1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/vmacache.h> 32 #include <linux/stat.h> 33 #include <linux/fcntl.h> 34 #include <linux/swap.h> 35 #include <linux/string.h> 36 #include <linux/init.h> 37 #include <linux/sched/mm.h> 38 #include <linux/sched/coredump.h> 39 #include <linux/sched/signal.h> 40 #include <linux/sched/numa_balancing.h> 41 #include <linux/sched/task.h> 42 #include <linux/pagemap.h> 43 #include <linux/perf_event.h> 44 #include <linux/highmem.h> 45 #include <linux/spinlock.h> 46 #include <linux/key.h> 47 #include <linux/personality.h> 48 #include <linux/binfmts.h> 49 #include <linux/utsname.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/module.h> 52 #include <linux/namei.h> 53 #include <linux/mount.h> 54 #include <linux/security.h> 55 #include <linux/syscalls.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/audit.h> 59 #include <linux/tracehook.h> 60 #include <linux/kmod.h> 61 #include <linux/fsnotify.h> 62 #include <linux/fs_struct.h> 63 #include <linux/oom.h> 64 #include <linux/compat.h> 65 #include <linux/vmalloc.h> 66 #include <linux/io_uring.h> 67 #include <linux/syscall_user_dispatch.h> 68 #include <linux/coredump.h> 69 70 #include <linux/uaccess.h> 71 #include <asm/mmu_context.h> 72 #include <asm/tlb.h> 73 74 #include <trace/events/task.h> 75 #include "internal.h" 76 77 #include <trace/events/sched.h> 78 79 static int bprm_creds_from_file(struct linux_binprm *bprm); 80 81 int suid_dumpable = 0; 82 83 static LIST_HEAD(formats); 84 static DEFINE_RWLOCK(binfmt_lock); 85 86 void __register_binfmt(struct linux_binfmt * fmt, int insert) 87 { 88 write_lock(&binfmt_lock); 89 insert ? list_add(&fmt->lh, &formats) : 90 list_add_tail(&fmt->lh, &formats); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(__register_binfmt); 95 96 void unregister_binfmt(struct linux_binfmt * fmt) 97 { 98 write_lock(&binfmt_lock); 99 list_del(&fmt->lh); 100 write_unlock(&binfmt_lock); 101 } 102 103 EXPORT_SYMBOL(unregister_binfmt); 104 105 static inline void put_binfmt(struct linux_binfmt * fmt) 106 { 107 module_put(fmt->module); 108 } 109 110 bool path_noexec(const struct path *path) 111 { 112 return (path->mnt->mnt_flags & MNT_NOEXEC) || 113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 114 } 115 116 #ifdef CONFIG_USELIB 117 /* 118 * Note that a shared library must be both readable and executable due to 119 * security reasons. 120 * 121 * Also note that we take the address to load from the file itself. 122 */ 123 SYSCALL_DEFINE1(uselib, const char __user *, library) 124 { 125 struct linux_binfmt *fmt; 126 struct file *file; 127 struct filename *tmp = getname(library); 128 int error = PTR_ERR(tmp); 129 static const struct open_flags uselib_flags = { 130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 131 .acc_mode = MAY_READ | MAY_EXEC, 132 .intent = LOOKUP_OPEN, 133 .lookup_flags = LOOKUP_FOLLOW, 134 }; 135 136 if (IS_ERR(tmp)) 137 goto out; 138 139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 140 putname(tmp); 141 error = PTR_ERR(file); 142 if (IS_ERR(file)) 143 goto out; 144 145 /* 146 * may_open() has already checked for this, so it should be 147 * impossible to trip now. But we need to be extra cautious 148 * and check again at the very end too. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 152 path_noexec(&file->f_path))) 153 goto exit; 154 155 fsnotify_open(file); 156 157 error = -ENOEXEC; 158 159 read_lock(&binfmt_lock); 160 list_for_each_entry(fmt, &formats, lh) { 161 if (!fmt->load_shlib) 162 continue; 163 if (!try_module_get(fmt->module)) 164 continue; 165 read_unlock(&binfmt_lock); 166 error = fmt->load_shlib(file); 167 read_lock(&binfmt_lock); 168 put_binfmt(fmt); 169 if (error != -ENOEXEC) 170 break; 171 } 172 read_unlock(&binfmt_lock); 173 exit: 174 fput(file); 175 out: 176 return error; 177 } 178 #endif /* #ifdef CONFIG_USELIB */ 179 180 #ifdef CONFIG_MMU 181 /* 182 * The nascent bprm->mm is not visible until exec_mmap() but it can 183 * use a lot of memory, account these pages in current->mm temporary 184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 185 * change the counter back via acct_arg_size(0). 186 */ 187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 188 { 189 struct mm_struct *mm = current->mm; 190 long diff = (long)(pages - bprm->vma_pages); 191 192 if (!mm || !diff) 193 return; 194 195 bprm->vma_pages = pages; 196 add_mm_counter(mm, MM_ANONPAGES, diff); 197 } 198 199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 200 int write) 201 { 202 struct page *page; 203 int ret; 204 unsigned int gup_flags = FOLL_FORCE; 205 206 #ifdef CONFIG_STACK_GROWSUP 207 if (write) { 208 ret = expand_downwards(bprm->vma, pos); 209 if (ret < 0) 210 return NULL; 211 } 212 #endif 213 214 if (write) 215 gup_flags |= FOLL_WRITE; 216 217 /* 218 * We are doing an exec(). 'current' is the process 219 * doing the exec and bprm->mm is the new process's mm. 220 */ 221 mmap_read_lock(bprm->mm); 222 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 223 &page, NULL, NULL); 224 mmap_read_unlock(bprm->mm); 225 if (ret <= 0) 226 return NULL; 227 228 if (write) 229 acct_arg_size(bprm, vma_pages(bprm->vma)); 230 231 return page; 232 } 233 234 static void put_arg_page(struct page *page) 235 { 236 put_page(page); 237 } 238 239 static void free_arg_pages(struct linux_binprm *bprm) 240 { 241 } 242 243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 244 struct page *page) 245 { 246 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 247 } 248 249 static int __bprm_mm_init(struct linux_binprm *bprm) 250 { 251 int err; 252 struct vm_area_struct *vma = NULL; 253 struct mm_struct *mm = bprm->mm; 254 255 bprm->vma = vma = vm_area_alloc(mm); 256 if (!vma) 257 return -ENOMEM; 258 vma_set_anonymous(vma); 259 260 if (mmap_write_lock_killable(mm)) { 261 err = -EINTR; 262 goto err_free; 263 } 264 265 /* 266 * Place the stack at the largest stack address the architecture 267 * supports. Later, we'll move this to an appropriate place. We don't 268 * use STACK_TOP because that can depend on attributes which aren't 269 * configured yet. 270 */ 271 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 272 vma->vm_end = STACK_TOP_MAX; 273 vma->vm_start = vma->vm_end - PAGE_SIZE; 274 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 275 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 276 277 err = insert_vm_struct(mm, vma); 278 if (err) 279 goto err; 280 281 mm->stack_vm = mm->total_vm = 1; 282 mmap_write_unlock(mm); 283 bprm->p = vma->vm_end - sizeof(void *); 284 return 0; 285 err: 286 mmap_write_unlock(mm); 287 err_free: 288 bprm->vma = NULL; 289 vm_area_free(vma); 290 return err; 291 } 292 293 static bool valid_arg_len(struct linux_binprm *bprm, long len) 294 { 295 return len <= MAX_ARG_STRLEN; 296 } 297 298 #else 299 300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 301 { 302 } 303 304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 305 int write) 306 { 307 struct page *page; 308 309 page = bprm->page[pos / PAGE_SIZE]; 310 if (!page && write) { 311 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 312 if (!page) 313 return NULL; 314 bprm->page[pos / PAGE_SIZE] = page; 315 } 316 317 return page; 318 } 319 320 static void put_arg_page(struct page *page) 321 { 322 } 323 324 static void free_arg_page(struct linux_binprm *bprm, int i) 325 { 326 if (bprm->page[i]) { 327 __free_page(bprm->page[i]); 328 bprm->page[i] = NULL; 329 } 330 } 331 332 static void free_arg_pages(struct linux_binprm *bprm) 333 { 334 int i; 335 336 for (i = 0; i < MAX_ARG_PAGES; i++) 337 free_arg_page(bprm, i); 338 } 339 340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 341 struct page *page) 342 { 343 } 344 345 static int __bprm_mm_init(struct linux_binprm *bprm) 346 { 347 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 348 return 0; 349 } 350 351 static bool valid_arg_len(struct linux_binprm *bprm, long len) 352 { 353 return len <= bprm->p; 354 } 355 356 #endif /* CONFIG_MMU */ 357 358 /* 359 * Create a new mm_struct and populate it with a temporary stack 360 * vm_area_struct. We don't have enough context at this point to set the stack 361 * flags, permissions, and offset, so we use temporary values. We'll update 362 * them later in setup_arg_pages(). 363 */ 364 static int bprm_mm_init(struct linux_binprm *bprm) 365 { 366 int err; 367 struct mm_struct *mm = NULL; 368 369 bprm->mm = mm = mm_alloc(); 370 err = -ENOMEM; 371 if (!mm) 372 goto err; 373 374 /* Save current stack limit for all calculations made during exec. */ 375 task_lock(current->group_leader); 376 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 377 task_unlock(current->group_leader); 378 379 err = __bprm_mm_init(bprm); 380 if (err) 381 goto err; 382 383 return 0; 384 385 err: 386 if (mm) { 387 bprm->mm = NULL; 388 mmdrop(mm); 389 } 390 391 return err; 392 } 393 394 struct user_arg_ptr { 395 #ifdef CONFIG_COMPAT 396 bool is_compat; 397 #endif 398 union { 399 const char __user *const __user *native; 400 #ifdef CONFIG_COMPAT 401 const compat_uptr_t __user *compat; 402 #endif 403 } ptr; 404 }; 405 406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 407 { 408 const char __user *native; 409 410 #ifdef CONFIG_COMPAT 411 if (unlikely(argv.is_compat)) { 412 compat_uptr_t compat; 413 414 if (get_user(compat, argv.ptr.compat + nr)) 415 return ERR_PTR(-EFAULT); 416 417 return compat_ptr(compat); 418 } 419 #endif 420 421 if (get_user(native, argv.ptr.native + nr)) 422 return ERR_PTR(-EFAULT); 423 424 return native; 425 } 426 427 /* 428 * count() counts the number of strings in array ARGV. 429 */ 430 static int count(struct user_arg_ptr argv, int max) 431 { 432 int i = 0; 433 434 if (argv.ptr.native != NULL) { 435 for (;;) { 436 const char __user *p = get_user_arg_ptr(argv, i); 437 438 if (!p) 439 break; 440 441 if (IS_ERR(p)) 442 return -EFAULT; 443 444 if (i >= max) 445 return -E2BIG; 446 ++i; 447 448 if (fatal_signal_pending(current)) 449 return -ERESTARTNOHAND; 450 cond_resched(); 451 } 452 } 453 return i; 454 } 455 456 static int count_strings_kernel(const char *const *argv) 457 { 458 int i; 459 460 if (!argv) 461 return 0; 462 463 for (i = 0; argv[i]; ++i) { 464 if (i >= MAX_ARG_STRINGS) 465 return -E2BIG; 466 if (fatal_signal_pending(current)) 467 return -ERESTARTNOHAND; 468 cond_resched(); 469 } 470 return i; 471 } 472 473 static int bprm_stack_limits(struct linux_binprm *bprm) 474 { 475 unsigned long limit, ptr_size; 476 477 /* 478 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 479 * (whichever is smaller) for the argv+env strings. 480 * This ensures that: 481 * - the remaining binfmt code will not run out of stack space, 482 * - the program will have a reasonable amount of stack left 483 * to work from. 484 */ 485 limit = _STK_LIM / 4 * 3; 486 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 487 /* 488 * We've historically supported up to 32 pages (ARG_MAX) 489 * of argument strings even with small stacks 490 */ 491 limit = max_t(unsigned long, limit, ARG_MAX); 492 /* 493 * We must account for the size of all the argv and envp pointers to 494 * the argv and envp strings, since they will also take up space in 495 * the stack. They aren't stored until much later when we can't 496 * signal to the parent that the child has run out of stack space. 497 * Instead, calculate it here so it's possible to fail gracefully. 498 * 499 * In the case of argc = 0, make sure there is space for adding a 500 * empty string (which will bump argc to 1), to ensure confused 501 * userspace programs don't start processing from argv[1], thinking 502 * argc can never be 0, to keep them from walking envp by accident. 503 * See do_execveat_common(). 504 */ 505 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *); 506 if (limit <= ptr_size) 507 return -E2BIG; 508 limit -= ptr_size; 509 510 bprm->argmin = bprm->p - limit; 511 return 0; 512 } 513 514 /* 515 * 'copy_strings()' copies argument/environment strings from the old 516 * processes's memory to the new process's stack. The call to get_user_pages() 517 * ensures the destination page is created and not swapped out. 518 */ 519 static int copy_strings(int argc, struct user_arg_ptr argv, 520 struct linux_binprm *bprm) 521 { 522 struct page *kmapped_page = NULL; 523 char *kaddr = NULL; 524 unsigned long kpos = 0; 525 int ret; 526 527 while (argc-- > 0) { 528 const char __user *str; 529 int len; 530 unsigned long pos; 531 532 ret = -EFAULT; 533 str = get_user_arg_ptr(argv, argc); 534 if (IS_ERR(str)) 535 goto out; 536 537 len = strnlen_user(str, MAX_ARG_STRLEN); 538 if (!len) 539 goto out; 540 541 ret = -E2BIG; 542 if (!valid_arg_len(bprm, len)) 543 goto out; 544 545 /* We're going to work our way backwards. */ 546 pos = bprm->p; 547 str += len; 548 bprm->p -= len; 549 #ifdef CONFIG_MMU 550 if (bprm->p < bprm->argmin) 551 goto out; 552 #endif 553 554 while (len > 0) { 555 int offset, bytes_to_copy; 556 557 if (fatal_signal_pending(current)) { 558 ret = -ERESTARTNOHAND; 559 goto out; 560 } 561 cond_resched(); 562 563 offset = pos % PAGE_SIZE; 564 if (offset == 0) 565 offset = PAGE_SIZE; 566 567 bytes_to_copy = offset; 568 if (bytes_to_copy > len) 569 bytes_to_copy = len; 570 571 offset -= bytes_to_copy; 572 pos -= bytes_to_copy; 573 str -= bytes_to_copy; 574 len -= bytes_to_copy; 575 576 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 577 struct page *page; 578 579 page = get_arg_page(bprm, pos, 1); 580 if (!page) { 581 ret = -E2BIG; 582 goto out; 583 } 584 585 if (kmapped_page) { 586 flush_dcache_page(kmapped_page); 587 kunmap(kmapped_page); 588 put_arg_page(kmapped_page); 589 } 590 kmapped_page = page; 591 kaddr = kmap(kmapped_page); 592 kpos = pos & PAGE_MASK; 593 flush_arg_page(bprm, kpos, kmapped_page); 594 } 595 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 596 ret = -EFAULT; 597 goto out; 598 } 599 } 600 } 601 ret = 0; 602 out: 603 if (kmapped_page) { 604 flush_dcache_page(kmapped_page); 605 kunmap(kmapped_page); 606 put_arg_page(kmapped_page); 607 } 608 return ret; 609 } 610 611 /* 612 * Copy and argument/environment string from the kernel to the processes stack. 