xref: /linux/fs/exec.c (revision 04c71976500352d02f60616d2b960267d8c5fe24)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
58 
59 #ifdef CONFIG_KMOD
60 #include <linux/kmod.h>
61 #endif
62 
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
66 
67 EXPORT_SYMBOL(suid_dumpable);
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69 
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72 
73 int register_binfmt(struct linux_binfmt * fmt)
74 {
75 	if (!fmt)
76 		return -EINVAL;
77 	write_lock(&binfmt_lock);
78 	list_add(&fmt->lh, &formats);
79 	write_unlock(&binfmt_lock);
80 	return 0;
81 }
82 
83 EXPORT_SYMBOL(register_binfmt);
84 
85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87 	write_lock(&binfmt_lock);
88 	list_del(&fmt->lh);
89 	write_unlock(&binfmt_lock);
90 }
91 
92 EXPORT_SYMBOL(unregister_binfmt);
93 
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96 	module_put(fmt->module);
97 }
98 
99 /*
100  * Note that a shared library must be both readable and executable due to
101  * security reasons.
102  *
103  * Also note that we take the address to load from from the file itself.
104  */
105 asmlinkage long sys_uselib(const char __user * library)
106 {
107 	struct file * file;
108 	struct nameidata nd;
109 	int error;
110 
111 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
112 	if (error)
113 		goto out;
114 
115 	error = -EACCES;
116 	if (nd.mnt->mnt_flags & MNT_NOEXEC)
117 		goto exit;
118 	error = -EINVAL;
119 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
120 		goto exit;
121 
122 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
123 	if (error)
124 		goto exit;
125 
126 	file = nameidata_to_filp(&nd, O_RDONLY);
127 	error = PTR_ERR(file);
128 	if (IS_ERR(file))
129 		goto out;
130 
131 	error = -ENOEXEC;
132 	if(file->f_op) {
133 		struct linux_binfmt * fmt;
134 
135 		read_lock(&binfmt_lock);
136 		list_for_each_entry(fmt, &formats, lh) {
137 			if (!fmt->load_shlib)
138 				continue;
139 			if (!try_module_get(fmt->module))
140 				continue;
141 			read_unlock(&binfmt_lock);
142 			error = fmt->load_shlib(file);
143 			read_lock(&binfmt_lock);
144 			put_binfmt(fmt);
145 			if (error != -ENOEXEC)
146 				break;
147 		}
148 		read_unlock(&binfmt_lock);
149 	}
150 	fput(file);
151 out:
152   	return error;
153 exit:
154 	release_open_intent(&nd);
155 	path_release(&nd);
156 	goto out;
157 }
158 
159 #ifdef CONFIG_MMU
160 
161 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
162 		int write)
163 {
164 	struct page *page;
165 	int ret;
166 
167 #ifdef CONFIG_STACK_GROWSUP
168 	if (write) {
169 		ret = expand_stack_downwards(bprm->vma, pos);
170 		if (ret < 0)
171 			return NULL;
172 	}
173 #endif
174 	ret = get_user_pages(current, bprm->mm, pos,
175 			1, write, 1, &page, NULL);
176 	if (ret <= 0)
177 		return NULL;
178 
179 	if (write) {
180 		struct rlimit *rlim = current->signal->rlim;
181 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
182 
183 		/*
184 		 * Limit to 1/4-th the stack size for the argv+env strings.
185 		 * This ensures that:
186 		 *  - the remaining binfmt code will not run out of stack space,
187 		 *  - the program will have a reasonable amount of stack left
188 		 *    to work from.
189 		 */
190 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
191 			put_page(page);
192 			return NULL;
193 		}
194 	}
195 
196 	return page;
197 }
198 
199 static void put_arg_page(struct page *page)
200 {
201 	put_page(page);
202 }
203 
204 static void free_arg_page(struct linux_binprm *bprm, int i)
205 {
206 }
207 
208 static void free_arg_pages(struct linux_binprm *bprm)
209 {
210 }
211 
212 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
213 		struct page *page)
214 {
215 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
216 }
217 
218 static int __bprm_mm_init(struct linux_binprm *bprm)
219 {
220 	int err = -ENOMEM;
221 	struct vm_area_struct *vma = NULL;
222 	struct mm_struct *mm = bprm->mm;
223 
224 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
225 	if (!vma)
226 		goto err;
227 
228 	down_write(&mm->mmap_sem);
229 	vma->vm_mm = mm;
230 
231 	/*
232 	 * Place the stack at the largest stack address the architecture
233 	 * supports. Later, we'll move this to an appropriate place. We don't
234 	 * use STACK_TOP because that can depend on attributes which aren't
235 	 * configured yet.
236 	 */
237 	vma->vm_end = STACK_TOP_MAX;
238 	vma->vm_start = vma->vm_end - PAGE_SIZE;
239 
240 	vma->vm_flags = VM_STACK_FLAGS;
241 	vma->vm_page_prot = protection_map[vma->vm_flags & 0x7];
242 	err = insert_vm_struct(mm, vma);
243 	if (err) {
244 		up_write(&mm->mmap_sem);
245 		goto err;
246 	}
247 
248 	mm->stack_vm = mm->total_vm = 1;
249 	up_write(&mm->mmap_sem);
250 
251 	bprm->p = vma->vm_end - sizeof(void *);
252 
253 	return 0;
254 
255 err:
256 	if (vma) {
257 		bprm->vma = NULL;
258 		kmem_cache_free(vm_area_cachep, vma);
259 	}
260 
261 	return err;
262 }
263 
264 static bool valid_arg_len(struct linux_binprm *bprm, long len)
265 {
266 	return len <= MAX_ARG_STRLEN;
267 }
268 
269 #else
270 
271 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
272 		int write)
273 {
274 	struct page *page;
275 
276 	page = bprm->page[pos / PAGE_SIZE];
277 	if (!page && write) {
278 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
279 		if (!page)
280 			return NULL;
281 		bprm->page[pos / PAGE_SIZE] = page;
282 	}
283 
284 	return page;
285 }
286 
287 static void put_arg_page(struct page *page)
288 {
289 }
290 
291 static void free_arg_page(struct linux_binprm *bprm, int i)
292 {
293 	if (bprm->page[i]) {
294 		__free_page(bprm->page[i]);
295 		bprm->page[i] = NULL;
296 	}
297 }
298 
299 static void free_arg_pages(struct linux_binprm *bprm)
300 {
301 	int i;
302 
303 	for (i = 0; i < MAX_ARG_PAGES; i++)
304 		free_arg_page(bprm, i);
305 }
306 
307 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
308 		struct page *page)
309 {
310 }
311 
312 static int __bprm_mm_init(struct linux_binprm *bprm)
313 {
314 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
315 	return 0;
316 }
317 
318 static bool valid_arg_len(struct linux_binprm *bprm, long len)
319 {
320 	return len <= bprm->p;
321 }
322 
323 #endif /* CONFIG_MMU */
324 
325 /*
326  * Create a new mm_struct and populate it with a temporary stack
327  * vm_area_struct.  We don't have enough context at this point to set the stack
328  * flags, permissions, and offset, so we use temporary values.  We'll update
329  * them later in setup_arg_pages().
