xref: /linux/fs/exec.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60 
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64 
65 #include <trace/events/task.h>
66 #include "internal.h"
67 
68 #include <trace/events/sched.h>
69 
70 int suid_dumpable = 0;
71 
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74 
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77 	BUG_ON(!fmt);
78 	if (WARN_ON(!fmt->load_binary))
79 		return;
80 	write_lock(&binfmt_lock);
81 	insert ? list_add(&fmt->lh, &formats) :
82 		 list_add_tail(&fmt->lh, &formats);
83 	write_unlock(&binfmt_lock);
84 }
85 
86 EXPORT_SYMBOL(__register_binfmt);
87 
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 	write_lock(&binfmt_lock);
91 	list_del(&fmt->lh);
92 	write_unlock(&binfmt_lock);
93 }
94 
95 EXPORT_SYMBOL(unregister_binfmt);
96 
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 	module_put(fmt->module);
100 }
101 
102 bool path_noexec(const struct path *path)
103 {
104 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107 
108 #ifdef CONFIG_USELIB
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 	struct linux_binfmt *fmt;
118 	struct file *file;
119 	struct filename *tmp = getname(library);
120 	int error = PTR_ERR(tmp);
121 	static const struct open_flags uselib_flags = {
122 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 		.acc_mode = MAY_READ | MAY_EXEC,
124 		.intent = LOOKUP_OPEN,
125 		.lookup_flags = LOOKUP_FOLLOW,
126 	};
127 
128 	if (IS_ERR(tmp))
129 		goto out;
130 
131 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 	putname(tmp);
133 	error = PTR_ERR(file);
134 	if (IS_ERR(file))
135 		goto out;
136 
137 	error = -EINVAL;
138 	if (!S_ISREG(file_inode(file)->i_mode))
139 		goto exit;
140 
141 	error = -EACCES;
142 	if (path_noexec(&file->f_path))
143 		goto exit;
144 
145 	fsnotify_open(file);
146 
147 	error = -ENOEXEC;
148 
149 	read_lock(&binfmt_lock);
150 	list_for_each_entry(fmt, &formats, lh) {
151 		if (!fmt->load_shlib)
152 			continue;
153 		if (!try_module_get(fmt->module))
154 			continue;
155 		read_unlock(&binfmt_lock);
156 		error = fmt->load_shlib(file);
157 		read_lock(&binfmt_lock);
158 		put_binfmt(fmt);
159 		if (error != -ENOEXEC)
160 			break;
161 	}
162 	read_unlock(&binfmt_lock);
163 exit:
164 	fput(file);
165 out:
166   	return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169 
170 #ifdef CONFIG_MMU
171 /*
172  * The nascent bprm->mm is not visible until exec_mmap() but it can
173  * use a lot of memory, account these pages in current->mm temporary
174  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175  * change the counter back via acct_arg_size(0).
176  */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 	struct mm_struct *mm = current->mm;
180 	long diff = (long)(pages - bprm->vma_pages);
181 
182 	if (!mm || !diff)
183 		return;
184 
185 	bprm->vma_pages = pages;
186 	add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188 
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 		int write)
191 {
192 	struct page *page;
193 	int ret;
194 
195 #ifdef CONFIG_STACK_GROWSUP
196 	if (write) {
197 		ret = expand_downwards(bprm->vma, pos);
198 		if (ret < 0)
199 			return NULL;
200 	}
201 #endif
202 	/*
203 	 * We are doing an exec().  'current' is the process
204 	 * doing the exec and bprm->mm is the new process's mm.
205 	 */
206 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, write,
207 			1, &page, NULL);
208 	if (ret <= 0)
209 		return NULL;
210 
211 	if (write) {
212 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
213 		struct rlimit *rlim;
214 
215 		acct_arg_size(bprm, size / PAGE_SIZE);
216 
217 		/*
218 		 * We've historically supported up to 32 pages (ARG_MAX)
219 		 * of argument strings even with small stacks
220 		 */
221 		if (size <= ARG_MAX)
222 			return page;
223 
224 		/*
225 		 * Limit to 1/4-th the stack size for the argv+env strings.
226 		 * This ensures that:
227 		 *  - the remaining binfmt code will not run out of stack space,
228 		 *  - the program will have a reasonable amount of stack left
229 		 *    to work from.
230 		 */
231 		rlim = current->signal->rlim;
232 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
233 			put_page(page);
234 			return NULL;
235 		}
236 	}
237 
238 	return page;
239 }
240 
241 static void put_arg_page(struct page *page)
242 {
243 	put_page(page);
244 }
245 
246 static void free_arg_pages(struct linux_binprm *bprm)
247 {
248 }
249 
250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251 		struct page *page)
252 {
253 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
254 }
255 
256 static int __bprm_mm_init(struct linux_binprm *bprm)
257 {
258 	int err;
259 	struct vm_area_struct *vma = NULL;
260 	struct mm_struct *mm = bprm->mm;
261 
262 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263 	if (!vma)
264 		return -ENOMEM;
265 
266 	if (down_write_killable(&mm->mmap_sem)) {
267 		err = -EINTR;
268 		goto err_free;
269 	}
270 	vma->vm_mm = mm;
271 
272 	/*
273 	 * Place the stack at the largest stack address the architecture
274 	 * supports. Later, we'll move this to an appropriate place. We don't
275 	 * use STACK_TOP because that can depend on attributes which aren't
276 	 * configured yet.
277 	 */
278 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
279 	vma->vm_end = STACK_TOP_MAX;
280 	vma->vm_start = vma->vm_end - PAGE_SIZE;
281 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
282 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
283 	INIT_LIST_HEAD(&vma->anon_vma_chain);
284 
285 	err = insert_vm_struct(mm, vma);
286 	if (err)
287 		goto err;
288 
289 	mm->stack_vm = mm->total_vm = 1;
290 	arch_bprm_mm_init(mm, vma);
291 	up_write(&mm->mmap_sem);
292 	bprm->p = vma->vm_end - sizeof(void *);
293 	return 0;
294 err:
295 	up_write(&mm->mmap_sem);
296 err_free:
297 	bprm->vma = NULL;
298 	kmem_cache_free(vm_area_cachep, vma);
299 	return err;
300 }
301 
302 static bool valid_arg_len(struct linux_binprm *bprm, long len)
303 {
304 	return len <= MAX_ARG_STRLEN;
305 }
306 
307 #else
308 
309 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
310 {
311 }
312 
313 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
314 		int write)
315 {
316 	struct page *page;
317 
318 	page = bprm->page[pos / PAGE_SIZE];
319 	if (!page && write) {
320 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
321 		if (!page)
322 			return NULL;
323 		bprm->page[pos / PAGE_SIZE] = page;
324 	}
325 
326 	return page;
327 }
328 
329 static void put_arg_page(struct page *page)
330 {
331 }
332 
333 static void free_arg_page(struct linux_binprm *bprm, int i)
334 {
335 	if (bprm->page[i]) {
336 		__free_page(bprm->page[i]);
337 		bprm->page[i] = NULL;
338 	}
339 }
340 
341 static void free_arg_pages(struct linux_binprm *bprm)
342 {
343 	int i;
344 
345 	for (i = 0; i < MAX_ARG_PAGES; i++)
346 		free_arg_page(bprm, i);
347 }
348 
349 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
350 		struct page *page)
351 {
352 }
353 
354 static int __bprm_mm_init(struct linux_binprm *bprm)
355 {
356 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
357 	return 0;
358 }
359 
360 static bool valid_arg_len(struct linux_binprm *bprm, long len)
361 {
362 	return len <= bprm->p;
363 }
364 
365 #endif /* CONFIG_MMU */
366 
367 /*
368  * Create a new mm_struct and populate it with a temporary stack
369  * vm_area_struct.  We don't have enough context at this point to set the stack
370  * flags, permissions, and offset, so we use temporary values.  We'll update
371  * them later in setup_arg_pages().