613 */ 614 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 615 { 616 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 617 unsigned long pos = bprm->p; 618 619 if (len == 0) 620 return -EFAULT; 621 if (!valid_arg_len(bprm, len)) 622 return -E2BIG; 623 624 /* We're going to work our way backwards. */ 625 arg += len; 626 bprm->p -= len; 627 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 628 return -E2BIG; 629 630 while (len > 0) { 631 unsigned int bytes_to_copy = min_t(unsigned int, len, 632 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 633 struct page *page; 634 char *kaddr; 635 636 pos -= bytes_to_copy; 637 arg -= bytes_to_copy; 638 len -= bytes_to_copy; 639 640 page = get_arg_page(bprm, pos, 1); 641 if (!page) 642 return -E2BIG; 643 kaddr = kmap_atomic(page); 644 flush_arg_page(bprm, pos & PAGE_MASK, page); 645 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy); 646 flush_dcache_page(page); 647 kunmap_atomic(kaddr); 648 put_arg_page(page); 649 } 650 651 return 0; 652 } 653 EXPORT_SYMBOL(copy_string_kernel); 654 655 static int copy_strings_kernel(int argc, const char *const *argv, 656 struct linux_binprm *bprm) 657 { 658 while (argc-- > 0) { 659 int ret = copy_string_kernel(argv[argc], bprm); 660 if (ret < 0) 661 return ret; 662 if (fatal_signal_pending(current)) 663 return -ERESTARTNOHAND; 664 cond_resched(); 665 } 666 return 0; 667 } 668 669 #ifdef CONFIG_MMU 670 671 /* 672 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 673 * the binfmt code determines where the new stack should reside, we shift it to 674 * its final location. The process proceeds as follows: 675 * 676 * 1) Use shift to calculate the new vma endpoints. 677 * 2) Extend vma to cover both the old and new ranges. This ensures the 678 * arguments passed to subsequent functions are consistent. 679 * 3) Move vma's page tables to the new range. 680 * 4) Free up any cleared pgd range. 681 * 5) Shrink the vma to cover only the new range. 682 */ 683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 684 { 685 struct mm_struct *mm = vma->vm_mm; 686 unsigned long old_start = vma->vm_start; 687 unsigned long old_end = vma->vm_end; 688 unsigned long length = old_end - old_start; 689 unsigned long new_start = old_start - shift; 690 unsigned long new_end = old_end - shift; 691 struct mmu_gather tlb; 692 693 BUG_ON(new_start > new_end); 694 695 /* 696 * ensure there are no vmas between where we want to go 697 * and where we are 698 */ 699 if (vma != find_vma(mm, new_start)) 700 return -EFAULT; 701 702 /* 703 * cover the whole range: [new_start, old_end) 704 */ 705 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 706 return -ENOMEM; 707 708 /* 709 * move the page tables downwards, on failure we rely on 710 * process cleanup to remove whatever mess we made. 711 */ 712 if (length != move_page_tables(vma, old_start, 713 vma, new_start, length, false)) 714 return -ENOMEM; 715 716 lru_add_drain(); 717 tlb_gather_mmu(&tlb, mm); 718 if (new_end > old_start) { 719 /* 720 * when the old and new regions overlap clear from new_end. 721 */ 722 free_pgd_range(&tlb, new_end, old_end, new_end, 723 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 724 } else { 725 /* 726 * otherwise, clean from old_start; this is done to not touch 727 * the address space in [new_end, old_start) some architectures 728 * have constraints on va-space that make this illegal (IA64) - 729 * for the others its just a little faster. 730 */ 731 free_pgd_range(&tlb, old_start, old_end, new_end, 732 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 733 } 734 tlb_finish_mmu(&tlb); 735 736 /* 737 * Shrink the vma to just the new range. Always succeeds. 738 */ 739 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 740 741 return 0; 742 } 743 744 /* 745 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 746 * the stack is optionally relocated, and some extra space is added. 747 */ 748 int setup_arg_pages(struct linux_binprm *bprm, 749 unsigned long stack_top, 750 int executable_stack) 751 { 752 unsigned long ret; 753 unsigned long stack_shift; 754 struct mm_struct *mm = current->mm; 755 struct vm_area_struct *vma = bprm->vma; 756 struct vm_area_struct *prev = NULL; 757 unsigned long vm_flags; 758 unsigned long stack_base; 759 unsigned long stack_size; 760 unsigned long stack_expand; 761 unsigned long rlim_stack; 762 763 #ifdef CONFIG_STACK_GROWSUP 764 /* Limit stack size */ 765 stack_base = bprm->rlim_stack.rlim_max; 766 767 stack_base = calc_max_stack_size(stack_base); 768 769 /* Add space for stack randomization. */ 770 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 771 772 /* Make sure we didn't let the argument array grow too large. */ 773 if (vma->vm_end - vma->vm_start > stack_base) 774 return -ENOMEM; 775 776 stack_base = PAGE_ALIGN(stack_top - stack_base); 777 778 stack_shift = vma->vm_start - stack_base; 779 mm->arg_start = bprm->p - stack_shift; 780 bprm->p = vma->vm_end - stack_shift; 781 #else 782 stack_top = arch_align_stack(stack_top); 783 stack_top = PAGE_ALIGN(stack_top); 784 785 if (unlikely(stack_top < mmap_min_addr) || 786 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 787 return -ENOMEM; 788 789 stack_shift = vma->vm_end - stack_top; 790 791 bprm->p -= stack_shift; 792 mm->arg_start = bprm->p; 793 #endif 794 795 if (bprm->loader) 796 bprm->loader -= stack_shift; 797 bprm->exec -= stack_shift; 798 799 if (mmap_write_lock_killable(mm)) 800 return -EINTR; 801 802 vm_flags = VM_STACK_FLAGS; 803 804 /* 805 * Adjust stack execute permissions; explicitly enable for 806 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 807 * (arch default) otherwise. 808 */ 809 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 810 vm_flags |= VM_EXEC; 811 else if (executable_stack == EXSTACK_DISABLE_X) 812 vm_flags &= ~VM_EXEC; 813 vm_flags |= mm->def_flags; 814 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 815 816 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 817 vm_flags); 818 if (ret) 819 goto out_unlock; 820 BUG_ON(prev != vma); 821 822 if (unlikely(vm_flags & VM_EXEC)) { 823 pr_warn_once("process '%pD4' started with executable stack\n", 824 bprm->file); 825 } 826 827 /* Move stack pages down in memory. */ 828 if (stack_shift) { 829 ret = shift_arg_pages(vma, stack_shift); 830 if (ret) 831 goto out_unlock; 832 } 833 834 /* mprotect_fixup is overkill to remove the temporary stack flags */ 835 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 836 837 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 838 stack_size = vma->vm_end - vma->vm_start; 839 /* 840 * Align this down to a page boundary as expand_stack 841 * will align it up. 842 */ 843 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 844 #ifdef CONFIG_STACK_GROWSUP 845 if (stack_size + stack_expand > rlim_stack) 846 stack_base = vma->vm_start + rlim_stack; 847 else 848 stack_base = vma->vm_end + stack_expand; 849 #else 850 if (stack_size + stack_expand > rlim_stack) 851 stack_base = vma->vm_end - rlim_stack; 852 else 853 stack_base = vma->vm_start - stack_expand; 854 #endif 855 current->mm->start_stack = bprm->p; 856 ret = expand_stack(vma, stack_base); 857 if (ret) 858 ret = -EFAULT; 859 860 out_unlock: 861 mmap_write_unlock(mm); 862 return ret; 863 } 864 EXPORT_SYMBOL(setup_arg_pages); 865 866 #else 867 868 /* 869 * Transfer the program arguments and environment from the holding pages 870 * onto the stack. The provided stack pointer is adjusted accordingly. 