1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/mman.h> 28 #include <linux/a.out.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/highmem.h> 36 #include <linux/spinlock.h> 37 #include <linux/key.h> 38 #include <linux/personality.h> 39 #include <linux/binfmts.h> 40 #include <linux/swap.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/security.h> 49 #include <linux/syscalls.h> 50 #include <linux/rmap.h> 51 #include <linux/tsacct_kern.h> 52 #include <linux/cn_proc.h> 53 #include <linux/audit.h> 54 55 #include <asm/uaccess.h> 56 #include <asm/mmu_context.h> 57 #include <asm/tlb.h> 58 59 #ifdef CONFIG_KMOD 60 #include <linux/kmod.h> 61 #endif 62 63 int core_uses_pid; 64 char core_pattern[CORENAME_MAX_SIZE] = "core"; 65 int suid_dumpable = 0; 66 67 EXPORT_SYMBOL(suid_dumpable); 68 /* The maximal length of core_pattern is also specified in sysctl.c */ 69 70 static LIST_HEAD(formats); 71 static DEFINE_RWLOCK(binfmt_lock); 72 73 int register_binfmt(struct linux_binfmt * fmt) 74 { 75 if (!fmt) 76 return -EINVAL; 77 write_lock(&binfmt_lock); 78 list_add(&fmt->lh, &formats); 79 write_unlock(&binfmt_lock); 80 return 0; 81 } 82 83 EXPORT_SYMBOL(register_binfmt); 84 85 void unregister_binfmt(struct linux_binfmt * fmt) 86 { 87 write_lock(&binfmt_lock); 88 list_del(&fmt->lh); 89 write_unlock(&binfmt_lock); 90 } 91 92 EXPORT_SYMBOL(unregister_binfmt); 93 94 static inline void put_binfmt(struct linux_binfmt * fmt) 95 { 96 module_put(fmt->module); 97 } 98 99 /* 100 * Note that a shared library must be both readable and executable due to 101 * security reasons. 102 * 103 * Also note that we take the address to load from from the file itself. 104 */ 105 asmlinkage long sys_uselib(const char __user * library) 106 { 107 struct file * file; 108 struct nameidata nd; 109 int error; 110 111 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 112 if (error) 113 goto out; 114 115 error = -EACCES; 116 if (nd.mnt->mnt_flags & MNT_NOEXEC) 117 goto exit; 118 error = -EINVAL; 119 if (!S_ISREG(nd.dentry->d_inode->i_mode)) 120 goto exit; 121 122 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 123 if (error) 124 goto exit; 125 126 file = nameidata_to_filp(&nd, O_RDONLY); 127 error = PTR_ERR(file); 128 if (IS_ERR(file)) 129 goto out; 130 131 error = -ENOEXEC; 132 if(file->f_op) { 133 struct linux_binfmt * fmt; 134 135 read_lock(&binfmt_lock); 136 list_for_each_entry(fmt, &formats, lh) { 137 if (!fmt->load_shlib) 138 continue; 139 if (!try_module_get(fmt->module)) 140 continue; 141 read_unlock(&binfmt_lock); 142 error = fmt->load_shlib(file); 143 read_lock(&binfmt_lock); 144 put_binfmt(fmt); 145 if (error != -ENOEXEC) 146 break; 147 } 148 read_unlock(&binfmt_lock); 149 } 150 fput(file); 151 out: 152 return error; 153 exit: 154 release_open_intent(&nd); 155 path_release(&nd); 156 goto out; 157 } 158 159 #ifdef CONFIG_MMU 160 161 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 162 int write) 163 { 164 struct page *page; 165 int ret; 166 167 #ifdef CONFIG_STACK_GROWSUP 168 if (write) { 169 ret = expand_stack_downwards(bprm->vma, pos); 170 if (ret < 0) 171 return NULL; 172 } 173 #endif 174 ret = get_user_pages(current, bprm->mm, pos, 175 1, write, 1, &page, NULL); 176 if (ret <= 0) 177 return NULL; 178 179 if (write) { 180 struct rlimit *rlim = current->signal->rlim; 181 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 182 183 /* 184 * Limit to 1/4-th the stack size for the argv+env strings. 185 * This ensures that: 186 * - the remaining binfmt code will not run out of stack space, 187 * - the program will have a reasonable amount of stack left 188 * to work from. 189 */ 190 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 191 put_page(page); 192 return NULL; 193 } 194 } 195 196 return page; 197 } 198 199 static void put_arg_page(struct page *page) 200 { 201 put_page(page); 202 } 203 204 static void free_arg_page(struct linux_binprm *bprm, int i) 205 { 206 } 207 208 static void free_arg_pages(struct linux_binprm *bprm) 209 { 210 } 211 212 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 213 struct page *page) 214 { 215 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 216 } 217 218 static int __bprm_mm_init(struct linux_binprm *bprm) 219 { 220 int err = -ENOMEM; 221 struct vm_area_struct *vma = NULL; 222 struct mm_struct *mm = bprm->mm; 223 224 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 225 if (!vma) 226 goto err; 227 228 down_write(&mm->mmap_sem); 229 vma->vm_mm = mm; 230 231 /* 232 * Place the stack at the largest stack address the architecture 233 * supports. Later, we'll move this to an appropriate place. We don't 234 * use STACK_TOP because that can depend on attributes which aren't 235 * configured yet. 236 */ 237 vma->vm_end = STACK_TOP_MAX; 238 vma->vm_start = vma->vm_end - PAGE_SIZE; 239 240 vma->vm_flags = VM_STACK_FLAGS; 241 vma->vm_page_prot = protection_map[vma->vm_flags & 0x7]; 242 err = insert_vm_struct(mm, vma); 243 if (err) { 244 up_write(&mm->mmap_sem); 245 goto err; 246 } 247 248 mm->stack_vm = mm->total_vm = 1; 249 up_write(&mm->mmap_sem); 250 251 bprm->p = vma->vm_end - sizeof(void *); 252 253 return 0; 254 255 err: 256 if (vma) { 257 bprm->vma = NULL; 258 kmem_cache_free(vm_area_cachep, vma); 259 } 260 261 return err; 262 } 263 264 static bool valid_arg_len(struct linux_binprm *bprm, long len) 265 { 266 return len <= MAX_ARG_STRLEN; 267 } 268 269 #else 270 271 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 272 int write) 273 { 274 struct page *page; 275 276 page = bprm->page[pos / PAGE_SIZE]; 277 if (!page && write) { 278 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 279 if (!page) 280 return NULL; 281 bprm->page[pos / PAGE_SIZE] = page; 282 } 283 284 return page; 285 } 286 287 