xref: /linux/fs/exec.c (revision 0c93ea4064a209cdc36de8a9a3003d43d08f46f7)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/ima.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/mmu_context.h>
59 #include <asm/tlb.h>
60 #include "internal.h"
61 
62 int core_uses_pid;
63 char core_pattern[CORENAME_MAX_SIZE] = "core";
64 int suid_dumpable = 0;
65 
66 /* The maximal length of core_pattern is also specified in sysctl.c */
67 
68 static LIST_HEAD(formats);
69 static DEFINE_RWLOCK(binfmt_lock);
70 
71 int register_binfmt(struct linux_binfmt * fmt)
72 {
73 	if (!fmt)
74 		return -EINVAL;
75 	write_lock(&binfmt_lock);
76 	list_add(&fmt->lh, &formats);
77 	write_unlock(&binfmt_lock);
78 	return 0;
79 }
80 
81 EXPORT_SYMBOL(register_binfmt);
82 
83 void unregister_binfmt(struct linux_binfmt * fmt)
84 {
85 	write_lock(&binfmt_lock);
86 	list_del(&fmt->lh);
87 	write_unlock(&binfmt_lock);
88 }
89 
90 EXPORT_SYMBOL(unregister_binfmt);
91 
92 static inline void put_binfmt(struct linux_binfmt * fmt)
93 {
94 	module_put(fmt->module);
95 }
96 
97 /*
98  * Note that a shared library must be both readable and executable due to
99  * security reasons.
100  *
101  * Also note that we take the address to load from from the file itself.
102  */
103 SYSCALL_DEFINE1(uselib, const char __user *, library)
104 {
105 	struct file *file;
106 	struct nameidata nd;
107 	char *tmp = getname(library);
108 	int error = PTR_ERR(tmp);
109 
110 	if (!IS_ERR(tmp)) {
111 		error = path_lookup_open(AT_FDCWD, tmp,
112 					 LOOKUP_FOLLOW, &nd,
113 					 FMODE_READ|FMODE_EXEC);
114 		putname(tmp);
115 	}
116 	if (error)
117 		goto out;
118 
119 	error = -EINVAL;
120 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
121 		goto exit;
122 
123 	error = -EACCES;
124 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
125 		goto exit;
126 
127 	error = inode_permission(nd.path.dentry->d_inode,
128 				 MAY_READ | MAY_EXEC | MAY_OPEN);
129 	if (error)
130 		goto exit;
131 	error = ima_path_check(&nd.path, MAY_READ | MAY_EXEC | MAY_OPEN);
132 	if (error)
133 		goto exit;
134 
135 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
136 	error = PTR_ERR(file);
137 	if (IS_ERR(file))
138 		goto out;
139 
140 	fsnotify_open(file->f_path.dentry);
141 
142 	error = -ENOEXEC;
143 	if(file->f_op) {
144 		struct linux_binfmt * fmt;
145 
146 		read_lock(&binfmt_lock);
147 		list_for_each_entry(fmt, &formats, lh) {
148 			if (!fmt->load_shlib)
149 				continue;
150 			if (!try_module_get(fmt->module))
151 				continue;
152 			read_unlock(&binfmt_lock);
153 			error = fmt->load_shlib(file);
154 			read_lock(&binfmt_lock);
155 			put_binfmt(fmt);
156 			if (error != -ENOEXEC)
157 				break;
158 		}
159 		read_unlock(&binfmt_lock);
160 	}
161 	fput(file);
162 out:
163   	return error;
164 exit:
165 	release_open_intent(&nd);
166 	path_put(&nd.path);
167 	goto out;
168 }
169 
170 #ifdef CONFIG_MMU
171 
172 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
173 		int write)
174 {
175 	struct page *page;
176 	int ret;
177 
178 #ifdef CONFIG_STACK_GROWSUP
179 	if (write) {
180 		ret = expand_stack_downwards(bprm->vma, pos);
181 		if (ret < 0)
182 			return NULL;
183 	}
184 #endif
185 	ret = get_user_pages(current, bprm->mm, pos,
186 			1, write, 1, &page, NULL);
187 	if (ret <= 0)
188 		return NULL;
189 
190 	if (write) {
191 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
192 		struct rlimit *rlim;
193 
194 		/*
195 		 * We've historically supported up to 32 pages (ARG_MAX)
196 		 * of argument strings even with small stacks
197 		 */
198 		if (size <= ARG_MAX)
199 			return page;
200 
201 		/*
202 		 * Limit to 1/4-th the stack size for the argv+env strings.
203 		 * This ensures that:
204 		 *  - the remaining binfmt code will not run out of stack space,
205 		 *  - the program will have a reasonable amount of stack left
206 		 *    to work from.
207 		 */
208 		rlim = current->signal->rlim;
209 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
210 			put_page(page);
211 			return NULL;
212 		}
213 	}
214 
215 	return page;
216 }
217 
218 static void put_arg_page(struct page *page)
219 {
220 	put_page(page);
221 }
222 
223 static void free_arg_page(struct linux_binprm *bprm, int i)
224 {
225 }
226 
227 static void free_arg_pages(struct linux_binprm *bprm)
228 {
229 }
230 
231 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
232 		struct page *page)
233 {
234 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
235 }
236 
237 static int __bprm_mm_init(struct linux_binprm *bprm)
238 {
239 	int err;
240 	struct vm_area_struct *vma = NULL;
241 	struct mm_struct *mm = bprm->mm;
242 
243 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
244 	if (!vma)
245 		return -ENOMEM;
246 
247 	down_write(&mm->mmap_sem);
248 	vma->vm_mm = mm;
249 
250 	/*
251 	 * Place the stack at the largest stack address the architecture
252 	 * supports. Later, we'll move this to an appropriate place. We don't
253 	 * use STACK_TOP because that can depend on attributes which aren't
254 	 * configured yet.
255 	 */
256 	vma->vm_end = STACK_TOP_MAX;
257 	vma->vm_start = vma->vm_end - PAGE_SIZE;
258 	vma->vm_flags = VM_STACK_FLAGS;
259 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
260 	err = insert_vm_struct(mm, vma);
261 	if (err)
262 		goto err;
263 
264 	mm->stack_vm = mm->total_vm = 1;
265 	up_write(&mm->mmap_sem);
266 	bprm->p = vma->vm_end - sizeof(void *);
267 	return 0;
268 err:
269 	up_write(&mm->mmap_sem);
270 	bprm->vma = NULL;
271 	kmem_cache_free(vm_area_cachep, vma);
272 	return err;
273 }
274 
275 static bool valid_arg_len(struct linux_binprm *bprm, long len)
276 {
277 	return len <= MAX_ARG_STRLEN;
278 }
279 
280 #else
281 
282 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
283 		int write)
284 {
285 	struct page *page;
286 
287 	page = bprm->page[pos / PAGE_SIZE];
288 	if (!page && write) {
289 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
290 		if (!page)
291 			return NULL;
292 		bprm->page[pos / PAGE_SIZE] = page;
293 	}
294 
295 	return page;
296 }
297 
298 static void put_arg_page(struct page *page)
299 {
300 }
301 
302 static void free_arg_page(struct linux_binprm *bprm, int i)
303 {
304 	if (bprm->page[i]) {
305 		__free_page(bprm->page[i]);
306 		bprm->page[i] = NULL;
307 	}
308 }
309 
310 static void free_arg_pages(struct linux_binprm *bprm)
311 {
312 	int i;
313 
314 	for (i = 0; i < MAX_ARG_PAGES; i++)
315 		free_arg_page(bprm, i);
316 }
317 
318 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
319 		struct page *page)
320 {
321 }
322 
323 static int __bprm_mm_init(struct linux_binprm *bprm)
324 {
325 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
326 	return 0;
327 }
328 
329 static bool valid_arg_len(struct linux_binprm *bprm, long len)
330 {
331 	return len <= bprm->p;
332 }
333 
334 #endif /* CONFIG_MMU */
335 
336 /*
337  * Create a new mm_struct and populate it with a temporary stack
338  * vm_area_struct.  We don't have enough context at this point to set the stack
339  * flags, permissions, and offset, so we use temporary values.  We'll update
340  * them later in setup_arg_pages().
