1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
71
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/tlb.h>
75
76 #include <trace/events/task.h>
77 #include "internal.h"
78
79 #include <trace/events/sched.h>
80
81 /* For vma exec functions. */
82 #include "../mm/internal.h"
83
84 static int bprm_creds_from_file(struct linux_binprm *bprm);
85
86 int suid_dumpable = 0;
87
88 static LIST_HEAD(formats);
89 static DEFINE_RWLOCK(binfmt_lock);
90
__register_binfmt(struct linux_binfmt * fmt,int insert)91 void __register_binfmt(struct linux_binfmt * fmt, int insert)
92 {
93 write_lock(&binfmt_lock);
94 insert ? list_add(&fmt->lh, &formats) :
95 list_add_tail(&fmt->lh, &formats);
96 write_unlock(&binfmt_lock);
97 }
98
99 EXPORT_SYMBOL(__register_binfmt);
100
unregister_binfmt(struct linux_binfmt * fmt)101 void unregister_binfmt(struct linux_binfmt * fmt)
102 {
103 write_lock(&binfmt_lock);
104 list_del(&fmt->lh);
105 write_unlock(&binfmt_lock);
106 }
107
108 EXPORT_SYMBOL(unregister_binfmt);
109
put_binfmt(struct linux_binfmt * fmt)110 static inline void put_binfmt(struct linux_binfmt * fmt)
111 {
112 module_put(fmt->module);
113 }
114
path_noexec(const struct path * path)115 bool path_noexec(const struct path *path)
116 {
117 /* If it's an anonymous inode make sure that we catch any shenanigans. */
118 VFS_WARN_ON_ONCE(IS_ANON_FILE(d_inode(path->dentry)) &&
119 !(path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC));
120 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
121 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
122 }
123
124 #ifdef CONFIG_MMU
125 /*
126 * The nascent bprm->mm is not visible until exec_mmap() but it can
127 * use a lot of memory, account these pages in current->mm temporary
128 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
129 * change the counter back via acct_arg_size(0).
130 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)131 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
132 {
133 struct mm_struct *mm = current->mm;
134 long diff = (long)(pages - bprm->vma_pages);
135
136 if (!mm || !diff)
137 return;
138
139 bprm->vma_pages = pages;
140 add_mm_counter(mm, MM_ANONPAGES, diff);
141 }
142
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)143 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
144 int write)
145 {
146 struct page *page;
147 struct vm_area_struct *vma = bprm->vma;
148 struct mm_struct *mm = bprm->mm;
149 int ret;
150
151 /*
152 * Avoid relying on expanding the stack down in GUP (which
153 * does not work for STACK_GROWSUP anyway), and just do it
154 * ahead of time.
155 */
156 if (!mmap_read_lock_maybe_expand(mm, vma, pos, write))
157 return NULL;
158
159 /*
160 * We are doing an exec(). 'current' is the process
161 * doing the exec and 'mm' is the new process's mm.