static void put_arg_page(struct page *page) 288 { 289 } 290 291 static void free_arg_page(struct linux_binprm *bprm, int i) 292 { 293 if (bprm->page[i]) { 294 __free_page(bprm->page[i]); 295 bprm->page[i] = NULL; 296 } 297 } 298 299 static void free_arg_pages(struct linux_binprm *bprm) 300 { 301 int i; 302 303 for (i = 0; i < MAX_ARG_PAGES; i++) 304 free_arg_page(bprm, i); 305 } 306 307 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 308 struct page *page) 309 { 310 } 311 312 static int __bprm_mm_init(struct linux_binprm *bprm) 313 { 314 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 315 return 0; 316 } 317 318 static bool valid_arg_len(struct linux_binprm *bprm, long len) 319 { 320 return len <= bprm->p; 321 } 322 323 #endif /* CONFIG_MMU */ 324 325 /* 326 * Create a new mm_struct and populate it with a temporary stack 327 * vm_area_struct. We don't have enough context at this point to set the stack 328 * flags, permissions, and offset, so we use temporary values. We'll update 329 * them later in setup_arg_pages(). 330 */ 331 int bprm_mm_init(struct linux_binprm *bprm) 332 { 333 int err; 334 struct mm_struct *mm = NULL; 335 336 bprm->mm = mm = mm_alloc(); 337 err = -ENOMEM; 338 if (!mm) 339 goto err; 340 341 err = init_new_context(current, mm); 342 if (err) 343 goto err; 344 345 err = __bprm_mm_init(bprm); 346 if (err) 347 goto err; 348 349 return 0; 350 351 err: 352 if (mm) { 353 bprm->mm = NULL; 354 mmdrop(mm); 355 } 356 357 return err; 358 } 359 360 /* 361 * count() counts the number of strings in array ARGV. 362 */ 363 static int count(char __user * __user * argv, int max) 364 { 365 int i = 0; 366 367 if (argv != NULL) { 368 for (;;) { 369 char __user * p; 370 371 if (get_user(p, argv)) 372 return -EFAULT; 373 if (!p) 374 break; 375 argv++; 376 if(++i > max) 377 return -E2BIG; 378 cond_resched(); 379 } 380 } 381 return i; 382 } 383 384 /* 385 * 'copy_strings()' copies argument/environment strings from the old 386 * processes's memory to the new process's stack. The call to get_user_pages() 387 * ensures the destination page is created and not swapped out. 388 */ 389 static int copy_strings(int argc, char __user * __user * argv, 390 struct linux_binprm *bprm) 391 { 392 struct page *kmapped_page = NULL; 393 char *kaddr = NULL; 394 unsigned long kpos = 0; 395 int ret; 396 397 while (argc-- > 0) { 398 char __user *str; 399 int len; 400 unsigned long pos; 401 402 if (get_user(str, argv+argc) || 403 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 404 ret = -EFAULT; 405 goto out; 406 } 407 408 if (!valid_arg_len(bprm, len)) { 409 ret = -E2BIG; 410 goto out; 411 } 412 413 /* We're going to work our way backwords. */ 414 pos = bprm->p; 415 str += len; 416 bprm->p -= len; 417 418 while (len > 0) { 419 int offset, bytes_to_copy; 420 421 offset = pos % PAGE_SIZE; 422 if (offset == 0) 423 offset = PAGE_SIZE; 424 425 bytes_to_copy = offset; 426 if (bytes_to_copy > len) 427 bytes_to_copy = len; 428 429 offset -= bytes_to_copy; 430 pos -= bytes_to_copy; 431 str -= bytes_to_copy; 432 len -= bytes_to_copy; 433 434 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 435 struct page *page; 436 437 page = get_arg_page(bprm, pos, 1); 438 if (!page) { 439 ret = -E2BIG; 440 goto out; 441 } 442 443 if (kmapped_page) { 444 flush_kernel_dcache_page(kmapped_page); 445 kunmap(kmapped_page); 446 put_arg_page(kmapped_page); 447 } 448 kmapped_page = page; 449 kaddr = kmap(kmapped_page); 450 kpos = pos & PAGE_MASK; 451 flush_arg_page(bprm, kpos, kmapped_page); 452 } 453 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 454 ret = -EFAULT; 455 goto out; 456 } 457 } 458 } 459 ret = 0; 460 out: 461 if (kmapped_page) { 462 flush_kernel_dcache_page(kmapped_page); 463 kunmap(kmapped_page); 464 put_arg_page(kmapped_page); 465 } 466 return ret; 467 } 468 469 /* 470 * Like copy_strings, but get argv and its values from kernel memory. 471 */ 472 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 473 { 474 int r; 475 mm_segment_t oldfs = get_fs(); 476 set_fs(KERNEL_DS); 477 r = copy_strings(argc, (char __user * __user *)argv, bprm); 478 set_fs(oldfs); 479 return r; 480 } 481 EXPORT_SYMBOL(copy_strings_kernel); 482 483 #ifdef CONFIG_MMU 484 485 /* 486 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 487 * the binfmt code determines where the new stack should reside, we shift it to 488 * its final location. The process proceeds as follows: 489 * 490 * 1) Use shift to calculate the new vma endpoints. 491 * 2) Extend vma to cover both the old and new ranges. This ensures the 492 * arguments passed to subsequent functions are consistent. 493 * 3) Move vma's page tables to the new range. 494 * 4) Free up any cleared pgd range. 495 * 5) Shrink the vma to cover only the new range. 496 */ 497 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 498 { 499 struct mm_struct *mm = vma->vm_mm; 500 unsigned long old_start = vma->vm_start; 501 unsigned long old_end = vma->vm_end; 502 unsigned long length = old_end - old_start; 503 unsigned long new_start = old_start - shift; 504 unsigned long new_end = old_end - shift; 505 struct mmu_gather *tlb; 506 507 BUG_ON(new_start > new_end); 508 509 /* 510 * ensure there are no vmas between where we want to go 511 * and where we are 512 */ 513 if (vma != find_vma(mm, new_start)) 514 return -EFAULT; 515 516 /* 517 * cover the whole range: [new_start, old_end) 518 */ 519 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 520 521 /* 522 * move the page tables downwards, on failure we rely on 523 * process cleanup to remove whatever mess we made. 524 */ 525 if (length != move_page_tables(vma, old_start, 526 vma, new_start, length)) 527 return -ENOMEM; 528 529 lru_add_drain(); 530 tlb = tlb_gather_mmu(mm, 0); 531 if (new_end > old_start) { 532 /* 533 * when the old and new regions overlap clear from new_end. 534 */ 535 free_pgd_range(&tlb, new_end, old_end, new_end, 536 vma->vm_next ? vma->vm_next->vm_start : 0); 537 } else { 538 /* 539 * otherwise, clean from old_start; this is done to not touch 540 * the address space in [new_end, old_start) some architectures 541 * have constraints on va-space that make this illegal (IA64) - 542 * for the others its just a little faster. 