372  */
373 static int bprm_mm_init(struct linux_binprm *bprm)
374 {
375 	int err;
376 	struct mm_struct *mm = NULL;
377 
378 	bprm->mm = mm = mm_alloc();
379 	err = -ENOMEM;
380 	if (!mm)
381 		goto err;
382 
383 	err = __bprm_mm_init(bprm);
384 	if (err)
385 		goto err;
386 
387 	return 0;
388 
389 err:
390 	if (mm) {
391 		bprm->mm = NULL;
392 		mmdrop(mm);
393 	}
394 
395 	return err;
396 }
397 
398 struct user_arg_ptr {
399 #ifdef CONFIG_COMPAT
400 	bool is_compat;
401 #endif
402 	union {
403 		const char __user *const __user *native;
404 #ifdef CONFIG_COMPAT
405 		const compat_uptr_t __user *compat;
406 #endif
407 	} ptr;
408 };
409 
410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
411 {
412 	const char __user *native;
413 
414 #ifdef CONFIG_COMPAT
415 	if (unlikely(argv.is_compat)) {
416 		compat_uptr_t compat;
417 
418 		if (get_user(compat, argv.ptr.compat + nr))
419 			return ERR_PTR(-EFAULT);
420 
421 		return compat_ptr(compat);
422 	}
423 #endif
424 
425 	if (get_user(native, argv.ptr.native + nr))
426 		return ERR_PTR(-EFAULT);
427 
428 	return native;
429 }
430 
431 /*
432  * count() counts the number of strings in array ARGV.
433  */
434 static int count(struct user_arg_ptr argv, int max)
435 {
436 	int i = 0;
437 
438 	if (argv.ptr.native != NULL) {
439 		for (;;) {
440 			const char __user *p = get_user_arg_ptr(argv, i);
441 
442 			if (!p)
443 				break;
444 
445 			if (IS_ERR(p))
446 				return -EFAULT;
447 
448 			if (i >= max)
449 				return -E2BIG;
450 			++i;
451 
452 			if (fatal_signal_pending(current))
453 				return -ERESTARTNOHAND;
454 			cond_resched();
455 		}
456 	}
457 	return i;
458 }
459 
460 /*
461  * 'copy_strings()' copies argument/environment strings from the old
462  * processes's memory to the new process's stack.  The call to get_user_pages()
463  * ensures the destination page is created and not swapped out.
464  */
465 static int copy_strings(int argc, struct user_arg_ptr argv,
466 			struct linux_binprm *bprm)
467 {
468 	struct page *kmapped_page = NULL;
469 	char *kaddr = NULL;
470 	unsigned long kpos = 0;
471 	int ret;
472 
473 	while (argc-- > 0) {
474 		const char __user *str;
475 		int len;
476 		unsigned long pos;
477 
478 		ret = -EFAULT;
479 		str = get_user_arg_ptr(argv, argc);
480 		if (IS_ERR(str))
481 			goto out;
482 
483 		len = strnlen_user(str, MAX_ARG_STRLEN);
484 		if (!len)
485 			goto out;
486 
487 		ret = -E2BIG;
488 		if (!valid_arg_len(bprm, len))
489 			goto out;
490 
491 		/* We're going to work our way backwords. */
492 		pos = bprm->p;
493 		str += len;
494 		bprm->p -= len;
495 
496 		while (len > 0) {
497 			int offset, bytes_to_copy;
498 
499 			if (fatal_signal_pending(current)) {
500 				ret = -ERESTARTNOHAND;
501 				goto out;
502 			}
503 			cond_resched();
504 
505 			offset = pos % PAGE_SIZE;
506 			if (offset == 0)
507 				offset = PAGE_SIZE;
508 
509 			bytes_to_copy = offset;
510 			if (bytes_to_copy > len)
511 				bytes_to_copy = len;
512 
513 			offset -= bytes_to_copy;
514 			pos -= bytes_to_copy;
515 			str -= bytes_to_copy;
516 			len -= bytes_to_copy;
517 
518 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
519 				struct page *page;
520 
521 				page = get_arg_page(bprm, pos, 1);
522 				if (!page) {
523 					ret = -E2BIG;
524 					goto out;
525 				}
526 
527 				if (kmapped_page) {
528 					flush_kernel_dcache_page(kmapped_page);
529 					kunmap(kmapped_page);
530 					put_arg_page(kmapped_page);
531 				}
532 				kmapped_page = page;
533 				kaddr = kmap(kmapped_page);
534 				kpos = pos & PAGE_MASK;
535 				flush_arg_page(bprm, kpos, kmapped_page);
536 			}
537 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
538 				ret = -EFAULT;
539 				goto out;
540 			}
541 		}
542 	}
543 	ret = 0;
544 out:
545 	if (kmapped_page) {
546 		flush_kernel_dcache_page(kmapped_page);
547 		kunmap(kmapped_page);
548 		put_arg_page(kmapped_page);
549 	}
550 	return ret;
551 }
552 
553 /*
554  * Like copy_strings, but get argv and its values from kernel memory.
555  */
556 int copy_strings_kernel(int argc, const char *const *__argv,
557 			struct linux_binprm *bprm)
558 {
559 	int r;
560 	mm_segment_t oldfs = get_fs();
561 	struct user_arg_ptr argv = {
562 		.ptr.native = (const char __user *const  __user *)__argv,
563 	};
564 
565 	set_fs(KERNEL_DS);
566 	r = copy_strings(argc, argv, bprm);
567 	set_fs(oldfs);
568 
569 	return r;
570 }
571 EXPORT_SYMBOL(copy_strings_kernel);
572 
573 #ifdef CONFIG_MMU
574 
575 /*
576  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
577  * the binfmt code determines where the new stack should reside, we shift it to
578  * its final location.  The process proceeds as follows:
579  *
580  * 1) Use shift to calculate the new vma endpoints.
