xref: /linux/fs/exec.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
71 
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/tlb.h>
75 
76 #include <trace/events/task.h>
77 #include "internal.h"
78 
79 #include <trace/events/sched.h>
80 
81 static int bprm_creds_from_file(struct linux_binprm *bprm);
82 
83 int suid_dumpable = 0;
84 
85 static LIST_HEAD(formats);
86 static DEFINE_RWLOCK(binfmt_lock);
87 
88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
89 {
90 	write_lock(&binfmt_lock);
91 	insert ? list_add(&fmt->lh, &formats) :
92 		 list_add_tail(&fmt->lh, &formats);
93 	write_unlock(&binfmt_lock);
94 }
95 
96 EXPORT_SYMBOL(__register_binfmt);
97 
98 void unregister_binfmt(struct linux_binfmt * fmt)
99 {
100 	write_lock(&binfmt_lock);
101 	list_del(&fmt->lh);
102 	write_unlock(&binfmt_lock);
103 }
104 
105 EXPORT_SYMBOL(unregister_binfmt);
106 
107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109 	module_put(fmt->module);
110 }
111 
112 bool path_noexec(const struct path *path)
113 {
114 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117 
118 #ifdef CONFIG_USELIB
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from the file itself.
124  */
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 	struct linux_binfmt *fmt;
128 	struct file *file;
129 	struct filename *tmp = getname(library);
130 	int error = PTR_ERR(tmp);
131 	static const struct open_flags uselib_flags = {
132 		.open_flag = O_LARGEFILE | O_RDONLY,
133 		.acc_mode = MAY_READ | MAY_EXEC,
134 		.intent = LOOKUP_OPEN,
135 		.lookup_flags = LOOKUP_FOLLOW,
136 	};
137 
138 	if (IS_ERR(tmp))
139 		goto out;
140 
141 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 	putname(tmp);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	/*
148 	 * may_open() has already checked for this, so it should be
149 	 * impossible to trip now. But we need to be extra cautious
150 	 * and check again at the very end too.
151 	 */
152 	error = -EACCES;
153 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154 			 path_noexec(&file->f_path)))
155 		goto exit;
156 
157 	error = -ENOEXEC;
158 
159 	read_lock(&binfmt_lock);
160 	list_for_each_entry(fmt, &formats, lh) {
161 		if (!fmt->load_shlib)
162 			continue;
163 		if (!try_module_get(fmt->module))
164 			continue;
165 		read_unlock(&binfmt_lock);
166 		error = fmt->load_shlib(file);
167 		read_lock(&binfmt_lock);
168 		put_binfmt(fmt);
169 		if (error != -ENOEXEC)
170 			break;
171 	}
172 	read_unlock(&binfmt_lock);
173 exit:
174 	fput(file);
175 out:
176 	return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179 
180 #ifdef CONFIG_MMU
181 /*
182  * The nascent bprm->mm is not visible until exec_mmap() but it can
183  * use a lot of memory, account these pages in current->mm temporary
184  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185  * change the counter back via acct_arg_size(0).
186  */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 	struct mm_struct *mm = current->mm;
190 	long diff = (long)(pages - bprm->vma_pages);
191 
192 	if (!mm || !diff)
193 		return;
194 
195 	bprm->vma_pages = pages;
196 	add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198 
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 		int write)
201 {
202 	struct page *page;
203 	struct vm_area_struct *vma = bprm->vma;
204 	struct mm_struct *mm = bprm->mm;
205 	int ret;
206 
207 	/*
208 	 * Avoid relying on expanding the stack down in GUP (which
209 	 * does not work for STACK_GROWSUP anyway), and just do it
210 	 * by hand ahead of time.
211 	 */
212 	if (write && pos < vma->vm_start) {
213 		mmap_write_lock(mm);
214 		ret = expand_downwards(vma, pos);
215 		if (unlikely(ret < 0)) {
216 			mmap_write_unlock(mm);
217 			return NULL;
218 		}
219 		mmap_write_downgrade(mm);
220 	} else
221 		mmap_read_lock(mm);
222 
223 	/*
224 	 * We are doing an exec().  'current' is the process
225 	 * doing the exec and 'mm' is the new process's mm.
226 	 */
227 	ret = get_user_pages_remote(mm, pos, 1,
228 			write ? FOLL_WRITE : 0,
229 			&page, NULL);
230 	mmap_read_unlock(mm);
231 	if (ret <= 0)
232 		return NULL;
233 
234 	if (write)
235 		acct_arg_size(bprm, vma_pages(vma));
236 
237 	return page;
238 }
239 
240 static void put_arg_page(struct page *page)
241 {
242 	put_page(page);
243 }
244 
245 static void free_arg_pages(struct linux_binprm *bprm)
246 {
247 }
248 
249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250 		struct page *page)
251 {
252 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 }
254 
255 static int __bprm_mm_init(struct linux_binprm *bprm)
256 {
257 	int err;
258 	struct vm_area_struct *vma = NULL;
259 	struct mm_struct *mm = bprm->mm;
260 
261 	bprm->vma = vma = vm_area_alloc(mm);
262 	if (!vma)
263 		return -ENOMEM;
264 	vma_set_anonymous(vma);
265 
266 	if (mmap_write_lock_killable(mm)) {
267 		err = -EINTR;
268 		goto err_free;
269 	}
270 
271 	/*
272 	 * Need to be called with mmap write lock
273 	 * held, to avoid race with ksmd.
274 	 */
275 	err = ksm_execve(mm);
276 	if (err)
277 		goto err_ksm;
278 
279 	/*
280 	 * Place the stack at the largest stack address the architecture
281 	 * supports. Later, we'll move this to an appropriate place. We don't
282 	 * use STACK_TOP because that can depend on attributes which aren't
283 	 * configured yet.
284 	 */
285 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286 	vma->vm_end = STACK_TOP_MAX;
287 	vma->vm_start = vma->vm_end - PAGE_SIZE;
288 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
289 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
290 
291 	err = insert_vm_struct(mm, vma);
292 	if (err)
293 		goto err;
294 
295 	mm->stack_vm = mm->total_vm = 1;
296 	mmap_write_unlock(mm);
297 	bprm->p = vma->vm_end - sizeof(void *);
298 	return 0;
299 err:
300 	ksm_exit(mm);
301 err_ksm:
302 	mmap_write_unlock(mm);
303 err_free:
304 	bprm->vma = NULL;
305 	vm_area_free(vma);
306 	return err;
307 }
308 
309 static bool valid_arg_len(struct linux_binprm *bprm, long len)
310 {
311 	return len <= MAX_ARG_STRLEN;
312 }
313 
314 #else
315 
316 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
317 {
318 }
319 
320 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
321 		int write)
322 {
323 	struct page *page;
324 
325 	page = bprm->page[pos / PAGE_SIZE];
326 	if (!page && write) {
327 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
328 		if (!page)
329 			return NULL;
330 		bprm->page[pos / PAGE_SIZE] = page;
331 	}
332 
333 	return page;
334 }
335 
336 static void put_arg_page(struct page *page)
337 {
338 }
339 
340 static void free_arg_page(struct linux_binprm *bprm, int i)
341 {
342 	if (bprm->page[i]) {
343 		__free_page(bprm->page[i]);
344 		bprm->page[i] = NULL;
345 	}
346 }
347 
348 static void free_arg_pages(struct linux_binprm *bprm)
349 {
350 	int i;
351 
352 	for (i = 0; i < MAX_ARG_PAGES; i++)
353 		free_arg_page(bprm, i);
354 }
355 
356 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
357 		struct page *page)
358 {
359 }
360 
361 static int __bprm_mm_init(struct linux_binprm *bprm)
362 {
363 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
364 	return 0;
365 }
366 
367 static bool valid_arg_len(struct linux_binprm *bprm, long len)
368 {
369 	return len <= bprm->p;
370 }
371 
372 #endif /* CONFIG_MMU */
373 
374 /*
375  * Create a new mm_struct and populate it with a temporary stack
376  * vm_area_struct.  We don't have enough context at this point to set the stack
377  * flags, permissions, and offset, so we use temporary values.  We'll update
378  * them later in setup_arg_pages().