543 */ 544 free_pgd_range(&tlb, old_start, old_end, new_end, 545 vma->vm_next ? vma->vm_next->vm_start : 0); 546 } 547 tlb_finish_mmu(tlb, new_end, old_end); 548 549 /* 550 * shrink the vma to just the new range. 551 */ 552 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 553 554 return 0; 555 } 556 557 #define EXTRA_STACK_VM_PAGES 20 /* random */ 558 559 /* 560 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 561 * the stack is optionally relocated, and some extra space is added. 562 */ 563 int setup_arg_pages(struct linux_binprm *bprm, 564 unsigned long stack_top, 565 int executable_stack) 566 { 567 unsigned long ret; 568 unsigned long stack_shift; 569 struct mm_struct *mm = current->mm; 570 struct vm_area_struct *vma = bprm->vma; 571 struct vm_area_struct *prev = NULL; 572 unsigned long vm_flags; 573 unsigned long stack_base; 574 575 #ifdef CONFIG_STACK_GROWSUP 576 /* Limit stack size to 1GB */ 577 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 578 if (stack_base > (1 << 30)) 579 stack_base = 1 << 30; 580 581 /* Make sure we didn't let the argument array grow too large. */ 582 if (vma->vm_end - vma->vm_start > stack_base) 583 return -ENOMEM; 584 585 stack_base = PAGE_ALIGN(stack_top - stack_base); 586 587 stack_shift = vma->vm_start - stack_base; 588 mm->arg_start = bprm->p - stack_shift; 589 bprm->p = vma->vm_end - stack_shift; 590 #else 591 stack_top = arch_align_stack(stack_top); 592 stack_top = PAGE_ALIGN(stack_top); 593 stack_shift = vma->vm_end - stack_top; 594 595 bprm->p -= stack_shift; 596 mm->arg_start = bprm->p; 597 #endif 598 599 if (bprm->loader) 600 bprm->loader -= stack_shift; 601 bprm->exec -= stack_shift; 602 603 down_write(&mm->mmap_sem); 604 vm_flags = vma->vm_flags; 605 606 /* 607 * Adjust stack execute permissions; explicitly enable for 608 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 609 * (arch default) otherwise. 610 */ 611 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 612 vm_flags |= VM_EXEC; 613 else if (executable_stack == EXSTACK_DISABLE_X) 614 vm_flags &= ~VM_EXEC; 615 vm_flags |= mm->def_flags; 616 617 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 618 vm_flags); 619 if (ret) 620 goto out_unlock; 621 BUG_ON(prev != vma); 622 623 /* Move stack pages down in memory. */ 624 if (stack_shift) { 625 ret = shift_arg_pages(vma, stack_shift); 626 if (ret) { 627 up_write(&mm->mmap_sem); 628 return ret; 629 } 630 } 631 632 #ifdef CONFIG_STACK_GROWSUP 633 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 634 #else 635 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 636 #endif 637 ret = expand_stack(vma, stack_base); 638 if (ret) 639 ret = -EFAULT; 640 641 out_unlock: 642 up_write(&mm->mmap_sem); 643 return 0; 644 } 645 EXPORT_SYMBOL(setup_arg_pages); 646 647 #endif /* CONFIG_MMU */ 648 649 struct file *open_exec(const char *name) 650 { 651 struct nameidata nd; 652 int err; 653 struct file *file; 654 655 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 656 file = ERR_PTR(err); 657 658 if (!err) { 659 struct inode *inode = nd.dentry->d_inode; 660 file = ERR_PTR(-EACCES); 661 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) && 662 S_ISREG(inode->i_mode)) { 663 int err = vfs_permission(&nd, MAY_EXEC); 664 file = ERR_PTR(err); 665 if (!err) { 666 file = nameidata_to_filp(&nd, O_RDONLY); 667 if (!IS_ERR(file)) { 668 err = deny_write_access(file); 669 if (err) { 670 fput(file); 671 file = ERR_PTR(err); 672 } 673 } 674 out: 675 return file; 676 } 677 } 678 release_open_intent(&nd); 679 path_release(&nd); 680 } 681 goto out; 682 } 683 684 EXPORT_SYMBOL(open_exec); 685 686 int kernel_read(struct file *file, unsigned long offset, 687 char *addr, unsigned long count) 688 { 689 mm_segment_t old_fs; 690 loff_t pos = offset; 691 int result; 692 693 old_fs = get_fs(); 694 set_fs(get_ds()); 695 /* The cast to a user pointer is valid due to the set_fs() */ 696 result = vfs_read(file, (void __user *)addr, count, &pos); 697 set_fs(old_fs); 698 return result; 699 } 700 701 EXPORT_SYMBOL(kernel_read); 702 703 static int exec_mmap(struct mm_struct *mm) 704 { 705 struct task_struct *tsk; 706 struct mm_struct * old_mm, *active_mm; 707 708 /* Notify parent that we're no longer interested in the old VM */ 709 tsk = current; 710 old_mm = current->mm; 711 mm_release(tsk, old_mm); 712 713 if (old_mm) { 714 /* 715 * Make sure that if there is a core dump in progress 716 * for the old mm, we get out and die instead of going 717 * through with the exec. We must hold mmap_sem around 718 * checking core_waiters and changing tsk->mm. The 719 * core-inducing thread will increment core_waiters for 720 * each thread whose ->mm == old_mm. 721 */ 722 down_read(&old_mm->mmap_sem); 723 if (unlikely(old_mm->core_waiters)) { 724 up_read(&old_mm->mmap_sem); 725 return -EINTR; 726 } 727 } 728 task_lock(tsk); 729 active_mm = tsk->active_mm; 730 tsk->mm = mm; 731 tsk->active_mm = mm; 732 activate_mm(active_mm, mm); 733 task_unlock(tsk); 734 arch_pick_mmap_layout(mm); 735 if (old_mm) { 736 up_read(&old_mm->mmap_sem); 737 BUG_ON(active_mm != old_mm); 738 mmput(old_mm); 739 return 0; 740 } 741 mmdrop(active_mm); 742 return 0; 743 } 744 745 /* 746 * This function makes sure the current process has its own signal table, 747 * so that flush_signal_handlers can later reset the handlers without 748 * disturbing other processes. (Other processes might share the signal 749 * table via the CLONE_SIGHAND option to clone().) 