341  */
342 int bprm_mm_init(struct linux_binprm *bprm)
343 {
344 	int err;
345 	struct mm_struct *mm = NULL;
346 
347 	bprm->mm = mm = mm_alloc();
348 	err = -ENOMEM;
349 	if (!mm)
350 		goto err;
351 
352 	err = init_new_context(current, mm);
353 	if (err)
354 		goto err;
355 
356 	err = __bprm_mm_init(bprm);
357 	if (err)
358 		goto err;
359 
360 	return 0;
361 
362 err:
363 	if (mm) {
364 		bprm->mm = NULL;
365 		mmdrop(mm);
366 	}
367 
368 	return err;
369 }
370 
371 /*
372  * count() counts the number of strings in array ARGV.
373  */
374 static int count(char __user * __user * argv, int max)
375 {
376 	int i = 0;
377 
378 	if (argv != NULL) {
379 		for (;;) {
380 			char __user * p;
381 
382 			if (get_user(p, argv))
383 				return -EFAULT;
384 			if (!p)
385 				break;
386 			argv++;
387 			if (i++ >= max)
388 				return -E2BIG;
389 			cond_resched();
390 		}
391 	}
392 	return i;
393 }
394 
395 /*
396  * 'copy_strings()' copies argument/environment strings from the old
397  * processes's memory to the new process's stack.  The call to get_user_pages()
398  * ensures the destination page is created and not swapped out.
399  */
400 static int copy_strings(int argc, char __user * __user * argv,
401 			struct linux_binprm *bprm)
402 {
403 	struct page *kmapped_page = NULL;
404 	char *kaddr = NULL;
405 	unsigned long kpos = 0;
406 	int ret;
407 
408 	while (argc-- > 0) {
409 		char __user *str;
410 		int len;
411 		unsigned long pos;
412 
413 		if (get_user(str, argv+argc) ||
414 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
415 			ret = -EFAULT;
416 			goto out;
417 		}
418 
419 		if (!valid_arg_len(bprm, len)) {
420 			ret = -E2BIG;
421 			goto out;
422 		}
423 
424 		/* We're going to work our way backwords. */
425 		pos = bprm->p;
426 		str += len;
427 		bprm->p -= len;
428 
429 		while (len > 0) {
430 			int offset, bytes_to_copy;
431 
432 			offset = pos % PAGE_SIZE;
433 			if (offset == 0)
434 				offset = PAGE_SIZE;
435 
436 			bytes_to_copy = offset;
437 			if (bytes_to_copy > len)
438 				bytes_to_copy = len;
439 
440 			offset -= bytes_to_copy;
441 			pos -= bytes_to_copy;
442 			str -= bytes_to_copy;
443 			len -= bytes_to_copy;
444 
445 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
446 				struct page *page;
447 
448 				page = get_arg_page(bprm, pos, 1);
449 				if (!page) {
450 					ret = -E2BIG;
451 					goto out;
452 				}
453 
454 				if (kmapped_page) {
455 					flush_kernel_dcache_page(kmapped_page);
456 					kunmap(kmapped_page);
457 					put_arg_page(kmapped_page);
458 				}
459 				kmapped_page = page;
460 				kaddr = kmap(kmapped_page);
461 				kpos = pos & PAGE_MASK;
462 				flush_arg_page(bprm, kpos, kmapped_page);
463 			}
464 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
465 				ret = -EFAULT;
466 				goto out;
467 			}
468 		}
469 	}
470 	ret = 0;
471 out:
472 	if (kmapped_page) {
473 		flush_kernel_dcache_page(kmapped_page);
474 		kunmap(kmapped_page);
475 		put_arg_page(kmapped_page);
476 	}
477 	return ret;
478 }
479 
480 /*
481  * Like copy_strings, but get argv and its values from kernel memory.
482  */
483 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
484 {
485 	int r;
486 	mm_segment_t oldfs = get_fs();
487 	set_fs(KERNEL_DS);
488 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
489 	set_fs(oldfs);
490 	return r;
491 }
492 EXPORT_SYMBOL(copy_strings_kernel);
493 
494 #ifdef CONFIG_MMU
495 
496 /*
497  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
498  * the binfmt code determines where the new stack should reside, we shift it to
499  * its final location.  The process proceeds as follows:
500  *
501  * 1) Use shift to calculate the new vma endpoints.
502  * 2) Extend vma to cover both the old and new ranges.  This ensures the
503  *    arguments passed to subsequent functions are consistent.
504  * 3) Move vma's page tables to the new range.
505  * 4) Free up any cleared pgd range.
506  * 5) Shrink the vma to cover only the new range.
507  */
508 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
509 {
510 	struct mm_struct *mm = vma->vm_mm;
511 	unsigned long old_start = vma->vm_start;
512 	unsigned long old_end = vma->vm_end;
513 	unsigned long length = old_end - old_start;
514 	unsigned long new_start = old_start - shift;
515 	unsigned long new_end = old_end - shift;
516 	struct mmu_gather *tlb;
517 
518 	BUG_ON(new_start > new_end);
519 
520 	/*
521 	 * ensure there are no vmas between where we want to go
522 	 * and where we are
523 	 */
524 	if (vma != find_vma(mm, new_start))
525 		return -EFAULT;
526 
527 	/*
528 	 * cover the whole range: [new_start, old_end)
529 	 */
530 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
531 
532 	/*
533 	 * move the page tables downwards, on failure we rely on
534 	 * process cleanup to remove whatever mess we made.
535 	 */
536 	if (length != move_page_tables(vma, old_start,
537 				       vma, new_start, length))
538 		return -ENOMEM;
539 
540 	lru_add_drain();
541 	tlb = tlb_gather_mmu(mm, 0);
542 	if (new_end > old_start) {
543 		/*
544 		 * when the old and new regions overlap clear from new_end.
545 		 */
546 		free_pgd_range(tlb, new_end, old_end, new_end,
547 			vma->vm_next ? vma->vm_next->vm_start : 0);
548 	} else {
549 		/*
550 		 * otherwise, clean from old_start; this is done to not touch
551 		 * the address space in [new_end, old_start) some architectures
552 		 * have constraints on va-space that make this illegal (IA64) -
553 		 * for the others its just a little faster.
