldsighand->count))
785 			kmem_cache_free(sighand_cachep, oldsighand);
786 	}
787 
788 	BUG_ON(!thread_group_empty(current));
789 	BUG_ON(!thread_group_leader(current));
790 	return 0;
791 }
792 
793 /*
794  * These functions flushes out all traces of the currently running executable
795  * so that a new one can be started
796  */
797 
798 static inline void flush_old_files(struct files_struct * files)
799 {
800 	long j = -1;
801 
802 	spin_lock(&files->file_lock);
803 	for (;;) {
804 		unsigned long set, i;
805 
806 		j++;
807 		i = j * __NFDBITS;
808 		if (i >= files->max_fds || i >= files->max_fdset)
809 			break;
810 		set = files->close_on_exec->fds_bits[j];
811 		if (!set)
812 			continue;
813 		files->close_on_exec->fds_bits[j] = 0;
814 		spin_unlock(&files->file_lock);
815 		for ( ; set ; i++,set >>= 1) {
816 			if (set & 1) {
817 				sys_close(i);
818 			}
819 		}
820 		spin_lock(&files->file_lock);
821 
822 	}
823 	spin_unlock(&files->file_lock);
824 }
825 
826 void get_task_comm(char *buf, struct task_struct *tsk)
827 {
828 	/* buf must be at least sizeof(tsk->comm) in size */
829 	task_lock(tsk);
830 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
831 	task_unlock(tsk);
832 }
833 
834 void set_task_comm(struct task_struct *tsk, char *buf)
835 {
836 	task_lock(tsk);
837 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
838 	task_unlock(tsk);
839 }
840 
841 int flush_old_exec(struct linux_binprm * bprm)
842 {
843 	char * name;
844 	int i, ch, retval;
845 	struct files_struct *files;
846 	char tcomm[sizeof(current->comm)];
847 
848 	/*
849 	 * Make sure we have a private signal table and that
850 	 * we are unassociated from the previous thread group.
851 	 */
852 	retval = de_thread(current);
853 	if (retval)
854 		goto out;
855 
856 	/*
857 	 * Make sure we have private file handles. Ask the
858 	 * fork helper to do the work for us and the exit
859 	 * helper to do the cleanup of the old one.
860 	 */
861 	files = current->files;		/* refcounted so safe to hold */
862 	retval = unshare_files();
863 	if (retval)
864 		goto out;
865 	/*
866 	 * Release all of the old mmap stuff
867 	 */
868 	retval = exec_mmap(bprm->mm);
869 	if (retval)
870 		goto mmap_failed;
871 
872 	bprm->mm = NULL;		/* We're using it now */
873 
874 	/* This is the point of no return */
875 	steal_locks(files);
876 	put_files_struct(files);
877 
878 	current->sas_ss_sp = current->sas_ss_size = 0;
879 
880 	if (current->euid == current->uid && current->egid == current->gid)
881 		current->mm->dumpable = 1;
882 	else
883 		current->mm->dumpable = suid_dumpable;
884 
885 	name = bprm->filename;
886 
887 	/* Copies the binary name from after last slash */
888 	for (i=0; (ch = *(name++)) != '\0';) {
889 		if (ch == '/')
890 			i = 0; /* overwrite what we wrote */
891 		else
892 			if (i < (sizeof(tcomm) - 1))
893 				tcomm[i++] = ch;
894 	}
895 	tcomm[i] = '\0';
896 	set_task_comm(current, tcomm);
897 
898 	current->flags &= ~PF_RANDOMIZE;
899 	flush_thread();
900 
901 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
902 	    permission(bprm->file->f_dentry->d_inode,MAY_READ, NULL) ||
903 	    (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
904 		suid_keys(current);
905 		current->mm->dumpable = suid_dumpable;
906 	}
907 
908 	/* An exec changes our domain. We are no longer part of the thread
909 	   group */
910 
911 	current->self_exec_id++;
912 
913 	flush_signal_handlers(current, 0);
914 	flush_old_files(current->files);
915 
916 	return 0;
917 
918 mmap_failed:
919 	put_files_struct(current->files);
920 	current->files = files;
921 out:
922 	return retval;
923 }
924 
925 EXPORT_SYMBOL(flush_old_exec);
926 
927 /*
928  * Fill the binprm structure from the inode.