581  * 2) Extend vma to cover both the old and new ranges.  This ensures the
582  *    arguments passed to subsequent functions are consistent.
583  * 3) Move vma's page tables to the new range.
584  * 4) Free up any cleared pgd range.
585  * 5) Shrink the vma to cover only the new range.
586  */
587 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
588 {
589 	struct mm_struct *mm = vma->vm_mm;
590 	unsigned long old_start = vma->vm_start;
591 	unsigned long old_end = vma->vm_end;
592 	unsigned long length = old_end - old_start;
593 	unsigned long new_start = old_start - shift;
594 	unsigned long new_end = old_end - shift;
595 	struct mmu_gather tlb;
596 
597 	BUG_ON(new_start > new_end);
598 
599 	/*
600 	 * ensure there are no vmas between where we want to go
601 	 * and where we are
602 	 */
603 	if (vma != find_vma(mm, new_start))
604 		return -EFAULT;
605 
606 	/*
607 	 * cover the whole range: [new_start, old_end)
608 	 */
609 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
610 		return -ENOMEM;
611 
612 	/*
613 	 * move the page tables downwards, on failure we rely on
614 	 * process cleanup to remove whatever mess we made.
615 	 */
616 	if (length != move_page_tables(vma, old_start,
617 				       vma, new_start, length, false))
618 		return -ENOMEM;
619 
620 	lru_add_drain();
621 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
622 	if (new_end > old_start) {
623 		/*
624 		 * when the old and new regions overlap clear from new_end.
625 		 */
626 		free_pgd_range(&tlb, new_end, old_end, new_end,
627 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
628 	} else {
629 		/*
630 		 * otherwise, clean from old_start; this is done to not touch
631 		 * the address space in [new_end, old_start) some architectures
632 		 * have constraints on va-space that make this illegal (IA64) -
633 		 * for the others its just a little faster.
634 		 */
635 		free_pgd_range(&tlb, old_start, old_end, new_end,
636 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
637 	}
638 	tlb_finish_mmu(&tlb, old_start, old_end);
639 
640 	/*
641 	 * Shrink the vma to just the new range.  Always succeeds.
642 	 */
643 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
644 
645 	return 0;
646 }
647 
648 /*
649  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
650  * the stack is optionally relocated, and some extra space is added.
651  */
652 int setup_arg_pages(struct linux_binprm *bprm,
653 		    unsigned long stack_top,
654 		    int executable_stack)
655 {
656 	unsigned long ret;
657 	unsigned long stack_shift;
658 	struct mm_struct *mm = current->mm;
659 	struct vm_area_struct *vma = bprm->vma;
660 	struct vm_area_struct *prev = NULL;
661 	unsigned long vm_flags;
662 	unsigned long stack_base;
663 	unsigned long stack_size;
664 	unsigned long stack_expand;
665 	unsigned long rlim_stack;
666 
667 #ifdef CONFIG_STACK_GROWSUP
668 	/* Limit stack size */
669 	stack_base = rlimit_max(RLIMIT_STACK);
670 	if (stack_base > STACK_SIZE_MAX)
671 		stack_base = STACK_SIZE_MAX;
672 
673 	/* Add space for stack randomization. */
674 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
675 
676 	/* Make sure we didn't let the argument array grow too large. */
677 	if (vma->vm_end - vma->vm_start > stack_base)
678 		return -ENOMEM;
679 
680 	stack_base = PAGE_ALIGN(stack_top - stack_base);
681 
682 	stack_shift = vma->vm_start - stack_base;
683 	mm->arg_start = bprm->p - stack_shift;
684 	bprm->p = vma->vm_end - stack_shift;
685 #else
686 	stack_top = arch_align_stack(stack_top);
687 	stack_top = PAGE_ALIGN(stack_top);
688 
689 	if (unlikely(stack_top < mmap_min_addr) ||
690 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
691 		return -ENOMEM;
692 
693 	stack_shift = vma->vm_end - stack_top;
694 
695 	bprm->p -= stack_shift;
696 	mm->arg_start = bprm->p;
697 #endif
698 
699 	if (bprm->loader)
700 		bprm->loader -= stack_shift;
701 	bprm->exec -= stack_shift;
702 
703 	if (down_write_killable(&mm->mmap_sem))
704 		return -EINTR;
705 
706 	vm_flags = VM_STACK_FLAGS;
707 
708 	/*
709 	 * Adjust stack execute permissions; explicitly enable for
710 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
711 	 * (arch default) otherwise.
712 	 */
713 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
714 		vm_flags |= VM_EXEC;
715 	else if (executable_stack == EXSTACK_DISABLE_X)
716 		vm_flags &= ~VM_EXEC;
717 	vm_flags |= mm->def_flags;
718 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
719 
720 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
721 			vm_flags);
722 	if (ret)
723 		goto out_unlock;
724 	BUG_ON(prev != vma);
725 
726 	/* Move stack pages down in memory. */
727 	if (stack_shift) {
728 		ret = shift_arg_pages(vma, stack_shift);
729 		if (ret)
730 			goto out_unlock;
731 	}
732 
733 	/* mprotect_fixup is overkill to remove the temporary stack flags */
734 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
735 
736 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
737 	stack_size = vma->vm_end - vma->vm_start;
738 	/*
739 	 * Align this down to a page boundary as expand_stack
740 	 * will align it up.
