1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/vmacache.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/pagemap.h> 36 #include <linux/perf_event.h> 37 #include <linux/highmem.h> 38 #include <linux/spinlock.h> 39 #include <linux/key.h> 40 #include <linux/personality.h> 41 #include <linux/binfmts.h> 42 #include <linux/utsname.h> 43 #include <linux/pid_namespace.h> 44 #include <linux/module.h> 45 #include <linux/namei.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 #include <linux/tracehook.h> 53 #include <linux/kmod.h> 54 #include <linux/fsnotify.h> 55 #include <linux/fs_struct.h> 56 #include <linux/pipe_fs_i.h> 57 #include <linux/oom.h> 58 #include <linux/compat.h> 59 #include <linux/vmalloc.h> 60 61 #include <asm/uaccess.h> 62 #include <asm/mmu_context.h> 63 #include <asm/tlb.h> 64 65 #include <trace/events/task.h> 66 #include "internal.h" 67 68 #include <trace/events/sched.h> 69 70 int suid_dumpable = 0; 71 72 static LIST_HEAD(formats); 73 static DEFINE_RWLOCK(binfmt_lock); 74 75 void __register_binfmt(struct linux_binfmt * fmt, int insert) 76 { 77 BUG_ON(!fmt); 78 if (WARN_ON(!fmt->load_binary)) 79 return; 80 write_lock(&binfmt_lock); 81 insert ? list_add(&fmt->lh, &formats) : 82 list_add_tail(&fmt->lh, &formats); 83 write_unlock(&binfmt_lock); 84 } 85 86 EXPORT_SYMBOL(__register_binfmt); 87 88 void unregister_binfmt(struct linux_binfmt * fmt) 89 { 90 write_lock(&binfmt_lock); 91 list_del(&fmt->lh); 92 write_unlock(&binfmt_lock); 93 } 94 95 EXPORT_SYMBOL(unregister_binfmt); 96 97 static inline void put_binfmt(struct linux_binfmt * fmt) 98 { 99 module_put(fmt->module); 100 } 101 102 bool path_noexec(const struct path *path) 103 { 104 return (path->mnt->mnt_flags & MNT_NOEXEC) || 105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 106 } 107 108 #ifdef CONFIG_USELIB 109 /* 110 * Note that a shared library must be both readable and executable due to 111 * security reasons. 112 * 113 * Also note that we take the address to load from from the file itself. 114 */ 115 SYSCALL_DEFINE1(uselib, const char __user *, library) 116 { 117 struct linux_binfmt *fmt; 118 struct file *file; 119 struct filename *tmp = getname(library); 120 int error = PTR_ERR(tmp); 121 static const struct open_flags uselib_flags = { 122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 123 .acc_mode = MAY_READ | MAY_EXEC, 124 .intent = LOOKUP_OPEN, 125 .lookup_flags = LOOKUP_FOLLOW, 126 }; 127 128 if (IS_ERR(tmp)) 129 goto out; 130 131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 132 putname(tmp); 133 error = PTR_ERR(file); 134 if (IS_ERR(file)) 135 goto out; 136 137 error = -EINVAL; 138 if (!S_ISREG(file_inode(file)->i_mode)) 139 goto exit; 140 141 error = -EACCES; 142 if (path_noexec(&file->f_path)) 143 goto exit; 144 145 fsnotify_open(file); 146 147 error = -ENOEXEC; 148 149 read_lock(&binfmt_lock); 150 list_for_each_entry(fmt, &formats, lh) { 151 if (!fmt->load_shlib) 152 continue; 153 if (!try_module_get(fmt->module)) 154 continue; 155 read_unlock(&binfmt_lock); 156 error = fmt->load_shlib(file); 157 read_lock(&binfmt_lock); 158 put_binfmt(fmt); 159 if (error != -ENOEXEC) 160 break; 161 } 162 read_unlock(&binfmt_lock); 163 exit: 164 fput(file); 165 out: 166 return error; 167 } 168 #endif /* #ifdef CONFIG_USELIB */ 169 170 #ifdef CONFIG_MMU 171 /* 172 * The nascent bprm->mm is not visible until exec_mmap() but it can 173 * use a lot of memory, account these pages in current->mm temporary 174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 175 * change the counter back via acct_arg_size(0). 176 */ 177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 178 { 179 struct mm_struct *mm = current->mm; 180 long diff = (long)(pages - bprm->vma_pages); 181 182 if (!mm || !diff) 183 return; 184 185 bprm->vma_pages = pages; 186 add_mm_counter(mm, MM_ANONPAGES, diff); 187 } 188 189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 190 int write) 191 { 192 struct page *page; 193 int ret; 194 195 #ifdef CONFIG_STACK_GROWSUP 196 if (write) { 197 ret = expand_downwards(bprm->vma, pos); 198 if (ret < 0) 199 return NULL; 200 } 201 #endif 202 /* 203 * We are doing an exec(). 'current' is the process 204 * doing the exec and bprm->mm is the new process's mm. 205 */ 206 ret = get_user_pages_remote(current, bprm->mm, pos, 1, write, 207 1, &page, NULL); 208 if (ret <= 0) 209 return NULL; 210 211 if (write) { 212 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 213 struct rlimit *rlim; 214 215 acct_arg_size(bprm, size / PAGE_SIZE); 216 217 /* 218 * We've historically supported up to 32 pages (ARG_MAX) 219 * of argument strings even with small stacks 220 */ 221 if (size <= ARG_MAX) 222 return page; 223 224 /* 225 * Limit to 1/4-th the stack size for the argv+env strings. 226 * This ensures that: 227 * - the remaining binfmt code will not run out of stack space, 228 * - the program will have a reasonable amount of stack left 229 * to work from. 230 */ 231 rlim = current->signal->rlim; 232 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 233 put_page(page); 234 return NULL; 235 } 236 } 237 238 return page; 239 } 240 241 static void put_arg_page(struct page *page) 242 { 243 put_page(page); 244 } 245 246 static void free_arg_page(struct linux_binprm *bprm, int i) 247 { 248 } 249 250 static void free_arg_pages(struct linux_binprm *bprm) 251 { 252 } 253 254 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 255 struct page *page) 256 { 257 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 258 } 259 260 static int __bprm_mm_init(struct linux_binprm *bprm) 261 { 262 int err; 263 struct vm_area_struct *vma = NULL; 264 struct mm_struct *mm = bprm->mm; 265 266 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 267 if (!vma) 268 return -ENOMEM; 269 270 down_write(&mm->mmap_sem); 271 vma->vm_mm = mm; 272 273 /* 274 * Place the stack at the largest stack address the architecture 275 * supports. Later, we'll move this to an appropriate place. We don't 276 * use STACK_TOP because that