330  */
331 int bprm_mm_init(struct linux_binprm *bprm)
332 {
333 	int err;
334 	struct mm_struct *mm = NULL;
335 
336 	bprm->mm = mm = mm_alloc();
337 	err = -ENOMEM;
338 	if (!mm)
339 		goto err;
340 
341 	err = init_new_context(current, mm);
342 	if (err)
343 		goto err;
344 
345 	err = __bprm_mm_init(bprm);
346 	if (err)
347 		goto err;
348 
349 	return 0;
350 
351 err:
352 	if (mm) {
353 		bprm->mm = NULL;
354 		mmdrop(mm);
355 	}
356 
357 	return err;
358 }
359 
360 /*
361  * count() counts the number of strings in array ARGV.
362  */
363 static int count(char __user * __user * argv, int max)
364 {
365 	int i = 0;
366 
367 	if (argv != NULL) {
368 		for (;;) {
369 			char __user * p;
370 
371 			if (get_user(p, argv))
372 				return -EFAULT;
373 			if (!p)
374 				break;
375 			argv++;
376 			if(++i > max)
377 				return -E2BIG;
378 			cond_resched();
379 		}
380 	}
381 	return i;
382 }
383 
384 /*
385  * 'copy_strings()' copies argument/environment strings from the old
386  * processes's memory to the new process's stack.  The call to get_user_pages()
387  * ensures the destination page is created and not swapped out.
388  */
389 static int copy_strings(int argc, char __user * __user * argv,
390 			struct linux_binprm *bprm)
391 {
392 	struct page *kmapped_page = NULL;
393 	char *kaddr = NULL;
394 	unsigned long kpos = 0;
395 	int ret;
396 
397 	while (argc-- > 0) {
398 		char __user *str;
399 		int len;
400 		unsigned long pos;
401 
402 		if (get_user(str, argv+argc) ||
403 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
404 			ret = -EFAULT;
405 			goto out;
406 		}
407 
408 		if (!valid_arg_len(bprm, len)) {
409 			ret = -E2BIG;
410 			goto out;
411 		}
412 
413 		/* We're going to work our way backwords. */
414 		pos = bprm->p;
415 		str += len;
416 		bprm->p -= len;
417 
418 		while (len > 0) {
419 			int offset, bytes_to_copy;
420 
421 			offset = pos % PAGE_SIZE;
422 			if (offset == 0)
423 				offset = PAGE_SIZE;
424 
425 			bytes_to_copy = offset;
426 			if (bytes_to_copy > len)
427 				bytes_to_copy = len;
428 
429 			offset -= bytes_to_copy;
430 			pos -= bytes_to_copy;
431 			str -= bytes_to_copy;
432 			len -= bytes_to_copy;
433 
434 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
435 				struct page *page;
436 
437 				page = get_arg_page(bprm, pos, 1);
438 				if (!page) {
439 					ret = -E2BIG;
440 					goto out;
441 				}
442 
443 				if (kmapped_page) {
444 					flush_kernel_dcache_page(kmapped_page);
445 					kunmap(kmapped_page);
446 					put_arg_page(kmapped_page);
447 				}
448 				kmapped_page = page;
449 				kaddr = kmap(kmapped_page);
450 				kpos = pos & PAGE_MASK;
451 				flush_arg_page(bprm, kpos, kmapped_page);
452 			}
453 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
454 				ret = -EFAULT;
455 				goto out;
456 			}
457 		}
458 	}
459 	ret = 0;
460 out:
461 	if (kmapped_page) {
462 		flush_kernel_dcache_page(kmapped_page);
463 		kunmap(kmapped_page);
464 		put_arg_page(kmapped_page);
465 	}
466 	return ret;
467 }
468 
469 /*
470  * Like copy_strings, but get argv and its values from kernel memory.
471  */
472 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
473 {
474 	int r;
475 	mm_segment_t oldfs = get_fs();
476 	set_fs(KERNEL_DS);
477 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
478 	set_fs(oldfs);
479 	return r;
480 }
481 EXPORT_SYMBOL(copy_strings_kernel);
482 
483 #ifdef CONFIG_MMU
484 
485 /*
486  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
487  * the binfmt code determines where the new stack should reside, we shift it to
488  * its final location.  The process proceeds as follows:
489  *
490  * 1) Use shift to calculate the new vma endpoints.
491  * 2) Extend vma to cover both the old and new ranges.  This ensures the
492  *    arguments passed to subsequent functions are consistent.
493  * 3) Move vma's page tables to the new range.
494  * 4) Free up any cleared pgd range.
495  * 5) Shrink the vma to cover only the new range.
496  */
497 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
498 {
499 	struct mm_struct *mm = vma->vm_mm;
500 	unsigned long old_start = vma->vm_start;
501 	unsigned long old_end = vma->vm_end;
502 	unsigned long length = old_end - old_start;
503 	unsigned long new_start = old_start - shift;
504 	unsigned long new_end = old_end - shift;
505 	struct mmu_gather *tlb;
506 
507 	BUG_ON(new_start > new_end);
508 
509 	/*
510 	 * ensure there are no vmas between where we want to go
511 	 * and where we are
512 	 */
513 	if (vma != find_vma(mm, new_start))
514 		return -EFAULT;
515 
516 	/*
517 	 * cover the whole range: [new_start, old_end)
518 	 */
519 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
520 
521 	/*
522 	 * move the page tables downwards, on failure we rely on
523 	 * process cleanup to remove whatever mess we made.
524 	 */
525 	if (length != move_page_tables(vma, old_start,
526 				       vma, new_start, length))
527 		return -ENOMEM;
528 
529 	lru_add_drain();
530 	tlb = tlb_gather_mmu(mm, 0);
531 	if (new_end > old_start) {
532 		/*
533 		 * when the old and new regions overlap clear from new_end.
534 		 */
535 		free_pgd_range(&tlb, new_end, old_end, new_end,
536 			vma->vm_next ? vma->vm_next->vm_start : 0);
537 	} else {
538 		/*
539 		 * otherwise, clean from old_start; this is done to not touch
540 		 * the address space in [new_end, old_start) some architectures
541 		 * have constraints on va-space that make this illegal (IA64) -
542 		 * for the others its just a little faster.
543 		 */
544 		free_pgd_range(&tlb, old_start, old_end, new_end,
545 			vma->vm_next ? vma->vm_next->vm_start : 0);
546 	}
547 	tlb_finish_mmu(tlb, new_end, old_end);
548 
549 	/*
550 	 * shrink the vma to just the new range.
551 	 */
552 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
553 
554 	return 0;
555 }
556 
557 #define EXTRA_STACK_VM_PAGES	20	/* random */
558 
559 /*
560  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
561  * the stack is optionally relocated, and some extra space is added.