379  */
380 static int bprm_mm_init(struct linux_binprm *bprm)
381 {
382 	int err;
383 	struct mm_struct *mm = NULL;
384 
385 	bprm->mm = mm = mm_alloc();
386 	err = -ENOMEM;
387 	if (!mm)
388 		goto err;
389 
390 	/* Save current stack limit for all calculations made during exec. */
391 	task_lock(current->group_leader);
392 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
393 	task_unlock(current->group_leader);
394 
395 	err = __bprm_mm_init(bprm);
396 	if (err)
397 		goto err;
398 
399 	return 0;
400 
401 err:
402 	if (mm) {
403 		bprm->mm = NULL;
404 		mmdrop(mm);
405 	}
406 
407 	return err;
408 }
409 
410 struct user_arg_ptr {
411 #ifdef CONFIG_COMPAT
412 	bool is_compat;
413 #endif
414 	union {
415 		const char __user *const __user *native;
416 #ifdef CONFIG_COMPAT
417 		const compat_uptr_t __user *compat;
418 #endif
419 	} ptr;
420 };
421 
422 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
423 {
424 	const char __user *native;
425 
426 #ifdef CONFIG_COMPAT
427 	if (unlikely(argv.is_compat)) {
428 		compat_uptr_t compat;
429 
430 		if (get_user(compat, argv.ptr.compat + nr))
431 			return ERR_PTR(-EFAULT);
432 
433 		return compat_ptr(compat);
434 	}
435 #endif
436 
437 	if (get_user(native, argv.ptr.native + nr))
438 		return ERR_PTR(-EFAULT);
439 
440 	return native;
441 }
442 
443 /*
444  * count() counts the number of strings in array ARGV.
445  */
446 static int count(struct user_arg_ptr argv, int max)
447 {
448 	int i = 0;
449 
450 	if (argv.ptr.native != NULL) {
451 		for (;;) {
452 			const char __user *p = get_user_arg_ptr(argv, i);
453 
454 			if (!p)
455 				break;
456 
457 			if (IS_ERR(p))
458 				return -EFAULT;
459 
460 			if (i >= max)
461 				return -E2BIG;
462 			++i;
463 
464 			if (fatal_signal_pending(current))
465 				return -ERESTARTNOHAND;
466 			cond_resched();
467 		}
468 	}
469 	return i;
470 }
471 
472 static int count_strings_kernel(const char *const *argv)
473 {
474 	int i;
475 
476 	if (!argv)
477 		return 0;
478 
479 	for (i = 0; argv[i]; ++i) {
480 		if (i >= MAX_ARG_STRINGS)
481 			return -E2BIG;
482 		if (fatal_signal_pending(current))
483 			return -ERESTARTNOHAND;
484 		cond_resched();
485 	}
486 	return i;
487 }
488 
489 static int bprm_stack_limits(struct linux_binprm *bprm)
490 {
491 	unsigned long limit, ptr_size;
492 
493 	/*
494 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
495 	 * (whichever is smaller) for the argv+env strings.
496 	 * This ensures that:
497 	 *  - the remaining binfmt code will not run out of stack space,
498 	 *  - the program will have a reasonable amount of stack left
499 	 *    to work from.
500 	 */
501 	limit = _STK_LIM / 4 * 3;
502 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
503 	/*
504 	 * We've historically supported up to 32 pages (ARG_MAX)
505 	 * of argument strings even with small stacks
506 	 */
507 	limit = max_t(unsigned long, limit, ARG_MAX);
508 	/*
509 	 * We must account for the size of all the argv and envp pointers to
510 	 * the argv and envp strings, since they will also take up space in
511 	 * the stack. They aren't stored until much later when we can't
512 	 * signal to the parent that the child has run out of stack space.
513 	 * Instead, calculate it here so it's possible to fail gracefully.
514 	 *
515 	 * In the case of argc = 0, make sure there is space for adding a
516 	 * empty string (which will bump argc to 1), to ensure confused
517 	 * userspace programs don't start processing from argv[1], thinking
518 	 * argc can never be 0, to keep them from walking envp by accident.
519 	 * See do_execveat_common().
520 	 */
521 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
522 	if (limit <= ptr_size)
523 		return -E2BIG;
524 	limit -= ptr_size;
525 
526 	bprm->argmin = bprm->p - limit;
527 	return 0;
528 }
529 
530 /*
531  * 'copy_strings()' copies argument/environment strings from the old
532  * processes's memory to the new process's stack.  The call to get_user_pages()
533  * ensures the destination page is created and not swapped out.
534  */
535 static int copy_strings(int argc, struct user_arg_ptr argv,
536 			struct linux_binprm *bprm)
537 {
538 	struct page *kmapped_page = NULL;
539 	char *kaddr = NULL;
540 	unsigned long kpos = 0;
541 	int ret;
542 
543 	while (argc-- > 0) {
544 		const char __user *str;
545 		int len;
546 		unsigned long pos;
547 
548 		ret = -EFAULT;
549 		str = get_user_arg_ptr(argv, argc);
550 		if (IS_ERR(str))
551 			goto out;
552 
553 		len = strnlen_user(str, MAX_ARG_STRLEN);
554 		if (!len)
555 			goto out;
556 
557 		ret = -E2BIG;
558 		if (!valid_arg_len(bprm, len))
559 			goto out;
560 
561 		/* We're going to work our way backwards. */
562 		pos = bprm->p;
563 		str += len;
564 		bprm->p -= len;
565 #ifdef CONFIG_MMU
566 		if (bprm->p < bprm->argmin)
567 			goto out;
568 #endif
569 
570 		while (len > 0) {
571 			int offset, bytes_to_copy;
572 
573 			if (fatal_signal_pending(current)) {
574 				ret = -ERESTARTNOHAND;
575 				goto out;
576 			}
577 			cond_resched();
578 
579 			offset = pos % PAGE_SIZE;
580 			if (offset == 0)
581 				offset = PAGE_SIZE;
582 
583 			bytes_to_copy = offset;
584 			if (bytes_to_copy > len)
585 				bytes_to_copy = len;
586 
587 			offset -= bytes_to_copy;
588 			pos -= bytes_to_copy;
589 			str -= bytes_to_copy;
590 			len -= bytes_to_copy;
591 
592 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
593 				struct page *page;
594 
595 				page = get_arg_page(bprm, pos, 1);
596 				if (!page) {
597 					ret = -E2BIG;
598 					goto out;
599 				}
600 
601 				if (kmapped_page) {
602 					flush_dcache_page(kmapped_page);
603 					kunmap_local(kaddr);
604 					put_arg_page(kmapped_page);
605 				}
606 				kmapped_page = page;
607 				kaddr = kmap_local_page(kmapped_page);
608 				kpos = pos & PAGE_MASK;
609 				flush_arg_page(bprm, kpos, kmapped_page);
610 			}
611 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
612 				ret = -EFAULT;
613 				goto out;
614 			}
615 		}
616 	}
617 	ret = 0;
618 out:
619 	if (kmapped_page) {
620 		flush_dcache_page(kmapped_page);
621 		kunmap_local(kaddr);
622 		put_arg_page(kmapped_page);
623 	}
624 	return ret;
625 }
626 
627 /*
628  * Copy and argument/environment string from the kernel to the processes stack.
629  */
630 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
631 {
632 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
633 	unsigned long pos = bprm->p;
634 
635 	if (len == 0)
636 		return -EFAULT;
637 	if (!valid_arg_len(bprm, len))
638 		return -E2BIG;
639 
640 	/* We're going to work our way backwards. */
641 	arg += len;
642 	bprm->p -= len;
643 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
644 		return -E2BIG;
645 
646 	while (len > 0) {
647 		unsigned int bytes_to_copy = min_t(unsigned int, len,
648 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
649 		struct page *page;
650 
651 		pos -= bytes_to_copy;
652 		arg -= bytes_to_copy;
653 		len -= bytes_to_copy;
654 
655 		page = get_arg_page(bprm, pos, 1);
656 		if (!page)
657 			return -E2BIG;
658 		flush_arg_page(bprm, pos & PAGE_MASK, page);
659 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
660 		put_arg_page(page);
661 	}
662 
663 	return 0;
664 }
665 EXPORT_SYMBOL(copy_string_kernel);
666 
667 static int copy_strings_kernel(int argc, const char *const *argv,
668 			       struct linux_binprm *bprm)
669 {
670 	while (argc-- > 0) {
671 		int ret = copy_string_kernel(argv[argc], bprm);
672 		if (ret < 0)
673 			return ret;
674 		if (fatal_signal_pending(current))
675 			return -ERESTARTNOHAND;
676 		cond_resched();
677 	}
678 	return 0;
679 }
680 
681 #ifdef CONFIG_MMU
682 
683 /*
684  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
685  * the binfmt code determines where the new stack should reside, we shift it to
686  * its final location.  The process proceeds as follows:
687  *
688  * 1) Use shift to calculate the new vma endpoints.