can depend on attributes which aren't 277 * configured yet. 278 */ 279 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 280 vma->vm_end = STACK_TOP_MAX; 281 vma->vm_start = vma->vm_end - PAGE_SIZE; 282 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 283 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 284 INIT_LIST_HEAD(&vma->anon_vma_chain); 285 286 err = insert_vm_struct(mm, vma); 287 if (err) 288 goto err; 289 290 mm->stack_vm = mm->total_vm = 1; 291 arch_bprm_mm_init(mm, vma); 292 up_write(&mm->mmap_sem); 293 bprm->p = vma->vm_end - sizeof(void *); 294 return 0; 295 err: 296 up_write(&mm->mmap_sem); 297 bprm->vma = NULL; 298 kmem_cache_free(vm_area_cachep, vma); 299 return err; 300 } 301 302 static bool valid_arg_len(struct linux_binprm *bprm, long len) 303 { 304 return len <= MAX_ARG_STRLEN; 305 } 306 307 #else 308 309 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 310 { 311 } 312 313 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 314 int write) 315 { 316 struct page *page; 317 318 page = bprm->page[pos / PAGE_SIZE]; 319 if (!page && write) { 320 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 321 if (!page) 322 return NULL; 323 bprm->page[pos / PAGE_SIZE] = page; 324 } 325 326 return page; 327 } 328 329 static void put_arg_page(struct page *page) 330 { 331 } 332 333 static void free_arg_page(struct linux_binprm *bprm, int i) 334 { 335 if (bprm->page[i]) { 336 __free_page(bprm->page[i]); 337 bprm->page[i] = NULL; 338 } 339 } 340 341 static void free_arg_pages(struct linux_binprm *bprm) 342 { 343 int i; 344 345 for (i = 0; i < MAX_ARG_PAGES; i++) 346 free_arg_page(bprm, i); 347 } 348 349 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 350 struct page *page) 351 { 352 } 353 354 static int __bprm_mm_init(struct linux_binprm *bprm) 355 { 356 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 357 return 0; 358 } 359 360 static bool valid_arg_len(struct linux_binprm *bprm, long len) 361 { 362 return len <= bprm->p; 363 } 364 365 #endif /* CONFIG_MMU */ 366 367 /* 368 * Create a new mm_struct and populate it with a temporary stack 369 * vm_area_struct. We don't have enough context at this point to set the stack 370 * flags, permissions, and offset, so we use temporary values. We'll update 371 * them later in setup_arg_pages(). 372 */ 373 static int bprm_mm_init(struct linux_binprm *bprm) 374 { 375 int err; 376 struct mm_struct *mm = NULL; 377 378 bprm->mm = mm = mm_alloc(); 379 err = -ENOMEM; 380 if (!mm) 381 goto err; 382 383 err = __bprm_mm_init(bprm); 384 if (err) 385 goto err; 386 387 return 0; 388 389 err: 390 if (mm) { 391 bprm->mm = NULL; 392 mmdrop(mm); 393 } 394 395 return err; 396 } 397 398 struct user_arg_ptr { 399 #ifdef CONFIG_COMPAT 400 bool is_compat; 401 #endif 402 union { 403 const char __user *const __user *native; 404 #ifdef CONFIG_COMPAT 405 const compat_uptr_t __user *compat; 406 #endif 407 } ptr; 408 }; 409 410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 411 { 412 const char __user *native; 413 414 #ifdef CONFIG_COMPAT 415 if (unlikely(argv.is_compat)) { 416 compat_uptr_t compat; 417 418 if (get_user(compat, argv.ptr.compat + nr)) 419 return ERR_PTR(-EFAULT); 420 421 return compat_ptr(compat); 422 } 423 #endif 424 425 if (get_user(native, argv.ptr.native + nr)) 426 return ERR_PTR(-EFAULT); 427 428 return native; 429 } 430 431 /* 432 * count() counts the number of strings in array ARGV. 433 */ 434 static int count(struct user_arg_ptr argv, int max) 435 { 436 int i = 0; 437 438 if (argv.ptr.native != NULL) { 439 for (;;) { 440 const char __user *p = get_user_arg_ptr(argv, i); 441 442 if (!p) 443 break; 444 445 if (IS_ERR(p)) 446 return -EFAULT; 447 448 if (i >= max) 449 return -E2BIG; 450 ++i; 451 452 if (fatal_signal_pending(current)) 453 return -ERESTARTNOHAND; 454 cond_resched(); 455 } 456 } 457 return i; 458 } 459 460 /* 461 * 'copy_strings()' copies argument/environment strings from the old 462 * processes's memory to the new process's stack. The call to get_user_pages() 463 * ensures the destination page is created and not swapped out. 464 */ 465 static int copy_strings(int argc, struct user_arg_ptr argv, 466 struct linux_binprm *bprm) 467 { 468 struct page *kmapped_page = NULL; 469 char *kaddr = NULL; 470 unsigned long kpos = 0; 471 int ret; 472 473 while (argc-- > 0) { 474 const char __user *str; 475 int len; 476 unsigned long pos; 477 478 ret = -EFAULT; 479 str = get_user_arg_ptr(argv, argc); 480 if (IS_ERR(str)) 481 goto out; 482 483 len = strnlen_user(str, MAX_ARG_STRLEN); 484 if (!len) 485 goto out; 486 487 ret = -E2BIG; 488 if (!valid_arg_len(bprm, len)) 489 goto out; 490 491 /* We're going to work our way backwords. */ 492 pos = bprm->p; 493 str += len; 494 bprm->p -= len; 495 496 while (len > 0) { 497 int offset, bytes_to_copy; 498 499 if (fatal_signal_pending(current)) { 500 ret = -ERESTARTNOHAND; 501 goto out; 502 } 503 cond_resched(); 504 505 offset = pos % PAGE_SIZE; 506 if (offset == 0) 507 offset = PAGE_SIZE; 508 509 bytes_to_copy = offset; 510 if (bytes_to_copy > len) 511 bytes_to_copy = len; 512 513 offset -= bytes_to_copy; 514 pos -= bytes_to_copy; 515 str -= bytes_to_copy; 516 len -= bytes_to_copy; 517 518 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 519 struct page *page; 520 521 page = get_arg_page(bprm, pos, 1); 522 if (!page) { 523 ret = -E2BIG; 524 goto out; 525 } 526 527 if (kmapped_page) { 528 flush_kernel_dcache_page(kmapped_page); 529 kunmap(kmapped_page); 530 put_arg_page(kmapped_page); 531 } 532 kmapped_page = page; 533 kaddr = kmap(kmapped_page); 534 kpos = pos & PAGE_MASK; 535 flush_arg_page(bprm, kpos, kmapped_page); 536 } 537 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 538 ret = -EFAULT; 539 goto out; 540 } 541 } 542 } 543 ret = 0; 544 out: 545 if (kmapped_page) { 546 flush_kernel_dcache_page(kmapped_page); 547 kunmap(kmapped_page); 548 put_arg_page(kmapped_page); 549 } 550 return ret; 551 } 552 553 /* 554 * Like copy_strings, but get argv and its values from kernel memory. 