162 */
163 ret = get_user_pages_remote(mm, pos, 1,
164 write ? FOLL_WRITE : 0,
165 &page, NULL);
166 mmap_read_unlock(mm);
167 if (ret <= 0)
168 return NULL;
169
170 if (write)
171 acct_arg_size(bprm, vma_pages(vma));
172
173 return page;
174 }
175
put_arg_page(struct page * page)176 static void put_arg_page(struct page *page)
177 {
178 put_page(page);
179 }
180
free_arg_pages(struct linux_binprm * bprm)181 static void free_arg_pages(struct linux_binprm *bprm)
182 {
183 }
184
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)185 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
186 struct page *page)
187 {
188 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
189 }
190
valid_arg_len(struct linux_binprm * bprm,long len)191 static bool valid_arg_len(struct linux_binprm *bprm, long len)
192 {
193 return len <= MAX_ARG_STRLEN;
194 }
195
196 #else
197
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)198 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
199 {
200 }
201
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)202 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
203 int write)
204 {
205 struct page *page;
206
207 page = bprm->page[pos / PAGE_SIZE];
208 if (!page && write) {
209 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
210 if (!page)
211 return NULL;
212 bprm->page[pos / PAGE_SIZE] = page;
213 }
214
215 return page;
216 }
217
put_arg_page(struct page * page)218 static void put_arg_page(struct page *page)
219 {
220 }
221
free_arg_page(struct linux_binprm * bprm,int i)222 static void free_arg_page(struct linux_binprm *bprm, int i)
223 {
224 if (bprm->page[i]) {
225 __free_page(bprm->page[i]);
226 bprm->page[i] = NULL;
227 }
228 }
229
free_arg_pages(struct linux_binprm * bprm)230 static void free_arg_pages(struct linux_binprm *bprm)
231 {
232 int i;
233
234 for (i = 0; i < MAX_ARG_PAGES; i++)
235 free_arg_page(bprm, i);
236 }
237
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)238 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
239 struct page *page)
240 {
241 }
242
valid_arg_len(struct linux_binprm * bprm,long len)243 static bool valid_arg_len(struct linux_binprm *bprm, long len)
244 {
245 return len <= bprm->p;
246 }
247
248 #endif /* CONFIG_MMU */
249
250 /*
251 * Create a new mm_struct and populate it with a temporary stack
252 * vm_area_struct. We don't have enough context at this point to set the stack
253 * flags, permissions, and offset, so we use temporary values. We'll update
254 * them later in setup_arg_pages().
255 */
bprm_mm_init(struct linux_binprm * bprm)256 static int bprm_mm_init(struct linux_binprm *bprm)
257 {
258 int err;
259 struct mm_struct *mm = NULL;
260
261 bprm->mm = mm = mm_alloc();
262 err = -ENOMEM;
263 if (!mm)
264 goto err;
265
266 /* Save current stack limit for all calculations made during exec. */
267 task_lock(current->group_leader);
268 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
269 task_unlock(current->group_leader);
270
271 #ifndef CONFIG_MMU
272 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
273 #else
274 err = create_init_stack_vma(bprm->mm, &bprm->vma, &bprm->p);
275 if (err)
276 goto err;
277 #endif
278
279 return 0;
280
281 err:
282 if (mm) {
283 bprm->mm = NULL;
284 mmdrop(mm);
285 }
286
287 return err;
288 }
289
290 struct user_arg_ptr {
291 #ifdef CONFIG_COMPAT
292 bool is_compat;
293 #endif
294 union {
295 const char __user *const __user *native;
296 #ifdef CONFIG_COMPAT
297 const compat_uptr_t __user *compat;
298 #endif
299 } ptr;
300 };
301
get_user_arg_ptr(struct user_arg_ptr argv,int nr)302 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
303 {
304 const char __user *native;
305
306 #ifdef CONFIG_COMPAT
307 if (unlikely(argv.is_compat)) {
308 compat_uptr_t compat;
309
310 if (get_user(compat, argv.ptr.compat + nr))
311 return ERR_PTR(-EFAULT);
312
313 return compat_ptr(compat);
314 }
315 #endif
316
317 if (get_user(native, argv.ptr.native + nr))
318 return ERR_PTR(-EFAULT);
319
320 return native;
321 }
322
323 /*
324 * count() counts the number of strings in array ARGV.