689  * 2) Extend vma to cover both the old and new ranges.  This ensures the
690  *    arguments passed to subsequent functions are consistent.
691  * 3) Move vma's page tables to the new range.
692  * 4) Free up any cleared pgd range.
693  * 5) Shrink the vma to cover only the new range.
694  */
695 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
696 {
697 	struct mm_struct *mm = vma->vm_mm;
698 	unsigned long old_start = vma->vm_start;
699 	unsigned long old_end = vma->vm_end;
700 	unsigned long length = old_end - old_start;
701 	unsigned long new_start = old_start - shift;
702 	unsigned long new_end = old_end - shift;
703 	VMA_ITERATOR(vmi, mm, new_start);
704 	struct vm_area_struct *next;
705 	struct mmu_gather tlb;
706 
707 	BUG_ON(new_start > new_end);
708 
709 	/*
710 	 * ensure there are no vmas between where we want to go
711 	 * and where we are
712 	 */
713 	if (vma != vma_next(&vmi))
714 		return -EFAULT;
715 
716 	vma_iter_prev_range(&vmi);
717 	/*
718 	 * cover the whole range: [new_start, old_end)
719 	 */
720 	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
721 		return -ENOMEM;
722 
723 	/*
724 	 * move the page tables downwards, on failure we rely on
725 	 * process cleanup to remove whatever mess we made.
726 	 */
727 	if (length != move_page_tables(vma, old_start,
728 				       vma, new_start, length, false, true))
729 		return -ENOMEM;
730 
731 	lru_add_drain();
732 	tlb_gather_mmu(&tlb, mm);
733 	next = vma_next(&vmi);
734 	if (new_end > old_start) {
735 		/*
736 		 * when the old and new regions overlap clear from new_end.
737 		 */
738 		free_pgd_range(&tlb, new_end, old_end, new_end,
739 			next ? next->vm_start : USER_PGTABLES_CEILING);
740 	} else {
741 		/*
742 		 * otherwise, clean from old_start; this is done to not touch
743 		 * the address space in [new_end, old_start) some architectures
744 		 * have constraints on va-space that make this illegal (IA64) -
745 		 * for the others its just a little faster.
746 		 */
747 		free_pgd_range(&tlb, old_start, old_end, new_end,
748 			next ? next->vm_start : USER_PGTABLES_CEILING);
749 	}
750 	tlb_finish_mmu(&tlb);
751 
752 	vma_prev(&vmi);
753 	/* Shrink the vma to just the new range */
754 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
755 }
756 
757 /*
758  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
759  * the stack is optionally relocated, and some extra space is added.
760  */
761 int setup_arg_pages(struct linux_binprm *bprm,
762 		    unsigned long stack_top,
763 		    int executable_stack)
764 {
765 	unsigned long ret;
766 	unsigned long stack_shift;
767 	struct mm_struct *mm = current->mm;
768 	struct vm_area_struct *vma = bprm->vma;
769 	struct vm_area_struct *prev = NULL;
770 	unsigned long vm_flags;
771 	unsigned long stack_base;
772 	unsigned long stack_size;
773 	unsigned long stack_expand;
774 	unsigned long rlim_stack;
775 	struct mmu_gather tlb;
776 	struct vma_iterator vmi;
777 
778 #ifdef CONFIG_STACK_GROWSUP
779 	/* Limit stack size */
780 	stack_base = bprm->rlim_stack.rlim_max;
781 
782 	stack_base = calc_max_stack_size(stack_base);
783 
784 	/* Add space for stack randomization. */
785 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
786 
787 	/* Make sure we didn't let the argument array grow too large. */
788 	if (vma->vm_end - vma->vm_start > stack_base)
789 		return -ENOMEM;
790 
791 	stack_base = PAGE_ALIGN(stack_top - stack_base);
792 
793 	stack_shift = vma->vm_start - stack_base;
794 	mm->arg_start = bprm->p - stack_shift;
795 	bprm->p = vma->vm_end - stack_shift;
796 #else
797 	stack_top = arch_align_stack(stack_top);
798 	stack_top = PAGE_ALIGN(stack_top);
799 
800 	if (unlikely(stack_top < mmap_min_addr) ||
801 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
802 		return -ENOMEM;
803 
804 	stack_shift = vma->vm_end - stack_top;
805 
806 	bprm->p -= stack_shift;
807 	mm->arg_start = bprm->p;
808 #endif
809 
810 	if (bprm->loader)
811 		bprm->loader -= stack_shift;
812 	bprm->exec -= stack_shift;
813 
814 	if (mmap_write_lock_killable(mm))
815 		return -EINTR;
816 
817 	vm_flags = VM_STACK_FLAGS;
818 
819 	/*
820 	 * Adjust stack execute permissions; explicitly enable for
821 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
822 	 * (arch default) otherwise.
823 	 */
824 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
825 		vm_flags |= VM_EXEC;
826 	else if (executable_stack == EXSTACK_DISABLE_X)
827 		vm_flags &= ~VM_EXEC;
828 	vm_flags |= mm->def_flags;
829 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
830 
831 	vma_iter_init(&vmi, mm, vma->vm_start);
832 
833 	tlb_gather_mmu(&tlb, mm);
834 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
835 			vm_flags);
836 	tlb_finish_mmu(&tlb);
837 
838 	if (ret)
839 		goto out_unlock;
840 	BUG_ON(prev != vma);
841 
842 	if (unlikely(vm_flags & VM_EXEC)) {
843 		pr_warn_once("process '%pD4' started with executable stack\n",
844 			     bprm->file);
845 	}
846 
847 	/* Move stack pages down in memory. */
848 	if (stack_shift) {
849 		ret = shift_arg_pages(vma, stack_shift);
850 		if (ret)
851 			goto out_unlock;
852 	}
853 
854 	/* mprotect_fixup is overkill to remove the temporary stack flags */
855 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
856 
857 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
858 	stack_size = vma->vm_end - vma->vm_start;
859 	/*
860 	 * Align this down to a page boundary as expand_stack
861 	 * will align it up.
862 	 */
863 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
864 
865 	stack_expand = min(rlim_stack, stack_size + stack_expand);
866 
867 #ifdef CONFIG_STACK_GROWSUP
868 	stack_base = vma->vm_start + stack_expand;
869 #else
870 	stack_base = vma->vm_end - stack_expand;
871 #endif
872 	current->mm->start_stack = bprm->p;
873 	ret = expand_stack_locked(vma, stack_base);
874 	if (ret)
875 		ret = -EFAULT;
876 
877 out_unlock:
878 	mmap_write_unlock(mm);
879 	return ret;
880 }
881 EXPORT_SYMBOL(setup_arg_pages);
882 
883 #else
884 
885 /*
886  * Transfer the program arguments and environment from the holding pages
887  * onto the stack. The provided stack pointer is adjusted accordingly.
888  */
889 int transfer_args_to_stack(struct linux_binprm *bprm,
890 			   unsigned long *sp_location)
891 {
892 	unsigned long index, stop, sp;
893 	int ret = 0;
894 
895 	stop = bprm->p >> PAGE_SHIFT;
896 	sp = *sp_location;
897 
898 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
899 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
900 		char *src = kmap_local_page(bprm->page[index]) + offset;
901 		sp -= PAGE_SIZE - offset;
902 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
903 			ret = -EFAULT;
904 		kunmap_local(src);
905 		if (ret)
906 			goto out;
907 	}
908 
909 	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
910 	*sp_location = sp;
911 
912 out:
913 	return ret;
914 }
915 EXPORT_SYMBOL(transfer_args_to_stack);
916 
917 #endif /* CONFIG_MMU */
918 
919 /*
920  * On success, caller must call do_close_execat() on the returned
921  * struct file to close it.