562  */
563 int setup_arg_pages(struct linux_binprm *bprm,
564 		    unsigned long stack_top,
565 		    int executable_stack)
566 {
567 	unsigned long ret;
568 	unsigned long stack_shift;
569 	struct mm_struct *mm = current->mm;
570 	struct vm_area_struct *vma = bprm->vma;
571 	struct vm_area_struct *prev = NULL;
572 	unsigned long vm_flags;
573 	unsigned long stack_base;
574 
575 #ifdef CONFIG_STACK_GROWSUP
576 	/* Limit stack size to 1GB */
577 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
578 	if (stack_base > (1 << 30))
579 		stack_base = 1 << 30;
580 
581 	/* Make sure we didn't let the argument array grow too large. */
582 	if (vma->vm_end - vma->vm_start > stack_base)
583 		return -ENOMEM;
584 
585 	stack_base = PAGE_ALIGN(stack_top - stack_base);
586 
587 	stack_shift = vma->vm_start - stack_base;
588 	mm->arg_start = bprm->p - stack_shift;
589 	bprm->p = vma->vm_end - stack_shift;
590 #else
591 	stack_top = arch_align_stack(stack_top);
592 	stack_top = PAGE_ALIGN(stack_top);
593 	stack_shift = vma->vm_end - stack_top;
594 
595 	bprm->p -= stack_shift;
596 	mm->arg_start = bprm->p;
597 #endif
598 
599 	if (bprm->loader)
600 		bprm->loader -= stack_shift;
601 	bprm->exec -= stack_shift;
602 
603 	down_write(&mm->mmap_sem);
604 	vm_flags = vma->vm_flags;
605 
606 	/*
607 	 * Adjust stack execute permissions; explicitly enable for
608 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
609 	 * (arch default) otherwise.
610 	 */
611 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
612 		vm_flags |= VM_EXEC;
613 	else if (executable_stack == EXSTACK_DISABLE_X)
614 		vm_flags &= ~VM_EXEC;
615 	vm_flags |= mm->def_flags;
616 
617 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
618 			vm_flags);
619 	if (ret)
620 		goto out_unlock;
621 	BUG_ON(prev != vma);
622 
623 	/* Move stack pages down in memory. */
624 	if (stack_shift) {
625 		ret = shift_arg_pages(vma, stack_shift);
626 		if (ret) {
627 			up_write(&mm->mmap_sem);
628 			return ret;
629 		}
630 	}
631 
632 #ifdef CONFIG_STACK_GROWSUP
633 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
634 #else
635 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
636 #endif
637 	ret = expand_stack(vma, stack_base);
638 	if (ret)
639 		ret = -EFAULT;
640 
641 out_unlock:
642 	up_write(&mm->mmap_sem);
643 	return 0;
644 }
645 EXPORT_SYMBOL(setup_arg_pages);
646 
647 #endif /* CONFIG_MMU */
648 
649 struct file *open_exec(const char *name)
650 {
651 	struct nameidata nd;
652 	int err;
653 	struct file *file;
654 
655 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
656 	file = ERR_PTR(err);
657 
658 	if (!err) {
659 		struct inode *inode = nd.dentry->d_inode;
660 		file = ERR_PTR(-EACCES);
661 		if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
662 		    S_ISREG(inode->i_mode)) {
663 			int err = vfs_permission(&nd, MAY_EXEC);
664 			file = ERR_PTR(err);
665 			if (!err) {
666 				file = nameidata_to_filp(&nd, O_RDONLY);
667 				if (!IS_ERR(file)) {
668 					err = deny_write_access(file);
669 					if (err) {
670 						fput(file);
671 						file = ERR_PTR(err);
672 					}
673 				}
674 out:
675 				return file;
676 			}
677 		}
678 		release_open_intent(&nd);
679 		path_release(&nd);
680 	}
681 	goto out;
682 }
683 
684 EXPORT_SYMBOL(open_exec);
685 
686 int kernel_read(struct file *file, unsigned long offset,
687 	char *addr, unsigned long count)
688 {
689 	mm_segment_t old_fs;
690 	loff_t pos = offset;
691 	int result;
692 
693 	old_fs = get_fs();
694 	set_fs(get_ds());
695 	/* The cast to a user pointer is valid due to the set_fs() */
696 	result = vfs_read(file, (void __user *)addr, count, &pos);
697 	set_fs(old_fs);
698 	return result;
699 }
700 
701 EXPORT_SYMBOL(kernel_read);
702 
703 static int exec_mmap(struct mm_struct *mm)
704 {
705 	struct task_struct *tsk;
706 	struct mm_struct * old_mm, *active_mm;
707 
708 	/* Notify parent that we're no longer interested in the old VM */
709 	tsk = current;
710 	old_mm = current->mm;
711 	mm_release(tsk, old_mm);
712 
713 	if (old_mm) {
714 		/*
715 		 * Make sure that if there is a core dump in progress
716 		 * for the old mm, we get out and die instead of going
717 		 * through with the exec.  We must hold mmap_sem around
718 		 * checking core_waiters and changing tsk->mm.  The
719 		 * core-inducing thread will increment core_waiters for
720 		 * each thread whose ->mm == old_mm.
721 		 */
722 		down_read(&old_mm->mmap_sem);
723 		if (unlikely(old_mm->core_waiters)) {
724 			up_read(&old_mm->mmap_sem);
725 			return -EINTR;
726 		}
727 	}
728 	task_lock(tsk);
729 	active_mm = tsk->active_mm;
730 	tsk->mm = mm;
731 	tsk->active_mm = mm;
732 	activate_mm(active_mm, mm);
733 	task_unlock(tsk);
734 	arch_pick_mmap_layout(mm);
735 	if (old_mm) {
736 		up_read(&old_mm->mmap_sem);
737 		BUG_ON(active_mm != old_mm);
738 		mmput(old_mm);
739 		return 0;
740 	}
741 	mmdrop(active_mm);
742 	return 0;
743 }
744 
745 /*
746  * This function makes sure the current process has its own signal table,
747  * so that flush_signal_handlers can later reset the handlers without
748  * disturbing other processes.  (Other processes might share the signal
749  * table via the CLONE_SIGHAND option to clone().)
750  */
751 static int de_thread(struct task_struct *tsk)
752 {
753 	struct signal_struct *sig = tsk->signal;
754 	struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
755 	spinlock_t *lock = &oldsighand->siglock;
756 	struct task_struct *leader = NULL;
757 	int count;
758 
759 	/*
760 	 * If we don't share sighandlers, then we aren't sharing anything
761 	 * and we can just re-use it all.
762 	 */
763 	if (atomic_read(&oldsighand->count) <= 1) {
764 		exit_itimers(sig);
765 		return 0;
766 	}
767 
768 	newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
769 	if (!newsighand)
770 		return -ENOMEM;
771 
772 	if (thread_group_empty(tsk))
773 		goto no_thread_group;
774 
775 	/*
776 	 * Kill all other threads in the thread group.