555 */ 556 int copy_strings_kernel(int argc, const char *const *__argv, 557 struct linux_binprm *bprm) 558 { 559 int r; 560 mm_segment_t oldfs = get_fs(); 561 struct user_arg_ptr argv = { 562 .ptr.native = (const char __user *const __user *)__argv, 563 }; 564 565 set_fs(KERNEL_DS); 566 r = copy_strings(argc, argv, bprm); 567 set_fs(oldfs); 568 569 return r; 570 } 571 EXPORT_SYMBOL(copy_strings_kernel); 572 573 #ifdef CONFIG_MMU 574 575 /* 576 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 577 * the binfmt code determines where the new stack should reside, we shift it to 578 * its final location. The process proceeds as follows: 579 * 580 * 1) Use shift to calculate the new vma endpoints. 581 * 2) Extend vma to cover both the old and new ranges. This ensures the 582 * arguments passed to subsequent functions are consistent. 583 * 3) Move vma's page tables to the new range. 584 * 4) Free up any cleared pgd range. 585 * 5) Shrink the vma to cover only the new range. 586 */ 587 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 588 { 589 struct mm_struct *mm = vma->vm_mm; 590 unsigned long old_start = vma->vm_start; 591 unsigned long old_end = vma->vm_end; 592 unsigned long length = old_end - old_start; 593 unsigned long new_start = old_start - shift; 594 unsigned long new_end = old_end - shift; 595 struct mmu_gather tlb; 596 597 BUG_ON(new_start > new_end); 598 599 /* 600 * ensure there are no vmas between where we want to go 601 * and where we are 602 */ 603 if (vma != find_vma(mm, new_start)) 604 return -EFAULT; 605 606 /* 607 * cover the whole range: [new_start, old_end) 608 */ 609 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 610 return -ENOMEM; 611 612 /* 613 * move the page tables downwards, on failure we rely on 614 * process cleanup to remove whatever mess we made. 615 */ 616 if (length != move_page_tables(vma, old_start, 617 vma, new_start, length, false)) 618 return -ENOMEM; 619 620 lru_add_drain(); 621 tlb_gather_mmu(&tlb, mm, old_start, old_end); 622 if (new_end > old_start) { 623 /* 624 * when the old and new regions overlap clear from new_end. 625 */ 626 free_pgd_range(&tlb, new_end, old_end, new_end, 627 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 628 } else { 629 /* 630 * otherwise, clean from old_start; this is done to not touch 631 * the address space in [new_end, old_start) some architectures 632 * have constraints on va-space that make this illegal (IA64) - 633 * for the others its just a little faster. 634 */ 635 free_pgd_range(&tlb, old_start, old_end, new_end, 636 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 637 } 638 tlb_finish_mmu(&tlb, old_start, old_end); 639 640 /* 641 * Shrink the vma to just the new range. Always succeeds. 642 */ 643 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 644 645 return 0; 646 } 647 648 /* 649 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 650 * the stack is optionally relocated, and some extra space is added. 651 */ 652 int setup_arg_pages(struct linux_binprm *bprm, 653 unsigned long stack_top, 654 int executable_stack) 655 { 656 unsigned long ret; 657 unsigned long stack_shift; 658 struct mm_struct *mm = current->mm; 659 struct vm_area_struct *vma = bprm->vma; 660 struct vm_area_struct *prev = NULL; 661 unsigned long vm_flags; 662 unsigned long stack_base; 663 unsigned long stack_size; 664 unsigned long stack_expand; 665 unsigned long rlim_stack; 666 667 #ifdef CONFIG_STACK_GROWSUP 668 /* Limit stack size */ 669 stack_base = rlimit_max(RLIMIT_STACK); 670 if (stack_base > STACK_SIZE_MAX) 671 stack_base = STACK_SIZE_MAX; 672 673 /* Add space for stack randomization. */ 674 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 675 676 /* Make sure we didn't let the argument array grow too large. */ 677 if (vma->vm_end - vma->vm_start > stack_base) 678 return -ENOMEM; 679 680 stack_base = PAGE_ALIGN(stack_top - stack_base); 681 682 stack_shift = vma->vm_start - stack_base; 683 mm->arg_start = bprm->p - stack_shift; 684 bprm->p = vma->vm_end - stack_shift; 685 #else 686 stack_top = arch_align_stack(stack_top); 687 stack_top = PAGE_ALIGN(stack_top); 688 689 if (unlikely(stack_top < mmap_min_addr) || 690 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 691 return -ENOMEM; 692 693 stack_shift = vma->vm_end - stack_top; 694 695 bprm->p -= stack_shift; 696 mm->arg_start = bprm->p; 697 #endif 698 699 if (bprm->loader) 700 bprm->loader -= stack_shift; 701 bprm->exec -= stack_shift; 702 703 down_write(&mm->mmap_sem); 704 vm_flags = VM_STACK_FLAGS; 705 706 /* 707 * Adjust stack execute permissions; explicitly enable for 708 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 709 * (arch default) otherwise. 710 */ 711 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 712 vm_flags |= VM_EXEC; 713 else if (executable_stack == EXSTACK_DISABLE_X) 714 vm_flags &= ~VM_EXEC; 715 vm_flags |= mm->def_flags; 716 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 717 718 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 719 vm_flags); 720 if (ret) 721 goto out_unlock; 722 BUG_ON(prev != vma); 723 724 /* Move stack pages down in memory. */ 725 if (stack_shift) { 726 ret = shift_arg_pages(vma, stack_shift); 727 if (ret) 728 goto out_unlock; 729 } 730 731 /* mprotect_fixup is overkill to remove the temporary stack flags */ 732 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 733 734 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 735 stack_size = vma->vm_end - vma->vm_start; 736 /* 737 * Align this down to a page boundary as expand_stack 738 * will align it up. 739 */ 740 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 741 #ifdef CONFIG_STACK_GROWSUP 742 if (stack_size + stack_expand > rlim_stack) 743 stack_base = vma->vm_start + rlim_stack; 744 else 745 stack_base = vma->vm_end + stack_expand; 746 #else 747 if (stack_size + stack_expand > rlim_stack) 748 stack_base = vma->vm_end - rlim_stack; 749 else 750 stack_base = vma->vm_start - stack_expand; 