929  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
930  */
931 int prepare_binprm(struct linux_binprm *bprm)
932 {
933 	int mode;
934 	struct inode * inode = bprm->file->f_dentry->d_inode;
935 	int retval;
936 
937 	mode = inode->i_mode;
938 	/*
939 	 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
940 	 * generic_permission lets a non-executable through
941 	 */
942 	if (!(mode & 0111))	/* with at least _one_ execute bit set */
943 		return -EACCES;
944 	if (bprm->file->f_op == NULL)
945 		return -EACCES;
946 
947 	bprm->e_uid = current->euid;
948 	bprm->e_gid = current->egid;
949 
950 	if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
951 		/* Set-uid? */
952 		if (mode & S_ISUID) {
953 			current->personality &= ~PER_CLEAR_ON_SETID;
954 			bprm->e_uid = inode->i_uid;
955 		}
956 
957 		/* Set-gid? */
958 		/*
959 		 * If setgid is set but no group execute bit then this
960 		 * is a candidate for mandatory locking, not a setgid
961 		 * executable.
962 		 */
963 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
964 			current->personality &= ~PER_CLEAR_ON_SETID;
965 			bprm->e_gid = inode->i_gid;
966 		}
967 	}
968 
969 	/* fill in binprm security blob */
970 	retval = security_bprm_set(bprm);
971 	if (retval)
972 		return retval;
973 
974 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
975 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
976 }
977 
978 EXPORT_SYMBOL(prepare_binprm);
979 
980 static inline int unsafe_exec(struct task_struct *p)
981 {
982 	int unsafe = 0;
983 	if (p->ptrace & PT_PTRACED) {
984 		if (p->ptrace & PT_PTRACE_CAP)
985 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
986 		else
987 			unsafe |= LSM_UNSAFE_PTRACE;
988 	}
989 	if (atomic_read(&p->fs->count) > 1 ||
990 	    atomic_read(&p->files->count) > 1 ||
991 	    atomic_read(&p->sighand->count) > 1)
992 		unsafe |= LSM_UNSAFE_SHARE;
993 
994 	return unsafe;
995 }
996 
997 void compute_creds(struct linux_binprm *bprm)
998 {
999 	int unsafe;
1000 
1001 	if (bprm->e_uid != current->uid)
1002 		suid_keys(current);
1003 	exec_keys(current);
1004 
1005 	task_lock(current);
1006 	unsafe = unsafe_exec(current);
1007 	security_bprm_apply_creds(bprm, unsafe);
1008 	task_unlock(current);
1009 	security_bprm_post_apply_creds(bprm);
1010 }
1011 
1012 EXPORT_SYMBOL(compute_creds);
1013 
1014 void remove_arg_zero(struct linux_binprm *bprm)
1015 {
1016 	if (bprm->argc) {
1017 		unsigned long offset;
1018 		char * kaddr;
1019 		struct page *page;
1020 
1021 		offset = bprm->p % PAGE_SIZE;
1022 		goto inside;
1023 
1024 		while (bprm->p++, *(kaddr+offset++)) {
1025 			if (offset != PAGE_SIZE)
1026 				continue;
1027 			offset = 0;
1028 			kunmap_atomic(kaddr, KM_USER0);
1029 inside:
1030 			page = bprm->page[bprm->p/PAGE_SIZE];
1031 			kaddr = kmap_atomic(page, KM_USER0);
1032 		}
1033 		kunmap_atomic(kaddr, KM_USER0);
1034 		bprm->argc--;
1035 	}
1036 }