741 	 */
742 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
743 #ifdef CONFIG_STACK_GROWSUP
744 	if (stack_size + stack_expand > rlim_stack)
745 		stack_base = vma->vm_start + rlim_stack;
746 	else
747 		stack_base = vma->vm_end + stack_expand;
748 #else
749 	if (stack_size + stack_expand > rlim_stack)
750 		stack_base = vma->vm_end - rlim_stack;
751 	else
752 		stack_base = vma->vm_start - stack_expand;
753 #endif
754 	current->mm->start_stack = bprm->p;
755 	ret = expand_stack(vma, stack_base);
756 	if (ret)
757 		ret = -EFAULT;
758 
759 out_unlock:
760 	up_write(&mm->mmap_sem);
761 	return ret;
762 }
763 EXPORT_SYMBOL(setup_arg_pages);
764 
765 #endif /* CONFIG_MMU */
766 
767 static struct file *do_open_execat(int fd, struct filename *name, int flags)
768 {
769 	struct file *file;
770 	int err;
771 	struct open_flags open_exec_flags = {
772 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
773 		.acc_mode = MAY_EXEC,
774 		.intent = LOOKUP_OPEN,
775 		.lookup_flags = LOOKUP_FOLLOW,
776 	};
777 
778 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
779 		return ERR_PTR(-EINVAL);
780 	if (flags & AT_SYMLINK_NOFOLLOW)
781 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
782 	if (flags & AT_EMPTY_PATH)
783 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
784 
785 	file = do_filp_open(fd, name, &open_exec_flags);
786 	if (IS_ERR(file))
787 		goto out;
788 
789 	err = -EACCES;
790 	if (!S_ISREG(file_inode(file)->i_mode))
791 		goto exit;
792 
793 	if (path_noexec(&file->f_path))
794 		goto exit;
795 
796 	err = deny_write_access(file);
797 	if (err)
798 		goto exit;
799 
800 	if (name->name[0] != '\0')
801 		fsnotify_open(file);
802 
803 out:
804 	return file;
805 
806 exit:
807 	fput(file);
808 	return ERR_PTR(err);
809 }
810 
811 struct file *open_exec(const char *name)
812 {
813 	struct filename *filename = getname_kernel(name);
814 	struct file *f = ERR_CAST(filename);
815 
816 	if (!IS_ERR(filename)) {
817 		f = do_open_execat(AT_FDCWD, filename, 0);
818 		putname(filename);
819 	}
820 	return f;
821 }
822 EXPORT_SYMBOL(open_exec);
823 
824 int kernel_read(struct file *file, loff_t offset,
825 		char *addr, unsigned long count)
826 {
827 	mm_segment_t old_fs;
828 	loff_t pos = offset;
829 	int result;
830 
831 	old_fs = get_fs();
832 	set_fs(get_ds());
833 	/* The cast to a user pointer is valid due to the set_fs() */
834 	result = vfs_read(file, (void __user *)addr, count, &pos);
835 	set_fs(old_fs);
836 	return result;
837 }
838 
839 EXPORT_SYMBOL(kernel_read);
840 
841 int kernel_read_file(struct file *file, void **buf, loff_t *size,
842 		     loff_t max_size, enum kernel_read_file_id id)
843 {
844 	loff_t i_size, pos;
845 	ssize_t bytes = 0;
846 	int ret;
847 
848 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
849 		return -EINVAL;
850 
851 	ret = security_kernel_read_file(file, id);
852 	if (ret)
853 		return ret;
854 
855 	ret = deny_write_access(file);
856 	if (ret)
857 		return ret;
858 
859 	i_size = i_size_read(file_inode(file));
860 	if (max_size > 0 && i_size > max_size) {
861 		ret = -EFBIG;
862 		goto out;
863 	}
864 	if (i_size <= 0) {
865 		ret = -EINVAL;
866 		goto out;
867 	}
868 
869 	*buf = vmalloc(i_size);
870 	if (!*buf) {
871 		ret = -ENOMEM;
872 		goto out;
873 	}
874 
875 	pos = 0;
876 	while (pos < i_size) {
877 		bytes = kernel_read(file, pos, (char *)(*buf) + pos,
878 				    i_size - pos);
879 		if (bytes < 0) {
880 			ret = bytes;
881 			goto out;
882 		}
883 
884 		if (bytes == 0)
885 			break;
886 		pos += bytes;
887 	}
888 
889 	if (pos != i_size) {
890 		ret = -EIO;
891 		goto out_free;
892 	}
893 
894 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
895 	if (!ret)
896 		*size = pos;
897 
898 out_free:
899 	if (ret < 0) {
900 		vfree(*buf);
901 		*buf = NULL;
902 	}
903 
904 out:
905 	allow_write_access(file);
906 	return ret;
907 }
908 EXPORT_SYMBOL_GPL(kernel_read_file);
909 
910 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
911 			       loff_t max_size, enum kernel_read_file_id id)
912 {
913 	struct file *file;
914 	int ret;
915 
916 	if (!path || !*path)
917 		return -EINVAL;
918 
919 	file = filp_open(path, O_RDONLY, 0);
920 	if (IS_ERR(file))
921 		return PTR_ERR(file);
922 
923 	ret = kernel_read_file(file, buf, size, max_size, id);
924 	fput(file);
925 	return ret;
926 }
927 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
928 
929 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
930 			     enum kernel_read_file_id id)
931 {
932 	struct fd f = fdget(fd);
933 	int ret = -EBADF;
934 
935 	if (!f.file)
936 		goto out;
937 
938 	ret = kernel_read_file(f.file, buf, size, max_size, id);
939 out:
940 	fdput(f);
941 	return ret;
942 }
943 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
944 
945 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
946 {
947 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
948 	if (res > 0)
949 		flush_icache_range(addr, addr + len);
950 	return res;
951 }
952 EXPORT_SYMBOL(read_code);
953 
954 static int exec_mmap(struct mm_struct *mm)
955 {
956 	struct task_struct *tsk;
957 	struct mm_struct *old_mm, *active_mm;
958 
959 	/* Notify parent that we're no longer interested in the old VM */
960 	tsk = current;
961 	old_mm = current->mm;
962 	mm_release(tsk, old_mm);
963 
964 	if (old_mm) {
965 		sync_mm_rss(old_mm);
966 		/*
967 		 * Make sure that if there is a core dump in progress
968 		 * for the old mm, we get out and die instead of going
969 		 * through with the exec.  We must hold mmap_sem around
970 		 * checking core_state and changing tsk->mm.
971 		 */
972 		down_read(&old_mm->mmap_sem);
973 		if (unlikely(old_mm->core_state)) {
974 			up_read(&old_mm->mmap_sem);
975 			return -EINTR;
976 		}
977 	}
978 	task_lock(tsk);
979 	active_mm = tsk->active_mm;
980 	tsk->mm = mm;
981 	tsk->active_mm = mm;
982 	activate_mm(active_mm, mm);
983 	tsk->mm->vmacache_seqnum = 0;
984 	vmacache_flush(tsk);
985 	task_unlock(tsk);
986 	if (old_mm) {
987 		up_read(&old_mm->mmap_sem);
988 		BUG_ON(active_mm != old_mm);
989 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
990 		mm_update_next_owner(old_mm);
991 		mmput(old_mm);
992 		return 0;
993 	}
994 	mmdrop(active_mm);
995 	return 0;
996 }
997 
998 /*
999  * This function makes sure the current process has its own signal table,
1000  * so that flush_signal_handlers can later reset the handlers without
1001  * disturbing other processes.  (Other processes might share the signal
1002  * table via the CLONE_SIGHAND option to clone().)
1003  */
1004 static int de_thread(struct task_struct *tsk)
1005 {
1006 	struct signal_struct *sig = tsk->signal;
1007 	struct sighand_struct *oldsighand = tsk->sighand;
1008 	spinlock_t *lock = &oldsighand->siglock;
1009 
1010 	if (thread_group_empty(tsk))
1011 		goto no_thread_group;
1012 
1013 	/*
1014 	 * Kill all other threads in the thread group.
1015 	 */
1016 	spin_lock_irq(lock);
1017 	if (signal_group_exit(sig)) {
1018 		/*
1019 		 * Another group action in progress, just
1020 		 * return so that the signal is processed.