554 		 */
555 		free_pgd_range(tlb, old_start, old_end, new_end,
556 			vma->vm_next ? vma->vm_next->vm_start : 0);
557 	}
558 	tlb_finish_mmu(tlb, new_end, old_end);
559 
560 	/*
561 	 * shrink the vma to just the new range.
562 	 */
563 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
564 
565 	return 0;
566 }
567 
568 #define EXTRA_STACK_VM_PAGES	20	/* random */
569 
570 /*
571  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
572  * the stack is optionally relocated, and some extra space is added.
573  */
574 int setup_arg_pages(struct linux_binprm *bprm,
575 		    unsigned long stack_top,
576 		    int executable_stack)
577 {
578 	unsigned long ret;
579 	unsigned long stack_shift;
580 	struct mm_struct *mm = current->mm;
581 	struct vm_area_struct *vma = bprm->vma;
582 	struct vm_area_struct *prev = NULL;
583 	unsigned long vm_flags;
584 	unsigned long stack_base;
585 
586 #ifdef CONFIG_STACK_GROWSUP
587 	/* Limit stack size to 1GB */
588 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
589 	if (stack_base > (1 << 30))
590 		stack_base = 1 << 30;
591 
592 	/* Make sure we didn't let the argument array grow too large. */
593 	if (vma->vm_end - vma->vm_start > stack_base)
594 		return -ENOMEM;
595 
596 	stack_base = PAGE_ALIGN(stack_top - stack_base);
597 
598 	stack_shift = vma->vm_start - stack_base;
599 	mm->arg_start = bprm->p - stack_shift;
600 	bprm->p = vma->vm_end - stack_shift;
601 #else
602 	stack_top = arch_align_stack(stack_top);
603 	stack_top = PAGE_ALIGN(stack_top);
604 	stack_shift = vma->vm_end - stack_top;
605 
606 	bprm->p -= stack_shift;
607 	mm->arg_start = bprm->p;
608 #endif
609 
610 	if (bprm->loader)
611 		bprm->loader -= stack_shift;
612 	bprm->exec -= stack_shift;
613 
614 	down_write(&mm->mmap_sem);
615 	vm_flags = VM_STACK_FLAGS;
616 
617 	/*
618 	 * Adjust stack execute permissions; explicitly enable for
619 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
620 	 * (arch default) otherwise.
621 	 */
622 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
623 		vm_flags |= VM_EXEC;
624 	else if (executable_stack == EXSTACK_DISABLE_X)
625 		vm_flags &= ~VM_EXEC;
626 	vm_flags |= mm->def_flags;
627 
628 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
629 			vm_flags);
630 	if (ret)
631 		goto out_unlock;
632 	BUG_ON(prev != vma);
633 
634 	/* Move stack pages down in memory. */
635 	if (stack_shift) {
636 		ret = shift_arg_pages(vma, stack_shift);
637 		if (ret) {
638 			up_write(&mm->mmap_sem);
639 			return ret;
640 		}
641 	}
642 
643 #ifdef CONFIG_STACK_GROWSUP
644 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
645 #else
646 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
647 #endif
648 	ret = expand_stack(vma, stack_base);
649 	if (ret)
650 		ret = -EFAULT;
651 
652 out_unlock:
653 	up_write(&mm->mmap_sem);
654 	return 0;
655 }
656 EXPORT_SYMBOL(setup_arg_pages);
657 
658 #endif /* CONFIG_MMU */
659 
660 struct file *open_exec(const char *name)
661 {
662 	struct nameidata nd;
663 	struct file *file;
664 	int err;
665 
666 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
667 				FMODE_READ|FMODE_EXEC);
668 	if (err)
669 		goto out;
670 
671 	err = -EACCES;
672 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
673 		goto out_path_put;
674 
675 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
676 		goto out_path_put;
677 
678 	err = inode_permission(nd.path.dentry->d_inode, MAY_EXEC | MAY_OPEN);
679 	if (err)
680 		goto out_path_put;
681 	err = ima_path_check(&nd.path, MAY_EXEC | MAY_OPEN);
682 	if (err)
683 		goto out_path_put;
684 
685 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
686 	if (IS_ERR(file))
687 		return file;
688 
689 	fsnotify_open(file->f_path.dentry);
690 
691 	err = deny_write_access(file);
692 	if (err) {
693 		fput(file);
694 		goto out;
695 	}
696 
697 	return file;
698 
699  out_path_put:
700 	release_open_intent(&nd);
701 	path_put(&nd.path);
702  out:
703 	return ERR_PTR(err);
704 }
705 EXPORT_SYMBOL(open_exec);
706 
707 int kernel_read(struct file *file, unsigned long offset,
708 	char *addr, unsigned long count)
709 {
710 	mm_segment_t old_fs;
711 	loff_t pos = offset;
712 	int result;
713 
714 	old_fs = get_fs();
715 	set_fs(get_ds());
716 	/* The cast to a user pointer is valid due to the set_fs() */
717 	result = vfs_read(file, (void __user *)addr, count, &pos);
718 	set_fs(old_fs);
719 	return result;
720 }
721 
722 EXPORT_SYMBOL(kernel_read);
723 
724 static int exec_mmap(struct mm_struct *mm)
725 {
726 	struct task_struct *tsk;
727 	struct mm_struct * old_mm, *active_mm;
728 
729 	/* Notify parent that we're no longer interested in the old VM */
730 	tsk = current;
731 	old_mm = current->mm;
732 	mm_release(tsk, old_mm);
733 
734 	if (old_mm) {
735 		/*
736 		 * Make sure that if there is a core dump in progress
737 		 * for the old mm, we get out and die instead of going
738 		 * through with the exec.  We must hold mmap_sem around
739 		 * checking core_state and changing tsk->mm.
740 		 */
741 		down_read(&old_mm->mmap_sem);
742 		if (unlikely(old_mm->core_state)) {
743 			up_read(&old_mm->mmap_sem);
744 			return -EINTR;
745 		}
746 	}
747 	task_lock(tsk);
748 	active_mm = tsk->active_mm;
749 	tsk->mm = mm;
750 	tsk->active_mm = mm;
751 	activate_mm(active_mm, mm);
752 	task_unlock(tsk);
753 	arch_pick_mmap_layout(mm);
754 	if (old_mm) {
755 		up_read(&old_mm->mmap_sem);
756 		BUG_ON(active_mm != old_mm);
757 		mm_update_next_owner(old_mm);
758 		mmput(old_mm);
759 		return 0;
760 	}
761 	mmdrop(active_mm);
762 	return 0;
763 }
764 
765 /*
766  * This function makes sure the current process has its own signal table,
767  * so that flush_signal_handlers can later reset the handlers without
768  * disturbing other processes.  (Other processes might share the signal
769  * table via the CLONE_SIGHAND option to clone().)
770  */
771 static int de_thread(struct task_struct *tsk)
772 {
773 	struct signal_struct *sig = tsk->signal;
774 	struct sighand_struct *oldsighand = tsk->sighand;
775 	spinlock_t *lock = &oldsighand->siglock;
776 	int count;
777 
778 	if (thread_group_empty(tsk))
779 		goto no_thread_group;
780 
781 	/*
782 	 * Kill all other threads in the thread group.