777 	 * We must hold tasklist_lock to call zap_other_threads.
778 	 */
779 	read_lock(&tasklist_lock);
780 	spin_lock_irq(lock);
781 	if (sig->flags & SIGNAL_GROUP_EXIT) {
782 		/*
783 		 * Another group action in progress, just
784 		 * return so that the signal is processed.
785 		 */
786 		spin_unlock_irq(lock);
787 		read_unlock(&tasklist_lock);
788 		kmem_cache_free(sighand_cachep, newsighand);
789 		return -EAGAIN;
790 	}
791 
792 	/*
793 	 * child_reaper ignores SIGKILL, change it now.
794 	 * Reparenting needs write_lock on tasklist_lock,
795 	 * so it is safe to do it under read_lock.
796 	 */
797 	if (unlikely(tsk->group_leader == child_reaper(tsk)))
798 		tsk->nsproxy->pid_ns->child_reaper = tsk;
799 
800 	zap_other_threads(tsk);
801 	read_unlock(&tasklist_lock);
802 
803 	/*
804 	 * Account for the thread group leader hanging around:
805 	 */
806 	count = 1;
807 	if (!thread_group_leader(tsk)) {
808 		count = 2;
809 		/*
810 		 * The SIGALRM timer survives the exec, but needs to point
811 		 * at us as the new group leader now.  We have a race with
812 		 * a timer firing now getting the old leader, so we need to
813 		 * synchronize with any firing (by calling del_timer_sync)
814 		 * before we can safely let the old group leader die.
815 		 */
816 		sig->tsk = tsk;
817 		spin_unlock_irq(lock);
818 		if (hrtimer_cancel(&sig->real_timer))
819 			hrtimer_restart(&sig->real_timer);
820 		spin_lock_irq(lock);
821 	}
822 	while (atomic_read(&sig->count) > count) {
823 		sig->group_exit_task = tsk;
824 		sig->notify_count = count;
825 		__set_current_state(TASK_UNINTERRUPTIBLE);
826 		spin_unlock_irq(lock);
827 		schedule();
828 		spin_lock_irq(lock);
829 	}
830 	sig->group_exit_task = NULL;
831 	sig->notify_count = 0;
832 	spin_unlock_irq(lock);
833 
834 	/*
835 	 * At this point all other threads have exited, all we have to
836 	 * do is to wait for the thread group leader to become inactive,
837 	 * and to assume its PID:
838 	 */
839 	if (!thread_group_leader(tsk)) {
840 		/*
841 		 * Wait for the thread group leader to be a zombie.
842 		 * It should already be zombie at this point, most
843 		 * of the time.
844 		 */
845 		leader = tsk->group_leader;
846 		while (leader->exit_state != EXIT_ZOMBIE)
847 			yield();
848 
849 		/*
850 		 * The only record we have of the real-time age of a
851 		 * process, regardless of execs it's done, is start_time.
852 		 * All the past CPU time is accumulated in signal_struct
853 		 * from sister threads now dead.  But in this non-leader
854 		 * exec, nothing survives from the original leader thread,
855 		 * whose birth marks the true age of this process now.
856 		 * When we take on its identity by switching to its PID, we
857 		 * also take its birthdate (always earlier than our own).
858 		 */
859 		tsk->start_time = leader->start_time;
860 
861 		write_lock_irq(&tasklist_lock);
862 
863 		BUG_ON(leader->tgid != tsk->tgid);
864 		BUG_ON(tsk->pid == tsk->tgid);
865 		/*
866 		 * An exec() starts a new thread group with the
867 		 * TGID of the previous thread group. Rehash the
868 		 * two threads with a switched PID, and release
869 		 * the former thread group leader:
870 		 */
871 
872 		/* Become a process group leader with the old leader's pid.
873 		 * The old leader becomes a thread of the this thread group.
874 		 * Note: The old leader also uses this pid until release_task
875 		 *       is called.  Odd but simple and correct.
876 		 */
877 		detach_pid(tsk, PIDTYPE_PID);
878 		tsk->pid = leader->pid;
879 		attach_pid(tsk, PIDTYPE_PID,  find_pid(tsk->pid));
880 		transfer_pid(leader, tsk, PIDTYPE_PGID);
881 		transfer_pid(leader, tsk, PIDTYPE_SID);
882 		list_replace_rcu(&leader->tasks, &tsk->tasks);
883 
884 		tsk->group_leader = tsk;
885 		leader->group_leader = tsk;
886 
887 		tsk->exit_signal = SIGCHLD;
888 
889 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
890 		leader->exit_state = EXIT_DEAD;
891 
892 		write_unlock_irq(&tasklist_lock);
893         }
894 
895 	/*
896 	 * There may be one thread left which is just exiting,
897 	 * but it's safe to stop telling the group to kill themselves.
898 	 */
899 	sig->flags = 0;
900 
901 no_thread_group:
902 	exit_itimers(sig);
903 	if (leader)
904 		release_task(leader);
905 
906 	if (atomic_read(&oldsighand->count) == 1) {
907 		/*
908 		 * Now that we nuked the rest of the thread group,
909 		 * it turns out we are not sharing sighand any more either.
910 		 * So we can just keep it.
911 		 */
912 		kmem_cache_free(sighand_cachep, newsighand);
913 	} else {
914 		/*
915 		 * Move our state over to newsighand and switch it in.
916 		 */
917 		atomic_set(&newsighand->count, 1);
918 		memcpy(newsighand->action, oldsighand->action,
919 		       sizeof(newsighand->action));
920 
921 		write_lock_irq(&tasklist_lock);
922 		spin_lock(&oldsighand->siglock);
923 		spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING);
924 
925 		rcu_assign_pointer(tsk->sighand, newsighand);
926 		recalc_sigpending();
927 
928 		spin_unlock(&newsighand->siglock);
929 		spin_unlock(&oldsighand->siglock);
930 		write_unlock_irq(&tasklist_lock);
931 
932 		__cleanup_sighand(oldsighand);
933 	}
934 
935 	BUG_ON(!thread_group_leader(tsk));
936 	return 0;
937 }
938 
939 /*
940  * These functions flushes out all traces of the currently running executable
941  * so that a new one can be started
942  */
943 
944 static void flush_old_files(struct files_struct * files)
945 {
946 	long j = -1;
947 	struct fdtable *fdt;
948 
949 	spin_lock(&files->file_lock);
950 	for (;;) {
951 		unsigned long set, i;
952 
953 		j++;
954 		i = j * __NFDBITS;
955 		fdt = files_fdtable(files);
956 		if (i >= fdt->max_fds)
957 			break;
958 		set = fdt->close_on_exec->fds_bits[j];
959 		if (!set)
960 			continue;
961 		fdt->close_on_exec->fds_bits[j] = 0;
962 		spin_unlock(&files->file_lock);
963 		for ( ; set ; i++,set >>= 1) {
964 			if (set & 1) {
965 				sys_close(i);
966 			}
967 		}
968 		spin_lock(&files->file_lock);
969 
970 	}
971 	spin_unlock(&files->file_lock);
972 }
973 
974 void get_task_comm(char *buf, struct task_struct *tsk)
975 {
976 	/* buf must be at least sizeof(tsk->comm) in size */
977 	task_lock(tsk);
978 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
979 	task_unlock(tsk);
980 }
981 
982 void set_task_comm(struct task_struct *tsk, char *buf)
983 {
984 	task_lock(tsk);
985 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
986 	task_unlock(tsk);
987 }
988 
989 int flush_old_exec(struct linux_binprm * bprm)
990 {
991 	char * name;
992 	int i, ch, retval;
993 	struct files_struct *files;
994 	char tcomm[sizeof(current->comm)];
995 
996 	/*
997 	 * Make sure we have a private signal table and that
998 	 * we are unassociated from the previous thread group.