751 #endif 752 current->mm->start_stack = bprm->p; 753 ret = expand_stack(vma, stack_base); 754 if (ret) 755 ret = -EFAULT; 756 757 out_unlock: 758 up_write(&mm->mmap_sem); 759 return ret; 760 } 761 EXPORT_SYMBOL(setup_arg_pages); 762 763 #endif /* CONFIG_MMU */ 764 765 static struct file *do_open_execat(int fd, struct filename *name, int flags) 766 { 767 struct file *file; 768 int err; 769 struct open_flags open_exec_flags = { 770 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 771 .acc_mode = MAY_EXEC, 772 .intent = LOOKUP_OPEN, 773 .lookup_flags = LOOKUP_FOLLOW, 774 }; 775 776 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 777 return ERR_PTR(-EINVAL); 778 if (flags & AT_SYMLINK_NOFOLLOW) 779 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 780 if (flags & AT_EMPTY_PATH) 781 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 782 783 file = do_filp_open(fd, name, &open_exec_flags); 784 if (IS_ERR(file)) 785 goto out; 786 787 err = -EACCES; 788 if (!S_ISREG(file_inode(file)->i_mode)) 789 goto exit; 790 791 if (path_noexec(&file->f_path)) 792 goto exit; 793 794 err = deny_write_access(file); 795 if (err) 796 goto exit; 797 798 if (name->name[0] != '\0') 799 fsnotify_open(file); 800 801 out: 802 return file; 803 804 exit: 805 fput(file); 806 return ERR_PTR(err); 807 } 808 809 struct file *open_exec(const char *name) 810 { 811 struct filename *filename = getname_kernel(name); 812 struct file *f = ERR_CAST(filename); 813 814 if (!IS_ERR(filename)) { 815 f = do_open_execat(AT_FDCWD, filename, 0); 816 putname(filename); 817 } 818 return f; 819 } 820 EXPORT_SYMBOL(open_exec); 821 822 int kernel_read(struct file *file, loff_t offset, 823 char *addr, unsigned long count) 824 { 825 mm_segment_t old_fs; 826 loff_t pos = offset; 827 int result; 828 829 old_fs = get_fs(); 830 set_fs(get_ds()); 831 /* The cast to a user pointer is valid due to the set_fs() */ 832 result = vfs_read(file, (void __user *)addr, count, &pos); 833 set_fs(old_fs); 834 return result; 835 } 836 837 EXPORT_SYMBOL(kernel_read); 838 839 int kernel_read_file(struct file *file, void **buf, loff_t *size, 840 loff_t max_size, enum kernel_read_file_id id) 841 { 842 loff_t i_size, pos; 843 ssize_t bytes = 0; 844 int ret; 845 846 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 847 return -EINVAL; 848 849 ret = security_kernel_read_file(file, id); 850 if (ret) 851 return ret; 852 853 ret = deny_write_access(file); 854 if (ret) 855 return ret; 856 857 i_size = i_size_read(file_inode(file)); 858 if (max_size > 0 && i_size > max_size) { 859 ret = -EFBIG; 860 goto out; 861 } 862 if (i_size <= 0) { 863 ret = -EINVAL; 864 goto out; 865 } 866 867 *buf = vmalloc(i_size); 868 if (!*buf) { 869 ret = -ENOMEM; 870 goto out; 871 } 872 873 pos = 0; 874 while (pos < i_size) { 875 bytes = kernel_read(file, pos, (char *)(*buf) + pos, 876 i_size - pos); 877 if (bytes < 0) { 878 ret = bytes; 879 goto out; 880 } 881 882 if (bytes == 0) 883 break; 884 pos += bytes; 885 } 886 887 if (pos != i_size) { 888 ret = -EIO; 889 goto out_free; 890 } 891 892 ret = security_kernel_post_read_file(file, *buf, i_size, id); 893 if (!ret) 894 *size = pos; 895 896 out_free: 897 if (ret < 0) { 898 vfree(*buf); 899 *buf = NULL; 900 } 901 902 out: 903 allow_write_access(file); 904 return ret; 905 } 906 EXPORT_SYMBOL_GPL(kernel_read_file); 907 908 int kernel_read_file_from_path(char *path, void **buf, loff_t *size, 909 loff_t max_size, enum kernel_read_file_id id) 910 { 911 struct file *file; 912 int ret; 913 914 if (!path || !*path) 915 return -EINVAL; 916 917 file = filp_open(path, O_RDONLY, 0); 918 if (IS_ERR(file)) 919 return PTR_ERR(file); 920 921 ret = kernel_read_file(file, buf, size, max_size, id); 922 fput(file); 923 return ret; 924 } 925 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 926 927 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 928 enum kernel_read_file_id id) 929 { 930 struct fd f = fdget(fd); 931 int ret = -EBADF; 932 933 if (!f.file) 934 goto out; 935 936 ret = kernel_read_file(f.file, buf, size, max_size, id); 937 out: 938 fdput(f); 939 return ret; 940 } 941 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 942 943 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 944 { 945 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 946 if (res > 0) 947 flush_icache_range(addr, addr + len); 948 return res; 949 } 950 EXPORT_SYMBOL(read_code); 951 952 static int exec_mmap(struct mm_struct *mm) 953 { 954 struct task_struct *tsk; 955 struct mm_struct *old_mm, *active_mm; 956 957 /* Notify parent that we're no longer interested in the old VM */ 958 tsk = current; 959 old_mm = current->mm; 960 mm_release(tsk, old_mm); 961 962 if (old_mm) { 963 sync_mm_rss(old_mm); 964 /* 965 * Make sure that if there is a core dump in progress 966 * for the old mm, we get out and die instead of going 967 * through with the exec. We must hold mmap_sem around 968 * checking core_state and changing tsk->mm. 969 */ 970 down_read(&old_mm->mmap_sem); 971 if (unlikely(old_mm->core_state)) { 972 up_read(&old_mm->mmap_sem); 973 return -EINTR; 974 } 975 } 976 task_lock(tsk); 977 active_mm = tsk->active_mm; 978 tsk->mm = mm; 979 tsk->active_mm = mm; 980 activate_mm(active_mm, mm); 981 tsk->mm->vmacache_seqnum = 0; 982 vmacache_flush(tsk); 983 task_unlock(tsk); 984 if (old_mm) { 985 up_read(&old_mm->mmap_sem); 986 BUG_ON(active_mm != old_mm); 987 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 988 mm_update_next_owner(old_mm); 989 mmput(old_mm); 990 return 0; 991 } 992 mmdrop(active_mm); 993 return 0; 994 } 995 996 /* 997 * This function makes sure the current process has its own signal table, 998 * so that flush_signal_handlers can later reset the handlers without 999 * disturbing other processes. (Other processes might share the signal 1000 * table via the CLONE_SIGHAND option to clone().) 