750 */ 751 static int de_thread(struct task_struct *tsk) 752 { 753 struct signal_struct *sig = tsk->signal; 754 struct sighand_struct *newsighand, *oldsighand = tsk->sighand; 755 spinlock_t *lock = &oldsighand->siglock; 756 struct task_struct *leader = NULL; 757 int count; 758 759 /* 760 * If we don't share sighandlers, then we aren't sharing anything 761 * and we can just re-use it all. 762 */ 763 if (atomic_read(&oldsighand->count) <= 1) { 764 exit_itimers(sig); 765 return 0; 766 } 767 768 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 769 if (!newsighand) 770 return -ENOMEM; 771 772 if (thread_group_empty(tsk)) 773 goto no_thread_group; 774 775 /* 776 * Kill all other threads in the thread group. 777 * We must hold tasklist_lock to call zap_other_threads. 778 */ 779 read_lock(&tasklist_lock); 780 spin_lock_irq(lock); 781 if (sig->flags & SIGNAL_GROUP_EXIT) { 782 /* 783 * Another group action in progress, just 784 * return so that the signal is processed. 785 */ 786 spin_unlock_irq(lock); 787 read_unlock(&tasklist_lock); 788 kmem_cache_free(sighand_cachep, newsighand); 789 return -EAGAIN; 790 } 791 792 /* 793 * child_reaper ignores SIGKILL, change it now. 794 * Reparenting needs write_lock on tasklist_lock, 795 * so it is safe to do it under read_lock. 796 */ 797 if (unlikely(tsk->group_leader == child_reaper(tsk))) 798 tsk->nsproxy->pid_ns->child_reaper = tsk; 799 800 zap_other_threads(tsk); 801 read_unlock(&tasklist_lock); 802 803 /* 804 * Account for the thread group leader hanging around: 805 */ 806 count = 1; 807 if (!thread_group_leader(tsk)) { 808 count = 2; 809 /* 810 * The SIGALRM timer survives the exec, but needs to point 811 * at us as the new group leader now. We have a race with 812 * a timer firing now getting the old leader, so we need to 813 * synchronize with any firing (by calling del_timer_sync) 814 * before we can safely let the old group leader die. 815 */ 816 sig->tsk = tsk; 817 spin_unlock_irq(lock); 818 if (hrtimer_cancel(&sig->real_timer)) 819 hrtimer_restart(&sig->real_timer); 820 spin_lock_irq(lock); 821 } 822 while (atomic_read(&sig->count) > count) { 823 sig->group_exit_task = tsk; 824 sig->notify_count = count; 825 __set_current_state(TASK_UNINTERRUPTIBLE); 826 spin_unlock_irq(lock); 827 schedule(); 828 spin_lock_irq(lock); 829 } 830 sig->group_exit_task = NULL; 831 sig->notify_count = 0; 832 spin_unlock_irq(lock); 833 834 /* 835 * At this point all other threads have exited, all we have to 836 * do is to wait for the thread group leader to become inactive, 837 * and to assume its PID: 838 */ 839 if (!thread_group_leader(tsk)) { 840 /* 841 * Wait for the thread group leader to be a zombie. 842 * It should already be zombie at this point, most 843 * of the time. 844 */ 845 leader = tsk->group_leader; 846 while (leader->exit_state != EXIT_ZOMBIE) 847 yield(); 848 849 /* 850 * The only record we have of the real-time age of a 851 * process, regardless of execs it's done, is start_time. 852 * All the past CPU time is accumulated in signal_struct 853 * from sister threads now dead. But in this non-leader 854 * exec, nothing survives from the original leader thread, 855 * whose birth marks the true age of this process now. 856 * When we take on its identity by switching to its PID, we 857 * also take its birthdate (always earlier than our own). 858 */ 859 tsk->start_time = leader->start_time; 860 861 write_lock_irq(&tasklist_lock); 862 863 BUG_ON(leader->tgid != tsk->tgid); 864 BUG_ON(tsk->pid == tsk->tgid); 865 /* 866 * An exec() starts a new thread group with the 867 * TGID of the previous thread group. Rehash the 868 * two threads with a switched PID, and release 869 * the former thread group leader: 870 */ 871 872 /* Become a process group leader with the old leader's pid. 873 * The old leader becomes a thread of the this thread group. 874 * Note: The old leader also uses this pid until release_task 875 * is called. Odd but simple and correct. 876 */ 877 detach_pid(tsk, PIDTYPE_PID); 878 tsk->pid = leader->pid; 879 attach_pid(tsk, PIDTYPE_PID, find_pid(tsk->pid)); 880 transfer_pid(leader, tsk, PIDTYPE_PGID); 881 transfer_pid(leader, tsk, PIDTYPE_SID); 882 list_replace_rcu(&leader->tasks, &tsk->tasks); 883 884 tsk->group_leader = tsk; 885 leader->group_leader = tsk; 886 887 tsk->exit_signal = SIGCHLD; 888 889 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 890 leader->exit_state = EXIT_DEAD; 891 892 write_unlock_irq(&tasklist_lock); 893 } 894 895 /* 896 * There may be one thread left which is just exiting, 897 * but it's safe to stop telling the group to kill themselves. 898 */ 899 sig->flags = 0; 900 901 no_thread_group: 902 exit_itimers(sig); 903 if (leader) 904 release_task(leader); 905 906 if (atomic_read(&oldsighand->count) == 1) { 907 /* 908 * Now that we nuked the rest of the thread group, 909 * it turns out we are not sharing sighand any more either. 