999 	 */
1000 	retval = de_thread(current);
1001 	if (retval)
1002 		goto out;
1003 
1004 	/*
1005 	 * Make sure we have private file handles. Ask the
1006 	 * fork helper to do the work for us and the exit
1007 	 * helper to do the cleanup of the old one.
1008 	 */
1009 	files = current->files;		/* refcounted so safe to hold */
1010 	retval = unshare_files();
1011 	if (retval)
1012 		goto out;
1013 	/*
1014 	 * Release all of the old mmap stuff
1015 	 */
1016 	retval = exec_mmap(bprm->mm);
1017 	if (retval)
1018 		goto mmap_failed;
1019 
1020 	bprm->mm = NULL;		/* We're using it now */
1021 
1022 	/* This is the point of no return */
1023 	put_files_struct(files);
1024 
1025 	current->sas_ss_sp = current->sas_ss_size = 0;
1026 
1027 	if (current->euid == current->uid && current->egid == current->gid)
1028 		set_dumpable(current->mm, 1);
1029 	else
1030 		set_dumpable(current->mm, suid_dumpable);
1031 
1032 	name = bprm->filename;
1033 
1034 	/* Copies the binary name from after last slash */
1035 	for (i=0; (ch = *(name++)) != '\0';) {
1036 		if (ch == '/')
1037 			i = 0; /* overwrite what we wrote */
1038 		else
1039 			if (i < (sizeof(tcomm) - 1))
1040 				tcomm[i++] = ch;
1041 	}
1042 	tcomm[i] = '\0';
1043 	set_task_comm(current, tcomm);
1044 
1045 	current->flags &= ~PF_RANDOMIZE;
1046 	flush_thread();
1047 
1048 	/* Set the new mm task size. We have to do that late because it may
1049 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1050 	 * some architectures like powerpc
1051 	 */
1052 	current->mm->task_size = TASK_SIZE;
1053 
1054 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1055 		suid_keys(current);
1056 		set_dumpable(current->mm, suid_dumpable);
1057 		current->pdeath_signal = 0;
1058 	} else if (file_permission(bprm->file, MAY_READ) ||
1059 			(bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1060 		suid_keys(current);
1061 		set_dumpable(current->mm, suid_dumpable);
1062 	}
1063 
1064 	/* An exec changes our domain. We are no longer part of the thread
1065 	   group */
1066 
1067 	current->self_exec_id++;
1068 
1069 	flush_signal_handlers(current, 0);
1070 	flush_old_files(current->files);
1071 
1072 	return 0;
1073 
1074 mmap_failed:
1075 	reset_files_struct(current, files);
1076 out:
1077 	return retval;
1078 }
1079 
1080 EXPORT_SYMBOL(flush_old_exec);
1081 
1082 /*
1083  * Fill the binprm structure from the inode.
1084  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1085  */
1086 int prepare_binprm(struct linux_binprm *bprm)
1087 {
1088 	int mode;
1089 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1090 	int retval;
1091 
1092 	mode = inode->i_mode;
1093 	if (bprm->file->f_op == NULL)
1094 		return -EACCES;
1095 
1096 	bprm->e_uid = current->euid;
1097 	bprm->e_gid = current->egid;
1098 
1099 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1100 		/* Set-uid? */
1101 		if (mode & S_ISUID) {
1102 			current->personality &= ~PER_CLEAR_ON_SETID;
1103 			bprm->e_uid = inode->i_uid;
1104 		}
1105 
1106 		/* Set-gid? */
1107 		/*
1108 		 * If setgid is set but no group execute bit then this
1109 		 * is a candidate for mandatory locking, not a setgid
1110 		 * executable.
1111 		 */
1112 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1113 			current->personality &= ~PER_CLEAR_ON_SETID;
1114 			bprm->e_gid = inode->i_gid;
1115 		}
1116 	}
1117 
1118 	/* fill in binprm security blob */
1119 	retval = security_bprm_set(bprm);
1120 	if (retval)
1121 		return retval;
1122 
1123 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
1124 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1125 }
1126 
1127 EXPORT_SYMBOL(prepare_binprm);
1128 
1129 static int unsafe_exec(struct task_struct *p)
1130 {
1131 	int unsafe = 0;
1132 	if (p->ptrace & PT_PTRACED) {
1133 		if (p->ptrace & PT_PTRACE_CAP)
1134 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
1135 		else
1136 			unsafe |= LSM_UNSAFE_PTRACE;
1137 	}
1138 	if (atomic_read(&p->fs->count) > 1 ||
1139 	    atomic_read(&p->files->count) > 1 ||
1140 	    atomic_read(&p->sighand->count) > 1)
1141 		unsafe |= LSM_UNSAFE_SHARE;
1142 
1143 	return unsafe;
1144 }
1145 
1146 void compute_creds(struct linux_binprm *bprm)
1147 {
1148 	int unsafe;
1149 
1150 	if (bprm->e_uid != current->uid) {
1151 		suid_keys(current);
1152 		current->pdeath_signal = 0;
1153 	}
1154 	exec_keys(current);
1155 
1156 	task_lock(current);
1157 	unsafe = unsafe_exec(current);
1158 	security_bprm_apply_creds(bprm, unsafe);
1159 	task_unlock(current);
1160 	security_bprm_post_apply_creds(bprm);
1161 }
1162 EXPORT_SYMBOL(compute_creds);
1163 
1164 /*
1165  * Arguments are '\0' separated strings found at the location bprm->p
1166  * points to; chop off the first by relocating brpm->p to right after
1167  * the first '\0' encountered.