325 */
count(struct user_arg_ptr argv,int max)326 static int count(struct user_arg_ptr argv, int max)
327 {
328 int i = 0;
329
330 if (argv.ptr.native != NULL) {
331 for (;;) {
332 const char __user *p = get_user_arg_ptr(argv, i);
333
334 if (!p)
335 break;
336
337 if (IS_ERR(p))
338 return -EFAULT;
339
340 if (i >= max)
341 return -E2BIG;
342 ++i;
343
344 if (fatal_signal_pending(current))
345 return -ERESTARTNOHAND;
346 cond_resched();
347 }
348 }
349 return i;
350 }
351
count_strings_kernel(const char * const * argv)352 static int count_strings_kernel(const char *const *argv)
353 {
354 int i;
355
356 if (!argv)
357 return 0;
358
359 for (i = 0; argv[i]; ++i) {
360 if (i >= MAX_ARG_STRINGS)
361 return -E2BIG;
362 if (fatal_signal_pending(current))
363 return -ERESTARTNOHAND;
364 cond_resched();
365 }
366 return i;
367 }
368
bprm_set_stack_limit(struct linux_binprm * bprm,unsigned long limit)369 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
370 unsigned long limit)
371 {
372 #ifdef CONFIG_MMU
373 /* Avoid a pathological bprm->p. */
374 if (bprm->p < limit)
375 return -E2BIG;
376 bprm->argmin = bprm->p - limit;
377 #endif
378 return 0;
379 }
bprm_hit_stack_limit(struct linux_binprm * bprm)380 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
381 {
382 #ifdef CONFIG_MMU
383 return bprm->p < bprm->argmin;
384 #else
385 return false;
386 #endif
387 }
388
389 /*
390 * Calculate bprm->argmin from:
391 * - _STK_LIM
392 * - ARG_MAX
393 * - bprm->rlim_stack.rlim_cur
394 * - bprm->argc
395 * - bprm->envc
396 * - bprm->p
397 */
bprm_stack_limits(struct linux_binprm * bprm)398 static int bprm_stack_limits(struct linux_binprm *bprm)
399 {
400 unsigned long limit, ptr_size;
401
402 /*
403 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
404 * (whichever is smaller) for the argv+env strings.
405 * This ensures that:
406 * - the remaining binfmt code will not run out of stack space,
407 * - the program will have a reasonable amount of stack left
408 * to work from.
409 */
410 limit = _STK_LIM / 4 * 3;
411 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
412 /*
413 * We've historically supported up to 32 pages (ARG_MAX)
414 * of argument strings even with small stacks
415 */
416 limit = max_t(unsigned long, limit, ARG_MAX);
417 /* Reject totally pathological counts. */
418 if (bprm->argc < 0 || bprm->envc < 0)
419 return -E2BIG;
420 /*
421 * We must account for the size of all the argv and envp pointers to
422 * the argv and envp strings, since they will also take up space in
423 * the stack. They aren't stored until much later when we can't
424 * signal to the parent that the child has run out of stack space.
425 * Instead, calculate it here so it's possible to fail gracefully.
426 *
427 * In the case of argc = 0, make sure there is space for adding a
428 * empty string (which will bump argc to 1), to ensure confused
429 * userspace programs don't start processing from argv[1], thinking
430 * argc can never be 0, to keep them from walking envp by accident.
431 * See do_execveat_common().
432 */
433 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
434 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
435 return -E2BIG;
436 if (limit <= ptr_size)
437 return -E2BIG;
438 limit -= ptr_size;
439
440 return bprm_set_stack_limit(bprm, limit);
441 }
442
443 /*
444 * 'copy_strings()' copies argument/environment strings from the old
445 * processes's memory to the new process's stack. The call to get_user_pages()
446 * ensures the destination page is created and not swapped out.