922  */
923 static struct file *do_open_execat(int fd, struct filename *name, int flags)
924 {
925 	struct file *file;
926 	int err;
927 	struct open_flags open_exec_flags = {
928 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
929 		.acc_mode = MAY_EXEC,
930 		.intent = LOOKUP_OPEN,
931 		.lookup_flags = LOOKUP_FOLLOW,
932 	};
933 
934 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
935 		return ERR_PTR(-EINVAL);
936 	if (flags & AT_SYMLINK_NOFOLLOW)
937 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
938 	if (flags & AT_EMPTY_PATH)
939 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
940 
941 	file = do_filp_open(fd, name, &open_exec_flags);
942 	if (IS_ERR(file))
943 		goto out;
944 
945 	/*
946 	 * may_open() has already checked for this, so it should be
947 	 * impossible to trip now. But we need to be extra cautious
948 	 * and check again at the very end too.
949 	 */
950 	err = -EACCES;
951 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
952 			 path_noexec(&file->f_path)))
953 		goto exit;
954 
955 	err = deny_write_access(file);
956 	if (err)
957 		goto exit;
958 
959 out:
960 	return file;
961 
962 exit:
963 	fput(file);
964 	return ERR_PTR(err);
965 }
966 
967 /**
968  * open_exec - Open a path name for execution
969  *
970  * @name: path name to open with the intent of executing it.
971  *
972  * Returns ERR_PTR on failure or allocated struct file on success.
973  *
974  * As this is a wrapper for the internal do_open_execat(), callers
975  * must call allow_write_access() before fput() on release. Also see
976  * do_close_execat().
977  */
978 struct file *open_exec(const char *name)
979 {
980 	struct filename *filename = getname_kernel(name);
981 	struct file *f = ERR_CAST(filename);
982 
983 	if (!IS_ERR(filename)) {
984 		f = do_open_execat(AT_FDCWD, filename, 0);
985 		putname(filename);
986 	}
987 	return f;
988 }
989 EXPORT_SYMBOL(open_exec);
990 
991 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
992 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
993 {
994 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
995 	if (res > 0)
996 		flush_icache_user_range(addr, addr + len);
997 	return res;
998 }
999 EXPORT_SYMBOL(read_code);
1000 #endif
1001 
1002 /*
1003  * Maps the mm_struct mm into the current task struct.
1004  * On success, this function returns with exec_update_lock
1005  * held for writing.
1006  */
1007 static int exec_mmap(struct mm_struct *mm)
1008 {
1009 	struct task_struct *tsk;
1010 	struct mm_struct *old_mm, *active_mm;
1011 	int ret;
1012 
1013 	/* Notify parent that we're no longer interested in the old VM */
1014 	tsk = current;
1015 	old_mm = current->mm;
1016 	exec_mm_release(tsk, old_mm);
1017 
1018 	ret = down_write_killable(&tsk->signal->exec_update_lock);
1019 	if (ret)
1020 		return ret;
1021 
1022 	if (old_mm) {
1023 		/*
1024 		 * If there is a pending fatal signal perhaps a signal
1025 		 * whose default action is to create a coredump get
1026 		 * out and die instead of going through with the exec.
1027 		 */
1028 		ret = mmap_read_lock_killable(old_mm);
1029 		if (ret) {
1030 			up_write(&tsk->signal->exec_update_lock);
1031 			return ret;
1032 		}
1033 	}
1034 
1035 	task_lock(tsk);
1036 	membarrier_exec_mmap(mm);
1037 
1038 	local_irq_disable();
1039 	active_mm = tsk->active_mm;
1040 	tsk->active_mm = mm;
1041 	tsk->mm = mm;
1042 	mm_init_cid(mm);
1043 	/*
1044 	 * This prevents preemption while active_mm is being loaded and
1045 	 * it and mm are being updated, which could cause problems for
1046 	 * lazy tlb mm refcounting when these are updated by context
1047 	 * switches. Not all architectures can handle irqs off over
1048 	 * activate_mm yet.
1049 	 */
1050 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1051 		local_irq_enable();
1052 	activate_mm(active_mm, mm);
1053 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1054 		local_irq_enable();
1055 	lru_gen_add_mm(mm);
1056 	task_unlock(tsk);
1057 	lru_gen_use_mm(mm);
1058 	if (old_mm) {
1059 		mmap_read_unlock(old_mm);
1060 		BUG_ON(active_mm != old_mm);
1061 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1062 		mm_update_next_owner(old_mm);
1063 		mmput(old_mm);
1064 		return 0;
1065 	}
1066 	mmdrop_lazy_tlb(active_mm);
1067 	return 0;
1068 }
1069 
1070 static int de_thread(struct task_struct *tsk)
1071 {
1072 	struct signal_struct *sig = tsk->signal;
1073 	struct sighand_struct *oldsighand = tsk->sighand;
1074 	spinlock_t *lock = &oldsighand->siglock;
1075 
1076 	if (thread_group_empty(tsk))
1077 		goto no_thread_group;
1078 
1079 	/*
1080 	 * Kill all other threads in the thread group.
1081 	 */
1082 	spin_lock_irq(lock);
1083 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1084 		/*
1085 		 * Another group action in progress, just
1086 		 * return so that the signal is processed.
1087 		 */
1088 		spin_unlock_irq(lock);
1089 		return -EAGAIN;
1090 	}
1091 
1092 	sig->group_exec_task = tsk;
1093 	sig->notify_count = zap_other_threads(tsk);
1094 	if (!thread_group_leader(tsk))
1095 		sig->notify_count--;
1096 
1097 	while (sig->notify_count) {
1098 		__set_current_state(TASK_KILLABLE);
1099 		spin_unlock_irq(lock);
1100 		schedule();
1101 		if (__fatal_signal_pending(tsk))
1102 			goto killed;
1103 		spin_lock_irq(lock);
1104 	}
1105 	spin_unlock_irq(lock);
1106 
1107 	/*
1108 	 * At this point all other threads have exited, all we have to
1109 	 * do is to wait for the thread group leader to become inactive,
1110 	 * and to assume its PID:
1111 	 */
1112 	if (!thread_group_leader(tsk)) {
1113 		struct task_struct *leader = tsk->group_leader;
1114 
1115 		for (;;) {
1116 			cgroup_threadgroup_change_begin(tsk);
1117 			write_lock_irq(&tasklist_lock);
1118 			/*
1119 			 * Do this under tasklist_lock to ensure that
1120 			 * exit_notify() can't miss ->group_exec_task
1121 			 */
1122 			sig->notify_count = -1;
1123 			if (likely(leader->exit_state))
1124 				break;
1125 			__set_current_state(TASK_KILLABLE);
1126 			write_unlock_irq(&tasklist_lock);
1127 			cgroup_threadgroup_change_end(tsk);
1128 			schedule();
1129 			if (__fatal_signal_pending(tsk))
1130 				goto killed;
1131 		}
1132 
1133 		/*
1134 		 * The only record we have of the real-time age of a
1135 		 * process, regardless of execs it's done, is start_time.
1136 		 * All the past CPU time is accumulated in signal_struct
1137 		 * from sister threads now dead.  But in this non-leader
1138 		 * exec, nothing survives from the original leader thread,
1139 		 * whose birth marks the true age of this process now.
1140 		 * When we take on its identity by switching to its PID, we
1141 		 * also take its birthdate (always earlier than our own).
1142 		 */
1143 		tsk->start_time = leader->start_time;
1144 		tsk->start_boottime = leader->start_boottime;
1145 
1146 		BUG_ON(!same_thread_group(leader, tsk));
1147 		/*
1148 		 * An exec() starts a new thread group with the
1149 		 * TGID of the previous thread group. Rehash the
1150 		 * two threads with a switched PID, and release
1151 		 * the former thread group leader:
1152 		 */
1153 
1154 		/* Become a process group leader with the old leader's pid.
1155 		 * The old leader becomes a thread of the this thread group.
1156 		 */
1157 		exchange_tids(tsk, leader);
1158 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1159 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1160 		transfer_pid(leader, tsk, PIDTYPE_SID);
1161 
1162 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1163 		list_replace_init(&leader->sibling, &tsk->sibling);
1164 
1165 		tsk->group_leader = tsk;
1166 		leader->group_leader = tsk;
1167 
1168 		tsk->exit_signal = SIGCHLD;
1169 		leader->exit_signal = -1;
1170 
1171 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1172 		leader->exit_state = EXIT_DEAD;
1173 		/*
1174 		 * We are going to release_task()->ptrace_unlink() silently,
1175 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1176 		 * the tracer won't block again waiting for this thread.