1037 
1038 EXPORT_SYMBOL(remove_arg_zero);
1039 
1040 /*
1041  * cycle the list of binary formats handler, until one recognizes the image
1042  */
1043 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1044 {
1045 	int try,retval;
1046 	struct linux_binfmt *fmt;
1047 #ifdef __alpha__
1048 	/* handle /sbin/loader.. */
1049 	{
1050 	    struct exec * eh = (struct exec *) bprm->buf;
1051 
1052 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1053 		(eh->fh.f_flags & 0x3000) == 0x3000)
1054 	    {
1055 		struct file * file;
1056 		unsigned long loader;
1057 
1058 		allow_write_access(bprm->file);
1059 		fput(bprm->file);
1060 		bprm->file = NULL;
1061 
1062 	        loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1063 
1064 		file = open_exec("/sbin/loader");
1065 		retval = PTR_ERR(file);
1066 		if (IS_ERR(file))
1067 			return retval;
1068 
1069 		/* Remember if the application is TASO.  */
1070 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1071 
1072 		bprm->file = file;
1073 		bprm->loader = loader;
1074 		retval = prepare_binprm(bprm);
1075 		if (retval<0)
1076 			return retval;
1077 		/* should call search_binary_handler recursively here,
1078 		   but it does not matter */
1079 	    }
1080 	}
1081 #endif
1082 	retval = security_bprm_check(bprm);
1083 	if (retval)
1084 		return retval;
1085 
1086 	/* kernel module loader fixup */
1087 	/* so we don't try to load run modprobe in kernel space. */
1088 	set_fs(USER_DS);
1089 	retval = -ENOENT;
1090 	for (try=0; try<2; try++) {
1091 		read_lock(&binfmt_lock);
1092 		for (fmt = formats ; fmt ; fmt = fmt->next) {
1093 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1094 			if (!fn)
1095 				continue;
1096 			if (!try_module_get(fmt->module))
1097 				continue;
1098 			read_unlock(&binfmt_lock);
1099 			retval = fn(bprm, regs);
1100 			if (retval >= 0) {
1101 				put_binfmt(fmt);
1102 				allow_write_access(bprm->file);
1103 				if (bprm->file)
1104 					fput(bprm->file);
1105 				bprm->file = NULL;
1106 				current->did_exec = 1;
1107 				return retval;
1108 			}
1109 			read_lock(&binfmt_lock);
1110 			put_binfmt(fmt);
1111 			if (retval != -ENOEXEC || bprm->mm == NULL)
1112 				break;
1113 			if (!bprm->file) {
1114 				read_unlock(&binfmt_lock);
1115 				return retval;
1116 			}
1117 		}
1118 		read_unlock(&binfmt_lock);
1119 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1120 			break;
1121 #ifdef CONFIG_KMOD
1122 		}else{
1123 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1124 			if (printable(bprm->buf[0]) &&
1125 			    printable(bprm->buf[1]) &&
1126 			    printable(bprm->buf[2]) &&
1127 			    printable(bprm->buf[3]))
1128 				break; /* -ENOEXEC */
1129 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1130 #endif
1131 		}
1132 	}
1133 	return retval;
1134 }
1135 
1136 EXPORT_SYMBOL(search_binary_handler);
1137 
1138 /*
1139  * sys_execve() executes a new program.