1021 		 */
1022 		spin_unlock_irq(lock);
1023 		return -EAGAIN;
1024 	}
1025 
1026 	sig->group_exit_task = tsk;
1027 	sig->notify_count = zap_other_threads(tsk);
1028 	if (!thread_group_leader(tsk))
1029 		sig->notify_count--;
1030 
1031 	while (sig->notify_count) {
1032 		__set_current_state(TASK_KILLABLE);
1033 		spin_unlock_irq(lock);
1034 		schedule();
1035 		if (unlikely(__fatal_signal_pending(tsk)))
1036 			goto killed;
1037 		spin_lock_irq(lock);
1038 	}
1039 	spin_unlock_irq(lock);
1040 
1041 	/*
1042 	 * At this point all other threads have exited, all we have to
1043 	 * do is to wait for the thread group leader to become inactive,
1044 	 * and to assume its PID:
1045 	 */
1046 	if (!thread_group_leader(tsk)) {
1047 		struct task_struct *leader = tsk->group_leader;
1048 
1049 		for (;;) {
1050 			threadgroup_change_begin(tsk);
1051 			write_lock_irq(&tasklist_lock);
1052 			/*
1053 			 * Do this under tasklist_lock to ensure that
1054 			 * exit_notify() can't miss ->group_exit_task
1055 			 */
1056 			sig->notify_count = -1;
1057 			if (likely(leader->exit_state))
1058 				break;
1059 			__set_current_state(TASK_KILLABLE);
1060 			write_unlock_irq(&tasklist_lock);
1061 			threadgroup_change_end(tsk);
1062 			schedule();
1063 			if (unlikely(__fatal_signal_pending(tsk)))
1064 				goto killed;
1065 		}
1066 
1067 		/*
1068 		 * The only record we have of the real-time age of a
1069 		 * process, regardless of execs it's done, is start_time.
1070 		 * All the past CPU time is accumulated in signal_struct
1071 		 * from sister threads now dead.  But in this non-leader
1072 		 * exec, nothing survives from the original leader thread,
1073 		 * whose birth marks the true age of this process now.
1074 		 * When we take on its identity by switching to its PID, we
1075 		 * also take its birthdate (always earlier than our own).
1076 		 */
1077 		tsk->start_time = leader->start_time;
1078 		tsk->real_start_time = leader->real_start_time;
1079 
1080 		BUG_ON(!same_thread_group(leader, tsk));
1081 		BUG_ON(has_group_leader_pid(tsk));
1082 		/*
1083 		 * An exec() starts a new thread group with the
1084 		 * TGID of the previous thread group. Rehash the
1085 		 * two threads with a switched PID, and release
1086 		 * the former thread group leader:
1087 		 */
1088 
1089 		/* Become a process group leader with the old leader's pid.
1090 		 * The old leader becomes a thread of the this thread group.
1091 		 * Note: The old leader also uses this pid until release_task
1092 		 *       is called.  Odd but simple and correct.
1093 		 */
1094 		tsk->pid = leader->pid;
1095 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1096 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1097 		transfer_pid(leader, tsk, PIDTYPE_SID);
1098 
1099 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1100 		list_replace_init(&leader->sibling, &tsk->sibling);
1101 
1102 		tsk->group_leader = tsk;
1103 		leader->group_leader = tsk;
1104 
1105 		tsk->exit_signal = SIGCHLD;
1106 		leader->exit_signal = -1;
1107 
1108 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1109 		leader->exit_state = EXIT_DEAD;
1110 
1111 		/*
1112 		 * We are going to release_task()->ptrace_unlink() silently,
1113 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1114 		 * the tracer wont't block again waiting for this thread.
1115 		 */
1116 		if (unlikely(leader->ptrace))
1117 			__wake_up_parent(leader, leader->parent);
1118 		write_unlock_irq(&tasklist_lock);
1119 		threadgroup_change_end(tsk);
1120 
1121 		release_task(leader);
1122 	}
1123 
1124 	sig->group_exit_task = NULL;
1125 	sig->notify_count = 0;
1126 
1127 no_thread_group:
1128 	/* we have changed execution domain */
1129 	tsk->exit_signal = SIGCHLD;
1130 
1131 	exit_itimers(sig);
1132 	flush_itimer_signals();
1133 
1134 	if (atomic_read(&oldsighand->count) != 1) {
1135 		struct sighand_struct *newsighand;
1136 		/*
1137 		 * This ->sighand is shared with the CLONE_SIGHAND
1138 		 * but not CLONE_THREAD task, switch to the new one.
1139 		 */
1140 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1141 		if (!newsighand)
1142 			return -ENOMEM;
1143 
1144 		atomic_set(&newsighand->count, 1);
1145 		memcpy(newsighand->action, oldsighand->action,
1146 		       sizeof(newsighand->action));
1147 
1148 		write_lock_irq(&tasklist_lock);
1149 		spin_lock(&oldsighand->siglock);
1150 		rcu_assign_pointer(tsk->sighand, newsighand);
1151 		spin_unlock(&oldsighand->siglock);
1152 		write_unlock_irq(&tasklist_lock);
1153 
1154 		__cleanup_sighand(oldsighand);
1155 	}
1156 
1157 	BUG_ON(!thread_group_leader(tsk));
1158 	return 0;
1159 
1160 killed:
1161 	/* protects against exit_notify() and __exit_signal() */
1162 	read_lock(&tasklist_lock);
1163 	sig->group_exit_task = NULL;
1164 	sig->notify_count = 0;
1165 	read_unlock(&tasklist_lock);
1166 	return -EAGAIN;
1167 }
1168 
1169 char *get_task_comm(char *buf, struct task_struct *tsk)
1170 {
1171 	/* buf must be at least sizeof(tsk->comm) in size */
1172 	task_lock(tsk);
1173 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1174 	task_unlock(tsk);
1175 	return buf;
1176 }
1177 EXPORT_SYMBOL_GPL(get_task_comm);
1178 
1179 /*
1180  * These functions flushes out all traces of the currently running executable
1181  * so that a new one can be started
1182  */
1183 
1184 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1185 {
1186 	task_lock(tsk);
1187 	trace_task_rename(tsk, buf);
1188 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1189 	task_unlock(tsk);
1190 	perf_event_comm(tsk, exec);
1191 }
1192 
1193 int flush_old_exec(struct linux_binprm * bprm)
1194 {
1195 	int retval;
1196 
1197 	/*
1198 	 * Make sure we have a private signal table and that
1199 	 * we are unassociated from the previous thread group.
1200 	 */
1201 	retval = de_thread(current);
1202 	if (retval)
1203 		goto out;
1204 
1205 	/*
1206 	 * Must be called _before_ exec_mmap() as bprm->mm is
1207 	 * not visibile until then. This also enables the update
1208 	 * to be lockless.