783 	 */
784 	spin_lock_irq(lock);
785 	if (signal_group_exit(sig)) {
786 		/*
787 		 * Another group action in progress, just
788 		 * return so that the signal is processed.
789 		 */
790 		spin_unlock_irq(lock);
791 		return -EAGAIN;
792 	}
793 	sig->group_exit_task = tsk;
794 	zap_other_threads(tsk);
795 
796 	/* Account for the thread group leader hanging around: */
797 	count = thread_group_leader(tsk) ? 1 : 2;
798 	sig->notify_count = count;
799 	while (atomic_read(&sig->count) > count) {
800 		__set_current_state(TASK_UNINTERRUPTIBLE);
801 		spin_unlock_irq(lock);
802 		schedule();
803 		spin_lock_irq(lock);
804 	}
805 	spin_unlock_irq(lock);
806 
807 	/*
808 	 * At this point all other threads have exited, all we have to
809 	 * do is to wait for the thread group leader to become inactive,
810 	 * and to assume its PID:
811 	 */
812 	if (!thread_group_leader(tsk)) {
813 		struct task_struct *leader = tsk->group_leader;
814 
815 		sig->notify_count = -1;	/* for exit_notify() */
816 		for (;;) {
817 			write_lock_irq(&tasklist_lock);
818 			if (likely(leader->exit_state))
819 				break;
820 			__set_current_state(TASK_UNINTERRUPTIBLE);
821 			write_unlock_irq(&tasklist_lock);
822 			schedule();
823 		}
824 
825 		/*
826 		 * The only record we have of the real-time age of a
827 		 * process, regardless of execs it's done, is start_time.
828 		 * All the past CPU time is accumulated in signal_struct
829 		 * from sister threads now dead.  But in this non-leader
830 		 * exec, nothing survives from the original leader thread,
831 		 * whose birth marks the true age of this process now.
832 		 * When we take on its identity by switching to its PID, we
833 		 * also take its birthdate (always earlier than our own).
834 		 */
835 		tsk->start_time = leader->start_time;
836 
837 		BUG_ON(!same_thread_group(leader, tsk));
838 		BUG_ON(has_group_leader_pid(tsk));
839 		/*
840 		 * An exec() starts a new thread group with the
841 		 * TGID of the previous thread group. Rehash the
842 		 * two threads with a switched PID, and release
843 		 * the former thread group leader:
844 		 */
845 
846 		/* Become a process group leader with the old leader's pid.
847 		 * The old leader becomes a thread of the this thread group.
848 		 * Note: The old leader also uses this pid until release_task
849 		 *       is called.  Odd but simple and correct.
850 		 */
851 		detach_pid(tsk, PIDTYPE_PID);
852 		tsk->pid = leader->pid;
853 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
854 		transfer_pid(leader, tsk, PIDTYPE_PGID);
855 		transfer_pid(leader, tsk, PIDTYPE_SID);
856 		list_replace_rcu(&leader->tasks, &tsk->tasks);
857 
858 		tsk->group_leader = tsk;
859 		leader->group_leader = tsk;
860 
861 		tsk->exit_signal = SIGCHLD;
862 
863 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
864 		leader->exit_state = EXIT_DEAD;
865 		write_unlock_irq(&tasklist_lock);
866 
867 		release_task(leader);
868 	}
869 
870 	sig->group_exit_task = NULL;
871 	sig->notify_count = 0;
872 
873 no_thread_group:
874 	exit_itimers(sig);
875 	flush_itimer_signals();
876 
877 	if (atomic_read(&oldsighand->count) != 1) {
878 		struct sighand_struct *newsighand;
879 		/*
880 		 * This ->sighand is shared with the CLONE_SIGHAND
881 		 * but not CLONE_THREAD task, switch to the new one.
882 		 */
883 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
884 		if (!newsighand)
885 			return -ENOMEM;
886 
887 		atomic_set(&newsighand->count, 1);
888 		memcpy(newsighand->action, oldsighand->action,
889 		       sizeof(newsighand->action));
890 
891 		write_lock_irq(&tasklist_lock);
892 		spin_lock(&oldsighand->siglock);
893 		rcu_assign_pointer(tsk->sighand, newsighand);
894 		spin_unlock(&oldsighand->siglock);
895 		write_unlock_irq(&tasklist_lock);
896 
897 		__cleanup_sighand(oldsighand);
898 	}
899 
900 	BUG_ON(!thread_group_leader(tsk));
901 	return 0;
902 }
903 
904 /*
905  * These functions flushes out all traces of the currently running executable
906  * so that a new one can be started
907  */
908 static void flush_old_files(struct files_struct * files)
909 {
910 	long j = -1;
911 	struct fdtable *fdt;
912 
913 	spin_lock(&files->file_lock);
914 	for (;;) {
915 		unsigned long set, i;
916 
917 		j++;
918 		i = j * __NFDBITS;
919 		fdt = files_fdtable(files);
920 		if (i >= fdt->max_fds)
921 			break;
922 		set = fdt->close_on_exec->fds_bits[j];
923 		if (!set)
924 			continue;
925 		fdt->close_on_exec->fds_bits[j] = 0;
926 		spin_unlock(&files->file_lock);
927 		for ( ; set ; i++,set >>= 1) {
928 			if (set & 1) {
929 				sys_close(i);
930 			}
931 		}
932 		spin_lock(&files->file_lock);
933 
934 	}
935 	spin_unlock(&files->file_lock);
936 }
937 
938 char *get_task_comm(char *buf, struct task_struct *tsk)
939 {
940 	/* buf must be at least sizeof(tsk->comm) in size */
941 	task_lock(tsk);
942 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
943 	task_unlock(tsk);
944 	return buf;
945 }
946 
947 void set_task_comm(struct task_struct *tsk, char *buf)
948 {
949 	task_lock(tsk);
950 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
951 	task_unlock(tsk);
952 }
953 
954 int flush_old_exec(struct linux_binprm * bprm)
955 {
956 	char * name;
957 	int i, ch, retval;
958 	char tcomm[sizeof(current->comm)];
959 
960 	/*
961 	 * Make sure we have a private signal table and that
962 	 * we are unassociated from the previous thread group.