1140  */
1141 int do_execve(char * filename,
1142 	char __user *__user *argv,
1143 	char __user *__user *envp,
1144 	struct pt_regs * regs)
1145 {
1146 	struct linux_binprm *bprm;
1147 	struct file *file;
1148 	int retval;
1149 	int i;
1150 
1151 	retval = -ENOMEM;
1152 	bprm = kmalloc(sizeof(*bprm), GFP_KERNEL);
1153 	if (!bprm)
1154 		goto out_ret;
1155 	memset(bprm, 0, sizeof(*bprm));
1156 
1157 	file = open_exec(filename);
1158 	retval = PTR_ERR(file);
1159 	if (IS_ERR(file))
1160 		goto out_kfree;
1161 
1162 	sched_exec();
1163 
1164 	bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1165 
1166 	bprm->file = file;
1167 	bprm->filename = filename;
1168 	bprm->interp = filename;
1169 	bprm->mm = mm_alloc();
1170 	retval = -ENOMEM;
1171 	if (!bprm->mm)
1172 		goto out_file;
1173 
1174 	retval = init_new_context(current, bprm->mm);
1175 	if (retval < 0)
1176 		goto out_mm;
1177 
1178 	bprm->argc = count(argv, bprm->p / sizeof(void *));
1179 	if ((retval = bprm->argc) < 0)
1180 		goto out_mm;
1181 
1182 	bprm->envc = count(envp, bprm->p / sizeof(void *));
1183 	if ((retval = bprm->envc) < 0)
1184 		goto out_mm;
1185 
1186 	retval = security_bprm_alloc(bprm);
1187 	if (retval)
1188 		goto out;
1189 
1190 	retval = prepare_binprm(bprm);
1191 	if (retval < 0)
1192 		goto out;
1193 
1194 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1195 	if (retval < 0)
1196 		goto out;
1197 
1198 	bprm->exec = bprm->p;
1199 	retval = copy_strings(bprm->envc, envp, bprm);
1200 	if (retval < 0)
1201 		goto out;
1202 
1203 	retval = copy_strings(bprm->argc, argv, bprm);
1204 	if (retval < 0)
1205 		goto out;
1206 
1207 	retval = search_binary_handler(bprm,regs);
1208 	if (retval >= 0) {
1209 		free_arg_pages(bprm);
1210 
1211 		/* execve success */
1212 		security_bprm_free(bprm);
1213 		acct_update_integrals(current);
1214 		update_mem_hiwater(current);
1215 		kfree(bprm);
1216 		return retval;
1217 	}
1218 
1219 out:
1220 	/* Something went wrong, return the inode and free the argument pages*/
1221 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1222 		struct page * page = bprm->page[i];
1223 		if (page)
1224 			__free_page(page);
1225 	}
1226 
1227 	if (bprm->security)
1228 		security_bprm_free(bprm);
1229 
1230 out_mm:
1231 	if (bprm->mm)
1232 		mmdrop(bprm->mm);
1233 
1234 out_file:
1235 	if (bprm->file) {
1236 		allow_write_access(bprm->file);
1237 		fput(bprm->file);
1238 	}
1239 
1240 out_kfree:
1241 	kfree(bprm);
1242 
1243 out_ret:
1244 	return retval;
1245 }
1246 
1247 int set_binfmt(struct linux_binfmt *new)
1248 {
1249 	struct linux_binfmt *old = current->binfmt;
1250 
1251 	if (new) {
1252 		if (!try_module_get(new->module))
1253 			return -1;
1254 	}
1255 	current->binfmt = new;
1256 	if (old)
1257 		module_put(old->module);
1258 	return 0;
1259 }
1260 
1261 EXPORT_SYMBOL(set_binfmt);
1262 
1263 #define CORENAME_MAX_SIZE 64
1264 
1265 /* format_corename will inspect the pattern parameter, and output a
1266  * name into corename, which must have space for at least
1267  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1268  */
1269 static void format_corename(char *corename, const char *pattern, long signr)
1270 {
1271 	const char *pat_ptr = pattern;
1272 	char *out_ptr = corename;
1273 	char *const out_end = corename + CORENAME_MAX_SIZE;
1274 	int rc;
1275 	int pid_in_pattern = 0;
1276 
1277 	/* Repeat as long as we have more pattern to process and more output
1278 	   space */
1279 	while (*pat_ptr) {
1280 		if (*pat_ptr != '%') {
1281 			if (out_ptr == out_end)
1282 				goto out;
1283 			*out_ptr++ = *pat_ptr++;
1284 		} else {
1285 			switch (*++pat_ptr) {
1286 			case 0:
1287 				goto out;
1288 			/* Double percent, output one percent */
1289 			case '%':
1290 				if (out_ptr == out_end)
1291 					goto out;
1292 				*out_ptr++ = '%';
1293 				break;
1294 			/* pid */
1295 			case 'p':
1296 				pid_in_pattern = 1;
1297 				rc = snprintf(out_ptr, out_end - out_ptr,
1298 					      "%d", current->tgid);
1299 				if (rc > out_end - out_ptr)
1300 					goto out;
1301 				out_ptr += rc;
1302 				break;
1303 			/* uid */
1304 			case 'u':
1305 				rc = snprintf(out_ptr, out_end - out_ptr,
1306 					      "%d", current->uid);
1307 				if (rc > out_end - out_ptr)
1308 					goto out;
1309 				out_ptr += rc;
1310 				break;
1311 			/* gid */
1312 			case 'g':
1313 				rc = snprintf(out_ptr, out_end - out_ptr,
1314 					      "%d", current->gid);
1315 				if (rc > out_end - out_ptr)
1316 					goto out;
1317 				out_ptr += rc;
1318 				break;
1319 			/* signal that caused the coredump */
1320 			case 's':
1321 				rc = snprintf(out_ptr, out_end - out_ptr,
1322 					      "%ld", signr);
1323 				if (rc > out_end - out_ptr)
1324 					goto out;
1325 				out_ptr += rc;
1326 				break;
1327 			/* UNIX time of coredump */
1328 			case 't': {
1329 				struct timeval tv;
1330 				do_gettimeofday(&tv);
1331 				rc = snprintf(out_ptr, out_end - out_ptr,
1332 					      "%lu", tv.tv_sec);
1333 				if (rc > out_end - out_ptr)
1334 					goto out;
1335 				out_ptr += rc;
1336 				break;
1337 			}
1338 			/* hostname */
1339 			case 'h':
1340 				down_read(&uts_sem);
1341 				rc = snprintf(out_ptr, out_end - out_ptr,
1342 					      "%s", system_utsname.nodename);
1343 				up_read(&uts_sem);
1344 				if (rc > out_end - out_ptr)
1345 					goto out;
1346 				out_ptr += rc;
1347 				break;
1348 			/* executable */
1349 			case 'e':
1350 				rc = snprintf(out_ptr, out_end - out_ptr,
1351 					      "%s", current->comm);
1352 				if (rc > out_end - out_ptr)
1353 					goto out;
1354 				out_ptr += rc;
1355 				break;
1356 			default:
1357 				break;
1358 			}
1359 			++pat_ptr;
1360 		}
1361 	}
1362 	/* Backward compatibility with core_uses_pid:
1363 	 *
1364 	 * If core_pattern does not include a %p (as is the default)
1365 	 * and core_uses_pid is set, then .%pid will be appended to
1366 	 * the filename */
1367 	if (!pid_in_pattern
1368             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1369 		rc = snprintf(out_ptr, out_end - out_ptr,
1370 			      ".%d", current->tgid);
1371 		if (rc > out_end - out_ptr)
1372 			goto out;
1373 		out_ptr += rc;
1374 	}
1375       out:
1376 	*out_ptr = 0;
1377 }
1378 
1379 static void zap_threads (struct mm_struct *mm)
1380 {
1381 	struct task_struct *g, *p;
1382 	struct task_struct *tsk = current;
1383 	struct completion *vfork_done = tsk->vfork_done;
1384 	int traced = 0;
1385 
1386 	/*
1387 	 * Make sure nobody is waiting for us to release the VM,
1388 	 * otherwise we can deadlock when we wait on each other
1389 	 */
1390 	if (vfork_done) {
1391 		tsk->vfork_done = NULL;
1392 		complete(vfork_done);
1393 	}
1394 
1395 	read_lock(&tasklist_lock);
1396 	do_each_thread(g,p)
1397 		if (mm == p->mm && p != tsk) {
1398 			force_sig_specific(SIGKILL, p);
1399 			mm->core_waiters++;
1400 			if (unlikely(p->ptrace) &&
1401 			    unlikely(p->parent->mm == mm))
1402 				traced = 1;
1403 		}
1404 	while_each_thread(g,p);
1405 
1406 	read_unlock(&tasklist_lock);
1407 
1408 	if (unlikely(traced)) {
1409 		/*
1410 		 * We are zapping a thread and the thread it ptraces.
1411 		 * If the tracee went into a ptrace stop for exit tracing,
1412 		 * we could deadlock since the tracer is waiting for this
1413 		 * coredump to finish.  Detach them so they can both die.