910 * So we can just keep it. 911 */ 912 kmem_cache_free(sighand_cachep, newsighand); 913 } else { 914 /* 915 * Move our state over to newsighand and switch it in. 916 */ 917 atomic_set(&newsighand->count, 1); 918 memcpy(newsighand->action, oldsighand->action, 919 sizeof(newsighand->action)); 920 921 write_lock_irq(&tasklist_lock); 922 spin_lock(&oldsighand->siglock); 923 spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING); 924 925 rcu_assign_pointer(tsk->sighand, newsighand); 926 recalc_sigpending(); 927 928 spin_unlock(&newsighand->siglock); 929 spin_unlock(&oldsighand->siglock); 930 write_unlock_irq(&tasklist_lock); 931 932 __cleanup_sighand(oldsighand); 933 } 934 935 BUG_ON(!thread_group_leader(tsk)); 936 return 0; 937 } 938 939 /* 940 * These functions flushes out all traces of the currently running executable 941 * so that a new one can be started 942 */ 943 944 static void flush_old_files(struct files_struct * files) 945 { 946 long j = -1; 947 struct fdtable *fdt; 948 949 spin_lock(&files->file_lock); 950 for (;;) { 951 unsigned long set, i; 952 953 j++; 954 i = j * __NFDBITS; 955 fdt = files_fdtable(files); 956 if (i >= fdt->max_fds) 957 break; 958 set = fdt->close_on_exec->fds_bits[j]; 959 if (!set) 960 continue; 961 fdt->close_on_exec->fds_bits[j] = 0; 962 spin_unlock(&files->file_lock); 963 for ( ; set ; i++,set >>= 1) { 964 if (set & 1) { 965 sys_close(i); 966 } 967 } 968 spin_lock(&files->file_lock); 969 970 } 971 spin_unlock(&files->file_lock); 972 } 973 974 void get_task_comm(char *buf, struct task_struct *tsk) 975 { 976 /* buf must be at least sizeof(tsk->comm) in size */ 977 task_lock(tsk); 978 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 979 task_unlock(tsk); 980 } 981 982 void set_task_comm(struct task_struct *tsk, char *buf) 983 { 984 task_lock(tsk); 985 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 986 task_unlock(tsk); 987 } 988 989 int flush_old_exec(struct linux_binprm * bprm) 990 { 991 char * name; 992 int i, ch, retval; 993 struct files_struct *files; 994 char tcomm[sizeof(current->comm)]; 995 996 /* 997 * Make sure we have a private signal table and that 998 * we are unassociated from the previous thread group. 999 */ 1000 retval = de_thread(current); 1001 if (retval) 1002 goto out; 1003 1004 /* 1005 * Make sure we have private file handles. Ask the 1006 * fork helper to do the work for us and the exit 1007 * helper to do the cleanup of the old one. 1008 */ 1009 files = current->files; /* refcounted so safe to hold */ 1010 retval = unshare_files(); 1011 if (retval) 1012 goto out; 1013 /* 1014 * Release all of the old mmap stuff 1015 */ 1016 retval = exec_mmap(bprm->mm); 1017 if (retval) 1018 goto mmap_failed; 1019 1020 bprm->mm = NULL; /* We're using it now */ 1021 1022 /* This is the point of no return */ 1023 put_files_struct(files); 1024 1025 current->sas_ss_sp = current->sas_ss_size = 0; 1026 1027 if (current->euid == current->uid && current->egid == current->gid) 1028 set_dumpable(current->mm, 1); 1029 else 1030 set_dumpable(current->mm, suid_dumpable); 1031 1032 name = bprm->filename; 1033 1034 /* Copies the binary name from after last slash */ 1035 for (i=0; (ch = *(name++)) != '\0';) { 1036 if (ch == '/') 1037 i = 0; /* overwrite what we wrote */ 1038 else 1039 if (i < (sizeof(tcomm) - 1)) 1040 tcomm[i++] = ch; 1041 } 1042 tcomm[i] = '\0'; 1043 set_task_comm(current, tcomm); 1044 1045 current->flags &= ~PF_RANDOMIZE; 1046 flush_thread(); 1047 1048 /* Set the new mm task size. We have to do that late because it may 1049 * depend on TIF_32BIT which is only updated in flush_thread() on 1050 * some architectures like powerpc 1051 */ 1052 current->mm->task_size = TASK_SIZE; 1053 1054 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { 1055 suid_keys(current); 1056 set_dumpable(current->mm, suid_dumpable); 1057 current->pdeath_signal = 0; 1058 } else if (file_permission(bprm->file, MAY_READ) || 1059 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1060 suid_keys(current); 1061 set_dumpable(current->mm, suid_dumpable); 1062 } 1063 1064 /* An exec changes our domain. We are no longer part of the thread 1065 group */ 1066 1067 current->self_exec_id++; 1068 1069 flush_signal_handlers(current, 0); 1070 flush_old_files(current->files); 1071 1072 return 0; 1073 1074 mmap_failed: 1075 reset_files_struct(current, files); 1076 out: 1077 return retval; 1078 } 1079 1080 EXPORT_SYMBOL(flush_old_exec); 1081 1082 /* 1083 * Fill the binprm structure from the inode. 1084 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1085 */ 1086 int prepare_binprm(struct linux_binprm *bprm) 1087 { 1088 int mode; 1089 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1090 int retval; 1091 1092 mode = inode->i_mode; 1093 if (bprm->file->f_op == NULL) 1094 return -EACCES; 1095 1096 bprm->e_uid = current->euid; 1097 bprm->e_gid = current->egid; 1098 1099 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1100 /* Set-uid? */ 1101 if (mode & S_ISUID) { 1102 current->personality &= ~PER_CLEAR_ON_SETID; 1103 bprm->e_uid = inode->i_uid; 1104 } 1105 1106 /* Set-gid? */ 1107 /* 1108 * If setgid is set but no group execute bit then this 1109 * is a candidate for mandatory locking, not a setgid 1110 * executable. 1111 */ 1112 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1113 current->personality &= ~PER_CLEAR_ON_SETID; 1114 bprm->e_gid = inode->i_gid; 1115 } 1116 } 1117 1118 /* fill in binprm security blob */ 1119 retval = security_bprm_set(bprm); 1120 if (retval) 1121 return retval; 1122 1123 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1124 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1125 } 1126 1127 EXPORT_SYMBOL(prepare_binprm); 1128 1129 static int unsafe_exec(struct task_struct *p) 1130 { 1131 int unsafe = 0; 1132 if (p->ptrace & PT_PTRACED) { 1133 if (p->ptrace & PT_PTRACE_CAP) 1134 unsafe |= LSM_UNSAFE_PTRACE_CAP; 1135 else 1136 unsafe |= LSM_UNSAFE_PTRACE; 1137 } 1138 if (atomic_read(&p->fs->count) > 1 || 1139 atomic_read(&p->files->count) > 1 || 1140 atomic_read(&p->sighand->count) > 1) 1141 unsafe |= LSM_UNSAFE_SHARE; 1142 1143 return unsafe; 1144 } 1145 1146 void compute_creds(struct linux_binprm *bprm) 1147 { 1148 int unsafe; 1149 1150 if (bprm->e_uid != current->uid) { 1151 suid_keys(current); 1152 current->pdeath_signal = 0; 1153 } 1154 exec_keys(current); 1155 1156 task_lock(current); 1157 unsafe = unsafe_exec(current); 1158 security_bprm_apply_creds(bprm, unsafe); 1159 task_unlock(current); 1160 security_bprm_post_apply_creds(bprm); 1161 } 1162 EXPORT_SYMBOL(compute_creds); 1163 1164 /* 1165 * Arguments are '\0' separated strings found at the location bprm->p 1166 * points to; chop off the first by relocating brpm->p to right after 1167 * the first '\0' encountered. 