963 	 */
964 	retval = de_thread(current);
965 	if (retval)
966 		goto out;
967 
968 	set_mm_exe_file(bprm->mm, bprm->file);
969 
970 	/*
971 	 * Release all of the old mmap stuff
972 	 */
973 	retval = exec_mmap(bprm->mm);
974 	if (retval)
975 		goto out;
976 
977 	bprm->mm = NULL;		/* We're using it now */
978 
979 	/* This is the point of no return */
980 	current->sas_ss_sp = current->sas_ss_size = 0;
981 
982 	if (current_euid() == current_uid() && current_egid() == current_gid())
983 		set_dumpable(current->mm, 1);
984 	else
985 		set_dumpable(current->mm, suid_dumpable);
986 
987 	name = bprm->filename;
988 
989 	/* Copies the binary name from after last slash */
990 	for (i=0; (ch = *(name++)) != '\0';) {
991 		if (ch == '/')
992 			i = 0; /* overwrite what we wrote */
993 		else
994 			if (i < (sizeof(tcomm) - 1))
995 				tcomm[i++] = ch;
996 	}
997 	tcomm[i] = '\0';
998 	set_task_comm(current, tcomm);
999 
1000 	current->flags &= ~PF_RANDOMIZE;
1001 	flush_thread();
1002 
1003 	/* Set the new mm task size. We have to do that late because it may
1004 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1005 	 * some architectures like powerpc
1006 	 */
1007 	current->mm->task_size = TASK_SIZE;
1008 
1009 	/* install the new credentials */
1010 	if (bprm->cred->uid != current_euid() ||
1011 	    bprm->cred->gid != current_egid()) {
1012 		current->pdeath_signal = 0;
1013 	} else if (file_permission(bprm->file, MAY_READ) ||
1014 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1015 		set_dumpable(current->mm, suid_dumpable);
1016 	}
1017 
1018 	current->personality &= ~bprm->per_clear;
1019 
1020 	/* An exec changes our domain. We are no longer part of the thread
1021 	   group */
1022 
1023 	current->self_exec_id++;
1024 
1025 	flush_signal_handlers(current, 0);
1026 	flush_old_files(current->files);
1027 
1028 	return 0;
1029 
1030 out:
1031 	return retval;
1032 }
1033 
1034 EXPORT_SYMBOL(flush_old_exec);
1035 
1036 /*
1037  * install the new credentials for this executable
1038  */
1039 void install_exec_creds(struct linux_binprm *bprm)
1040 {
1041 	security_bprm_committing_creds(bprm);
1042 
1043 	commit_creds(bprm->cred);
1044 	bprm->cred = NULL;
1045 
1046 	/* cred_exec_mutex must be held at least to this point to prevent
1047 	 * ptrace_attach() from altering our determination of the task's
1048 	 * credentials; any time after this it may be unlocked */
1049 
1050 	security_bprm_committed_creds(bprm);
1051 }
1052 EXPORT_SYMBOL(install_exec_creds);
1053 
1054 /*
1055  * determine how safe it is to execute the proposed program
1056  * - the caller must hold current->cred_exec_mutex to protect against
1057  *   PTRACE_ATTACH
1058  */
1059 void check_unsafe_exec(struct linux_binprm *bprm, struct files_struct *files)
1060 {
1061 	struct task_struct *p = current, *t;
1062 	unsigned long flags;
1063 	unsigned n_fs, n_files, n_sighand;
1064 
1065 	bprm->unsafe = tracehook_unsafe_exec(p);
1066 
1067 	n_fs = 1;
1068 	n_files = 1;
1069 	n_sighand = 1;
1070 	lock_task_sighand(p, &flags);
1071 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1072 		if (t->fs == p->fs)
1073 			n_fs++;
1074 		if (t->files == files)
1075 			n_files++;
1076 		n_sighand++;
1077 	}
1078 
1079 	if (atomic_read(&p->fs->count) > n_fs ||
1080 	    atomic_read(&p->files->count) > n_files ||
1081 	    atomic_read(&p->sighand->count) > n_sighand)
1082 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1083 
1084 	unlock_task_sighand(p, &flags);
1085 }
1086 
1087 /*
1088  * Fill the binprm structure from the inode.
1089  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1090  *
1091  * This may be called multiple times for binary chains (scripts for example).
1092  */
1093 int prepare_binprm(struct linux_binprm *bprm)
1094 {
1095 	umode_t mode;
1096 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1097 	int retval;
1098 
1099 	mode = inode->i_mode;
1100 	if (bprm->file->f_op == NULL)
1101 		return -EACCES;
1102 
1103 	/* clear any previous set[ug]id data from a previous binary */
1104 	bprm->cred->euid = current_euid();
1105 	bprm->cred->egid = current_egid();
1106 
1107 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1108 		/* Set-uid? */
1109 		if (mode & S_ISUID) {
1110 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1111 			bprm->cred->euid = inode->i_uid;
1112 		}
1113 
1114 		/* Set-gid? */
1115 		/*
1116 		 * If setgid is set but no group execute bit then this
1117 		 * is a candidate for mandatory locking, not a setgid
1118 		 * executable.
1119 		 */
1120 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1121 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1122 			bprm->cred->egid = inode->i_gid;
1123 		}
1124 	}
1125 
1126 	/* fill in binprm security blob */
1127 	retval = security_bprm_set_creds(bprm);
1128 	if (retval)
1129 		return retval;
1130 	bprm->cred_prepared = 1;
1131 
1132 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1133 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1134 }
1135 
1136 EXPORT_SYMBOL(prepare_binprm);
1137 
1138 /*
1139  * Arguments are '\0' separated strings found at the location bprm->p
1140  * points to; chop off the first by relocating brpm->p to right after
1141  * the first '\0' encountered.
1142  */
1143 int remove_arg_zero(struct linux_binprm *bprm)
1144 {
1145 	int ret = 0;
1146 	unsigned long offset;
1147 	char *kaddr;
1148 	struct page *page;
1149 
1150 	if (!bprm->argc)
1151 		return 0;
1152 
1153 	do {
1154 		offset = bprm->p & ~PAGE_MASK;
1155 		page = get_arg_page(bprm, bprm->p, 0);
1156 		if (!page) {
1157 			ret = -EFAULT;
1158 			goto out;
1159 		}
1160 		kaddr = kmap_atomic(page, KM_USER0);
1161 
1162 		for (; offset < PAGE_SIZE && kaddr[offset];
1163 				offset++, bprm->p++)
1164 			;
1165 
1166 		kunmap_atomic(kaddr, KM_USER0);
1167 		put_arg_page(page);
1168 
1169 		if (offset == PAGE_SIZE)
1170 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1171 	} while (offset == PAGE_SIZE);
1172 
1173 	bprm->p++;
1174 	bprm->argc--;
1175 	ret = 0;
1176 
1177 out:
1178 	return ret;
1179 }
1180 EXPORT_SYMBOL(remove_arg_zero);
1181 
1182 /*
1183  * cycle the list of binary formats handler, until one recognizes the image
1184  */
1185 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1186 {
1187 	unsigned int depth = bprm->recursion_depth;
1188 	int try,retval;
1189 	struct linux_binfmt *fmt;
1190 
1191 	retval = security_bprm_check(bprm);
1192 	if (retval)
1193 		return retval;
1194 	retval = ima_bprm_check(bprm);
1195 	if (retval)
1196 		return retval;
1197 
1198 	/* kernel module loader fixup */
1199 	/* so we don't try to load run modprobe in kernel space. */
1200 	set_fs(USER_DS);
1201 
1202 	retval = audit_bprm(bprm);
1203 	if (retval)
1204 		return retval;
1205 
1206 	retval = -ENOENT;
1207 	for (try=0; try<2; try++) {
1208 		read_lock(&binfmt_lock);
1209 		list_for_each_entry(fmt, &formats, lh) {
1210 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1211 			if (!fn)
1212 				continue;
1213 			if (!try_module_get(fmt->module))
1214 				continue;
1215 			read_unlock(&binfmt_lock);
1216 			retval = fn(bprm, regs);
1217 			/*
1218 			 * Restore the depth counter to its starting value
1219 			 * in this call, so we don't have to rely on every
1220 			 * load_binary function to restore it on return.