1177 		 */
1178 		if (unlikely(leader->ptrace))
1179 			__wake_up_parent(leader, leader->parent);
1180 		write_unlock_irq(&tasklist_lock);
1181 		cgroup_threadgroup_change_end(tsk);
1182 
1183 		release_task(leader);
1184 	}
1185 
1186 	sig->group_exec_task = NULL;
1187 	sig->notify_count = 0;
1188 
1189 no_thread_group:
1190 	/* we have changed execution domain */
1191 	tsk->exit_signal = SIGCHLD;
1192 
1193 	BUG_ON(!thread_group_leader(tsk));
1194 	return 0;
1195 
1196 killed:
1197 	/* protects against exit_notify() and __exit_signal() */
1198 	read_lock(&tasklist_lock);
1199 	sig->group_exec_task = NULL;
1200 	sig->notify_count = 0;
1201 	read_unlock(&tasklist_lock);
1202 	return -EAGAIN;
1203 }
1204 
1205 
1206 /*
1207  * This function makes sure the current process has its own signal table,
1208  * so that flush_signal_handlers can later reset the handlers without
1209  * disturbing other processes.  (Other processes might share the signal
1210  * table via the CLONE_SIGHAND option to clone().)
1211  */
1212 static int unshare_sighand(struct task_struct *me)
1213 {
1214 	struct sighand_struct *oldsighand = me->sighand;
1215 
1216 	if (refcount_read(&oldsighand->count) != 1) {
1217 		struct sighand_struct *newsighand;
1218 		/*
1219 		 * This ->sighand is shared with the CLONE_SIGHAND
1220 		 * but not CLONE_THREAD task, switch to the new one.
1221 		 */
1222 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1223 		if (!newsighand)
1224 			return -ENOMEM;
1225 
1226 		refcount_set(&newsighand->count, 1);
1227 
1228 		write_lock_irq(&tasklist_lock);
1229 		spin_lock(&oldsighand->siglock);
1230 		memcpy(newsighand->action, oldsighand->action,
1231 		       sizeof(newsighand->action));
1232 		rcu_assign_pointer(me->sighand, newsighand);
1233 		spin_unlock(&oldsighand->siglock);
1234 		write_unlock_irq(&tasklist_lock);
1235 
1236 		__cleanup_sighand(oldsighand);
1237 	}
1238 	return 0;
1239 }
1240 
1241 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1242 {
1243 	task_lock(tsk);
1244 	/* Always NUL terminated and zero-padded */
1245 	strscpy_pad(buf, tsk->comm, buf_size);
1246 	task_unlock(tsk);
1247 	return buf;
1248 }
1249 EXPORT_SYMBOL_GPL(__get_task_comm);
1250 
1251 /*
1252  * These functions flushes out all traces of the currently running executable
1253  * so that a new one can be started
1254  */
1255 
1256 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1257 {
1258 	task_lock(tsk);
1259 	trace_task_rename(tsk, buf);
1260 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1261 	task_unlock(tsk);
1262 	perf_event_comm(tsk, exec);
1263 }
1264 
1265 /*
1266  * Calling this is the point of no return. None of the failures will be
1267  * seen by userspace since either the process is already taking a fatal
1268  * signal (via de_thread() or coredump), or will have SEGV raised
1269  * (after exec_mmap()) by search_binary_handler (see below).
1270  */
1271 int begin_new_exec(struct linux_binprm * bprm)
1272 {
1273 	struct task_struct *me = current;
1274 	int retval;
1275 
1276 	/* Once we are committed compute the creds */
1277 	retval = bprm_creds_from_file(bprm);
1278 	if (retval)
1279 		return retval;
1280 
1281 	/*
1282 	 * This tracepoint marks the point before flushing the old exec where
1283 	 * the current task is still unchanged, but errors are fatal (point of
1284 	 * no return). The later "sched_process_exec" tracepoint is called after
1285 	 * the current task has successfully switched to the new exec.
1286 	 */
1287 	trace_sched_prepare_exec(current, bprm);
1288 
1289 	/*
1290 	 * Ensure all future errors are fatal.
1291 	 */
1292 	bprm->point_of_no_return = true;
1293 
1294 	/*
1295 	 * Make this the only thread in the thread group.
1296 	 */
1297 	retval = de_thread(me);
1298 	if (retval)
1299 		goto out;
1300 
1301 	/*
1302 	 * Cancel any io_uring activity across execve
1303 	 */
1304 	io_uring_task_cancel();
1305 
1306 	/* Ensure the files table is not shared. */
1307 	retval = unshare_files();
1308 	if (retval)
1309 		goto out;
1310 
1311 	/*
1312 	 * Must be called _before_ exec_mmap() as bprm->mm is
1313 	 * not visible until then. Doing it here also ensures
1314 	 * we don't race against replace_mm_exe_file().
1315 	 */
1316 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1317 	if (retval)
1318 		goto out;
1319 
1320 	/* If the binary is not readable then enforce mm->dumpable=0 */
1321 	would_dump(bprm, bprm->file);
1322 	if (bprm->have_execfd)
1323 		would_dump(bprm, bprm->executable);
1324 
1325 	/*
1326 	 * Release all of the old mmap stuff
1327 	 */
1328 	acct_arg_size(bprm, 0);
1329 	retval = exec_mmap(bprm->mm);
1330 	if (retval)
1331 		goto out;
1332 
1333 	bprm->mm = NULL;
1334 
1335 	retval = exec_task_namespaces();
1336 	if (retval)
1337 		goto out_unlock;
1338 
1339 #ifdef CONFIG_POSIX_TIMERS
1340 	spin_lock_irq(&me->sighand->siglock);
1341 	posix_cpu_timers_exit(me);
1342 	spin_unlock_irq(&me->sighand->siglock);
1343 	exit_itimers(me);
1344 	flush_itimer_signals();
1345 #endif
1346 
1347 	/*
1348 	 * Make the signal table private.
1349 	 */
1350 	retval = unshare_sighand(me);
1351 	if (retval)
1352 		goto out_unlock;
1353 
1354 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1355 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1356 	flush_thread();
1357 	me->personality &= ~bprm->per_clear;
1358 
1359 	clear_syscall_work_syscall_user_dispatch(me);
1360 
1361 	/*
1362 	 * We have to apply CLOEXEC before we change whether the process is
1363 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1364 	 * trying to access the should-be-closed file descriptors of a process
1365 	 * undergoing exec(2).
1366 	 */
1367 	do_close_on_exec(me->files);
1368 
1369 	if (bprm->secureexec) {
1370 		/* Make sure parent cannot signal privileged process. */
1371 		me->pdeath_signal = 0;
1372 
1373 		/*
1374 		 * For secureexec, reset the stack limit to sane default to
1375 		 * avoid bad behavior from the prior rlimits. This has to
1376 		 * happen before arch_pick_mmap_layout(), which examines
1377 		 * RLIMIT_STACK, but after the point of no return to avoid
1378 		 * needing to clean up the change on failure.
1379 		 */
1380 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1381 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1382 	}
1383 
1384 	me->sas_ss_sp = me->sas_ss_size = 0;
1385 
1386 	/*
1387 	 * Figure out dumpability. Note that this checking only of current
1388 	 * is wrong, but userspace depends on it. This should be testing
1389 	 * bprm->secureexec instead.
1390 	 */
1391 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1392 	    !(uid_eq(current_euid(), current_uid()) &&
1393 	      gid_eq(current_egid(), current_gid())))
1394 		set_dumpable(current->mm, suid_dumpable);
1395 	else
1396 		set_dumpable(current->mm, SUID_DUMP_USER);
1397 
1398 	perf_event_exec();
1399 	__set_task_comm(me, kbasename(bprm->filename), true);
1400 
1401 	/* An exec changes our domain. We are no longer part of the thread
1402 	   group */
1403 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1404 	flush_signal_handlers(me, 0);
1405 
1406 	retval = set_cred_ucounts(bprm->cred);
1407 	if (retval < 0)
1408 		goto out_unlock;
1409 
1410 	/*
1411 	 * install the new credentials for this executable
1412 	 */
1413 	security_bprm_committing_creds(bprm);
1414 
1415 	commit_creds(bprm->cred);
1416 	bprm->cred = NULL;
1417 
1418 	/*
1419 	 * Disable monitoring for regular users
1420 	 * when executing setuid binaries. Must
1421 	 * wait until new credentials are committed
1422 	 * by commit_creds() above
1423 	 */
1424 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1425 		perf_event_exit_task(me);
1426 	/*
1427 	 * cred_guard_mutex must be held at least to this point to prevent
1428 	 * ptrace_attach() from altering our determination of the task's
1429 	 * credentials; any time after this it may be unlocked.