1168 */ 1169 int remove_arg_zero(struct linux_binprm *bprm) 1170 { 1171 int ret = 0; 1172 unsigned long offset; 1173 char *kaddr; 1174 struct page *page; 1175 1176 if (!bprm->argc) 1177 return 0; 1178 1179 do { 1180 offset = bprm->p & ~PAGE_MASK; 1181 page = get_arg_page(bprm, bprm->p, 0); 1182 if (!page) { 1183 ret = -EFAULT; 1184 goto out; 1185 } 1186 kaddr = kmap_atomic(page, KM_USER0); 1187 1188 for (; offset < PAGE_SIZE && kaddr[offset]; 1189 offset++, bprm->p++) 1190 ; 1191 1192 kunmap_atomic(kaddr, KM_USER0); 1193 put_arg_page(page); 1194 1195 if (offset == PAGE_SIZE) 1196 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1197 } while (offset == PAGE_SIZE); 1198 1199 bprm->p++; 1200 bprm->argc--; 1201 ret = 0; 1202 1203 out: 1204 return ret; 1205 } 1206 EXPORT_SYMBOL(remove_arg_zero); 1207 1208 /* 1209 * cycle the list of binary formats handler, until one recognizes the image 1210 */ 1211 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1212 { 1213 int try,retval; 1214 struct linux_binfmt *fmt; 1215 #ifdef __alpha__ 1216 /* handle /sbin/loader.. */ 1217 { 1218 struct exec * eh = (struct exec *) bprm->buf; 1219 1220 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1221 (eh->fh.f_flags & 0x3000) == 0x3000) 1222 { 1223 struct file * file; 1224 unsigned long loader; 1225 1226 allow_write_access(bprm->file); 1227 fput(bprm->file); 1228 bprm->file = NULL; 1229 1230 loader = bprm->vma->vm_end - sizeof(void *); 1231 1232 file = open_exec("/sbin/loader"); 1233 retval = PTR_ERR(file); 1234 if (IS_ERR(file)) 1235 return retval; 1236 1237 /* Remember if the application is TASO. */ 1238 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1239 1240 bprm->file = file; 1241 bprm->loader = loader; 1242 retval = prepare_binprm(bprm); 1243 if (retval<0) 1244 return retval; 1245 /* should call search_binary_handler recursively here, 1246 but it does not matter */ 1247 } 1248 } 1249 #endif 1250 retval = security_bprm_check(bprm); 1251 if (retval) 1252 return retval; 1253 1254 /* kernel module loader fixup */ 1255 /* so we don't try to load run modprobe in kernel space. */ 1256 set_fs(USER_DS); 1257 1258 retval = audit_bprm(bprm); 1259 if (retval) 1260 return retval; 1261 1262 retval = -ENOENT; 1263 for (try=0; try<2; try++) { 1264 read_lock(&binfmt_lock); 1265 list_for_each_entry(fmt, &formats, lh) { 1266 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1267 if (!fn) 1268 continue; 1269 if (!try_module_get(fmt->module)) 1270 continue; 1271 read_unlock(&binfmt_lock); 1272 retval = fn(bprm, regs); 1273 if (retval >= 0) { 1274 put_binfmt(fmt); 1275 allow_write_access(bprm->file); 1276 if (bprm->file) 1277 fput(bprm->file); 1278 bprm->file = NULL; 1279 current->did_exec = 1; 1280 proc_exec_connector(current); 1281 return retval; 1282 } 1283 read_lock(&binfmt_lock); 1284 put_binfmt(fmt); 1285 if (retval != -ENOEXEC || bprm->mm == NULL) 1286 break; 1287 if (!bprm->file) { 1288 read_unlock(&binfmt_lock); 1289 return retval; 1290 } 1291 } 1292 read_unlock(&binfmt_lock); 1293 if (retval != -ENOEXEC || bprm->mm == NULL) { 1294 break; 1295 #ifdef CONFIG_KMOD 1296 }else{ 1297 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1298 if (printable(bprm->buf[0]) && 1299 printable(bprm->buf[1]) && 1300 printable(bprm->buf[2]) && 1301 printable(bprm->buf[3])) 1302 break; /* -ENOEXEC */ 1303 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1304 #endif 1305 } 1306 } 1307 return retval; 1308 } 1309 1310 EXPORT_SYMBOL(search_binary_handler); 1311 1312 /* 1313 * sys_execve() executes a new program. 1314 */ 1315 int do_execve(char * filename, 1316 char __user *__user *argv, 1317 char __user *__user *envp, 1318 struct pt_regs * regs) 1319 { 1320 struct linux_binprm *bprm; 1321 struct file *file; 1322 unsigned long env_p; 1323 int retval; 1324 1325 retval = -ENOMEM; 1326 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1327 if (!bprm) 1328 goto out_ret; 1329 1330 file = open_exec(filename); 1331 retval = PTR_ERR(file); 1332 if (IS_ERR(file)) 1333 goto out_kfree; 1334 1335 sched_exec(); 1336 1337 bprm->file = file; 1338 bprm->filename = filename; 1339 bprm->interp = filename; 1340 1341 retval = bprm_mm_init(bprm); 1342 if (retval) 1343 goto out_file; 1344 1345 bprm->argc = count(argv, MAX_ARG_STRINGS); 1346 if ((retval = bprm->argc) < 0) 1347 goto out_mm; 1348 1349 bprm->envc = count(envp, MAX_ARG_STRINGS); 1350 if ((retval = bprm->envc) < 0) 1351 goto out_mm; 1352 1353 retval = security_bprm_alloc(bprm); 1354 if (retval) 1355 goto out; 1356 1357 retval = prepare_binprm(bprm); 1358 if (retval < 0) 1359 goto out; 1360 1361 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1362 if (retval < 0) 1363 goto out; 1364 1365 bprm->exec = bprm->p; 1366 retval = copy_strings(bprm->envc, envp, bprm); 1367 if (retval < 0) 1368 goto out; 1369 1370 env_p = bprm->p; 1371 retval = copy_strings(bprm->argc, argv, bprm); 1372 if (retval < 0) 1373 goto out; 1374 bprm->argv_len = env_p - bprm->p; 1375 1376 retval = search_binary_handler(bprm,regs); 1377 if (retval >= 0) { 1378 /* execve success */ 1379 free_arg_pages(bprm); 1380 security_bprm_free(bprm); 1381 acct_update_integrals(current); 1382 kfree(bprm); 1383 return retval; 1384 } 1385 1386 out: 1387 free_arg_pages(bprm); 1388 if (bprm->security) 1389 security_bprm_free(bprm); 1390 1391 out_mm: 1392 if (bprm->mm) 1393 mmput (bprm->mm); 1394 1395 out_file: 1396 if (bprm->file) { 1397 