871 */ 872 int transfer_args_to_stack(struct linux_binprm *bprm, 873 unsigned long *sp_location) 874 { 875 unsigned long index, stop, sp; 876 int ret = 0; 877 878 stop = bprm->p >> PAGE_SHIFT; 879 sp = *sp_location; 880 881 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 882 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 883 char *src = kmap(bprm->page[index]) + offset; 884 sp -= PAGE_SIZE - offset; 885 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 886 ret = -EFAULT; 887 kunmap(bprm->page[index]); 888 if (ret) 889 goto out; 890 } 891 892 *sp_location = sp; 893 894 out: 895 return ret; 896 } 897 EXPORT_SYMBOL(transfer_args_to_stack); 898 899 #endif /* CONFIG_MMU */ 900 901 static struct file *do_open_execat(int fd, struct filename *name, int flags) 902 { 903 struct file *file; 904 int err; 905 struct open_flags open_exec_flags = { 906 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 907 .acc_mode = MAY_EXEC, 908 .intent = LOOKUP_OPEN, 909 .lookup_flags = LOOKUP_FOLLOW, 910 }; 911 912 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 913 return ERR_PTR(-EINVAL); 914 if (flags & AT_SYMLINK_NOFOLLOW) 915 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 916 if (flags & AT_EMPTY_PATH) 917 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 918 919 file = do_filp_open(fd, name, &open_exec_flags); 920 if (IS_ERR(file)) 921 goto out; 922 923 /* 924 * may_open() has already checked for this, so it should be 925 * impossible to trip now. But we need to be extra cautious 926 * and check again at the very end too. 927 */ 928 err = -EACCES; 929 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 930 path_noexec(&file->f_path))) 931 goto exit; 932 933 err = deny_write_access(file); 934 if (err) 935 goto exit; 936 937 if (name->name[0] != '\0') 938 fsnotify_open(file); 939 940 out: 941 return file; 942 943 exit: 944 fput(file); 945 return ERR_PTR(err); 946 } 947 948 struct file *open_exec(const char *name) 949 { 950 struct filename *filename = getname_kernel(name); 951 struct file *f = ERR_CAST(filename); 952 953 if (!IS_ERR(filename)) { 954 f = do_open_execat(AT_FDCWD, filename, 0); 955 putname(filename); 956 } 957 return f; 958 } 959 EXPORT_SYMBOL(open_exec); 960 961 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ 962 defined(CONFIG_BINFMT_ELF_FDPIC) 963 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 964 { 965 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 966 if (res > 0) 967 flush_icache_user_range(addr, addr + len); 968 return res; 969 } 970 EXPORT_SYMBOL(read_code); 971 #endif 972 973 /* 974 * Maps the mm_struct mm into the current task struct. 975 * On success, this function returns with exec_update_lock 976 * held for writing. 977 */ 978 static int exec_mmap(struct mm_struct *mm) 979 { 980 struct task_struct *tsk; 981 struct mm_struct *old_mm, *active_mm; 982 int ret; 983 984 /* Notify parent that we're no longer interested in the old VM */ 985 tsk = current; 986 old_mm = current->mm; 987 exec_mm_release(tsk, old_mm); 988 if (old_mm) 989 sync_mm_rss(old_mm); 990 991 ret = down_write_killable(&tsk->signal->exec_update_lock); 992 if (ret) 993 return ret; 994 995 if (old_mm) { 996 /* 997 * If there is a pending fatal signal perhaps a signal 998 * whose default action is to create a coredump get 999 * out and die instead of going through with the exec. 1000 */ 1001 ret = mmap_read_lock_killable(old_mm); 1002 if (ret) { 1003 up_write(&tsk->signal->exec_update_lock); 1004 return ret; 1005 } 1006 } 1007 1008 task_lock(tsk); 1009 membarrier_exec_mmap(mm); 1010 1011 local_irq_disable(); 1012 active_mm = tsk->active_mm; 1013 tsk->active_mm = mm; 1014 tsk->mm = mm; 1015 /* 1016 * This prevents preemption while active_mm is being loaded and 1017 * it and mm are being updated, which could cause problems for 1018 * lazy tlb mm refcounting when these are updated by context 1019 * switches. Not all architectures can handle irqs off over 1020 * activate_mm yet. 1021 */ 1022 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1023 local_irq_enable(); 1024 activate_mm(active_mm, mm); 1025 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1026 local_irq_enable(); 1027 tsk->mm->vmacache_seqnum = 0; 1028 vmacache_flush(tsk); 1029 task_unlock(tsk); 1030 if (old_mm) { 1031 mmap_read_unlock(old_mm); 1032 BUG_ON(active_mm != old_mm); 1033 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1034 mm_update_next_owner(old_mm); 1035 mmput(old_mm); 1036 return 0; 1037 } 1038 mmdrop(active_mm); 1039 return 0; 1040 } 1041 1042 static int de_thread(struct task_struct *tsk) 1043 { 1044 struct signal_struct *sig = tsk->signal; 1045 struct sighand_struct *oldsighand = tsk->sighand; 1046 spinlock_t *lock = &oldsighand->siglock; 1047 1048 if (thread_group_empty(tsk)) 1049 goto no_thread_group; 1050 1051 /* 1052 * Kill all other threads in the thread group. 1053 */ 1054 spin_lock_irq(lock); 1055 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1056 /* 1057 * Another group action in progress, just 1058 * return so that the signal is processed. 1059 */ 1060 spin_unlock_irq(lock); 1061 return -EAGAIN; 1062 } 1063 1064 sig->group_exec_task = tsk; 1065 sig->notify_count = zap_other_threads(tsk); 1066 if (!thread_group_leader(tsk)) 1067 sig->notify_count--; 1068 1069 while (sig->notify_count) { 1070 __set_current_state(TASK_KILLABLE); 1071 spin_unlock_irq(lock); 1072 schedule(); 1073 if (__fatal_signal_pending(tsk)) 1074 goto killed; 1075 spin_lock_irq(lock); 1076 } 1077 spin_unlock_irq(lock); 1078 1079 /* 1080 * At this point all other threads have exited, all we have to 1081 * do is to wait for the thread group leader to become inactive, 1082 * and to assume its PID: 1083 */ 1084 if (!thread_group_leader(tsk)) { 1085 struct task_struct *leader = tsk->group_leader; 1086 1087 for (;;) { 1088 cgroup_threadgroup_change_begin(tsk); 1089 write_lock_irq(&tasklist_lock); 1090 /* 1091 * Do this under tasklist_lock to ensure that 1092 * exit_notify() can't miss ->group_exec_task 1093 */ 1094 sig->notify_count = -1; 1095 if (likely(leader->exit_state)) 1096 break; 1097 __set_current_state(TASK_KILLABLE); 1098 write_unlock_irq(&tasklist_lock); 1099 cgroup_threadgroup_change_end(tsk); 1100 schedule(); 1101 if (__fatal_signal_pending(tsk)) 1102 goto killed; 1103 } 1104 1105 /* 1106 * The only record we have of the real-time age of a 1107 * process, regardless of execs it's done, is start_time. 1108 * All the past CPU time is accumulated in signal_struct 1109 * from sister threads now dead. But in this non-leader 1110 * exec, nothing survives from the original leader thread, 1111 * whose birth marks the true age of this process now. 1112 * When we take on its identity by switching to its PID, we 1113 * also take its birthdate (always earlier than our own). 