447 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)448 static int copy_strings(int argc, struct user_arg_ptr argv,
449 struct linux_binprm *bprm)
450 {
451 struct page *kmapped_page = NULL;
452 char *kaddr = NULL;
453 unsigned long kpos = 0;
454 int ret;
455
456 while (argc-- > 0) {
457 const char __user *str;
458 int len;
459 unsigned long pos;
460
461 ret = -EFAULT;
462 str = get_user_arg_ptr(argv, argc);
463 if (IS_ERR(str))
464 goto out;
465
466 len = strnlen_user(str, MAX_ARG_STRLEN);
467 if (!len)
468 goto out;
469
470 ret = -E2BIG;
471 if (!valid_arg_len(bprm, len))
472 goto out;
473
474 /* We're going to work our way backwards. */
475 pos = bprm->p;
476 str += len;
477 bprm->p -= len;
478 if (bprm_hit_stack_limit(bprm))
479 goto out;
480
481 while (len > 0) {
482 int offset, bytes_to_copy;
483
484 if (fatal_signal_pending(current)) {
485 ret = -ERESTARTNOHAND;
486 goto out;
487 }
488 cond_resched();
489
490 offset = pos % PAGE_SIZE;
491 if (offset == 0)
492 offset = PAGE_SIZE;
493
494 bytes_to_copy = offset;
495 if (bytes_to_copy > len)
496 bytes_to_copy = len;
497
498 offset -= bytes_to_copy;
499 pos -= bytes_to_copy;
500 str -= bytes_to_copy;
501 len -= bytes_to_copy;
502
503 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
504 struct page *page;
505
506 page = get_arg_page(bprm, pos, 1);
507 if (!page) {
508 ret = -E2BIG;
509 goto out;
510 }
511
512 if (kmapped_page) {
513 flush_dcache_page(kmapped_page);
514 kunmap_local(kaddr);
515 put_arg_page(kmapped_page);
516 }
517 kmapped_page = page;
518 kaddr = kmap_local_page(kmapped_page);
519 kpos = pos & PAGE_MASK;
520 flush_arg_page(bprm, kpos, kmapped_page);
521 }
522 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
523 ret = -EFAULT;
524 goto out;
525 }
526 }
527 }
528 ret = 0;
529 out:
530 if (kmapped_page) {
531 flush_dcache_page(kmapped_page);
532 kunmap_local(kaddr);
533 put_arg_page(kmapped_page);
534 }
535 return ret;
536 }
537
538 /*
539 * Copy and argument/environment string from the kernel to the processes stack.
540 */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)541 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
542 {
543 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
544 unsigned long pos = bprm->p;
545
546 if (len == 0)
547 return -EFAULT;
548 if (!valid_arg_len(bprm, len))
549 return -E2BIG;
550
551 /* We're going to work our way backwards. */
552 arg += len;
553 bprm->p -= len;
554 if (bprm_hit_stack_limit(bprm))
555 return -E2BIG;
556
557 while (len > 0) {
558 unsigned int bytes_to_copy = min_t(unsigned int, len,
559 min_not_zero(offset_in_page(pos), PAGE_SIZE));
560 struct page *page;
561
562 pos -= bytes_to_copy;
563 arg -= bytes_to_copy;
564 len -= bytes_to_copy;
565
566 page = get_arg_page(bprm, pos, 1);
567 if (!page)
568 return -E2BIG;
569 flush_arg_page(bprm, pos & PAGE_MASK, page);
570 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
571 put_arg_page(page);
572 }
573
574 return 0;
575 }
576 EXPORT_SYMBOL(copy_string_kernel);
577
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)578 static int copy_strings_kernel(int argc, const char *const *argv,
579 struct linux_binprm *bprm)
580 {
581 while (argc-- > 0) {
582 int ret = copy_string_kernel(argv[argc], bprm);
583 if (ret < 0)
584 return ret;
585 if (fatal_signal_pending(current))
586 return -ERESTARTNOHAND;
587 cond_resched();
588 }
589 return 0;
590 }
591
592 #ifdef CONFIG_MMU
593
594 /*
595 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
596 * the stack is optionally relocated, and some extra space is added.