1209 	 */
1210 	set_mm_exe_file(bprm->mm, bprm->file);
1211 
1212 	/*
1213 	 * Release all of the old mmap stuff
1214 	 */
1215 	acct_arg_size(bprm, 0);
1216 	retval = exec_mmap(bprm->mm);
1217 	if (retval)
1218 		goto out;
1219 
1220 	bprm->mm = NULL;		/* We're using it now */
1221 
1222 	set_fs(USER_DS);
1223 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1224 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1225 	flush_thread();
1226 	current->personality &= ~bprm->per_clear;
1227 
1228 	return 0;
1229 
1230 out:
1231 	return retval;
1232 }
1233 EXPORT_SYMBOL(flush_old_exec);
1234 
1235 void would_dump(struct linux_binprm *bprm, struct file *file)
1236 {
1237 	if (inode_permission(file_inode(file), MAY_READ) < 0)
1238 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1239 }
1240 EXPORT_SYMBOL(would_dump);
1241 
1242 void setup_new_exec(struct linux_binprm * bprm)
1243 {
1244 	arch_pick_mmap_layout(current->mm);
1245 
1246 	/* This is the point of no return */
1247 	current->sas_ss_sp = current->sas_ss_size = 0;
1248 
1249 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1250 		set_dumpable(current->mm, SUID_DUMP_USER);
1251 	else
1252 		set_dumpable(current->mm, suid_dumpable);
1253 
1254 	perf_event_exec();
1255 	__set_task_comm(current, kbasename(bprm->filename), true);
1256 
1257 	/* Set the new mm task size. We have to do that late because it may
1258 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1259 	 * some architectures like powerpc
1260 	 */
1261 	current->mm->task_size = TASK_SIZE;
1262 
1263 	/* install the new credentials */
1264 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1265 	    !gid_eq(bprm->cred->gid, current_egid())) {
1266 		current->pdeath_signal = 0;
1267 	} else {
1268 		would_dump(bprm, bprm->file);
1269 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1270 			set_dumpable(current->mm, suid_dumpable);
1271 	}
1272 
1273 	/* An exec changes our domain. We are no longer part of the thread
1274 	   group */
1275 	current->self_exec_id++;
1276 	flush_signal_handlers(current, 0);
1277 	do_close_on_exec(current->files);
1278 }
1279 EXPORT_SYMBOL(setup_new_exec);
1280 
1281 /*
1282  * Prepare credentials and lock ->cred_guard_mutex.
1283  * install_exec_creds() commits the new creds and drops the lock.
1284  * Or, if exec fails before, free_bprm() should release ->cred and
1285  * and unlock.
1286  */
1287 int prepare_bprm_creds(struct linux_binprm *bprm)
1288 {
1289 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1290 		return -ERESTARTNOINTR;
1291 
1292 	bprm->cred = prepare_exec_creds();
1293 	if (likely(bprm->cred))
1294 		return 0;
1295 
1296 	mutex_unlock(&current->signal->cred_guard_mutex);
1297 	return -ENOMEM;
1298 }
1299 
1300 static void free_bprm(struct linux_binprm *bprm)
1301 {
1302 	free_arg_pages(bprm);
1303 	if (bprm->cred) {
1304 		mutex_unlock(&current->signal->cred_guard_mutex);
1305 		abort_creds(bprm->cred);
1306 	}
1307 	if (bprm->file) {
1308 		allow_write_access(bprm->file);
1309 		fput(bprm->file);
1310 	}
1311 	/* If a binfmt changed the interp, free it. */
1312 	if (bprm->interp != bprm->filename)
1313 		kfree(bprm->interp);
1314 	kfree(bprm);
1315 }
1316 
1317 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1318 {
1319 	/* If a binfmt changed the interp, free it first. */
1320 	if (bprm->interp != bprm->filename)
1321 		kfree(bprm->interp);
1322 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1323 	if (!bprm->interp)
1324 		return -ENOMEM;
1325 	return 0;
1326 }
1327 EXPORT_SYMBOL(bprm_change_interp);
1328 
1329 /*
1330  * install the new credentials for this executable
1331  */
1332 void install_exec_creds(struct linux_binprm *bprm)
1333 {
1334 	security_bprm_committing_creds(bprm);
1335 
1336 	commit_creds(bprm->cred);
1337 	bprm->cred = NULL;
1338 
1339 	/*
1340 	 * Disable monitoring for regular users
1341 	 * when executing setuid binaries. Must
1342 	 * wait until new credentials are committed
1343 	 * by commit_creds() above
1344 	 */
1345 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1346 		perf_event_exit_task(current);
1347 	/*
1348 	 * cred_guard_mutex must be held at least to this point to prevent
1349 	 * ptrace_attach() from altering our determination of the task's
1350 	 * credentials; any time after this it may be unlocked.
1351 	 */
1352 	security_bprm_committed_creds(bprm);
1353 	mutex_unlock(&current->signal->cred_guard_mutex);
1354 }
1355 EXPORT_SYMBOL(install_exec_creds);
1356 
1357 /*
1358  * determine how safe it is to execute the proposed program
1359  * - the caller must hold ->cred_guard_mutex to protect against
1360  *   PTRACE_ATTACH or seccomp thread-sync
1361  */
1362 static void check_unsafe_exec(struct linux_binprm *bprm)
1363 {
1364 	struct task_struct *p = current, *t;
1365 	unsigned n_fs;
1366 
1367 	if (p->ptrace) {
1368 		if (p->ptrace & PT_PTRACE_CAP)
1369 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1370 		else
1371 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1372 	}
1373 
1374 	/*
1375 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1376 	 * mess up.
1377 	 */
1378 	if (task_no_new_privs(current))
1379 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1380 
1381 	t = p;
1382 	n_fs = 1;
1383 	spin_lock(&p->fs->lock);
1384 	rcu_read_lock();
1385 	while_each_thread(p, t) {
1386 		if (t->fs == p->fs)
1387 			n_fs++;
1388 	}
1389 	rcu_read_unlock();
1390 
1391 	if (p->fs->users > n_fs)
1392 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1393 	else
1394 		p->fs->in_exec = 1;
1395 	spin_unlock(&p->fs->lock);
1396 }
1397 
1398 static void bprm_fill_uid(struct linux_binprm *bprm)
1399 {
1400 	struct inode *inode;
1401 	unsigned int mode;
1402 	kuid_t uid;
1403 	kgid_t gid;
1404 
1405 	/*
1406 	 * Since this can be called multiple times (via prepare_binprm),
1407 	 * we must clear any previous work done when setting set[ug]id
1408 	 * bits from any earlier bprm->file uses (for example when run
1409 	 * first for a setuid script then again for its interpreter).