1114 */ 1115 tsk->start_time = leader->start_time; 1116 tsk->start_boottime = leader->start_boottime; 1117 1118 BUG_ON(!same_thread_group(leader, tsk)); 1119 /* 1120 * An exec() starts a new thread group with the 1121 * TGID of the previous thread group. Rehash the 1122 * two threads with a switched PID, and release 1123 * the former thread group leader: 1124 */ 1125 1126 /* Become a process group leader with the old leader's pid. 1127 * The old leader becomes a thread of the this thread group. 1128 */ 1129 exchange_tids(tsk, leader); 1130 transfer_pid(leader, tsk, PIDTYPE_TGID); 1131 transfer_pid(leader, tsk, PIDTYPE_PGID); 1132 transfer_pid(leader, tsk, PIDTYPE_SID); 1133 1134 list_replace_rcu(&leader->tasks, &tsk->tasks); 1135 list_replace_init(&leader->sibling, &tsk->sibling); 1136 1137 tsk->group_leader = tsk; 1138 leader->group_leader = tsk; 1139 1140 tsk->exit_signal = SIGCHLD; 1141 leader->exit_signal = -1; 1142 1143 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1144 leader->exit_state = EXIT_DEAD; 1145 1146 /* 1147 * We are going to release_task()->ptrace_unlink() silently, 1148 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1149 * the tracer wont't block again waiting for this thread. 1150 */ 1151 if (unlikely(leader->ptrace)) 1152 __wake_up_parent(leader, leader->parent); 1153 write_unlock_irq(&tasklist_lock); 1154 cgroup_threadgroup_change_end(tsk); 1155 1156 release_task(leader); 1157 } 1158 1159 sig->group_exec_task = NULL; 1160 sig->notify_count = 0; 1161 1162 no_thread_group: 1163 /* we have changed execution domain */ 1164 tsk->exit_signal = SIGCHLD; 1165 1166 BUG_ON(!thread_group_leader(tsk)); 1167 return 0; 1168 1169 killed: 1170 /* protects against exit_notify() and __exit_signal() */ 1171 read_lock(&tasklist_lock); 1172 sig->group_exec_task = NULL; 1173 sig->notify_count = 0; 1174 read_unlock(&tasklist_lock); 1175 return -EAGAIN; 1176 } 1177 1178 1179 /* 1180 * This function makes sure the current process has its own signal table, 1181 * so that flush_signal_handlers can later reset the handlers without 1182 * disturbing other processes. (Other processes might share the signal 1183 * table via the CLONE_SIGHAND option to clone().) 1184 */ 1185 static int unshare_sighand(struct task_struct *me) 1186 { 1187 struct sighand_struct *oldsighand = me->sighand; 1188 1189 if (refcount_read(&oldsighand->count) != 1) { 1190 struct sighand_struct *newsighand; 1191 /* 1192 * This ->sighand is shared with the CLONE_SIGHAND 1193 * but not CLONE_THREAD task, switch to the new one. 1194 */ 1195 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1196 if (!newsighand) 1197 return -ENOMEM; 1198 1199 refcount_set(&newsighand->count, 1); 1200 memcpy(newsighand->action, oldsighand->action, 1201 sizeof(newsighand->action)); 1202 1203 write_lock_irq(&tasklist_lock); 1204 spin_lock(&oldsighand->siglock); 1205 rcu_assign_pointer(me->sighand, newsighand); 1206 spin_unlock(&oldsighand->siglock); 1207 write_unlock_irq(&tasklist_lock); 1208 1209 __cleanup_sighand(oldsighand); 1210 } 1211 return 0; 1212 } 1213 1214 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1215 { 1216 task_lock(tsk); 1217 /* Always NUL terminated and zero-padded */ 1218 strscpy_pad(buf, tsk->comm, buf_size); 1219 task_unlock(tsk); 1220 return buf; 1221 } 1222 EXPORT_SYMBOL_GPL(__get_task_comm); 1223 1224 /* 1225 * These functions flushes out all traces of the currently running executable 1226 * so that a new one can be started 1227 */ 1228 1229 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1230 { 1231 task_lock(tsk); 1232 trace_task_rename(tsk, buf); 1233 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1234 task_unlock(tsk); 1235 perf_event_comm(tsk, exec); 1236 } 1237 1238 /* 1239 * Calling this is the point of no return. None of the failures will be 1240 * seen by userspace since either the process is already taking a fatal 1241 * signal (via de_thread() or coredump), or will have SEGV raised 1242 * (after exec_mmap()) by search_binary_handler (see below). 1243 */ 1244 int begin_new_exec(struct linux_binprm * bprm) 1245 { 1246 struct task_struct *me = current; 1247 int retval; 1248 1249 /* Once we are committed compute the creds */ 1250 retval = bprm_creds_from_file(bprm); 1251 if (retval) 1252 return retval; 1253 1254 /* 1255 * Ensure all future errors are fatal. 1256 */ 1257 bprm->point_of_no_return = true; 1258 1259 /* 1260 * Make this the only thread in the thread group. 1261 */ 1262 retval = de_thread(me); 1263 if (retval) 1264 goto out; 1265 1266 /* 1267 * Cancel any io_uring activity across execve 1268 */ 1269 io_uring_task_cancel(); 1270 1271 /* Ensure the files table is not shared. */ 1272 retval = unshare_files(); 1273 if (retval) 1274 goto out; 1275 1276 /* 1277 * Must be called _before_ exec_mmap() as bprm->mm is 1278 * not visible until then. This also enables the update 1279 * to be lockless. 1280 */ 1281 retval = set_mm_exe_file(bprm->mm, bprm->file); 1282 if (retval) 1283 goto out; 1284 1285 /* If the binary is not readable then enforce mm->dumpable=0 */ 1286 would_dump(bprm, bprm->file); 1287 if (bprm->have_execfd) 1288 would_dump(bprm, bprm->executable); 1289 1290 /* 1291 * Release all of the old mmap stuff 1292 */ 1293 acct_arg_size(bprm, 0); 1294 retval = exec_mmap(bprm->mm); 1295 if (retval) 1296 goto out; 1297 1298 bprm->mm = NULL; 1299 1300 #ifdef CONFIG_POSIX_TIMERS 1301 exit_itimers(me->signal); 1302 flush_itimer_signals(); 1303 #endif 1304 1305 /* 1306 * Make the signal table private. 1307 */ 1308 retval = unshare_sighand(me); 1309 if (retval) 1310 goto out_unlock; 1311 1312 /* 1313 * Ensure that the uaccess routines can actually operate on userspace 1314 * pointers: 1315 */ 1316 force_uaccess_begin(); 1317 1318 if (me->flags & PF_KTHREAD) 1319 free_kthread_struct(me); 1320 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1321 PF_NOFREEZE | PF_NO_SETAFFINITY); 1322 flush_thread(); 1323 me->personality &= ~bprm->per_clear; 1324 1325 clear_syscall_work_syscall_user_dispatch(me); 1326 1327 /* 1328 * We have to apply CLOEXEC before we change whether the process is 1329 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1330 * trying to access the should-be-closed file descriptors of a process 1331 * undergoing exec(2). 1332 */ 1333 do_close_on_exec(me->files); 1334 1335 if (bprm->secureexec) { 1336 /* Make sure parent cannot signal privileged process. */ 1337 me->pdeath_signal = 0; 1338 1339 /* 1340 * For secureexec, reset the stack limit to sane default to 1341 * avoid bad behavior from the prior rlimits. This has to 1342 * happen before arch_pick_mmap_layout(), which examines 1343 * RLIMIT_STACK, but after the point of no return to avoid 1344 * needing to clean up the change on failure. 1345 */ 1346 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1347 bprm->rlim_stack.rlim_cur = _STK_LIM; 1348 } 1349 1350 me->sas_ss_sp = me->sas_ss_size = 0; 1351 1352 /* 1353 * Figure out dumpability. Note that this checking only of current 1354 * is wrong, but userspace depends on it. This should be testing 1355 * bprm->secureexec instead. 1356 */ 1357 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1358 !