1001 */ 1002 static int de_thread(struct task_struct *tsk) 1003 { 1004 struct signal_struct *sig = tsk->signal; 1005 struct sighand_struct *oldsighand = tsk->sighand; 1006 spinlock_t *lock = &oldsighand->siglock; 1007 1008 if (thread_group_empty(tsk)) 1009 goto no_thread_group; 1010 1011 /* 1012 * Kill all other threads in the thread group. 1013 */ 1014 spin_lock_irq(lock); 1015 if (signal_group_exit(sig)) { 1016 /* 1017 * Another group action in progress, just 1018 * return so that the signal is processed. 1019 */ 1020 spin_unlock_irq(lock); 1021 return -EAGAIN; 1022 } 1023 1024 sig->group_exit_task = tsk; 1025 sig->notify_count = zap_other_threads(tsk); 1026 if (!thread_group_leader(tsk)) 1027 sig->notify_count--; 1028 1029 while (sig->notify_count) { 1030 __set_current_state(TASK_KILLABLE); 1031 spin_unlock_irq(lock); 1032 schedule(); 1033 if (unlikely(__fatal_signal_pending(tsk))) 1034 goto killed; 1035 spin_lock_irq(lock); 1036 } 1037 spin_unlock_irq(lock); 1038 1039 /* 1040 * At this point all other threads have exited, all we have to 1041 * do is to wait for the thread group leader to become inactive, 1042 * and to assume its PID: 1043 */ 1044 if (!thread_group_leader(tsk)) { 1045 struct task_struct *leader = tsk->group_leader; 1046 1047 for (;;) { 1048 threadgroup_change_begin(tsk); 1049 write_lock_irq(&tasklist_lock); 1050 /* 1051 * Do this under tasklist_lock to ensure that 1052 * exit_notify() can't miss ->group_exit_task 1053 */ 1054 sig->notify_count = -1; 1055 if (likely(leader->exit_state)) 1056 break; 1057 __set_current_state(TASK_KILLABLE); 1058 write_unlock_irq(&tasklist_lock); 1059 threadgroup_change_end(tsk); 1060 schedule(); 1061 if (unlikely(__fatal_signal_pending(tsk))) 1062 goto killed; 1063 } 1064 1065 /* 1066 * The only record we have of the real-time age of a 1067 * process, regardless of execs it's done, is start_time. 1068 * All the past CPU time is accumulated in signal_struct 1069 * from sister threads now dead. But in this non-leader 1070 * exec, nothing survives from the original leader thread, 1071 * whose birth marks the true age of this process now. 1072 * When we take on its identity by switching to its PID, we 1073 * also take its birthdate (always earlier than our own). 1074 */ 1075 tsk->start_time = leader->start_time; 1076 tsk->real_start_time = leader->real_start_time; 1077 1078 BUG_ON(!same_thread_group(leader, tsk)); 1079 BUG_ON(has_group_leader_pid(tsk)); 1080 /* 1081 * An exec() starts a new thread group with the 1082 * TGID of the previous thread group. Rehash the 1083 * two threads with a switched PID, and release 1084 * the former thread group leader: 1085 */ 1086 1087 /* Become a process group leader with the old leader's pid. 1088 * The old leader becomes a thread of the this thread group. 1089 * Note: The old leader also uses this pid until release_task 1090 * is called. Odd but simple and correct. 1091 */ 1092 tsk->pid = leader->pid; 1093 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 1094 transfer_pid(leader, tsk, PIDTYPE_PGID); 1095 transfer_pid(leader, tsk, PIDTYPE_SID); 1096 1097 list_replace_rcu(&leader->tasks, &tsk->tasks); 1098 list_replace_init(&leader->sibling, &tsk->sibling); 1099 1100 tsk->group_leader = tsk; 1101 leader->group_leader = tsk; 1102 1103 tsk->exit_signal = SIGCHLD; 1104 leader->exit_signal = -1; 1105 1106 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1107 leader->exit_state = EXIT_DEAD; 1108 1109 /* 1110 * We are going to release_task()->ptrace_unlink() silently, 1111 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1112 * the tracer wont't block again waiting for this thread. 1113 */ 1114 if (unlikely(leader->ptrace)) 1115 __wake_up_parent(leader, leader->parent); 1116 write_unlock_irq(&tasklist_lock); 1117 threadgroup_change_end(tsk); 1118 1119 release_task(leader); 1120 } 1121 1122 sig->group_exit_task = NULL; 1123 sig->notify_count = 0; 1124 1125 no_thread_group: 1126 /* we have changed execution domain */ 1127 tsk->exit_signal = SIGCHLD; 1128 1129 exit_itimers(sig); 1130 flush_itimer_signals(); 1131 1132 if (atomic_read(&oldsighand->count) != 1) { 1133 struct sighand_struct *newsighand; 1134 /* 1135 * This ->sighand is shared with the CLONE_SIGHAND 1136 * but not CLONE_THREAD task, switch to the new one. 1137 */ 1138 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1139 if (!newsighand) 1140 return -ENOMEM; 1141 1142 atomic_set(&newsighand->count, 1); 1143 memcpy(newsighand->action, oldsighand->action, 1144 sizeof(newsighand->action)); 1145 1146 write_lock_irq(&tasklist_lock); 1147 spin_lock(&oldsighand->siglock); 1148 rcu_assign_pointer(tsk->sighand, newsighand); 1149 spin_unlock(&oldsighand->siglock); 1150 write_unlock_irq(&tasklist_lock); 1151 1152 __cleanup_sighand(oldsighand); 1153 } 1154 1155 BUG_ON(!thread_group_leader(tsk)); 1156 return 0; 1157 1158 killed: 1159 /* protects against exit_notify() and __exit_signal() */ 1160 read_lock(&tasklist_lock); 1161 sig->group_exit_task = NULL; 1162 sig->notify_count = 0; 1163 read_unlock(&tasklist_lock); 1164 return -EAGAIN; 1165 } 1166 1167 char *get_task_comm(char *buf, struct task_struct *tsk) 1168 { 1169 /* buf must be at least sizeof(tsk->comm) in size */ 1170 task_lock(tsk); 1171 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1172 task_unlock(tsk); 1173 return buf; 1174 } 1175 EXPORT_SYMBOL_GPL(get_task_comm); 1176 1177 /* 1178 * These functions flushes out all traces of the currently running executable 1179 * so that a new one can be started 1180 */ 1181 1182 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1183 { 1184 task_lock(tsk); 1185 trace_task_rename(tsk, buf); 1186 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1187 task_unlock(tsk); 1188 perf_event_comm(tsk, exec); 1189 } 1190 1191 int flush_old_exec(struct linux_binprm * bprm) 1192 { 1193 int retval; 1194 1195 /* 1196 * Make sure we have a private signal table and that 1197 * we are unassociated from the previous thread group. 1198 */ 1199 retval = de_thread(current); 1200 if (retval) 1201 goto out; 1202 1203 /* 1204 * Must be called _before_ exec_mmap() as bprm->mm is 1205 * not visibile until then. This also enables the update 1206 * to be lockless. 