1410 	 */
1411 	bprm->cred->euid = current_euid();
1412 	bprm->cred->egid = current_egid();
1413 
1414 	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1415 		return;
1416 
1417 	if (task_no_new_privs(current))
1418 		return;
1419 
1420 	inode = file_inode(bprm->file);
1421 	mode = READ_ONCE(inode->i_mode);
1422 	if (!(mode & (S_ISUID|S_ISGID)))
1423 		return;
1424 
1425 	/* Be careful if suid/sgid is set */
1426 	inode_lock(inode);
1427 
1428 	/* reload atomically mode/uid/gid now that lock held */
1429 	mode = inode->i_mode;
1430 	uid = inode->i_uid;
1431 	gid = inode->i_gid;
1432 	inode_unlock(inode);
1433 
1434 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1435 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1436 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1437 		return;
1438 
1439 	if (mode & S_ISUID) {
1440 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1441 		bprm->cred->euid = uid;
1442 	}
1443 
1444 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1445 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1446 		bprm->cred->egid = gid;
1447 	}
1448 }
1449 
1450 /*
1451  * Fill the binprm structure from the inode.
1452  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1453  *
1454  * This may be called multiple times for binary chains (scripts for example).
1455  */
1456 int prepare_binprm(struct linux_binprm *bprm)
1457 {
1458 	int retval;
1459 
1460 	bprm_fill_uid(bprm);
1461 
1462 	/* fill in binprm security blob */
1463 	retval = security_bprm_set_creds(bprm);
1464 	if (retval)
1465 		return retval;
1466 	bprm->cred_prepared = 1;
1467 
1468 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1469 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1470 }
1471 
1472 EXPORT_SYMBOL(prepare_binprm);
1473 
1474 /*
1475  * Arguments are '\0' separated strings found at the location bprm->p
1476  * points to; chop off the first by relocating brpm->p to right after
1477  * the first '\0' encountered.
1478  */
1479 int remove_arg_zero(struct linux_binprm *bprm)
1480 {
1481 	int ret = 0;
1482 	unsigned long offset;
1483 	char *kaddr;
1484 	struct page *page;
1485 
1486 	if (!bprm->argc)
1487 		return 0;
1488 
1489 	do {
1490 		offset = bprm->p & ~PAGE_MASK;
1491 		page = get_arg_page(bprm, bprm->p, 0);
1492 		if (!page) {
1493 			ret = -EFAULT;
1494 			goto out;
1495 		}
1496 		kaddr = kmap_atomic(page);
1497 
1498 		for (; offset < PAGE_SIZE && kaddr[offset];
1499 				offset++, bprm->p++)
1500 			;
1501 
1502 		kunmap_atomic(kaddr);
1503 		put_arg_page(page);
1504 	} while (offset == PAGE_SIZE);
1505 
1506 	bprm->p++;
1507 	bprm->argc--;
1508 	ret = 0;
1509 
1510 out:
1511 	return ret;
1512 }
1513 EXPORT_SYMBOL(remove_arg_zero);
1514 
1515 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1516 /*
1517  * cycle the list of binary formats handler, until one recognizes the image
1518  */
1519 int search_binary_handler(struct linux_binprm *bprm)
1520 {
1521 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1522 	struct linux_binfmt *fmt;
1523 	int retval;
1524 
1525 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1526 	if (bprm->recursion_depth > 5)
1527 		return -ELOOP;
1528 
1529 	retval = security_bprm_check(bprm);
1530 	if (retval)
1531 		return retval;
1532 
1533 	retval = -ENOENT;
1534  retry:
1535 	read_lock(&binfmt_lock);
1536 	list_for_each_entry(fmt, &formats, lh) {
1537 		if (!try_module_get(fmt->module))
1538 			continue;
1539 		read_unlock(&binfmt_lock);
1540 		bprm->recursion_depth++;
1541 		retval = fmt->load_binary(bprm);
1542 		read_lock(&binfmt_lock);
1543 		put_binfmt(fmt);
1544 		bprm->recursion_depth--;
1545 		if (retval < 0 && !bprm->mm) {
1546 			/* we got to flush_old_exec() and failed after it */
1547 			read_unlock(&binfmt_lock);
1548 			force_sigsegv(SIGSEGV, current);
1549 			return retval;
1550 		}
1551 		if (retval != -ENOEXEC || !bprm->file) {
1552 			read_unlock(&binfmt_lock);
1553 			return retval;
1554 		}
1555 	}
1556 	read_unlock(&binfmt_lock);
1557 
1558 	if (need_retry) {
1559 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1560 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1561 			return retval;
1562 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1563 			return retval;
1564 		need_retry = false;
1565 		goto retry;
1566 	}
1567 
1568 	return retval;
1569 }
1570 EXPORT_SYMBOL(search_binary_handler);
1571 
1572 static int exec_binprm(struct linux_binprm *bprm)
1573 {
1574 	pid_t old_pid, old_vpid;
1575 	int ret;
1576 
1577 	/* Need to fetch pid before load_binary changes it */
1578 	old_pid = current->pid;
1579 	rcu_read_lock();
1580 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1581 	rcu_read_unlock();
1582 
1583 	ret = search_binary_handler(bprm);
1584 	if (ret >= 0) {
1585 		audit_bprm(bprm);
1586 		trace_sched_process_exec(current, old_pid, bprm);
1587 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1588 		proc_exec_connector(current);
1589 	}
1590 
1591 	return ret;
1592 }
1593 
1594 /*
1595  * sys_execve() executes a new program.
1596  */
1597 static int do_execveat_common(int fd, struct filename *filename,
1598 			      struct user_arg_ptr argv,
1599 			      struct user_arg_ptr envp,
1600 			      int flags)
1601 {
1602 	char *pathbuf = NULL;
1603 	struct linux_binprm *bprm;
1604 	struct file *file;
1605 	struct files_struct *displaced;
1606 	int retval;
1607 
1608 	if (IS_ERR(filename))
1609 		return PTR_ERR(filename);
1610 
1611 	/*
1612 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1613 	 * set*uid() to execve() because too many poorly written programs
1614 	 * don't check setuid() return code.  Here we additionally recheck
1615 	 * whether NPROC limit is still exceeded.
1616 	 */
1617 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1618 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1619 		retval = -EAGAIN;
1620 		goto out_ret;
1621 	}
1622 
1623 	/* We're below the limit (still or again), so we don't want to make
1624 	 * further execve() calls fail. */
1625 	current->flags &= ~PF_NPROC_EXCEEDED;
1626 
1627 	retval = unshare_files(&displaced);
1628 	if (retval)
1629 		goto out_ret;
1630 
1631 	retval = -ENOMEM;
1632 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1633 	if (!bprm)
1634 		goto out_files;
1635 
1636 	retval = prepare_bprm_creds(bprm);
1637 	if (retval)
1638 		goto out_free;
1639 
1640 	check_unsafe_exec(bprm);
1641 	current->in_execve = 1;
1642 
1643 	file = do_open_execat(fd, filename, flags);
1644 	retval = PTR_ERR(file);
1645 	if (IS_ERR(file))
1646 		goto out_unmark;
1647 
1648 	sched_exec();
1649 
1650 	bprm->file = file;
1651 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1652 		bprm->filename = filename->name;
1653 	} else {
1654 		if (filename->name[0] == '\0')
1655 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1656 		else
1657 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1658 					    fd, filename->name);
1659 		if (!pathbuf) {
1660 			retval = -ENOMEM;
1661 			goto out_unmark;
1662 		}
1663 		/*
1664 		 * Record that a name derived from an O_CLOEXEC fd will be
1665 		 * inaccessible after exec. Relies on having exclusive access to
1666 		 * current->files (due to unshare_files above).