1221 			 */
1222 			bprm->recursion_depth = depth;
1223 			if (retval >= 0) {
1224 				if (depth == 0)
1225 					tracehook_report_exec(fmt, bprm, regs);
1226 				put_binfmt(fmt);
1227 				allow_write_access(bprm->file);
1228 				if (bprm->file)
1229 					fput(bprm->file);
1230 				bprm->file = NULL;
1231 				current->did_exec = 1;
1232 				proc_exec_connector(current);
1233 				return retval;
1234 			}
1235 			read_lock(&binfmt_lock);
1236 			put_binfmt(fmt);
1237 			if (retval != -ENOEXEC || bprm->mm == NULL)
1238 				break;
1239 			if (!bprm->file) {
1240 				read_unlock(&binfmt_lock);
1241 				return retval;
1242 			}
1243 		}
1244 		read_unlock(&binfmt_lock);
1245 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1246 			break;
1247 #ifdef CONFIG_MODULES
1248 		} else {
1249 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1250 			if (printable(bprm->buf[0]) &&
1251 			    printable(bprm->buf[1]) &&
1252 			    printable(bprm->buf[2]) &&
1253 			    printable(bprm->buf[3]))
1254 				break; /* -ENOEXEC */
1255 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1256 #endif
1257 		}
1258 	}
1259 	return retval;
1260 }
1261 
1262 EXPORT_SYMBOL(search_binary_handler);
1263 
1264 void free_bprm(struct linux_binprm *bprm)
1265 {
1266 	free_arg_pages(bprm);
1267 	if (bprm->cred)
1268 		abort_creds(bprm->cred);
1269 	kfree(bprm);
1270 }
1271 
1272 /*
1273  * sys_execve() executes a new program.
1274  */
1275 int do_execve(char * filename,
1276 	char __user *__user *argv,
1277 	char __user *__user *envp,
1278 	struct pt_regs * regs)
1279 {
1280 	struct linux_binprm *bprm;
1281 	struct file *file;
1282 	struct files_struct *displaced;
1283 	int retval;
1284 
1285 	retval = unshare_files(&displaced);
1286 	if (retval)
1287 		goto out_ret;
1288 
1289 	retval = -ENOMEM;
1290 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1291 	if (!bprm)
1292 		goto out_files;
1293 
1294 	retval = mutex_lock_interruptible(&current->cred_exec_mutex);
1295 	if (retval < 0)
1296 		goto out_free;
1297 	current->in_execve = 1;
1298 
1299 	retval = -ENOMEM;
1300 	bprm->cred = prepare_exec_creds();
1301 	if (!bprm->cred)
1302 		goto out_unlock;
1303 	check_unsafe_exec(bprm, displaced);
1304 
1305 	file = open_exec(filename);
1306 	retval = PTR_ERR(file);
1307 	if (IS_ERR(file))
1308 		goto out_unlock;
1309 
1310 	sched_exec();
1311 
1312 	bprm->file = file;
1313 	bprm->filename = filename;
1314 	bprm->interp = filename;
1315 
1316 	retval = bprm_mm_init(bprm);
1317 	if (retval)
1318 		goto out_file;
1319 
1320 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1321 	if ((retval = bprm->argc) < 0)
1322 		goto out;
1323 
1324 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1325 	if ((retval = bprm->envc) < 0)
1326 		goto out;
1327 
1328 	retval = prepare_binprm(bprm);
1329 	if (retval < 0)
1330 		goto out;
1331 
1332 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1333 	if (retval < 0)
1334 		goto out;
1335 
1336 	bprm->exec = bprm->p;
1337 	retval = copy_strings(bprm->envc, envp, bprm);
1338 	if (retval < 0)
1339 		goto out;
1340 
1341 	retval = copy_strings(bprm->argc, argv, bprm);
1342 	if (retval < 0)
1343 		goto out;
1344 
1345 	current->flags &= ~PF_KTHREAD;
1346 	retval = search_binary_handler(bprm,regs);
1347 	if (retval < 0)
1348 		goto out;
1349 
1350 	/* execve succeeded */
1351 	current->in_execve = 0;
1352 	mutex_unlock(&current->cred_exec_mutex);
1353 	acct_update_integrals(current);
1354 	free_bprm(bprm);
1355 	if (displaced)
1356 		put_files_struct(displaced);
1357 	return retval;
1358 
1359 out:
1360 	if (bprm->mm)
1361 		mmput (bprm->mm);
1362 
1363 out_file:
1364 	if (bprm->file) {
1365 		allow_write_access(bprm->file);
1366 		fput(bprm->file);
1367 	}
1368 
1369 out_unlock:
1370 	current->in_execve = 0;
1371 	mutex_unlock(&current->cred_exec_mutex);
1372 
1373 out_free:
1374 	free_bprm(bprm);
1375 
1376 out_files:
1377 	if (displaced)
1378 		reset_files_struct(displaced);
1379 out_ret:
1380 	return retval;
1381 }
1382 
1383 int set_binfmt(struct linux_binfmt *new)
1384 {
1385 	struct linux_binfmt *old = current->binfmt;
1386 
1387 	if (new) {
1388 		if (!try_module_get(new->module))
1389 			return -1;
1390 	}
1391 	current->binfmt = new;
1392 	if (old)
1393 		module_put(old->module);
1394 	return 0;
1395 }
1396 
1397 EXPORT_SYMBOL(set_binfmt);
1398 
1399 /* format_corename will inspect the pattern parameter, and output a
1400  * name into corename, which must have space for at least
1401  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1402  */
1403 static int format_corename(char *corename, long signr)
1404 {
1405 	const struct cred *cred = current_cred();
1406 	const char *pat_ptr = core_pattern;
1407 	int ispipe = (*pat_ptr == '|');
1408 	char *out_ptr = corename;
1409 	char *const out_end = corename + CORENAME_MAX_SIZE;
1410 	int rc;
1411 	int pid_in_pattern = 0;
1412 
1413 	/* Repeat as long as we have more pattern to process and more output
1414 	   space */
1415 	while (*pat_ptr) {
1416 		if (*pat_ptr != '%') {
1417 			if (out_ptr == out_end)
1418 				goto out;
1419 			*out_ptr++ = *pat_ptr++;
1420 		} else {
1421 			switch (*++pat_ptr) {
1422 			case 0:
1423 				goto out;
1424 			/* Double percent, output one percent */
1425 			case '%':
1426 				if (out_ptr == out_end)
1427 					goto out;
1428 				*out_ptr++ = '%';
1429 				break;
1430 			/* pid */
1431 			case 'p':
1432 				pid_in_pattern = 1;
1433 				rc = snprintf(out_ptr, out_end - out_ptr,
1434 					      "%d", task_tgid_vnr(current));
1435 				if (rc > out_end - out_ptr)
1436 					goto out;
1437 				out_ptr += rc;
1438 				break;
1439 			/* uid */
1440 			case 'u':
1441 				rc = snprintf(out_ptr, out_end - out_ptr,
1442 					      "%d", cred->uid);
1443 				if (rc > out_end - out_ptr)
1444 					goto out;
1445 				out_ptr += rc;
1446 				break;
1447 			/* gid */
1448 			case 'g':
1449 				rc = snprintf(out_ptr, out_end - out_ptr,
1450 					      "%d", cred->gid);
1451 				if (rc > out_end - out_ptr)
1452 					goto out;
1453 				out_ptr += rc;
1454 				break;
1455 			/* signal that caused the coredump */