1430 	 */
1431 	security_bprm_committed_creds(bprm);
1432 
1433 	/* Pass the opened binary to the interpreter. */
1434 	if (bprm->have_execfd) {
1435 		retval = get_unused_fd_flags(0);
1436 		if (retval < 0)
1437 			goto out_unlock;
1438 		fd_install(retval, bprm->executable);
1439 		bprm->executable = NULL;
1440 		bprm->execfd = retval;
1441 	}
1442 	return 0;
1443 
1444 out_unlock:
1445 	up_write(&me->signal->exec_update_lock);
1446 	if (!bprm->cred)
1447 		mutex_unlock(&me->signal->cred_guard_mutex);
1448 
1449 out:
1450 	return retval;
1451 }
1452 EXPORT_SYMBOL(begin_new_exec);
1453 
1454 void would_dump(struct linux_binprm *bprm, struct file *file)
1455 {
1456 	struct inode *inode = file_inode(file);
1457 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1458 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1459 		struct user_namespace *old, *user_ns;
1460 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1461 
1462 		/* Ensure mm->user_ns contains the executable */
1463 		user_ns = old = bprm->mm->user_ns;
1464 		while ((user_ns != &init_user_ns) &&
1465 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1466 			user_ns = user_ns->parent;
1467 
1468 		if (old != user_ns) {
1469 			bprm->mm->user_ns = get_user_ns(user_ns);
1470 			put_user_ns(old);
1471 		}
1472 	}
1473 }
1474 EXPORT_SYMBOL(would_dump);
1475 
1476 void setup_new_exec(struct linux_binprm * bprm)
1477 {
1478 	/* Setup things that can depend upon the personality */
1479 	struct task_struct *me = current;
1480 
1481 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1482 
1483 	arch_setup_new_exec();
1484 
1485 	/* Set the new mm task size. We have to do that late because it may
1486 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1487 	 * some architectures like powerpc
1488 	 */
1489 	me->mm->task_size = TASK_SIZE;
1490 	up_write(&me->signal->exec_update_lock);
1491 	mutex_unlock(&me->signal->cred_guard_mutex);
1492 }
1493 EXPORT_SYMBOL(setup_new_exec);
1494 
1495 /* Runs immediately before start_thread() takes over. */
1496 void finalize_exec(struct linux_binprm *bprm)
1497 {
1498 	/* Store any stack rlimit changes before starting thread. */
1499 	task_lock(current->group_leader);
1500 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1501 	task_unlock(current->group_leader);
1502 }
1503 EXPORT_SYMBOL(finalize_exec);
1504 
1505 /*
1506  * Prepare credentials and lock ->cred_guard_mutex.
1507  * setup_new_exec() commits the new creds and drops the lock.
1508  * Or, if exec fails before, free_bprm() should release ->cred
1509  * and unlock.
1510  */
1511 static int prepare_bprm_creds(struct linux_binprm *bprm)
1512 {
1513 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1514 		return -ERESTARTNOINTR;
1515 
1516 	bprm->cred = prepare_exec_creds();
1517 	if (likely(bprm->cred))
1518 		return 0;
1519 
1520 	mutex_unlock(&current->signal->cred_guard_mutex);
1521 	return -ENOMEM;
1522 }
1523 
1524 /* Matches do_open_execat() */
1525 static void do_close_execat(struct file *file)
1526 {
1527 	if (!file)
1528 		return;
1529 	allow_write_access(file);
1530 	fput(file);
1531 }
1532 
1533 static void free_bprm(struct linux_binprm *bprm)
1534 {
1535 	if (bprm->mm) {
1536 		acct_arg_size(bprm, 0);
1537 		mmput(bprm->mm);
1538 	}
1539 	free_arg_pages(bprm);
1540 	if (bprm->cred) {
1541 		mutex_unlock(&current->signal->cred_guard_mutex);
1542 		abort_creds(bprm->cred);
1543 	}
1544 	do_close_execat(bprm->file);
1545 	if (bprm->executable)
1546 		fput(bprm->executable);
1547 	/* If a binfmt changed the interp, free it. */
1548 	if (bprm->interp != bprm->filename)
1549 		kfree(bprm->interp);
1550 	kfree(bprm->fdpath);
1551 	kfree(bprm);
1552 }
1553 
1554 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1555 {
1556 	struct linux_binprm *bprm;
1557 	struct file *file;
1558 	int retval = -ENOMEM;
1559 
1560 	file = do_open_execat(fd, filename, flags);
1561 	if (IS_ERR(file))
1562 		return ERR_CAST(file);
1563 
1564 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1565 	if (!bprm) {
1566 		do_close_execat(file);
1567 		return ERR_PTR(-ENOMEM);
1568 	}
1569 
1570 	bprm->file = file;
1571 
1572 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1573 		bprm->filename = filename->name;
1574 	} else {
1575 		if (filename->name[0] == '\0')
1576 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1577 		else
1578 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1579 						  fd, filename->name);
1580 		if (!bprm->fdpath)
1581 			goto out_free;
1582 
1583 		/*
1584 		 * Record that a name derived from an O_CLOEXEC fd will be
1585 		 * inaccessible after exec.  This allows the code in exec to
1586 		 * choose to fail when the executable is not mmaped into the
1587 		 * interpreter and an open file descriptor is not passed to
1588 		 * the interpreter.  This makes for a better user experience
1589 		 * than having the interpreter start and then immediately fail
1590 		 * when it finds the executable is inaccessible.
1591 		 */
1592 		if (get_close_on_exec(fd))
1593 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1594 
1595 		bprm->filename = bprm->fdpath;
1596 	}
1597 	bprm->interp = bprm->filename;
1598 
1599 	retval = bprm_mm_init(bprm);
1600 	if (!retval)
1601 		return bprm;
1602 
1603 out_free:
1604 	free_bprm(bprm);
1605 	return ERR_PTR(retval);
1606 }
1607 
1608 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1609 {
1610 	/* If a binfmt changed the interp, free it first. */
1611 	if (bprm->interp != bprm->filename)
1612 		kfree(bprm->interp);
1613 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1614 	if (!bprm->interp)
1615 		return -ENOMEM;
1616 	return 0;
1617 }
1618 EXPORT_SYMBOL(bprm_change_interp);
1619 
1620 /*
1621  * determine how safe it is to execute the proposed program
1622  * - the caller must hold ->cred_guard_mutex to protect against
1623  *   PTRACE_ATTACH or seccomp thread-sync
1624  */
1625 static void check_unsafe_exec(struct linux_binprm *bprm)
1626 {
1627 	struct task_struct *p = current, *t;
1628 	unsigned n_fs;
1629 
1630 	if (p->ptrace)
1631 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1632 
1633 	/*
1634 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1635 	 * mess up.
1636 	 */
1637 	if (task_no_new_privs(current))
1638 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1639 
1640 	/*
1641 	 * If another task is sharing our fs, we cannot safely
1642 	 * suid exec because the differently privileged task
1643 	 * will be able to manipulate the current directory, etc.
1644 	 * It would be nice to force an unshare instead...
1645 	 */
1646 	n_fs = 1;
1647 	spin_lock(&p->fs->lock);
1648 	rcu_read_lock();
1649 	for_other_threads(p, t) {
1650 		if (t->fs == p->fs)
1651 			n_fs++;
1652 	}
1653 	rcu_read_unlock();
1654 
1655 	/* "users" and "in_exec" locked for copy_fs() */
1656 	if (p->fs->users > n_fs)
1657 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1658 	else
1659 		p->fs->in_exec = 1;
1660 	spin_unlock(&p->fs->lock);
1661 }
1662 
1663 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1664 {
1665 	/* Handle suid and sgid on files */
1666 	struct mnt_idmap *idmap;
1667 	struct inode *inode = file_inode(file);
1668 	unsigned int mode;
1669 	vfsuid_t vfsuid;
1670 	vfsgid_t vfsgid;
1671 
1672 	if (!mnt_may_suid(file->f_path.mnt))
1673 		return;
1674 
1675 	if (task_no_new_privs(current))
1676 		return;
1677 
1678 	mode = READ_ONCE(inode->i_mode);
1679 	if (!(mode & (S_ISUID|S_ISGID)))
1680 		return;
1681 
1682 	idmap = file_mnt_idmap(file);
1683 
1684 	/* Be careful if suid/sgid is set */
1685 	inode_lock(inode);
1686 
1687 	/* reload atomically mode/uid/gid now that lock held */
1688 	mode = inode->i_mode;
1689 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1690 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1691 	inode_unlock(inode);
1692 
1693 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1694 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1695 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1696 		return;
1697 
1698 	if (mode & S_ISUID) {
1699 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1700 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1701 	}
1702 
1703 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1704 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1705 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1706 	}
1707 }
1708 
1709 /*
1710  * Compute brpm->cred based upon the final binary.