1414 		 */
1415 		write_lock_irq(&tasklist_lock);
1416 		do_each_thread(g,p) {
1417 			if (mm == p->mm && p != tsk &&
1418 			    p->ptrace && p->parent->mm == mm) {
1419 				__ptrace_unlink(p);
1420 			}
1421 		} while_each_thread(g,p);
1422 		write_unlock_irq(&tasklist_lock);
1423 	}
1424 }
1425 
1426 static void coredump_wait(struct mm_struct *mm)
1427 {
1428 	DECLARE_COMPLETION(startup_done);
1429 
1430 	mm->core_waiters++; /* let other threads block */
1431 	mm->core_startup_done = &startup_done;
1432 
1433 	/* give other threads a chance to run: */
1434 	yield();
1435 
1436 	zap_threads(mm);
1437 	if (--mm->core_waiters) {
1438 		up_write(&mm->mmap_sem);
1439 		wait_for_completion(&startup_done);
1440 	} else
1441 		up_write(&mm->mmap_sem);
1442 	BUG_ON(mm->core_waiters);
1443 }
1444 
1445 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1446 {
1447 	char corename[CORENAME_MAX_SIZE + 1];
1448 	struct mm_struct *mm = current->mm;
1449 	struct linux_binfmt * binfmt;
1450 	struct inode * inode;
1451 	struct file * file;
1452 	int retval = 0;
1453 	int fsuid = current->fsuid;
1454 	int flag = 0;
1455 
1456 	binfmt = current->binfmt;
1457 	if (!binfmt || !binfmt->core_dump)
1458 		goto fail;
1459 	down_write(&mm->mmap_sem);
1460 	if (!mm->dumpable) {
1461 		up_write(&mm->mmap_sem);
1462 		goto fail;
1463 	}
1464 
1465 	/*
1466 	 *	We cannot trust fsuid as being the "true" uid of the
1467 	 *	process nor do we know its entire history. We only know it
1468 	 *	was tainted so we dump it as root in mode 2.
1469 	 */
1470 	if (mm->dumpable == 2) {	/* Setuid core dump mode */
1471 		flag = O_EXCL;		/* Stop rewrite attacks */
1472 		current->fsuid = 0;	/* Dump root private */
1473 	}
1474 	mm->dumpable = 0;
1475 	init_completion(&mm->core_done);
1476 	spin_lock_irq(&current->sighand->siglock);
1477 	current->signal->flags = SIGNAL_GROUP_EXIT;
1478 	current->signal->group_exit_code = exit_code;
1479 	spin_unlock_irq(&current->sighand->siglock);
1480 	coredump_wait(mm);
1481 
1482 	/*
1483 	 * Clear any false indication of pending signals that might
1484 	 * be seen by the filesystem code called to write the core file.
1485 	 */
1486 	current->signal->group_stop_count = 0;
1487 	clear_thread_flag(TIF_SIGPENDING);
1488 
1489 	if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1490 		goto fail_unlock;
1491 
1492 	/*
1493 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1494 	 * uses lock_kernel()
1495 	 */
1496  	lock_kernel();
1497 	format_corename(corename, core_pattern, signr);
1498 	unlock_kernel();
1499 	file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 0600);
1500 	if (IS_ERR(file))
1501 		goto fail_unlock;
1502 	inode = file->f_dentry->d_inode;
1503 	if (inode->i_nlink > 1)
1504 		goto close_fail;	/* multiple links - don't dump */
1505 	if (d_unhashed(file->f_dentry))
1506 		goto close_fail;
1507 
1508 	if (!S_ISREG(inode->i_mode))
1509 		goto close_fail;
1510 	if (!file->f_op)
1511 		goto close_fail;
1512 	if (!file->f_op->write)
1513 		goto close_fail;
1514 	if (do_truncate(file->f_dentry, 0) != 0)
1515 		goto close_fail;
1516 
1517 	retval = binfmt->core_dump(signr, regs, file);
1518 
1519 	if (retval)
1520 		current->signal->group_exit_code |= 0x80;
1521 close_fail:
1522 	filp_close(file, NULL);
1523 fail_unlock:
1524 	current->fsuid = fsuid;
1525 	complete_all(&mm->core_done);
1526 fail:
1527 	return retval;
1528 }
1529