1456 			case 's':
1457 				rc = snprintf(out_ptr, out_end - out_ptr,
1458 					      "%ld", signr);
1459 				if (rc > out_end - out_ptr)
1460 					goto out;
1461 				out_ptr += rc;
1462 				break;
1463 			/* UNIX time of coredump */
1464 			case 't': {
1465 				struct timeval tv;
1466 				do_gettimeofday(&tv);
1467 				rc = snprintf(out_ptr, out_end - out_ptr,
1468 					      "%lu", tv.tv_sec);
1469 				if (rc > out_end - out_ptr)
1470 					goto out;
1471 				out_ptr += rc;
1472 				break;
1473 			}
1474 			/* hostname */
1475 			case 'h':
1476 				down_read(&uts_sem);
1477 				rc = snprintf(out_ptr, out_end - out_ptr,
1478 					      "%s", utsname()->nodename);
1479 				up_read(&uts_sem);
1480 				if (rc > out_end - out_ptr)
1481 					goto out;
1482 				out_ptr += rc;
1483 				break;
1484 			/* executable */
1485 			case 'e':
1486 				rc = snprintf(out_ptr, out_end - out_ptr,
1487 					      "%s", current->comm);
1488 				if (rc > out_end - out_ptr)
1489 					goto out;
1490 				out_ptr += rc;
1491 				break;
1492 			/* core limit size */
1493 			case 'c':
1494 				rc = snprintf(out_ptr, out_end - out_ptr,
1495 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1496 				if (rc > out_end - out_ptr)
1497 					goto out;
1498 				out_ptr += rc;
1499 				break;
1500 			default:
1501 				break;
1502 			}
1503 			++pat_ptr;
1504 		}
1505 	}
1506 	/* Backward compatibility with core_uses_pid:
1507 	 *
1508 	 * If core_pattern does not include a %p (as is the default)
1509 	 * and core_uses_pid is set, then .%pid will be appended to
1510 	 * the filename. Do not do this for piped commands. */
1511 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1512 		rc = snprintf(out_ptr, out_end - out_ptr,
1513 			      ".%d", task_tgid_vnr(current));
1514 		if (rc > out_end - out_ptr)
1515 			goto out;
1516 		out_ptr += rc;
1517 	}
1518 out:
1519 	*out_ptr = 0;
1520 	return ispipe;
1521 }
1522 
1523 static int zap_process(struct task_struct *start)
1524 {
1525 	struct task_struct *t;
1526 	int nr = 0;
1527 
1528 	start->signal->flags = SIGNAL_GROUP_EXIT;
1529 	start->signal->group_stop_count = 0;
1530 
1531 	t = start;
1532 	do {
1533 		if (t != current && t->mm) {
1534 			sigaddset(&t->pending.signal, SIGKILL);
1535 			signal_wake_up(t, 1);
1536 			nr++;
1537 		}
1538 	} while_each_thread(start, t);
1539 
1540 	return nr;
1541 }
1542 
1543 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1544 				struct core_state *core_state, int exit_code)
1545 {
1546 	struct task_struct *g, *p;
1547 	unsigned long flags;
1548 	int nr = -EAGAIN;
1549 
1550 	spin_lock_irq(&tsk->sighand->siglock);
1551 	if (!signal_group_exit(tsk->signal)) {
1552 		mm->core_state = core_state;
1553 		tsk->signal->group_exit_code = exit_code;
1554 		nr = zap_process(tsk);
1555 	}
1556 	spin_unlock_irq(&tsk->sighand->siglock);
1557 	if (unlikely(nr < 0))
1558 		return nr;
1559 
1560 	if (atomic_read(&mm->mm_users) == nr + 1)
1561 		goto done;
1562 	/*
1563 	 * We should find and kill all tasks which use this mm, and we should
1564 	 * count them correctly into ->nr_threads. We don't take tasklist
1565 	 * lock, but this is safe wrt:
1566 	 *
1567 	 * fork:
1568 	 *	None of sub-threads can fork after zap_process(leader). All
1569 	 *	processes which were created before this point should be
1570 	 *	visible to zap_threads() because copy_process() adds the new
1571 	 *	process to the tail of init_task.tasks list, and lock/unlock
1572 	 *	of ->siglock provides a memory barrier.
1573 	 *
1574 	 * do_exit:
1575 	 *	The caller holds mm->mmap_sem. This means that the task which
1576 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1577 	 *	its ->mm.
1578 	 *
1579 	 * de_thread:
1580 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1581 	 *	we must see either old or new leader, this does not matter.
1582 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1583 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1584 	 *	it can't fail.
1585 	 *
1586 	 *	Note also that "g" can be the old leader with ->mm == NULL
1587 	 *	and already unhashed and thus removed from ->thread_group.
1588 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1589 	 *	clear the ->next pointer, we will find the new leader via
1590 	 *	next_thread().
1591 	 */
1592 	rcu_read_lock();
1593 	for_each_process(g) {
1594 		if (g == tsk->group_leader)
1595 			continue;
1596 		if (g->flags & PF_KTHREAD)
1597 			continue;
1598 		p = g;
1599 		do {
1600 			if (p->mm) {
1601 				if (unlikely(p->mm == mm)) {
1602 					lock_task_sighand(p, &flags);
1603 					nr += zap_process(p);
1604 					unlock_task_sighand(p, &flags);
1605 				}
1606 				break;
1607 			}
1608 		} while_each_thread(g, p);
1609 	}
1610 	rcu_read_unlock();
1611 done:
1612 	atomic_set(&core_state->nr_threads, nr);
1613 	return nr;
1614 }
1615 
1616 static int coredump_wait(int exit_code, struct core_state *core_state)
1617 {
1618 	struct task_struct *tsk = current;
1619 	struct mm_struct *mm = tsk->mm;
1620 	struct completion *vfork_done;
1621 	int core_waiters;
1622 
1623 	init_completion(&core_state->startup);
1624 	core_state->dumper.task = tsk;
1625 	core_state->dumper.next = NULL;
1626 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1627 	up_write(&mm->mmap_sem);
1628 
1629 	if (unlikely(core_waiters < 0))
1630 		goto fail;
1631 
1632 	/*
1633 	 * Make sure nobody is waiting for us to release the VM,
1634 	 * otherwise we can deadlock when we wait on each other
1635 	 */
1636 	vfork_done = tsk->vfork_done;
1637 	if (vfork_done) {
1638 		tsk->vfork_done = NULL;
1639 		complete(vfork_done);
1640 	}
1641 
1642 	if (core_waiters)
1643 		wait_for_completion(&core_state->startup);
1644 fail:
1645 	return core_waiters;
1646 }
1647 
1648 static void coredump_finish(struct mm_struct *mm)
1649 {
1650 	struct core_thread *curr, *next;
1651 	struct task_struct *task;
1652 
1653 	next = mm->core_state->dumper.next;
1654 	while ((curr = next) != NULL) {
1655 		next = curr->next;
1656 		task = curr->task;
1657 		/*
1658 		 * see exit_mm(), curr->task must not see
1659 		 * ->task == NULL before we read ->next.