(uid_eq(current_euid(), current_uid()) && 1359 gid_eq(current_egid(), current_gid()))) 1360 set_dumpable(current->mm, suid_dumpable); 1361 else 1362 set_dumpable(current->mm, SUID_DUMP_USER); 1363 1364 perf_event_exec(); 1365 __set_task_comm(me, kbasename(bprm->filename), true); 1366 1367 /* An exec changes our domain. We are no longer part of the thread 1368 group */ 1369 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1370 flush_signal_handlers(me, 0); 1371 1372 retval = set_cred_ucounts(bprm->cred); 1373 if (retval < 0) 1374 goto out_unlock; 1375 1376 /* 1377 * install the new credentials for this executable 1378 */ 1379 security_bprm_committing_creds(bprm); 1380 1381 commit_creds(bprm->cred); 1382 bprm->cred = NULL; 1383 1384 /* 1385 * Disable monitoring for regular users 1386 * when executing setuid binaries. Must 1387 * wait until new credentials are committed 1388 * by commit_creds() above 1389 */ 1390 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1391 perf_event_exit_task(me); 1392 /* 1393 * cred_guard_mutex must be held at least to this point to prevent 1394 * ptrace_attach() from altering our determination of the task's 1395 * credentials; any time after this it may be unlocked. 1396 */ 1397 security_bprm_committed_creds(bprm); 1398 1399 /* Pass the opened binary to the interpreter. */ 1400 if (bprm->have_execfd) { 1401 retval = get_unused_fd_flags(0); 1402 if (retval < 0) 1403 goto out_unlock; 1404 fd_install(retval, bprm->executable); 1405 bprm->executable = NULL; 1406 bprm->execfd = retval; 1407 } 1408 return 0; 1409 1410 out_unlock: 1411 up_write(&me->signal->exec_update_lock); 1412 out: 1413 return retval; 1414 } 1415 EXPORT_SYMBOL(begin_new_exec); 1416 1417 void would_dump(struct linux_binprm *bprm, struct file *file) 1418 { 1419 struct inode *inode = file_inode(file); 1420 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 1421 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) { 1422 struct user_namespace *old, *user_ns; 1423 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1424 1425 /* Ensure mm->user_ns contains the executable */ 1426 user_ns = old = bprm->mm->user_ns; 1427 while ((user_ns != &init_user_ns) && 1428 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode)) 1429 user_ns = user_ns->parent; 1430 1431 if (old != user_ns) { 1432 bprm->mm->user_ns = get_user_ns(user_ns); 1433 put_user_ns(old); 1434 } 1435 } 1436 } 1437 EXPORT_SYMBOL(would_dump); 1438 1439 void setup_new_exec(struct linux_binprm * bprm) 1440 { 1441 /* Setup things that can depend upon the personality */ 1442 struct task_struct *me = current; 1443 1444 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1445 1446 arch_setup_new_exec(); 1447 1448 /* Set the new mm task size. We have to do that late because it may 1449 * depend on TIF_32BIT which is only updated in flush_thread() on 1450 * some architectures like powerpc 1451 */ 1452 me->mm->task_size = TASK_SIZE; 1453 up_write(&me->signal->exec_update_lock); 1454 mutex_unlock(&me->signal->cred_guard_mutex); 1455 } 1456 EXPORT_SYMBOL(setup_new_exec); 1457 1458 /* Runs immediately before start_thread() takes over. */ 1459 void finalize_exec(struct linux_binprm *bprm) 1460 { 1461 /* Store any stack rlimit changes before starting thread. */ 1462 task_lock(current->group_leader); 1463 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1464 task_unlock(current->group_leader); 1465 } 1466 EXPORT_SYMBOL(finalize_exec); 1467 1468 /* 1469 * Prepare credentials and lock ->cred_guard_mutex. 1470 * setup_new_exec() commits the new creds and drops the lock. 1471 * Or, if exec fails before, free_bprm() should release ->cred 1472 * and unlock. 1473 */ 1474 static int prepare_bprm_creds(struct linux_binprm *bprm) 1475 { 1476 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1477 return -ERESTARTNOINTR; 1478 1479 bprm->cred = prepare_exec_creds(); 1480 if (likely(bprm->cred)) 1481 return 0; 1482 1483 mutex_unlock(¤t->signal->cred_guard_mutex); 1484 return -ENOMEM; 1485 } 1486 1487 static void free_bprm(struct linux_binprm *bprm) 1488 { 1489 if (bprm->mm) { 1490 acct_arg_size(bprm, 0); 1491 mmput(bprm->mm); 1492 } 1493 free_arg_pages(bprm); 1494 if (bprm->cred) { 1495 mutex_unlock(¤t->signal->cred_guard_mutex); 1496 abort_creds(bprm->cred); 1497 } 1498 if (bprm->file) { 1499 allow_write_access(bprm->file); 1500 fput(bprm->file); 1501 } 1502 if (bprm->executable) 1503 fput(bprm->executable); 1504 /* If a binfmt changed the interp, free it. */ 1505 if (bprm->interp != bprm->filename) 1506 kfree(bprm->interp); 1507 kfree(bprm->fdpath); 1508 kfree(bprm); 1509 } 1510 1511 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1512 { 1513 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1514 int retval = -ENOMEM; 1515 if (!bprm) 1516 goto out; 1517 1518 if (fd == AT_FDCWD || filename->name[0] == '/') { 1519 bprm->filename = filename->name; 1520 } else { 1521 if (filename->name[0] == '\0') 1522 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1523 else 1524 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1525 fd, filename->name); 1526 if (!bprm->fdpath) 1527 goto out_free; 1528 1529 bprm->filename = bprm->fdpath; 1530 } 1531 bprm->interp = bprm->filename; 1532 1533 retval = bprm_mm_init(bprm); 1534 if (retval) 1535 goto out_free; 1536 return bprm; 1537 1538 out_free: 1539 free_bprm(bprm); 1540 out: 1541 return ERR_PTR(retval); 1542 } 1543 1544 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1545 { 1546 /* If a binfmt changed the interp, free it first. */ 1547 if (bprm->interp != bprm->filename) 1548 kfree(bprm->interp); 1549 bprm->interp = kstrdup(interp, GFP_KERNEL); 1550 if (!bprm->interp) 1551 return -ENOMEM; 1552 return 0; 1553 } 1554 EXPORT_SYMBOL(bprm_change_interp); 1555 1556 /* 1557 * determine how safe it is to execute the proposed program 1558 * - the caller must hold ->cred_guard_mutex to protect against 1559 * PTRACE_ATTACH or seccomp thread-sync 1560 */ 1561 static void check_unsafe_exec(struct linux_binprm *bprm) 1562 { 1563 struct task_struct *p = current, *t; 1564 unsigned n_fs; 1565 1566 if (p->ptrace) 1567 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1568 1569 /* 1570 * This isn't strictly necessary, but it makes it harder for LSMs to 1571 * mess up. 1572 */ 1573 if (task_no_new_privs(current)) 1574 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1575 1576 t = p; 1577 n_fs = 1; 1578 spin_lock(&p->fs->lock); 1579 rcu_read_lock(); 1580 while_each_thread(p, t) { 1581 if (t->fs == p->fs) 1582 n_fs++; 1583 } 1584 rcu_read_unlock(); 1585 1586 if (p->fs->users > n_fs) 1587 bprm->unsafe |= LSM_UNSAFE_SHARE; 1588 else 1589 p->fs->in_exec = 1; 1590 spin_unlock(&p->fs->lock); 1591 } 1592 1593 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1594 { 1595 /* Handle suid and sgid on files */ 1596 struct user_namespace *mnt_userns; 1597 struct inode *inode; 1598 unsigned int mode; 1599 kuid_t uid; 1600 kgid_t gid; 1601 1602 if (!mnt_may_suid(file->f_path.mnt)) 1603 return; 1604 1605 if (task_no_new_privs(current)) 1606 return; 1607 1608 inode = file->f_path.dentry->d_inode; 1609 mode = READ_ONCE(inode->i_mode); 1610 if (!