1168  */
1169 int remove_arg_zero(struct linux_binprm *bprm)
1170 {
1171 	int ret = 0;
1172 	unsigned long offset;
1173 	char *kaddr;
1174 	struct page *page;
1175 
1176 	if (!bprm->argc)
1177 		return 0;
1178 
1179 	do {
1180 		offset = bprm->p & ~PAGE_MASK;
1181 		page = get_arg_page(bprm, bprm->p, 0);
1182 		if (!page) {
1183 			ret = -EFAULT;
1184 			goto out;
1185 		}
1186 		kaddr = kmap_atomic(page, KM_USER0);
1187 
1188 		for (; offset < PAGE_SIZE && kaddr[offset];
1189 				offset++, bprm->p++)
1190 			;
1191 
1192 		kunmap_atomic(kaddr, KM_USER0);
1193 		put_arg_page(page);
1194 
1195 		if (offset == PAGE_SIZE)
1196 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1197 	} while (offset == PAGE_SIZE);
1198 
1199 	bprm->p++;
1200 	bprm->argc--;
1201 	ret = 0;
1202 
1203 out:
1204 	return ret;
1205 }
1206 EXPORT_SYMBOL(remove_arg_zero);
1207 
1208 /*
1209  * cycle the list of binary formats handler, until one recognizes the image
1210  */
1211 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1212 {
1213 	int try,retval;
1214 	struct linux_binfmt *fmt;
1215 #ifdef __alpha__
1216 	/* handle /sbin/loader.. */
1217 	{
1218 	    struct exec * eh = (struct exec *) bprm->buf;
1219 
1220 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1221 		(eh->fh.f_flags & 0x3000) == 0x3000)
1222 	    {
1223 		struct file * file;
1224 		unsigned long loader;
1225 
1226 		allow_write_access(bprm->file);
1227 		fput(bprm->file);
1228 		bprm->file = NULL;
1229 
1230 		loader = bprm->vma->vm_end - sizeof(void *);
1231 
1232 		file = open_exec("/sbin/loader");
1233 		retval = PTR_ERR(file);
1234 		if (IS_ERR(file))
1235 			return retval;
1236 
1237 		/* Remember if the application is TASO.  */
1238 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1239 
1240 		bprm->file = file;
1241 		bprm->loader = loader;
1242 		retval = prepare_binprm(bprm);
1243 		if (retval<0)
1244 			return retval;
1245 		/* should call search_binary_handler recursively here,
1246 		   but it does not matter */
1247 	    }
1248 	}
1249 #endif
1250 	retval = security_bprm_check(bprm);
1251 	if (retval)
1252 		return retval;
1253 
1254 	/* kernel module loader fixup */
1255 	/* so we don't try to load run modprobe in kernel space. */
1256 	set_fs(USER_DS);
1257 
1258 	retval = audit_bprm(bprm);
1259 	if (retval)
1260 		return retval;
1261 
1262 	retval = -ENOENT;
1263 	for (try=0; try<2; try++) {
1264 		read_lock(&binfmt_lock);
1265 		list_for_each_entry(fmt, &formats, lh) {
1266 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1267 			if (!fn)
1268 				continue;
1269 			if (!try_module_get(fmt->module))
1270 				continue;
1271 			read_unlock(&binfmt_lock);
1272 			retval = fn(bprm, regs);
1273 			if (retval >= 0) {
1274 				put_binfmt(fmt);
1275 				allow_write_access(bprm->file);
1276 				if (bprm->file)
1277 					fput(bprm->file);
1278 				bprm->file = NULL;
1279 				current->did_exec = 1;
1280 				proc_exec_connector(current);
1281 				return retval;
1282 			}
1283 			read_lock(&binfmt_lock);
1284 			put_binfmt(fmt);
1285 			if (retval != -ENOEXEC || bprm->mm == NULL)
1286 				break;
1287 			if (!bprm->file) {
1288 				read_unlock(&binfmt_lock);
1289 				return retval;
1290 			}
1291 		}
1292 		read_unlock(&binfmt_lock);
1293 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1294 			break;
1295 #ifdef CONFIG_KMOD
1296 		}else{
1297 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1298 			if (printable(bprm->buf[0]) &&
1299 			    printable(bprm->buf[1]) &&
1300 			    printable(bprm->buf[2]) &&
1301 			    printable(bprm->buf[3]))
1302 				break; /* -ENOEXEC */
1303 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1304 #endif
1305 		}
1306 	}
1307 	return retval;
1308 }
1309 
1310 EXPORT_SYMBOL(search_binary_handler);
1311 
1312 /*
1313  * sys_execve() executes a new program.
1314  */
1315 int do_execve(char * filename,
1316 	char __user *__user *argv,
1317 	char __user *__user *envp,
1318 	struct pt_regs * regs)
1319 {
1320 	struct linux_binprm *bprm;
1321 	struct file *file;
1322 	unsigned long env_p;
1323 	int retval;
1324 
1325 	retval = -ENOMEM;
1326 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1327 	if (!bprm)
1328 		goto out_ret;
1329 
1330 	file = open_exec(filename);
1331 	retval = PTR_ERR(file);
1332 	if (IS_ERR(file))
1333 		goto out_kfree;
1334 
1335 	sched_exec();
1336 
1337 	bprm->file = file;
1338 	bprm->filename = filename;
1339 	bprm->interp = filename;
1340 
1341 	retval = bprm_mm_init(bprm);
1342 	if (retval)
1343 		goto out_file;
1344 
1345 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1346 	if ((retval = bprm->argc) < 0)
1347 		goto out_mm;
1348 
1349 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1350 	if ((retval = bprm->envc) < 0)
1351 		goto out_mm;
1352 
1353 	retval = security_bprm_alloc(bprm);
1354 	if (retval)
1355 		goto out;
1356 
1357 	retval = prepare_binprm(bprm);
1358 	if (retval < 0)
1359 		goto out;
1360 
1361 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1362 	if (retval < 0)
1363 		goto out;
1364 
1365 	bprm->exec = bprm->p;
1366 	retval = copy_strings(bprm->envc, envp, bprm);
1367 	if (retval < 0)
1368 		goto out;
1369 
1370 	env_p = bprm->p;
1371 	retval = copy_strings(bprm->argc, argv, bprm);
1372 	if (retval < 0)
1373 		goto out;
1374 	bprm->argv_len = env_p - bprm->p;
1375 
1376 	retval = search_binary_handler(bprm,regs);
1377 	if (retval >= 0) {
1378 		/* execve success */
1379 		free_arg_pages(bprm);
1380 		security_bprm_free(bprm);
1381 		acct_update_integrals(current);
1382 		kfree(bprm);
1383 		return retval;
1384 	}
1385 
1386 out:
1387 	free_arg_pages(bprm);
1388 	if (bprm->security)
1389 		security_bprm_free(bprm);
1390 
1391 out_mm:
1392 	if (bprm->mm)
1393 		mmput (bprm->mm);
1394 
1395 out_file:
1396 	if (bprm->file) {
1397 		allow_write_access(bprm->file);
1398 		fput(bprm->file);
1399 	}
1400 out_kfree:
1401 	kfree(bprm);
1402 
1403 out_ret:
1404 	return retval;
1405 }
1406 
1407 int set_binfmt(struct linux_binfmt *new)
1408 {
1409 	struct linux_binfmt *old = current->binfmt;
1410 
1411 	if (new) {
1412 		if (!try_module_get(new->module))
1413 			return -1;
1414 	}
1415 	current->binfmt = new;
1416 	if (old)
1417 		module_put(old->module);
1418 	return 0;
1419 }
1420 
1421 EXPORT_SYMBOL(set_binfmt);
1422 
1423 /* format_corename will inspect the pattern parameter, and output a
1424  * name into corename, which must have space for at least