1207 */ 1208 set_mm_exe_file(bprm->mm, bprm->file); 1209 1210 /* 1211 * Release all of the old mmap stuff 1212 */ 1213 acct_arg_size(bprm, 0); 1214 retval = exec_mmap(bprm->mm); 1215 if (retval) 1216 goto out; 1217 1218 bprm->mm = NULL; /* We're using it now */ 1219 1220 set_fs(USER_DS); 1221 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1222 PF_NOFREEZE | PF_NO_SETAFFINITY); 1223 flush_thread(); 1224 current->personality &= ~bprm->per_clear; 1225 1226 return 0; 1227 1228 out: 1229 return retval; 1230 } 1231 EXPORT_SYMBOL(flush_old_exec); 1232 1233 void would_dump(struct linux_binprm *bprm, struct file *file) 1234 { 1235 if (inode_permission(file_inode(file), MAY_READ) < 0) 1236 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1237 } 1238 EXPORT_SYMBOL(would_dump); 1239 1240 void setup_new_exec(struct linux_binprm * bprm) 1241 { 1242 arch_pick_mmap_layout(current->mm); 1243 1244 /* This is the point of no return */ 1245 current->sas_ss_sp = current->sas_ss_size = 0; 1246 1247 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) 1248 set_dumpable(current->mm, SUID_DUMP_USER); 1249 else 1250 set_dumpable(current->mm, suid_dumpable); 1251 1252 perf_event_exec(); 1253 __set_task_comm(current, kbasename(bprm->filename), true); 1254 1255 /* Set the new mm task size. We have to do that late because it may 1256 * depend on TIF_32BIT which is only updated in flush_thread() on 1257 * some architectures like powerpc 1258 */ 1259 current->mm->task_size = TASK_SIZE; 1260 1261 /* install the new credentials */ 1262 if (!uid_eq(bprm->cred->uid, current_euid()) || 1263 !gid_eq(bprm->cred->gid, current_egid())) { 1264 current->pdeath_signal = 0; 1265 } else { 1266 would_dump(bprm, bprm->file); 1267 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1268 set_dumpable(current->mm, suid_dumpable); 1269 } 1270 1271 /* An exec changes our domain. We are no longer part of the thread 1272 group */ 1273 current->self_exec_id++; 1274 flush_signal_handlers(current, 0); 1275 do_close_on_exec(current->files); 1276 } 1277 EXPORT_SYMBOL(setup_new_exec); 1278 1279 /* 1280 * Prepare credentials and lock ->cred_guard_mutex. 1281 * install_exec_creds() commits the new creds and drops the lock. 1282 * Or, if exec fails before, free_bprm() should release ->cred and 1283 * and unlock. 1284 */ 1285 int prepare_bprm_creds(struct linux_binprm *bprm) 1286 { 1287 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1288 return -ERESTARTNOINTR; 1289 1290 bprm->cred = prepare_exec_creds(); 1291 if (likely(bprm->cred)) 1292 return 0; 1293 1294 mutex_unlock(¤t->signal->cred_guard_mutex); 1295 return -ENOMEM; 1296 } 1297 1298 static void free_bprm(struct linux_binprm *bprm) 1299 { 1300 free_arg_pages(bprm); 1301 if (bprm->cred) { 1302 mutex_unlock(¤t->signal->cred_guard_mutex); 1303 abort_creds(bprm->cred); 1304 } 1305 if (bprm->file) { 1306 allow_write_access(bprm->file); 1307 fput(bprm->file); 1308 } 1309 /* If a binfmt changed the interp, free it. */ 1310 if (bprm->interp != bprm->filename) 1311 kfree(bprm->interp); 1312 kfree(bprm); 1313 } 1314 1315 int bprm_change_interp(char *interp, struct linux_binprm *bprm) 1316 { 1317 /* If a binfmt changed the interp, free it first. */ 1318 if (bprm->interp != bprm->filename) 1319 kfree(bprm->interp); 1320 bprm->interp = kstrdup(interp, GFP_KERNEL); 1321 if (!bprm->interp) 1322 return -ENOMEM; 1323 return 0; 1324 } 1325 EXPORT_SYMBOL(bprm_change_interp); 1326 1327 /* 1328 * install the new credentials for this executable 1329 */ 1330 void install_exec_creds(struct linux_binprm *bprm) 1331 { 1332 security_bprm_committing_creds(bprm); 1333 1334 commit_creds(bprm->cred); 1335 bprm->cred = NULL; 1336 1337 /* 1338 * Disable monitoring for regular users 1339 * when executing setuid binaries. Must 1340 * wait until new credentials are committed 1341 * by commit_creds() above 1342 */ 1343 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1344 perf_event_exit_task(current); 1345 /* 1346 * cred_guard_mutex must be held at least to this point to prevent 1347 * ptrace_attach() from altering our determination of the task's 1348 * credentials; any time after this it may be unlocked. 1349 */ 1350 security_bprm_committed_creds(bprm); 1351 mutex_unlock(¤t->signal->cred_guard_mutex); 1352 } 1353 EXPORT_SYMBOL(install_exec_creds); 1354 1355 /* 1356 * determine how safe it is to execute the proposed program 1357 * - the caller must hold ->cred_guard_mutex to protect against 1358 * PTRACE_ATTACH or seccomp thread-sync 1359 */ 1360 static void check_unsafe_exec(struct linux_binprm *bprm) 1361 { 1362 struct task_struct *p = current, *t; 1363 unsigned n_fs; 1364 1365 if (p->ptrace) { 1366 if (p->ptrace & PT_PTRACE_CAP) 1367 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP; 1368 else 1369 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1370 } 1371 1372 /* 1373 * This isn't strictly necessary, but it makes it harder for LSMs to 1374 * mess up. 1375 */ 1376 if (task_no_new_privs(current)) 1377 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1378 1379 t = p; 1380 n_fs = 1; 1381 spin_lock(&p->fs->lock); 1382 rcu_read_lock(); 1383 while_each_thread(p, t) { 1384 if (t->fs == p->fs) 1385 n_fs++; 1386 } 1387 rcu_read_unlock(); 1388 1389 if (p->fs->users > n_fs) 1390 bprm->unsafe |= LSM_UNSAFE_SHARE; 1391 else 1392 p->fs->in_exec = 1; 1393 spin_unlock(&p->fs->lock); 1394 } 1395 1396 static void bprm_fill_uid(struct linux_binprm *bprm) 1397 { 1398 struct inode *inode; 1399 unsigned int mode; 1400 kuid_t uid; 1401 kgid_t gid; 1402 1403 /* 1404 * Since this can be called multiple times (via prepare_binprm), 1405 * we must clear any previous work done when setting set[ug]id 1406 * bits from any earlier bprm->file uses (for example when run 1407 * first for a setuid script then again for its interpreter). 