(mode & (S_ISUID|S_ISGID))) 1611 return; 1612 1613 mnt_userns = file_mnt_user_ns(file); 1614 1615 /* Be careful if suid/sgid is set */ 1616 inode_lock(inode); 1617 1618 /* reload atomically mode/uid/gid now that lock held */ 1619 mode = inode->i_mode; 1620 uid = i_uid_into_mnt(mnt_userns, inode); 1621 gid = i_gid_into_mnt(mnt_userns, inode); 1622 inode_unlock(inode); 1623 1624 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1625 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1626 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1627 return; 1628 1629 if (mode & S_ISUID) { 1630 bprm->per_clear |= PER_CLEAR_ON_SETID; 1631 bprm->cred->euid = uid; 1632 } 1633 1634 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1635 bprm->per_clear |= PER_CLEAR_ON_SETID; 1636 bprm->cred->egid = gid; 1637 } 1638 } 1639 1640 /* 1641 * Compute brpm->cred based upon the final binary. 1642 */ 1643 static int bprm_creds_from_file(struct linux_binprm *bprm) 1644 { 1645 /* Compute creds based on which file? */ 1646 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1647 1648 bprm_fill_uid(bprm, file); 1649 return security_bprm_creds_from_file(bprm, file); 1650 } 1651 1652 /* 1653 * Fill the binprm structure from the inode. 1654 * Read the first BINPRM_BUF_SIZE bytes 1655 * 1656 * This may be called multiple times for binary chains (scripts for example). 1657 */ 1658 static int prepare_binprm(struct linux_binprm *bprm) 1659 { 1660 loff_t pos = 0; 1661 1662 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1663 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1664 } 1665 1666 /* 1667 * Arguments are '\0' separated strings found at the location bprm->p 1668 * points to; chop off the first by relocating brpm->p to right after 1669 * the first '\0' encountered. 1670 */ 1671 int remove_arg_zero(struct linux_binprm *bprm) 1672 { 1673 int ret = 0; 1674 unsigned long offset; 1675 char *kaddr; 1676 struct page *page; 1677 1678 if (!bprm->argc) 1679 return 0; 1680 1681 do { 1682 offset = bprm->p & ~PAGE_MASK; 1683 page = get_arg_page(bprm, bprm->p, 0); 1684 if (!page) { 1685 ret = -EFAULT; 1686 goto out; 1687 } 1688 kaddr = kmap_atomic(page); 1689 1690 for (; offset < PAGE_SIZE && kaddr[offset]; 1691 offset++, bprm->p++) 1692 ; 1693 1694 kunmap_atomic(kaddr); 1695 put_arg_page(page); 1696 } while (offset == PAGE_SIZE); 1697 1698 bprm->p++; 1699 bprm->argc--; 1700 ret = 0; 1701 1702 out: 1703 return ret; 1704 } 1705 EXPORT_SYMBOL(remove_arg_zero); 1706 1707 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1708 /* 1709 * cycle the list of binary formats handler, until one recognizes the image 1710 */ 1711 static int search_binary_handler(struct linux_binprm *bprm) 1712 { 1713 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1714 struct linux_binfmt *fmt; 1715 int retval; 1716 1717 retval = prepare_binprm(bprm); 1718 if (retval < 0) 1719 return retval; 1720 1721 retval = security_bprm_check(bprm); 1722 if (retval) 1723 return retval; 1724 1725 retval = -ENOENT; 1726 retry: 1727 read_lock(&binfmt_lock); 1728 list_for_each_entry(fmt, &formats, lh) { 1729 if (!try_module_get(fmt->module)) 1730 continue; 1731 read_unlock(&binfmt_lock); 1732 1733 retval = fmt->load_binary(bprm); 1734 1735 read_lock(&binfmt_lock); 1736 put_binfmt(fmt); 1737 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1738 read_unlock(&binfmt_lock); 1739 return retval; 1740 } 1741 } 1742 read_unlock(&binfmt_lock); 1743 1744 if (need_retry) { 1745 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1746 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1747 return retval; 1748 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1749 return retval; 1750 need_retry = false; 1751 goto retry; 1752 } 1753 1754 return retval; 1755 } 1756 1757 static int exec_binprm(struct linux_binprm *bprm) 1758 { 1759 pid_t old_pid, old_vpid; 1760 int ret, depth; 1761 1762 /* Need to fetch pid before load_binary changes it */ 1763 old_pid = current->pid; 1764 rcu_read_lock(); 1765 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1766 rcu_read_unlock(); 1767 1768 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1769 for (depth = 0;; depth++) { 1770 struct file *exec; 1771 if (depth > 5) 1772 return -ELOOP; 1773 1774 ret = search_binary_handler(bprm); 1775 if (ret < 0) 1776 return ret; 1777 if (!bprm->interpreter) 1778 break; 1779 1780 exec = bprm->file; 1781 bprm->file = bprm->interpreter; 1782 bprm->interpreter = NULL; 1783 1784 allow_write_access(exec); 1785 if (unlikely(bprm->have_execfd)) { 1786 if (bprm->executable) { 1787 fput(exec); 1788 return -ENOEXEC; 1789 } 1790 bprm->executable = exec; 1791 } else 1792 fput(exec); 1793 } 1794 1795 audit_bprm(bprm); 1796 trace_sched_process_exec(current, old_pid, bprm); 1797 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1798 proc_exec_connector(current); 1799 return 0; 1800 } 1801 1802 /* 1803 * sys_execve() executes a new program. 1804 */ 1805 static int bprm_execve(struct linux_binprm *bprm, 1806 int fd, struct filename *filename, int flags) 1807 { 1808 struct file *file; 1809 int retval; 1810 1811 retval = prepare_bprm_creds(bprm); 1812 if (retval) 1813 return retval; 1814 1815 check_unsafe_exec(bprm); 1816 current->in_execve = 1; 1817 1818 file = do_open_execat(fd, filename, flags); 1819 retval = PTR_ERR(file); 1820 if (IS_ERR(file)) 1821 goto out_unmark; 1822 1823 sched_exec(); 1824 1825 bprm->file = file; 1826 /* 1827 * Record that a name derived from an O_CLOEXEC fd will be 1828 * inaccessible after exec. This allows the code in exec to 1829 * choose to fail when the executable is not mmaped into the 1830 * interpreter and an open file descriptor is not passed to 1831 * the interpreter. This makes for a better user experience 1832 * than having the interpreter start and then immediately fail 1833 * when it finds the executable is inaccessible. 1834 */ 1835 if (bprm->fdpath && get_close_on_exec(fd)) 1836 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1837 1838 /* Set the unchanging part of bprm->cred */ 1839 retval = security_bprm_creds_for_exec(bprm); 1840 if (retval) 1841 goto out; 1842 1843 retval = exec_binprm(bprm); 1844 if (retval < 0) 1845 goto out; 1846 1847 /* execve succeeded */ 1848 current->fs->in_exec = 0; 1849 current->in_execve = 0; 1850 rseq_execve(current); 1851 acct_update_integrals(current); 1852 task_numa_free(current, false); 1853 return retval; 1854 1855 out: 1856 /* 1857 * If past the point of no return ensure the code never 1858 * returns to the userspace process. Use an existing fatal 1859 * signal if present otherwise terminate the process with 1860 * SIGSEGV. 1861 */ 1862 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1863 force_fatal_sig(SIGSEGV); 1864 1865 out_unmark: 1866 current->fs->in_exec = 0; 1867 current->in_execve = 0; 1868 1869 return retval; 1870 } 1871 1872 static int do_execveat_common(int fd, struct filename *filename, 1873 struct user_arg_ptr argv, 1874 struct user_arg_ptr envp, 1875 int flags) 1876 { 1877 struct linux_binprm *bprm; 1878 int retval; 1879 1880 if (IS_ERR(filename)) 1881 return PTR_ERR(filename); 1882 1883 /* 1884 * We move the actual failure in case of RLIMIT_NPROC excess from 1885 * set*uid() to execve() because too many poorly written programs 1886 * don't check setuid() return code. Here we additionally recheck 1887 * whether NPROC limit is still exceeded. 