1425  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1426  */
1427 static int format_corename(char *corename, const char *pattern, long signr)
1428 {
1429 	const char *pat_ptr = pattern;
1430 	char *out_ptr = corename;
1431 	char *const out_end = corename + CORENAME_MAX_SIZE;
1432 	int rc;
1433 	int pid_in_pattern = 0;
1434 	int ispipe = 0;
1435 
1436 	if (*pattern == '|')
1437 		ispipe = 1;
1438 
1439 	/* Repeat as long as we have more pattern to process and more output
1440 	   space */
1441 	while (*pat_ptr) {
1442 		if (*pat_ptr != '%') {
1443 			if (out_ptr == out_end)
1444 				goto out;
1445 			*out_ptr++ = *pat_ptr++;
1446 		} else {
1447 			switch (*++pat_ptr) {
1448 			case 0:
1449 				goto out;
1450 			/* Double percent, output one percent */
1451 			case '%':
1452 				if (out_ptr == out_end)
1453 					goto out;
1454 				*out_ptr++ = '%';
1455 				break;
1456 			/* pid */
1457 			case 'p':
1458 				pid_in_pattern = 1;
1459 				rc = snprintf(out_ptr, out_end - out_ptr,
1460 					      "%d", current->tgid);
1461 				if (rc > out_end - out_ptr)
1462 					goto out;
1463 				out_ptr += rc;
1464 				break;
1465 			/* uid */
1466 			case 'u':
1467 				rc = snprintf(out_ptr, out_end - out_ptr,
1468 					      "%d", current->uid);
1469 				if (rc > out_end - out_ptr)
1470 					goto out;
1471 				out_ptr += rc;
1472 				break;
1473 			/* gid */
1474 			case 'g':
1475 				rc = snprintf(out_ptr, out_end - out_ptr,
1476 					      "%d", current->gid);
1477 				if (rc > out_end - out_ptr)
1478 					goto out;
1479 				out_ptr += rc;
1480 				break;
1481 			/* signal that caused the coredump */
1482 			case 's':
1483 				rc = snprintf(out_ptr, out_end - out_ptr,
1484 					      "%ld", signr);
1485 				if (rc > out_end - out_ptr)
1486 					goto out;
1487 				out_ptr += rc;
1488 				break;
1489 			/* UNIX time of coredump */
1490 			case 't': {
1491 				struct timeval tv;
1492 				do_gettimeofday(&tv);
1493 				rc = snprintf(out_ptr, out_end - out_ptr,
1494 					      "%lu", tv.tv_sec);
1495 				if (rc > out_end - out_ptr)
1496 					goto out;
1497 				out_ptr += rc;
1498 				break;
1499 			}
1500 			/* hostname */
1501 			case 'h':
1502 				down_read(&uts_sem);
1503 				rc = snprintf(out_ptr, out_end - out_ptr,
1504 					      "%s", utsname()->nodename);
1505 				up_read(&uts_sem);
1506 				if (rc > out_end - out_ptr)
1507 					goto out;
1508 				out_ptr += rc;
1509 				break;
1510 			/* executable */
1511 			case 'e':
1512 				rc = snprintf(out_ptr, out_end - out_ptr,
1513 					      "%s", current->comm);
1514 				if (rc > out_end - out_ptr)
1515 					goto out;
1516 				out_ptr += rc;
1517 				break;
1518 			/* core limit size */
1519 			case 'c':
1520 				rc = snprintf(out_ptr, out_end - out_ptr,
1521 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1522 				if (rc > out_end - out_ptr)
1523 					goto out;
1524 				out_ptr += rc;
1525 				break;
1526 			default:
1527 				break;
1528 			}
1529 			++pat_ptr;
1530 		}
1531 	}
1532 	/* Backward compatibility with core_uses_pid:
1533 	 *
1534 	 * If core_pattern does not include a %p (as is the default)
1535 	 * and core_uses_pid is set, then .%pid will be appended to
1536 	 * the filename. Do not do this for piped commands. */
1537 	if (!ispipe && !pid_in_pattern
1538             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1539 		rc = snprintf(out_ptr, out_end - out_ptr,
1540 			      ".%d", current->tgid);
1541 		if (rc > out_end - out_ptr)
1542 			goto out;
1543 		out_ptr += rc;
1544 	}
1545 out:
1546 	*out_ptr = 0;
1547 	return ispipe;
1548 }
1549 
1550 static void zap_process(struct task_struct *start)
1551 {
1552 	struct task_struct *t;
1553 
1554 	start->signal->flags = SIGNAL_GROUP_EXIT;
1555 	start->signal->group_stop_count = 0;
1556 
1557 	t = start;
1558 	do {
1559 		if (t != current && t->mm) {
1560 			t->mm->core_waiters++;
1561 			sigaddset(&t->pending.signal, SIGKILL);
1562 			signal_wake_up(t, 1);
1563 		}
1564 	} while ((t = next_thread(t)) != start);
1565 }
1566 
1567 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1568 				int exit_code)
1569 {
1570 	struct task_struct *g, *p;
1571 	unsigned long flags;
1572 	int err = -EAGAIN;
1573 
1574 	spin_lock_irq(&tsk->sighand->siglock);
1575 	if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1576 		tsk->signal->group_exit_code = exit_code;
1577 		zap_process(tsk);
1578 		err = 0;
1579 	}
1580 	spin_unlock_irq(&tsk->sighand->siglock);
1581 	if (err)
1582 		return err;
1583 
1584 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1585 		goto done;
1586 
1587 	rcu_read_lock();
1588 	for_each_process(g) {
1589 		if (g == tsk->group_leader)
1590 			continue;
1591 
1592 		p = g;
1593 		do {
1594 			if (p->mm) {
1595 				if (p->mm == mm) {
1596 					/*
1597 					 * p->sighand can't disappear, but
1598 					 * may be changed by de_thread()
1599 					 */
1600 					lock_task_sighand(p, &flags);
1601 					zap_process(p);
1602 					unlock_task_sighand(p, &flags);
1603 				}
1604 				break;
1605 			}
1606 		} while ((p = next_thread(p)) != g);
1607 	}
1608 	rcu_read_unlock();
1609 done:
1610 	return mm->core_waiters;
1611 }
1612 
1613 static int coredump_wait(int exit_code)
1614 {
1615 	struct task_struct *tsk = current;
1616 	struct mm_struct *mm = tsk->mm;
1617 	struct completion startup_done;
1618 	struct completion *vfork_done;
1619 	int core_waiters;
1620 
1621 	init_completion(&mm->core_done);
1622 	init_completion(&startup_done);
1623 	mm->core_startup_done = &startup_done;
1624 
1625 	core_waiters = zap_threads(tsk, mm, exit_code);
1626 	up_write(&mm->mmap_sem);
1627 
1628 	if (unlikely(core_waiters < 0))
1629 		goto fail;
1630 
1631 	/*
1632 	 * Make sure nobody is waiting for us to release the VM,
1633 	 * otherwise we can deadlock when we wait on each other
1634 	 */
1635 	vfork_done = tsk->vfork_done;
1636 	if (vfork_done) {
1637 		tsk->vfork_done = NULL;
1638 		complete(vfork_done);
1639 	}
1640 
1641 	if (core_waiters)
1642 		wait_for_completion(&startup_done);
1643 fail:
1644 	BUG_ON(mm->core_waiters);
1645 	return core_waiters;
1646 }
1647 
1648 /*
1649  * set_dumpable converts traditional three-value dumpable to two flags and
1650  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1651  * these bits are not changed atomically.  So get_dumpable can observe the
1652  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1653  * return either old dumpable or new one by paying attention to the order of
1654  * modifying the bits.