1711  */
1712 static int bprm_creds_from_file(struct linux_binprm *bprm)
1713 {
1714 	/* Compute creds based on which file? */
1715 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1716 
1717 	bprm_fill_uid(bprm, file);
1718 	return security_bprm_creds_from_file(bprm, file);
1719 }
1720 
1721 /*
1722  * Fill the binprm structure from the inode.
1723  * Read the first BINPRM_BUF_SIZE bytes
1724  *
1725  * This may be called multiple times for binary chains (scripts for example).
1726  */
1727 static int prepare_binprm(struct linux_binprm *bprm)
1728 {
1729 	loff_t pos = 0;
1730 
1731 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1732 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1733 }
1734 
1735 /*
1736  * Arguments are '\0' separated strings found at the location bprm->p
1737  * points to; chop off the first by relocating brpm->p to right after
1738  * the first '\0' encountered.
1739  */
1740 int remove_arg_zero(struct linux_binprm *bprm)
1741 {
1742 	unsigned long offset;
1743 	char *kaddr;
1744 	struct page *page;
1745 
1746 	if (!bprm->argc)
1747 		return 0;
1748 
1749 	do {
1750 		offset = bprm->p & ~PAGE_MASK;
1751 		page = get_arg_page(bprm, bprm->p, 0);
1752 		if (!page)
1753 			return -EFAULT;
1754 		kaddr = kmap_local_page(page);
1755 
1756 		for (; offset < PAGE_SIZE && kaddr[offset];
1757 				offset++, bprm->p++)
1758 			;
1759 
1760 		kunmap_local(kaddr);
1761 		put_arg_page(page);
1762 	} while (offset == PAGE_SIZE);
1763 
1764 	bprm->p++;
1765 	bprm->argc--;
1766 
1767 	return 0;
1768 }
1769 EXPORT_SYMBOL(remove_arg_zero);
1770 
1771 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1772 /*
1773  * cycle the list of binary formats handler, until one recognizes the image
1774  */
1775 static int search_binary_handler(struct linux_binprm *bprm)
1776 {
1777 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1778 	struct linux_binfmt *fmt;
1779 	int retval;
1780 
1781 	retval = prepare_binprm(bprm);
1782 	if (retval < 0)
1783 		return retval;
1784 
1785 	retval = security_bprm_check(bprm);
1786 	if (retval)
1787 		return retval;
1788 
1789 	retval = -ENOENT;
1790  retry:
1791 	read_lock(&binfmt_lock);
1792 	list_for_each_entry(fmt, &formats, lh) {
1793 		if (!try_module_get(fmt->module))
1794 			continue;
1795 		read_unlock(&binfmt_lock);
1796 
1797 		retval = fmt->load_binary(bprm);
1798 
1799 		read_lock(&binfmt_lock);
1800 		put_binfmt(fmt);
1801 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1802 			read_unlock(&binfmt_lock);
1803 			return retval;
1804 		}
1805 	}
1806 	read_unlock(&binfmt_lock);
1807 
1808 	if (need_retry) {
1809 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1810 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1811 			return retval;
1812 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1813 			return retval;
1814 		need_retry = false;
1815 		goto retry;
1816 	}
1817 
1818 	return retval;
1819 }
1820 
1821 /* binfmt handlers will call back into begin_new_exec() on success. */
1822 static int exec_binprm(struct linux_binprm *bprm)
1823 {
1824 	pid_t old_pid, old_vpid;
1825 	int ret, depth;
1826 
1827 	/* Need to fetch pid before load_binary changes it */
1828 	old_pid = current->pid;
1829 	rcu_read_lock();
1830 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1831 	rcu_read_unlock();
1832 
1833 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1834 	for (depth = 0;; depth++) {
1835 		struct file *exec;
1836 		if (depth > 5)
1837 			return -ELOOP;
1838 
1839 		ret = search_binary_handler(bprm);
1840 		if (ret < 0)
1841 			return ret;
1842 		if (!bprm->interpreter)
1843 			break;
1844 
1845 		exec = bprm->file;
1846 		bprm->file = bprm->interpreter;
1847 		bprm->interpreter = NULL;
1848 
1849 		allow_write_access(exec);
1850 		if (unlikely(bprm->have_execfd)) {
1851 			if (bprm->executable) {
1852 				fput(exec);
1853 				return -ENOEXEC;
1854 			}
1855 			bprm->executable = exec;
1856 		} else
1857 			fput(exec);
1858 	}
1859 
1860 	audit_bprm(bprm);
1861 	trace_sched_process_exec(current, old_pid, bprm);
1862 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1863 	proc_exec_connector(current);
1864 	return 0;
1865 }
1866 
1867 static int bprm_execve(struct linux_binprm *bprm)
1868 {
1869 	int retval;
1870 
1871 	retval = prepare_bprm_creds(bprm);
1872 	if (retval)
1873 		return retval;
1874 
1875 	/*
1876 	 * Check for unsafe execution states before exec_binprm(), which
1877 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1878 	 * where setuid-ness is evaluated.
1879 	 */
1880 	check_unsafe_exec(bprm);
1881 	current->in_execve = 1;
1882 	sched_mm_cid_before_execve(current);
1883 
1884 	sched_exec();
1885 
1886 	/* Set the unchanging part of bprm->cred */
1887 	retval = security_bprm_creds_for_exec(bprm);
1888 	if (retval)
1889 		goto out;
1890 
1891 	retval = exec_binprm(bprm);
1892 	if (retval < 0)
1893 		goto out;
1894 
1895 	sched_mm_cid_after_execve(current);
1896 	/* execve succeeded */
1897 	current->fs->in_exec = 0;
1898 	current->in_execve = 0;
1899 	rseq_execve(current);
1900 	user_events_execve(current);
1901 	acct_update_integrals(current);
1902 	task_numa_free(current, false);
1903 	return retval;
1904 
1905 out:
1906 	/*
1907 	 * If past the point of no return ensure the code never
1908 	 * returns to the userspace process.  Use an existing fatal
1909 	 * signal if present otherwise terminate the process with
1910 	 * SIGSEGV.
1911 	 */
1912 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1913 		force_fatal_sig(SIGSEGV);
1914 
1915 	sched_mm_cid_after_execve(current);
1916 	current->fs->in_exec = 0;
1917 	current->in_execve = 0;
1918 
1919 	return retval;
1920 }
1921 
1922 static int do_execveat_common(int fd, struct filename *filename,
1923 			      struct user_arg_ptr argv,
1924 			      struct user_arg_ptr envp,
1925 			      int flags)
1926 {
1927 	struct linux_binprm *bprm;
1928 	int retval;
1929 
1930 	if (IS_ERR(filename))
1931 		return PTR_ERR(filename);
1932 
1933 	/*
1934 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1935 	 * set*uid() to execve() because too many poorly written programs
1936 	 * don't check setuid() return code.  Here we additionally recheck
1937 	 * whether NPROC limit is still exceeded.