1408 */ 1409 bprm->cred->euid = current_euid(); 1410 bprm->cred->egid = current_egid(); 1411 1412 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 1413 return; 1414 1415 if (task_no_new_privs(current)) 1416 return; 1417 1418 inode = file_inode(bprm->file); 1419 mode = READ_ONCE(inode->i_mode); 1420 if (!(mode & (S_ISUID|S_ISGID))) 1421 return; 1422 1423 /* Be careful if suid/sgid is set */ 1424 inode_lock(inode); 1425 1426 /* reload atomically mode/uid/gid now that lock held */ 1427 mode = inode->i_mode; 1428 uid = inode->i_uid; 1429 gid = inode->i_gid; 1430 inode_unlock(inode); 1431 1432 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1433 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1434 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1435 return; 1436 1437 if (mode & S_ISUID) { 1438 bprm->per_clear |= PER_CLEAR_ON_SETID; 1439 bprm->cred->euid = uid; 1440 } 1441 1442 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1443 bprm->per_clear |= PER_CLEAR_ON_SETID; 1444 bprm->cred->egid = gid; 1445 } 1446 } 1447 1448 /* 1449 * Fill the binprm structure from the inode. 1450 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1451 * 1452 * This may be called multiple times for binary chains (scripts for example). 1453 */ 1454 int prepare_binprm(struct linux_binprm *bprm) 1455 { 1456 int retval; 1457 1458 bprm_fill_uid(bprm); 1459 1460 /* fill in binprm security blob */ 1461 retval = security_bprm_set_creds(bprm); 1462 if (retval) 1463 return retval; 1464 bprm->cred_prepared = 1; 1465 1466 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1467 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1468 } 1469 1470 EXPORT_SYMBOL(prepare_binprm); 1471 1472 /* 1473 * Arguments are '\0' separated strings found at the location bprm->p 1474 * points to; chop off the first by relocating brpm->p to right after 1475 * the first '\0' encountered. 1476 */ 1477 int remove_arg_zero(struct linux_binprm *bprm) 1478 { 1479 int ret = 0; 1480 unsigned long offset; 1481 char *kaddr; 1482 struct page *page; 1483 1484 if (!bprm->argc) 1485 return 0; 1486 1487 do { 1488 offset = bprm->p & ~PAGE_MASK; 1489 page = get_arg_page(bprm, bprm->p, 0); 1490 if (!page) { 1491 ret = -EFAULT; 1492 goto out; 1493 } 1494 kaddr = kmap_atomic(page); 1495 1496 for (; offset < PAGE_SIZE && kaddr[offset]; 1497 offset++, bprm->p++) 1498 ; 1499 1500 kunmap_atomic(kaddr); 1501 put_arg_page(page); 1502 1503 if (offset == PAGE_SIZE) 1504 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1505 } while (offset == PAGE_SIZE); 1506 1507 bprm->p++; 1508 bprm->argc--; 1509 ret = 0; 1510 1511 out: 1512 return ret; 1513 } 1514 EXPORT_SYMBOL(remove_arg_zero); 1515 1516 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1517 /* 1518 * cycle the list of binary formats handler, until one recognizes the image 1519 */ 1520 int search_binary_handler(struct linux_binprm *bprm) 1521 { 1522 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1523 struct linux_binfmt *fmt; 1524 int retval; 1525 1526 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1527 if (bprm->recursion_depth > 5) 1528 return -ELOOP; 1529 1530 retval = security_bprm_check(bprm); 1531 if (retval) 1532 return retval; 1533 1534 retval = -ENOENT; 1535 retry: 1536 read_lock(&binfmt_lock); 1537 list_for_each_entry(fmt, &formats, lh) { 1538 if (!try_module_get(fmt->module)) 1539 continue; 1540 read_unlock(&binfmt_lock); 1541 bprm->recursion_depth++; 1542 retval = fmt->load_binary(bprm); 1543 read_lock(&binfmt_lock); 1544 put_binfmt(fmt); 1545 bprm->recursion_depth--; 1546 if (retval < 0 && !bprm->mm) { 1547 /* we got to flush_old_exec() and failed after it */ 1548 read_unlock(&binfmt_lock); 1549 force_sigsegv(SIGSEGV, current); 1550 return retval; 1551 } 1552 if (retval != -ENOEXEC || !bprm->file) { 1553 read_unlock(&binfmt_lock); 1554 return retval; 1555 } 1556 } 1557 read_unlock(&binfmt_lock); 1558 1559 if (need_retry) { 1560 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1561 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1562 return retval; 1563 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1564 return retval; 1565 need_retry = false; 1566 goto retry; 1567 } 1568 1569 return retval; 1570 } 1571 EXPORT_SYMBOL(search_binary_handler); 1572 1573 static int exec_binprm(struct linux_binprm *bprm) 1574 { 1575 pid_t old_pid, old_vpid; 1576 int ret; 1577 1578 /* Need to fetch pid before load_binary changes it */ 1579 old_pid = current->pid; 1580 rcu_read_lock(); 1581 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1582 rcu_read_unlock(); 1583 1584 ret = search_binary_handler(bprm); 1585 if (ret >= 0) { 1586 audit_bprm(bprm); 1587 trace_sched_process_exec(current, old_pid, bprm); 1588 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1589 proc_exec_connector(current); 1590 } 1591 1592 return ret; 1593 } 1594 1595 /* 1596 * sys_execve() executes a new program. 1597 */ 1598 static int do_execveat_common(int fd, struct filename *filename, 1599 struct user_arg_ptr argv, 1600 struct user_arg_ptr envp, 1601 int flags) 1602 { 1603 char *pathbuf = NULL; 1604 struct linux_binprm *bprm; 1605 struct file *file; 1606 struct files_struct *displaced; 1607 int retval; 1608 1609 if (IS_ERR(filename)) 1610 return PTR_ERR(filename); 1611 1612 /* 1613 * We move the actual failure in case of RLIMIT_NPROC excess from 1614 * set*uid() to execve() because too many poorly written programs 1615 * don't check setuid() return code. Here we additionally recheck 1616 * whether NPROC limit is still exceeded. 