1655  *
1656  * dumpable |   mm->flags (binary)
1657  * old  new | initial interim  final
1658  * ---------+-----------------------
1659  *  0    1  |   00      01      01
1660  *  0    2  |   00      10(*)   11
1661  *  1    0  |   01      00      00
1662  *  1    2  |   01      11      11
1663  *  2    0  |   11      10(*)   00
1664  *  2    1  |   11      11      01
1665  *
1666  * (*) get_dumpable regards interim value of 10 as 11.
1667  */
1668 void set_dumpable(struct mm_struct *mm, int value)
1669 {
1670 	switch (value) {
1671 	case 0:
1672 		clear_bit(MMF_DUMPABLE, &mm->flags);
1673 		smp_wmb();
1674 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1675 		break;
1676 	case 1:
1677 		set_bit(MMF_DUMPABLE, &mm->flags);
1678 		smp_wmb();
1679 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1680 		break;
1681 	case 2:
1682 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1683 		smp_wmb();
1684 		set_bit(MMF_DUMPABLE, &mm->flags);
1685 		break;
1686 	}
1687 }
1688 EXPORT_SYMBOL_GPL(set_dumpable);
1689 
1690 int get_dumpable(struct mm_struct *mm)
1691 {
1692 	int ret;
1693 
1694 	ret = mm->flags & 0x3;
1695 	return (ret >= 2) ? 2 : ret;
1696 }
1697 
1698 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1699 {
1700 	char corename[CORENAME_MAX_SIZE + 1];
1701 	struct mm_struct *mm = current->mm;
1702 	struct linux_binfmt * binfmt;
1703 	struct inode * inode;
1704 	struct file * file;
1705 	int retval = 0;
1706 	int fsuid = current->fsuid;
1707 	int flag = 0;
1708 	int ispipe = 0;
1709 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1710 	char **helper_argv = NULL;
1711 	int helper_argc = 0;
1712 	char *delimit;
1713 
1714 	audit_core_dumps(signr);
1715 
1716 	binfmt = current->binfmt;
1717 	if (!binfmt || !binfmt->core_dump)
1718 		goto fail;
1719 	down_write(&mm->mmap_sem);
1720 	if (!get_dumpable(mm)) {
1721 		up_write(&mm->mmap_sem);
1722 		goto fail;
1723 	}
1724 
1725 	/*
1726 	 *	We cannot trust fsuid as being the "true" uid of the
1727 	 *	process nor do we know its entire history. We only know it
1728 	 *	was tainted so we dump it as root in mode 2.
1729 	 */
1730 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1731 		flag = O_EXCL;		/* Stop rewrite attacks */
1732 		current->fsuid = 0;	/* Dump root private */
1733 	}
1734 	set_dumpable(mm, 0);
1735 
1736 	retval = coredump_wait(exit_code);
1737 	if (retval < 0)
1738 		goto fail;
1739 
1740 	/*
1741 	 * Clear any false indication of pending signals that might
1742 	 * be seen by the filesystem code called to write the core file.
1743 	 */
1744 	clear_thread_flag(TIF_SIGPENDING);
1745 
1746 	/*
1747 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1748 	 * uses lock_kernel()
1749 	 */
1750  	lock_kernel();
1751 	ispipe = format_corename(corename, core_pattern, signr);
1752 	unlock_kernel();
1753 	/*
1754 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1755 	 * to a pipe.  Since we're not writing directly to the filesystem
1756 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1757 	 * created unless the pipe reader choses to write out the core file
1758 	 * at which point file size limits and permissions will be imposed
1759 	 * as it does with any other process
1760 	 */
1761 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1762 		goto fail_unlock;
1763 
1764  	if (ispipe) {
1765 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1766 		/* Terminate the string before the first option */
1767 		delimit = strchr(corename, ' ');
1768 		if (delimit)
1769 			*delimit = '\0';
1770 		delimit = strrchr(helper_argv[0], '/');
1771 		if (delimit)
1772 			delimit++;
1773 		else
1774 			delimit = helper_argv[0];
1775 		if (!strcmp(delimit, current->comm)) {
1776 			printk(KERN_NOTICE "Recursive core dump detected, "
1777 					"aborting\n");
1778 			goto fail_unlock;
1779 		}
1780 
1781 		core_limit = RLIM_INFINITY;
1782 
1783 		/* SIGPIPE can happen, but it's just never processed */
1784  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1785 				&file)) {
1786  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1787 			       corename);
1788  			goto fail_unlock;
1789  		}
1790  	} else
1791  		file = filp_open(corename,
1792 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1793 				 0600);
1794 	if (IS_ERR(file))
1795 		goto fail_unlock;
1796 	inode = file->f_path.dentry->d_inode;
1797 	if (inode->i_nlink > 1)
1798 		goto close_fail;	/* multiple links - don't dump */
1799 	if (!ispipe && d_unhashed(file->f_path.dentry))
1800 		goto close_fail;
1801 
1802 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1803 	   but keep the previous behaviour for now. */
1804 	if (!ispipe && !S_ISREG(inode->i_mode))
1805 		goto close_fail;
1806 	if (!file->f_op)
1807 		goto close_fail;
1808 	if (!file->f_op->write)
1809 		goto close_fail;
1810 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1811 		goto close_fail;
1812 
1813 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1814 
1815 	if (retval)
1816 		current->signal->group_exit_code |= 0x80;
1817 close_fail:
1818 	filp_close(file, NULL);
1819 fail_unlock:
1820 	if (helper_argv)
1821 		argv_free(helper_argv);
1822 
1823 	current->fsuid = fsuid;
1824 	complete_all(&mm->core_done);
1825 fail:
1826 	return retval;
1827 }
1828