1660 		 */
1661 		smp_mb();
1662 		curr->task = NULL;
1663 		wake_up_process(task);
1664 	}
1665 
1666 	mm->core_state = NULL;
1667 }
1668 
1669 /*
1670  * set_dumpable converts traditional three-value dumpable to two flags and
1671  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1672  * these bits are not changed atomically.  So get_dumpable can observe the
1673  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1674  * return either old dumpable or new one by paying attention to the order of
1675  * modifying the bits.
1676  *
1677  * dumpable |   mm->flags (binary)
1678  * old  new | initial interim  final
1679  * ---------+-----------------------
1680  *  0    1  |   00      01      01
1681  *  0    2  |   00      10(*)   11
1682  *  1    0  |   01      00      00
1683  *  1    2  |   01      11      11
1684  *  2    0  |   11      10(*)   00
1685  *  2    1  |   11      11      01
1686  *
1687  * (*) get_dumpable regards interim value of 10 as 11.
1688  */
1689 void set_dumpable(struct mm_struct *mm, int value)
1690 {
1691 	switch (value) {
1692 	case 0:
1693 		clear_bit(MMF_DUMPABLE, &mm->flags);
1694 		smp_wmb();
1695 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1696 		break;
1697 	case 1:
1698 		set_bit(MMF_DUMPABLE, &mm->flags);
1699 		smp_wmb();
1700 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1701 		break;
1702 	case 2:
1703 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1704 		smp_wmb();
1705 		set_bit(MMF_DUMPABLE, &mm->flags);
1706 		break;
1707 	}
1708 }
1709 
1710 int get_dumpable(struct mm_struct *mm)
1711 {
1712 	int ret;
1713 
1714 	ret = mm->flags & 0x3;
1715 	return (ret >= 2) ? 2 : ret;
1716 }
1717 
1718 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1719 {
1720 	struct core_state core_state;
1721 	char corename[CORENAME_MAX_SIZE + 1];
1722 	struct mm_struct *mm = current->mm;
1723 	struct linux_binfmt * binfmt;
1724 	struct inode * inode;
1725 	struct file * file;
1726 	const struct cred *old_cred;
1727 	struct cred *cred;
1728 	int retval = 0;
1729 	int flag = 0;
1730 	int ispipe = 0;
1731 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1732 	char **helper_argv = NULL;
1733 	int helper_argc = 0;
1734 	char *delimit;
1735 
1736 	audit_core_dumps(signr);
1737 
1738 	binfmt = current->binfmt;
1739 	if (!binfmt || !binfmt->core_dump)
1740 		goto fail;
1741 
1742 	cred = prepare_creds();
1743 	if (!cred) {
1744 		retval = -ENOMEM;
1745 		goto fail;
1746 	}
1747 
1748 	down_write(&mm->mmap_sem);
1749 	/*
1750 	 * If another thread got here first, or we are not dumpable, bail out.
1751 	 */
1752 	if (mm->core_state || !get_dumpable(mm)) {
1753 		up_write(&mm->mmap_sem);
1754 		put_cred(cred);
1755 		goto fail;
1756 	}
1757 
1758 	/*
1759 	 *	We cannot trust fsuid as being the "true" uid of the
1760 	 *	process nor do we know its entire history. We only know it
1761 	 *	was tainted so we dump it as root in mode 2.
1762 	 */
1763 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1764 		flag = O_EXCL;		/* Stop rewrite attacks */
1765 		cred->fsuid = 0;	/* Dump root private */
1766 	}
1767 
1768 	retval = coredump_wait(exit_code, &core_state);
1769 	if (retval < 0) {
1770 		put_cred(cred);
1771 		goto fail;
1772 	}
1773 
1774 	old_cred = override_creds(cred);
1775 
1776 	/*
1777 	 * Clear any false indication of pending signals that might
1778 	 * be seen by the filesystem code called to write the core file.
1779 	 */
1780 	clear_thread_flag(TIF_SIGPENDING);
1781 
1782 	/*
1783 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1784 	 * uses lock_kernel()
1785 	 */
1786  	lock_kernel();
1787 	ispipe = format_corename(corename, signr);
1788 	unlock_kernel();
1789 	/*
1790 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1791 	 * to a pipe.  Since we're not writing directly to the filesystem
1792 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1793 	 * created unless the pipe reader choses to write out the core file
1794 	 * at which point file size limits and permissions will be imposed
1795 	 * as it does with any other process
1796 	 */
1797 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1798 		goto fail_unlock;
1799 
1800  	if (ispipe) {
1801 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1802 		if (!helper_argv) {
1803 			printk(KERN_WARNING "%s failed to allocate memory\n",
1804 			       __func__);
1805 			goto fail_unlock;
1806 		}
1807 		/* Terminate the string before the first option */
1808 		delimit = strchr(corename, ' ');
1809 		if (delimit)
1810 			*delimit = '\0';
1811 		delimit = strrchr(helper_argv[0], '/');
1812 		if (delimit)
1813 			delimit++;
1814 		else
1815 			delimit = helper_argv[0];
1816 		if (!strcmp(delimit, current->comm)) {
1817 			printk(KERN_NOTICE "Recursive core dump detected, "
1818 					"aborting\n");
1819 			goto fail_unlock;
1820 		}
1821 
1822 		core_limit = RLIM_INFINITY;
1823 
1824 		/* SIGPIPE can happen, but it's just never processed */
1825  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1826 				&file)) {
1827  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1828 			       corename);
1829  			goto fail_unlock;
1830  		}
1831  	} else
1832  		file = filp_open(corename,
1833 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1834 				 0600);
1835 	if (IS_ERR(file))
1836 		goto fail_unlock;
1837 	inode = file->f_path.dentry->d_inode;
1838 	if (inode->i_nlink > 1)
1839 		goto close_fail;	/* multiple links - don't dump */
1840 	if (!ispipe && d_unhashed(file->f_path.dentry))
1841 		goto close_fail;
1842 
1843 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1844 	   but keep the previous behaviour for now. */
1845 	if (!ispipe && !S_ISREG(inode->i_mode))
1846 		goto close_fail;
1847 	/*
1848 	 * Dont allow local users get cute and trick others to coredump
1849 	 * into their pre-created files:
1850 	 */
1851 	if (inode->i_uid != current_fsuid())
1852 		goto close_fail;
1853 	if (!file->f_op)
1854 		goto close_fail;
1855 	if (!file->f_op->write)
1856 		goto close_fail;
1857 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1858 		goto close_fail;
1859 
1860 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1861 
1862 	if (retval)
1863 		current->signal->group_exit_code |= 0x80;
1864 close_fail:
1865 	filp_close(file, NULL);
1866 fail_unlock:
1867 	if (helper_argv)
1868 		argv_free(helper_argv);
1869 
1870 	revert_creds(old_cred);
1871 	put_cred(cred);
1872 	coredump_finish(mm);
1873 fail:
1874 	return;
1875 }
1876