allow_write_access(bprm->file); 1398 fput(bprm->file); 1399 } 1400 out_kfree: 1401 kfree(bprm); 1402 1403 out_ret: 1404 return retval; 1405 } 1406 1407 int set_binfmt(struct linux_binfmt *new) 1408 { 1409 struct linux_binfmt *old = current->binfmt; 1410 1411 if (new) { 1412 if (!try_module_get(new->module)) 1413 return -1; 1414 } 1415 current->binfmt = new; 1416 if (old) 1417 module_put(old->module); 1418 return 0; 1419 } 1420 1421 EXPORT_SYMBOL(set_binfmt); 1422 1423 /* format_corename will inspect the pattern parameter, and output a 1424 * name into corename, which must have space for at least 1425 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1426 */ 1427 static int format_corename(char *corename, const char *pattern, long signr) 1428 { 1429 const char *pat_ptr = pattern; 1430 char *out_ptr = corename; 1431 char *const out_end = corename + CORENAME_MAX_SIZE; 1432 int rc; 1433 int pid_in_pattern = 0; 1434 int ispipe = 0; 1435 1436 if (*pattern == '|') 1437 ispipe = 1; 1438 1439 /* Repeat as long as we have more pattern to process and more output 1440 space */ 1441 while (*pat_ptr) { 1442 if (*pat_ptr != '%') { 1443 if (out_ptr == out_end) 1444 goto out; 1445 *out_ptr++ = *pat_ptr++; 1446 } else { 1447 switch (*++pat_ptr) { 1448 case 0: 1449 goto out; 1450 /* Double percent, output one percent */ 1451 case '%': 1452 if (out_ptr == out_end) 1453 goto out; 1454 *out_ptr++ = '%'; 1455 break; 1456 /* pid */ 1457 case 'p': 1458 pid_in_pattern = 1; 1459 rc = snprintf(out_ptr, out_end - out_ptr, 1460 "%d", current->tgid); 1461 if (rc > out_end - out_ptr) 1462 goto out; 1463 out_ptr += rc; 1464 break; 1465 /* uid */ 1466 case 'u': 1467 rc = snprintf(out_ptr, out_end - out_ptr, 1468 "%d", current->uid); 1469 if (rc > out_end - out_ptr) 1470 goto out; 1471 out_ptr += rc; 1472 break; 1473 /* gid */ 1474 case 'g': 1475 rc = snprintf(out_ptr, out_end - out_ptr, 1476 "%d", current->gid); 1477 if (rc > out_end - out_ptr) 1478 goto out; 1479 out_ptr += rc; 1480 break; 1481 /* signal that caused the coredump */ 1482 case 's': 1483 rc = snprintf(out_ptr, out_end - out_ptr, 1484 "%ld", signr); 1485 if (rc > out_end - out_ptr) 1486 goto out; 1487 out_ptr += rc; 1488 break; 1489 /* UNIX time of coredump */ 1490 case 't': { 1491 struct timeval tv; 1492 do_gettimeofday(&tv); 1493 rc = snprintf(out_ptr, out_end - out_ptr, 1494 "%lu", tv.tv_sec); 1495 if (rc > out_end - out_ptr) 1496 goto out; 1497 out_ptr += rc; 1498 break; 1499 } 1500 /* hostname */ 1501 case 'h': 1502 down_read(&uts_sem); 1503 rc = snprintf(out_ptr, out_end - out_ptr, 1504 "%s", utsname()->nodename); 1505 up_read(&uts_sem); 1506 if (rc > out_end - out_ptr) 1507 goto out; 1508 out_ptr += rc; 1509 break; 1510 /* executable */ 1511 case 'e': 1512 rc = snprintf(out_ptr, out_end - out_ptr, 1513 "%s", current->comm); 1514 if (rc > out_end - out_ptr) 1515 goto out; 1516 out_ptr += rc; 1517 break; 1518 /* core limit size */ 1519 case 'c': 1520 rc = snprintf(out_ptr, out_end - out_ptr, 1521 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1522 if (rc > out_end - out_ptr) 1523 goto out; 1524 out_ptr += rc; 1525 break; 1526 default: 1527 break; 1528 } 1529 ++pat_ptr; 1530 } 1531 } 1532 /* Backward compatibility with core_uses_pid: 1533 * 1534 * If core_pattern does not include a %p (as is the default) 1535 * and core_uses_pid is set, then .%pid will be appended to 1536 * the filename. Do not do this for piped commands. */ 1537 if (!ispipe && !pid_in_pattern 1538 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1539 rc = snprintf(out_ptr, out_end - out_ptr, 1540 ".%d", current->tgid); 1541 if (rc > out_end - out_ptr) 1542 goto out; 1543 out_ptr += rc; 1544 } 1545 out: 1546 *out_ptr = 0; 1547 return ispipe; 1548 } 1549 1550 static void zap_process(struct task_struct *start) 1551 { 1552 struct task_struct *t; 1553 1554 start->signal->flags = SIGNAL_GROUP_EXIT; 1555 start->signal->group_stop_count = 0; 1556 1557 t = start; 1558 do { 1559 if (t != current && t->mm) { 1560 t->mm->core_waiters++; 1561 sigaddset(&t->pending.signal, SIGKILL); 1562 signal_wake_up(t, 1); 1563 } 1564 } while ((t = next_thread(t)) != start); 1565 } 1566 1567 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1568 int exit_code) 1569 { 1570 struct task_struct *g, *p; 1571 unsigned long flags; 1572 int err = -EAGAIN; 1573 1574 spin_lock_irq(&tsk->sighand->siglock); 1575 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 1576 tsk->signal->group_exit_code = exit_code; 1577 zap_process(tsk); 1578 err = 0; 1579 } 1580 spin_unlock_irq(&tsk->sighand->siglock); 1581 if (err) 1582 return err; 1583 1584 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1585 goto done; 1586 1587 rcu_read_lock(); 1588 for_each_process(g) { 1589 if (g == tsk->group_leader) 1590 continue; 1591 1592 p = g; 1593 do { 1594 if (p->mm) { 1595 if (p->mm == mm) { 1596 /* 1597 * p->sighand can't disappear, but 1598 * may be changed by de_thread() 1599 */ 1600 lock_task_sighand(p, &flags); 1601 zap_process(p); 1602 unlock_task_sighand(p, &flags); 1603 } 1604 break; 1605 } 1606 } while ((p = next_thread(p)) != g); 1607 } 1608 rcu_read_unlock(); 1609 done: 1610 return mm->core_waiters; 1611 } 1612 1613 static int coredump_wait(int exit_code) 1614 { 1615 struct task_struct *tsk = current; 1616 struct mm_struct *mm = tsk->mm; 1617 struct completion startup_done; 1618 struct completion *vfork_done; 1619 int core_waiters; 1620 1621 init_completion(&mm->core_done); 1622 init_completion(&startup_done); 1623 mm->core_startup_done = &startup_done; 1624 1625 core_waiters = zap_threads(tsk, mm, exit_code); 1626 up_write(&mm->mmap_sem); 1627 1628 if (unlikely(core_waiters < 0)) 1629 goto fail; 1630 1631 /* 1632 * Make sure nobody is waiting for us to release