1617 */ 1618 if ((current->flags & PF_NPROC_EXCEEDED) && 1619 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1620 retval = -EAGAIN; 1621 goto out_ret; 1622 } 1623 1624 /* We're below the limit (still or again), so we don't want to make 1625 * further execve() calls fail. */ 1626 current->flags &= ~PF_NPROC_EXCEEDED; 1627 1628 retval = unshare_files(&displaced); 1629 if (retval) 1630 goto out_ret; 1631 1632 retval = -ENOMEM; 1633 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1634 if (!bprm) 1635 goto out_files; 1636 1637 retval = prepare_bprm_creds(bprm); 1638 if (retval) 1639 goto out_free; 1640 1641 check_unsafe_exec(bprm); 1642 current->in_execve = 1; 1643 1644 file = do_open_execat(fd, filename, flags); 1645 retval = PTR_ERR(file); 1646 if (IS_ERR(file)) 1647 goto out_unmark; 1648 1649 sched_exec(); 1650 1651 bprm->file = file; 1652 if (fd == AT_FDCWD || filename->name[0] == '/') { 1653 bprm->filename = filename->name; 1654 } else { 1655 if (filename->name[0] == '\0') 1656 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd); 1657 else 1658 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s", 1659 fd, filename->name); 1660 if (!pathbuf) { 1661 retval = -ENOMEM; 1662 goto out_unmark; 1663 } 1664 /* 1665 * Record that a name derived from an O_CLOEXEC fd will be 1666 * inaccessible after exec. Relies on having exclusive access to 1667 * current->files (due to unshare_files above). 1668 */ 1669 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1670 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1671 bprm->filename = pathbuf; 1672 } 1673 bprm->interp = bprm->filename; 1674 1675 retval = bprm_mm_init(bprm); 1676 if (retval) 1677 goto out_unmark; 1678 1679 bprm->argc = count(argv, MAX_ARG_STRINGS); 1680 if ((retval = bprm->argc) < 0) 1681 goto out; 1682 1683 bprm->envc = count(envp, MAX_ARG_STRINGS); 1684 if ((retval = bprm->envc) < 0) 1685 goto out; 1686 1687 retval = prepare_binprm(bprm); 1688 if (retval < 0) 1689 goto out; 1690 1691 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1692 if (retval < 0) 1693 goto out; 1694 1695 bprm->exec = bprm->p; 1696 retval = copy_strings(bprm->envc, envp, bprm); 1697 if (retval < 0) 1698 goto out; 1699 1700 retval = copy_strings(bprm->argc, argv, bprm); 1701 if (retval < 0) 1702 goto out; 1703 1704 retval = exec_binprm(bprm); 1705 if (retval < 0) 1706 goto out; 1707 1708 /* execve succeeded */ 1709 current->fs->in_exec = 0; 1710 current->in_execve = 0; 1711 acct_update_integrals(current); 1712 task_numa_free(current); 1713 free_bprm(bprm); 1714 kfree(pathbuf); 1715 putname(filename); 1716 if (displaced) 1717 put_files_struct(displaced); 1718 return retval; 1719 1720 out: 1721 if (bprm->mm) { 1722 acct_arg_size(bprm, 0); 1723 mmput(bprm->mm); 1724 } 1725 1726 out_unmark: 1727 current->fs->in_exec = 0; 1728 current->in_execve = 0; 1729 1730 out_free: 1731 free_bprm(bprm); 1732 kfree(pathbuf); 1733 1734 out_files: 1735 if (displaced) 1736 reset_files_struct(displaced); 1737 out_ret: 1738 putname(filename); 1739 return retval; 1740 } 1741 1742 int do_execve(struct filename *filename, 1743 const char __user *const __user *__argv, 1744 const char __user *const __user *__envp) 1745 { 1746 struct user_arg_ptr argv = { .ptr.native = __argv }; 1747 struct user_arg_ptr envp = { .ptr.native = __envp }; 1748 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1749 } 1750 1751 int do_execveat(int fd, struct filename *filename, 1752 const char __user *const __user *__argv, 1753 const char __user *const __user *__envp, 1754 int flags) 1755 { 1756 struct user_arg_ptr argv = { .ptr.native = __argv }; 1757 struct user_arg_ptr envp = { .ptr.native = __envp }; 1758 1759 return do_execveat_common(fd, filename, argv, envp, flags); 1760 } 1761 1762 #ifdef CONFIG_COMPAT 1763 static int compat_do_execve(struct filename *filename, 1764 const compat_uptr_t __user *__argv, 1765 const compat_uptr_t __user *__envp) 1766 { 1767 struct user_arg_ptr argv = { 1768 .is_compat = true, 1769 .ptr.compat = __argv, 1770 }; 1771 struct user_arg_ptr envp = { 1772 .is_compat = true, 1773 .ptr.compat = __envp, 1774 }; 1775 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1776 } 1777 1778 static int compat_do_execveat(int fd, struct filename *filename, 1779 const compat_uptr_t __user *__argv, 1780 const compat_uptr_t __user *__envp, 1781 int flags) 1782 { 1783 struct user_arg_ptr argv = { 1784 .is_compat = true, 1785 .ptr.compat = __argv, 1786 }; 1787 struct user_arg_ptr envp = { 1788 .is_compat = true, 1789 .ptr.compat = __envp, 1790 }; 1791 return do_execveat_common(fd, filename, argv, envp, flags); 1792 } 1793 #endif 1794 1795 void set_binfmt(struct linux_binfmt *new) 1796 { 1797 struct mm_struct *mm = current->mm; 1798 1799 if (mm->binfmt) 1800 module_put(mm->binfmt->module); 1801 1802 mm->binfmt = new; 1803 if (new) 1804 __module_get(new->module); 1805 } 1806 EXPORT_SYMBOL(set_binfmt); 1807 1808 /* 1809 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1810 */ 1811 void set_dumpable(struct mm_struct *mm, int value) 1812 { 1813 unsigned long old, new; 1814 1815 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1816 return; 1817 1818 do { 1819 old = ACCESS_ONCE(mm->flags); 1820 new = (old & ~MMF_DUMPABLE_MASK) | value; 1821 } while (cmpxchg(&mm->flags, old, new) != old); 1822 } 1823 1824 SYSCALL_DEFINE3(execve, 1825 const char __user *, filename, 1826 const char __user *const __user *, argv, 1827 const char __user *const __user *, envp) 1828 { 1829 return do_execve(getname(filename), argv, envp); 1830 } 1831 1832 SYSCALL_DEFINE5(execveat, 1833 int, fd, const char __user *, filename, 1834 const char __user *const __user *, argv, 1835 const char __user *const __user *, envp, 1836 int, flags) 1837 { 1838 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1839 1840 return do_execveat(fd, 1841 getname_flags(filename, lookup_flags, NULL), 1842 argv, envp, flags); 1843 } 1844 1845 #ifdef CONFIG_COMPAT 1846 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 1847 const compat_uptr_t __user *, argv, 1848 const compat_uptr_t __user *, envp) 1849 { 1850 return compat_do_execve(getname(filename), argv, envp); 1851 } 1852 1853 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 1854 const char __user *, filename, 1855 const compat_uptr_t __user *, argv, 1856 const compat_uptr_t __user *, envp, 1857 int, flags) 1858 { 1859 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1860 1861 return compat_do_execveat(fd, 1862 getname_flags(filename, lookup_flags, NULL), 1863 argv, envp, flags); 1864 } 1865 #endif 1866