1938 	 */
1939 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1940 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1941 		retval = -EAGAIN;
1942 		goto out_ret;
1943 	}
1944 
1945 	/* We're below the limit (still or again), so we don't want to make
1946 	 * further execve() calls fail. */
1947 	current->flags &= ~PF_NPROC_EXCEEDED;
1948 
1949 	bprm = alloc_bprm(fd, filename, flags);
1950 	if (IS_ERR(bprm)) {
1951 		retval = PTR_ERR(bprm);
1952 		goto out_ret;
1953 	}
1954 
1955 	retval = count(argv, MAX_ARG_STRINGS);
1956 	if (retval == 0)
1957 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1958 			     current->comm, bprm->filename);
1959 	if (retval < 0)
1960 		goto out_free;
1961 	bprm->argc = retval;
1962 
1963 	retval = count(envp, MAX_ARG_STRINGS);
1964 	if (retval < 0)
1965 		goto out_free;
1966 	bprm->envc = retval;
1967 
1968 	retval = bprm_stack_limits(bprm);
1969 	if (retval < 0)
1970 		goto out_free;
1971 
1972 	retval = copy_string_kernel(bprm->filename, bprm);
1973 	if (retval < 0)
1974 		goto out_free;
1975 	bprm->exec = bprm->p;
1976 
1977 	retval = copy_strings(bprm->envc, envp, bprm);
1978 	if (retval < 0)
1979 		goto out_free;
1980 
1981 	retval = copy_strings(bprm->argc, argv, bprm);
1982 	if (retval < 0)
1983 		goto out_free;
1984 
1985 	/*
1986 	 * When argv is empty, add an empty string ("") as argv[0] to
1987 	 * ensure confused userspace programs that start processing
1988 	 * from argv[1] won't end up walking envp. See also
1989 	 * bprm_stack_limits().
1990 	 */
1991 	if (bprm->argc == 0) {
1992 		retval = copy_string_kernel("", bprm);
1993 		if (retval < 0)
1994 			goto out_free;
1995 		bprm->argc = 1;
1996 	}
1997 
1998 	retval = bprm_execve(bprm);
1999 out_free:
2000 	free_bprm(bprm);
2001 
2002 out_ret:
2003 	putname(filename);
2004 	return retval;
2005 }
2006 
2007 int kernel_execve(const char *kernel_filename,
2008 		  const char *const *argv, const char *const *envp)
2009 {
2010 	struct filename *filename;
2011 	struct linux_binprm *bprm;
2012 	int fd = AT_FDCWD;
2013 	int retval;
2014 
2015 	/* It is non-sense for kernel threads to call execve */
2016 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2017 		return -EINVAL;
2018 
2019 	filename = getname_kernel(kernel_filename);
2020 	if (IS_ERR(filename))
2021 		return PTR_ERR(filename);
2022 
2023 	bprm = alloc_bprm(fd, filename, 0);
2024 	if (IS_ERR(bprm)) {
2025 		retval = PTR_ERR(bprm);
2026 		goto out_ret;
2027 	}
2028 
2029 	retval = count_strings_kernel(argv);
2030 	if (WARN_ON_ONCE(retval == 0))
2031 		retval = -EINVAL;
2032 	if (retval < 0)
2033 		goto out_free;
2034 	bprm->argc = retval;
2035 
2036 	retval = count_strings_kernel(envp);
2037 	if (retval < 0)
2038 		goto out_free;
2039 	bprm->envc = retval;
2040 
2041 	retval = bprm_stack_limits(bprm);
2042 	if (retval < 0)
2043 		goto out_free;
2044 
2045 	retval = copy_string_kernel(bprm->filename, bprm);
2046 	if (retval < 0)
2047 		goto out_free;
2048 	bprm->exec = bprm->p;
2049 
2050 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2051 	if (retval < 0)
2052 		goto out_free;
2053 
2054 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2055 	if (retval < 0)
2056 		goto out_free;
2057 
2058 	retval = bprm_execve(bprm);
2059 out_free:
2060 	free_bprm(bprm);
2061 out_ret:
2062 	putname(filename);
2063 	return retval;
2064 }
2065 
2066 static int do_execve(struct filename *filename,
2067 	const char __user *const __user *__argv,
2068 	const char __user *const __user *__envp)
2069 {
2070 	struct user_arg_ptr argv = { .ptr.native = __argv };
2071 	struct user_arg_ptr envp = { .ptr.native = __envp };
2072 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2073 }
2074 
2075 static int do_execveat(int fd, struct filename *filename,
2076 		const char __user *const __user *__argv,
2077 		const char __user *const __user *__envp,
2078 		int flags)
2079 {
2080 	struct user_arg_ptr argv = { .ptr.native = __argv };
2081 	struct user_arg_ptr envp = { .ptr.native = __envp };
2082 
2083 	return do_execveat_common(fd, filename, argv, envp, flags);
2084 }
2085 
2086 #ifdef CONFIG_COMPAT
2087 static int compat_do_execve(struct filename *filename,
2088 	const compat_uptr_t __user *__argv,
2089 	const compat_uptr_t __user *__envp)
2090 {
2091 	struct user_arg_ptr argv = {
2092 		.is_compat = true,
2093 		.ptr.compat = __argv,
2094 	};
2095 	struct user_arg_ptr envp = {
2096 		.is_compat = true,
2097 		.ptr.compat = __envp,
2098 	};
2099 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2100 }
2101 
2102 static int compat_do_execveat(int fd, struct filename *filename,
2103 			      const compat_uptr_t __user *__argv,
2104 			      const compat_uptr_t __user *__envp,
2105 			      int flags)
2106 {
2107 	struct user_arg_ptr argv = {
2108 		.is_compat = true,
2109 		.ptr.compat = __argv,
2110 	};
2111 	struct user_arg_ptr envp = {
2112 		.is_compat = true,
2113 		.ptr.compat = __envp,
2114 	};
2115 	return do_execveat_common(fd, filename, argv, envp, flags);
2116 }
2117 #endif
2118 
2119 void set_binfmt(struct linux_binfmt *new)
2120 {
2121 	struct mm_struct *mm = current->mm;
2122 
2123 	if (mm->binfmt)
2124 		module_put(mm->binfmt->module);
2125 
2126 	mm->binfmt = new;
2127 	if (new)
2128 		__module_get(new->module);
2129 }
2130 EXPORT_SYMBOL(set_binfmt);
2131 
2132 /*
2133  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2134  */
2135 void set_dumpable(struct mm_struct *mm, int value)
2136 {
2137 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2138 		return;
2139 
2140 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2141 }
2142 
2143 SYSCALL_DEFINE3(execve,
2144 		const char __user *, filename,
2145 		const char __user *const __user *, argv,
2146 		const char __user *const __user *, envp)
2147 {
2148 	return do_execve(getname(filename), argv, envp);
2149 }
2150 
2151 SYSCALL_DEFINE5(execveat,
2152 		int, fd, const char __user *, filename,
2153 		const char __user *const __user *, argv,
2154 		const char __user *const __user *, envp,
2155 		int, flags)
2156 {
2157 	return do_execveat(fd,
2158 			   getname_uflags(filename, flags),
2159 			   argv, envp, flags);
2160 }
2161 
2162 #ifdef CONFIG_COMPAT
2163 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2164 	const compat_uptr_t __user *, argv,
2165 	const compat_uptr_t __user *, envp)
2166 {
2167 	return compat_do_execve(getname(filename), argv, envp);
2168 }
2169 
2170 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2171 		       const char __user *, filename,
2172 		       const compat_uptr_t __user *, argv,
2173 		       const compat_uptr_t __user *, envp,
2174 		       int,  flags)
2175 {
2176 	return compat_do_execveat(fd,
2177 				  getname_uflags(filename, flags),
2178 				  argv, envp, flags);
2179 }
2180 #endif
2181 
2182 #ifdef CONFIG_SYSCTL
2183 
2184 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2185 		void *buffer, size_t *lenp, loff_t *ppos)
2186 {
2187 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2188 
2189 	if (!error)
2190 		validate_coredump_safety();
2191 	return error;
2192 }
2193 
2194 static struct ctl_table fs_exec_sysctls[] = {
2195 	{
2196 		.procname	= "suid_dumpable",
2197 		.data		= &suid_dumpable,
2198 		.maxlen		= sizeof(int),
2199 		.mode		= 0644,
2200 		.proc_handler	= proc_dointvec_minmax_coredump,
2201 		.extra1		= SYSCTL_ZERO,
2202 		.extra2		= SYSCTL_TWO,
2203 	},
2204 };
2205 
2206 static int __init init_fs_exec_sysctls(void)
2207 {
2208 	register_sysctl_init("fs", fs_exec_sysctls);
2209 	return 0;
2210 }
2211 
2212 fs_initcall(init_fs_exec_sysctls);
2213 #endif /* CONFIG_SYSCTL */
2214