the VM, 1633 * otherwise we can deadlock when we wait on each other 1634 */ 1635 vfork_done = tsk->vfork_done; 1636 if (vfork_done) { 1637 tsk->vfork_done = NULL; 1638 complete(vfork_done); 1639 } 1640 1641 if (core_waiters) 1642 wait_for_completion(&startup_done); 1643 fail: 1644 BUG_ON(mm->core_waiters); 1645 return core_waiters; 1646 } 1647 1648 /* 1649 * set_dumpable converts traditional three-value dumpable to two flags and 1650 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1651 * these bits are not changed atomically. So get_dumpable can observe the 1652 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1653 * return either old dumpable or new one by paying attention to the order of 1654 * modifying the bits. 1655 * 1656 * dumpable | mm->flags (binary) 1657 * old new | initial interim final 1658 * ---------+----------------------- 1659 * 0 1 | 00 01 01 1660 * 0 2 | 00 10(*) 11 1661 * 1 0 | 01 00 00 1662 * 1 2 | 01 11 11 1663 * 2 0 | 11 10(*) 00 1664 * 2 1 | 11 11 01 1665 * 1666 * (*) get_dumpable regards interim value of 10 as 11. 1667 */ 1668 void set_dumpable(struct mm_struct *mm, int value) 1669 { 1670 switch (value) { 1671 case 0: 1672 clear_bit(MMF_DUMPABLE, &mm->flags); 1673 smp_wmb(); 1674 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1675 break; 1676 case 1: 1677 set_bit(MMF_DUMPABLE, &mm->flags); 1678 smp_wmb(); 1679 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1680 break; 1681 case 2: 1682 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1683 smp_wmb(); 1684 set_bit(MMF_DUMPABLE, &mm->flags); 1685 break; 1686 } 1687 } 1688 EXPORT_SYMBOL_GPL(set_dumpable); 1689 1690 int get_dumpable(struct mm_struct *mm) 1691 { 1692 int ret; 1693 1694 ret = mm->flags & 0x3; 1695 return (ret >= 2) ? 2 : ret; 1696 } 1697 1698 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1699 { 1700 char corename[CORENAME_MAX_SIZE + 1]; 1701 struct mm_struct *mm = current->mm; 1702 struct linux_binfmt * binfmt; 1703 struct inode * inode; 1704 struct file * file; 1705 int retval = 0; 1706 int fsuid = current->fsuid; 1707 int flag = 0; 1708 int ispipe = 0; 1709 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; 1710 char **helper_argv = NULL; 1711 int helper_argc = 0; 1712 char *delimit; 1713 1714 audit_core_dumps(signr); 1715 1716 binfmt = current->binfmt; 1717 if (!binfmt || !binfmt->core_dump) 1718 goto fail; 1719 down_write(&mm->mmap_sem); 1720 if (!get_dumpable(mm)) { 1721 up_write(&mm->mmap_sem); 1722 goto fail; 1723 } 1724 1725 /* 1726 * We cannot trust fsuid as being the "true" uid of the 1727 * process nor do we know its entire history. We only know it 1728 * was tainted so we dump it as root in mode 2. 1729 */ 1730 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1731 flag = O_EXCL; /* Stop rewrite attacks */ 1732 current->fsuid = 0; /* Dump root private */ 1733 } 1734 set_dumpable(mm, 0); 1735 1736 retval = coredump_wait(exit_code); 1737 if (retval < 0) 1738 goto fail; 1739 1740 /* 1741 * Clear any false indication of pending signals that might 1742 * be seen by the filesystem code called to write the core file. 1743 */ 1744 clear_thread_flag(TIF_SIGPENDING); 1745 1746 /* 1747 * lock_kernel() because format_corename() is controlled by sysctl, which 1748 * uses lock_kernel() 1749 */ 1750 lock_kernel(); 1751 ispipe = format_corename(corename, core_pattern, signr); 1752 unlock_kernel(); 1753 /* 1754 * Don't bother to check the RLIMIT_CORE value if core_pattern points 1755 * to a pipe. Since we're not writing directly to the filesystem 1756 * RLIMIT_CORE doesn't really apply, as no actual core file will be 1757 * created unless the pipe reader choses to write out the core file 1758 * at which point file size limits and permissions will be imposed 1759 * as it does with any other process 1760 */ 1761 if ((!ispipe) && (core_limit < binfmt->min_coredump)) 1762 goto fail_unlock; 1763 1764 if (ispipe) { 1765 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1766 /* Terminate the string before the first option */ 1767 delimit = strchr(corename, ' '); 1768 if (delimit) 1769 *delimit = '\0'; 1770 delimit = strrchr(helper_argv[0], '/'); 1771 if (delimit) 1772 delimit++; 1773 else 1774 delimit = helper_argv[0]; 1775 if (!strcmp(delimit, current->comm)) { 1776 printk(KERN_NOTICE "Recursive core dump detected, " 1777 "aborting\n"); 1778 goto fail_unlock; 1779 } 1780 1781 core_limit = RLIM_INFINITY; 1782 1783 /* SIGPIPE can happen, but it's just never processed */ 1784 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, 1785 &file)) { 1786 printk(KERN_INFO "Core dump to %s pipe failed\n", 1787 corename); 1788 goto fail_unlock; 1789 } 1790 } else 1791 file = filp_open(corename, 1792 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1793 0600); 1794 if (IS_ERR(file)) 1795 goto fail_unlock; 1796 inode = file->f_path.dentry->d_inode; 1797 if (inode->i_nlink > 1) 1798 goto close_fail; /* multiple links - don't dump */ 1799 if (!ispipe && d_unhashed(file->f_path.dentry)) 1800 goto close_fail; 1801 1802 /* AK: actually i see no reason to not allow this for named pipes etc., 1803 but keep the previous behaviour for now. */ 1804 if (!ispipe && !S_ISREG(inode->i_mode)) 1805 goto close_fail; 1806 if (!file->f_op) 1807 goto close_fail; 1808 if (!file->f_op->write) 1809 goto close_fail; 1810 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1811 goto close_fail; 1812 1813 retval = binfmt->core_dump(signr, regs, file, core_limit); 1814 1815 if (retval) 1816 current->signal->group_exit_code |= 0x80; 1817 close_fail: 1818 filp_close(file, NULL); 1819 fail_unlock: 1820 if (helper_argv) 1821 argv_free(helper_argv); 1822 1823 current->fsuid = fsuid; 1824 complete_all(&mm->core_done); 1825 fail: 1826 return retval; 1827 } 1828