1888 */ 1889 if ((current->flags & PF_NPROC_EXCEEDED) && 1890 is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1891 retval = -EAGAIN; 1892 goto out_ret; 1893 } 1894 1895 /* We're below the limit (still or again), so we don't want to make 1896 * further execve() calls fail. */ 1897 current->flags &= ~PF_NPROC_EXCEEDED; 1898 1899 bprm = alloc_bprm(fd, filename); 1900 if (IS_ERR(bprm)) { 1901 retval = PTR_ERR(bprm); 1902 goto out_ret; 1903 } 1904 1905 retval = count(argv, MAX_ARG_STRINGS); 1906 if (retval == 0) 1907 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1908 current->comm, bprm->filename); 1909 if (retval < 0) 1910 goto out_free; 1911 bprm->argc = retval; 1912 1913 retval = count(envp, MAX_ARG_STRINGS); 1914 if (retval < 0) 1915 goto out_free; 1916 bprm->envc = retval; 1917 1918 retval = bprm_stack_limits(bprm); 1919 if (retval < 0) 1920 goto out_free; 1921 1922 retval = copy_string_kernel(bprm->filename, bprm); 1923 if (retval < 0) 1924 goto out_free; 1925 bprm->exec = bprm->p; 1926 1927 retval = copy_strings(bprm->envc, envp, bprm); 1928 if (retval < 0) 1929 goto out_free; 1930 1931 retval = copy_strings(bprm->argc, argv, bprm); 1932 if (retval < 0) 1933 goto out_free; 1934 1935 /* 1936 * When argv is empty, add an empty string ("") as argv[0] to 1937 * ensure confused userspace programs that start processing 1938 * from argv[1] won't end up walking envp. See also 1939 * bprm_stack_limits(). 1940 */ 1941 if (bprm->argc == 0) { 1942 retval = copy_string_kernel("", bprm); 1943 if (retval < 0) 1944 goto out_free; 1945 bprm->argc = 1; 1946 } 1947 1948 retval = bprm_execve(bprm, fd, filename, flags); 1949 out_free: 1950 free_bprm(bprm); 1951 1952 out_ret: 1953 putname(filename); 1954 return retval; 1955 } 1956 1957 int kernel_execve(const char *kernel_filename, 1958 const char *const *argv, const char *const *envp) 1959 { 1960 struct filename *filename; 1961 struct linux_binprm *bprm; 1962 int fd = AT_FDCWD; 1963 int retval; 1964 1965 filename = getname_kernel(kernel_filename); 1966 if (IS_ERR(filename)) 1967 return PTR_ERR(filename); 1968 1969 bprm = alloc_bprm(fd, filename); 1970 if (IS_ERR(bprm)) { 1971 retval = PTR_ERR(bprm); 1972 goto out_ret; 1973 } 1974 1975 retval = count_strings_kernel(argv); 1976 if (WARN_ON_ONCE(retval == 0)) 1977 retval = -EINVAL; 1978 if (retval < 0) 1979 goto out_free; 1980 bprm->argc = retval; 1981 1982 retval = count_strings_kernel(envp); 1983 if (retval < 0) 1984 goto out_free; 1985 bprm->envc = retval; 1986 1987 retval = bprm_stack_limits(bprm); 1988 if (retval < 0) 1989 goto out_free; 1990 1991 retval = copy_string_kernel(bprm->filename, bprm); 1992 if (retval < 0) 1993 goto out_free; 1994 bprm->exec = bprm->p; 1995 1996 retval = copy_strings_kernel(bprm->envc, envp, bprm); 1997 if (retval < 0) 1998 goto out_free; 1999 2000 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2001 if (retval < 0) 2002 goto out_free; 2003 2004 retval = bprm_execve(bprm, fd, filename, 0); 2005 out_free: 2006 free_bprm(bprm); 2007 out_ret: 2008 putname(filename); 2009 return retval; 2010 } 2011 2012 static int do_execve(struct filename *filename, 2013 const char __user *const __user *__argv, 2014 const char __user *const __user *__envp) 2015 { 2016 struct user_arg_ptr argv = { .ptr.native = __argv }; 2017 struct user_arg_ptr envp = { .ptr.native = __envp }; 2018 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2019 } 2020 2021 static int do_execveat(int fd, struct filename *filename, 2022 const char __user *const __user *__argv, 2023 const char __user *const __user *__envp, 2024 int flags) 2025 { 2026 struct user_arg_ptr argv = { .ptr.native = __argv }; 2027 struct user_arg_ptr envp = { .ptr.native = __envp }; 2028 2029 return do_execveat_common(fd, filename, argv, envp, flags); 2030 } 2031 2032 #ifdef CONFIG_COMPAT 2033 static int compat_do_execve(struct filename *filename, 2034 const compat_uptr_t __user *__argv, 2035 const compat_uptr_t __user *__envp) 2036 { 2037 struct user_arg_ptr argv = { 2038 .is_compat = true, 2039 .ptr.compat = __argv, 2040 }; 2041 struct user_arg_ptr envp = { 2042 .is_compat = true, 2043 .ptr.compat = __envp, 2044 }; 2045 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2046 } 2047 2048 static int compat_do_execveat(int fd, struct filename *filename, 2049 const compat_uptr_t __user *__argv, 2050 const compat_uptr_t __user *__envp, 2051 int flags) 2052 { 2053 struct user_arg_ptr argv = { 2054 .is_compat = true, 2055 .ptr.compat = __argv, 2056 }; 2057 struct user_arg_ptr envp = { 2058 .is_compat = true, 2059 .ptr.compat = __envp, 2060 }; 2061 return do_execveat_common(fd, filename, argv, envp, flags); 2062 } 2063 #endif 2064 2065 void set_binfmt(struct linux_binfmt *new) 2066 { 2067 struct mm_struct *mm = current->mm; 2068 2069 if (mm->binfmt) 2070 module_put(mm->binfmt->module); 2071 2072 mm->binfmt = new; 2073 if (new) 2074 __module_get(new->module); 2075 } 2076 EXPORT_SYMBOL(set_binfmt); 2077 2078 /* 2079 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2080 */ 2081 void set_dumpable(struct mm_struct *mm, int value) 2082 { 2083 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2084 return; 2085 2086 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2087 } 2088 2089 SYSCALL_DEFINE3(execve, 2090 const char __user *, filename, 2091 const char __user *const __user *, argv, 2092 const char __user *const __user *, envp) 2093 { 2094 return do_execve(getname(filename), argv, envp); 2095 } 2096 2097 SYSCALL_DEFINE5(execveat, 2098 int, fd, const char __user *, filename, 2099 const char __user *const __user *, argv, 2100 const char __user *const __user *, envp, 2101 int, flags) 2102 { 2103 return do_execveat(fd, 2104 getname_uflags(filename, flags), 2105 argv, envp, flags); 2106 } 2107 2108 #ifdef CONFIG_COMPAT 2109 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2110 const compat_uptr_t __user *, argv, 2111 const compat_uptr_t __user *, envp) 2112 { 2113 return compat_do_execve(getname(filename), argv, envp); 2114 } 2115 2116 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2117 const char __user *, filename, 2118 const compat_uptr_t __user *, argv, 2119 const compat_uptr_t __user *, envp, 2120 int, flags) 2121 { 2122 return compat_do_execveat(fd, 2123 getname_uflags(filename, flags), 2124 argv, envp, flags); 2125 } 2126 #endif 2127 2128 #ifdef CONFIG_SYSCTL 2129 2130 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write, 2131 void *buffer, size_t *lenp, loff_t *ppos) 2132 { 2133 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2134 2135 if (!error) 2136 validate_coredump_safety(); 2137 return error; 2138 } 2139 2140 static struct ctl_table fs_exec_sysctls[] = { 2141 { 2142 .procname = "suid_dumpable", 2143 .data = &suid_dumpable, 2144 .maxlen = sizeof(int), 2145 .mode = 0644, 2146 .proc_handler = proc_dointvec_minmax_coredump, 2147 .extra1 = SYSCTL_ZERO, 2148 .extra2 = SYSCTL_TWO, 2149 }, 2150 { } 2151 }; 2152 2153 static int __init init_fs_exec_sysctls(void) 2154 { 2155 register_sysctl_init("fs", fs_exec_sysctls); 2156 return 0; 2157 } 2158 2159 fs_initcall(init_fs_exec_sysctls); 2160 #endif /* CONFIG_SYSCTL */ 2161