1667 		 */
1668 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1669 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1670 		bprm->filename = pathbuf;
1671 	}
1672 	bprm->interp = bprm->filename;
1673 
1674 	retval = bprm_mm_init(bprm);
1675 	if (retval)
1676 		goto out_unmark;
1677 
1678 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1679 	if ((retval = bprm->argc) < 0)
1680 		goto out;
1681 
1682 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1683 	if ((retval = bprm->envc) < 0)
1684 		goto out;
1685 
1686 	retval = prepare_binprm(bprm);
1687 	if (retval < 0)
1688 		goto out;
1689 
1690 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1691 	if (retval < 0)
1692 		goto out;
1693 
1694 	bprm->exec = bprm->p;
1695 	retval = copy_strings(bprm->envc, envp, bprm);
1696 	if (retval < 0)
1697 		goto out;
1698 
1699 	retval = copy_strings(bprm->argc, argv, bprm);
1700 	if (retval < 0)
1701 		goto out;
1702 
1703 	retval = exec_binprm(bprm);
1704 	if (retval < 0)
1705 		goto out;
1706 
1707 	/* execve succeeded */
1708 	current->fs->in_exec = 0;
1709 	current->in_execve = 0;
1710 	acct_update_integrals(current);
1711 	task_numa_free(current);
1712 	free_bprm(bprm);
1713 	kfree(pathbuf);
1714 	putname(filename);
1715 	if (displaced)
1716 		put_files_struct(displaced);
1717 	return retval;
1718 
1719 out:
1720 	if (bprm->mm) {
1721 		acct_arg_size(bprm, 0);
1722 		mmput(bprm->mm);
1723 	}
1724 
1725 out_unmark:
1726 	current->fs->in_exec = 0;
1727 	current->in_execve = 0;
1728 
1729 out_free:
1730 	free_bprm(bprm);
1731 	kfree(pathbuf);
1732 
1733 out_files:
1734 	if (displaced)
1735 		reset_files_struct(displaced);
1736 out_ret:
1737 	putname(filename);
1738 	return retval;
1739 }
1740 
1741 int do_execve(struct filename *filename,
1742 	const char __user *const __user *__argv,
1743 	const char __user *const __user *__envp)
1744 {
1745 	struct user_arg_ptr argv = { .ptr.native = __argv };
1746 	struct user_arg_ptr envp = { .ptr.native = __envp };
1747 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1748 }
1749 
1750 int do_execveat(int fd, struct filename *filename,
1751 		const char __user *const __user *__argv,
1752 		const char __user *const __user *__envp,
1753 		int flags)
1754 {
1755 	struct user_arg_ptr argv = { .ptr.native = __argv };
1756 	struct user_arg_ptr envp = { .ptr.native = __envp };
1757 
1758 	return do_execveat_common(fd, filename, argv, envp, flags);
1759 }
1760 
1761 #ifdef CONFIG_COMPAT
1762 static int compat_do_execve(struct filename *filename,
1763 	const compat_uptr_t __user *__argv,
1764 	const compat_uptr_t __user *__envp)
1765 {
1766 	struct user_arg_ptr argv = {
1767 		.is_compat = true,
1768 		.ptr.compat = __argv,
1769 	};
1770 	struct user_arg_ptr envp = {
1771 		.is_compat = true,
1772 		.ptr.compat = __envp,
1773 	};
1774 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1775 }
1776 
1777 static int compat_do_execveat(int fd, struct filename *filename,
1778 			      const compat_uptr_t __user *__argv,
1779 			      const compat_uptr_t __user *__envp,
1780 			      int flags)
1781 {
1782 	struct user_arg_ptr argv = {
1783 		.is_compat = true,
1784 		.ptr.compat = __argv,
1785 	};
1786 	struct user_arg_ptr envp = {
1787 		.is_compat = true,
1788 		.ptr.compat = __envp,
1789 	};
1790 	return do_execveat_common(fd, filename, argv, envp, flags);
1791 }
1792 #endif
1793 
1794 void set_binfmt(struct linux_binfmt *new)
1795 {
1796 	struct mm_struct *mm = current->mm;
1797 
1798 	if (mm->binfmt)
1799 		module_put(mm->binfmt->module);
1800 
1801 	mm->binfmt = new;
1802 	if (new)
1803 		__module_get(new->module);
1804 }
1805 EXPORT_SYMBOL(set_binfmt);
1806 
1807 /*
1808  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1809  */
1810 void set_dumpable(struct mm_struct *mm, int value)
1811 {
1812 	unsigned long old, new;
1813 
1814 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1815 		return;
1816 
1817 	do {
1818 		old = ACCESS_ONCE(mm->flags);
1819 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1820 	} while (cmpxchg(&mm->flags, old, new) != old);
1821 }
1822 
1823 SYSCALL_DEFINE3(execve,
1824 		const char __user *, filename,
1825 		const char __user *const __user *, argv,
1826 		const char __user *const __user *, envp)
1827 {
1828 	return do_execve(getname(filename), argv, envp);
1829 }
1830 
1831 SYSCALL_DEFINE5(execveat,
1832 		int, fd, const char __user *, filename,
1833 		const char __user *const __user *, argv,
1834 		const char __user *const __user *, envp,
1835 		int, flags)
1836 {
1837 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1838 
1839 	return do_execveat(fd,
1840 			   getname_flags(filename, lookup_flags, NULL),
1841 			   argv, envp, flags);
1842 }
1843 
1844 #ifdef CONFIG_COMPAT
1845 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1846 	const compat_uptr_t __user *, argv,
1847 	const compat_uptr_t __user *, envp)
1848 {
1849 	return compat_do_execve(getname(filename), argv, envp);
1850 }
1851 
1852 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1853 		       const char __user *, filename,
1854 		       const compat_uptr_t __user *, argv,
1855 		       const compat_uptr_t __user *, envp,
1856 		       int,  flags)
1857 {
1858 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1859 
1860 	return compat_do_execveat(fd,
1861 				  getname_flags(filename, lookup_flags, NULL),
1862 				  argv, envp, flags);
1863 }
1864 #endif
1865