597 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)598 int setup_arg_pages(struct linux_binprm *bprm,
599 unsigned long stack_top,
600 int executable_stack)
601 {
602 int ret;
603 unsigned long stack_shift;
604 struct mm_struct *mm = current->mm;
605 struct vm_area_struct *vma = bprm->vma;
606 struct vm_area_struct *prev = NULL;
607 vm_flags_t vm_flags;
608 unsigned long stack_base;
609 unsigned long stack_size;
610 unsigned long stack_expand;
611 unsigned long rlim_stack;
612 struct mmu_gather tlb;
613 struct vma_iterator vmi;
614
615 #ifdef CONFIG_STACK_GROWSUP
616 /* Limit stack size */
617 stack_base = bprm->rlim_stack.rlim_max;
618
619 stack_base = calc_max_stack_size(stack_base);
620
621 /* Add space for stack randomization. */
622 if (current->flags & PF_RANDOMIZE)
623 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
624
625 /* Make sure we didn't let the argument array grow too large. */
626 if (vma->vm_end - vma->vm_start > stack_base)
627 return -ENOMEM;
628
629 stack_base = PAGE_ALIGN(stack_top - stack_base);
630
631 stack_shift = vma->vm_start - stack_base;
632 mm->arg_start = bprm->p - stack_shift;
633 bprm->p = vma->vm_end - stack_shift;
634 #else
635 stack_top = arch_align_stack(stack_top);
636 stack_top = PAGE_ALIGN(stack_top);
637
638 if (unlikely(stack_top < mmap_min_addr) ||
639 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
640 return -ENOMEM;
641
642 stack_shift = vma->vm_end - stack_top;
643
644 bprm->p -= stack_shift;
645 mm->arg_start = bprm->p;
646 #endif
647
648 bprm->exec -= stack_shift;
649
650 if (mmap_write_lock_killable(mm))
651 return -EINTR;
652
653 vm_flags = VM_STACK_FLAGS;
654
655 /*
656 * Adjust stack execute permissions; explicitly enable for
657 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
658 * (arch default) otherwise.
659 */
660 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
661 vm_flags |= VM_EXEC;
662 else if (executable_stack == EXSTACK_DISABLE_X)
663 vm_flags &= ~VM_EXEC;
664 vm_flags |= mm->def_flags;
665 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
666
667 vma_iter_init(&vmi, mm, vma->vm_start);
668
669 tlb_gather_mmu(&tlb, mm);
670 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
671 vm_flags);
672 tlb_finish_mmu(&tlb);
673
674 if (ret)
675 goto out_unlock;
676 BUG_ON(prev != vma);
677
678 if (unlikely(vm_flags & VM_EXEC)) {
679 pr_warn_once("process '%pD4' started with executable stack\n",
680 bprm->file);
681 }
682
683 /* Move stack pages down in memory. */
684 if (stack_shift) {
685 /*
686 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
687 * the binfmt code determines where the new stack should reside, we shift it to
688 * its final location.
689 */
690 ret = relocate_vma_down(vma, stack_shift);
691 if (ret)
692 goto out_unlock;
693 }
694
695 /* mprotect_fixup is overkill to remove the temporary stack flags */
696 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
697
698 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
699 stack_size = vma->vm_end - vma->vm_start;
700 /*
701 * Align this down to a page boundary as expand_stack
702 * will align it up.
703 */
704 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
705
706 stack_expand = min(rlim_stack, stack_size + stack_expand);
707
708 #ifdef CONFIG_STACK_GROWSUP
709 stack_base = vma->vm_start + stack_expand;
710 #else
711 stack_base = vma->vm_end - stack_expand;
712 #endif
713 current->mm->start_stack = bprm->p;
714 ret = expand_stack_locked(vma, stack_base);
715 if (ret)
716 ret = -EFAULT;
717
718 out_unlock:
719 mmap_write_unlock(mm);
720 return ret;
721 }
722 EXPORT_SYMBOL(setup_arg_pages);
723
724 #else
725
726 /*
727 * Transfer the program arguments and environment from the holding pages
728 * onto the stack. The provided stack pointer is adjusted accordingly.
729 */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)730 int transfer_args_to_stack(struct linux_binprm *bprm,
731 unsigned long *sp_location)
732 {
733 unsigned long index, stop, sp;
734 int ret = 0;
735
736 stop = bprm->p >> PAGE_SHIFT;
737 sp = *sp_location;
738
739 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
740 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
741 char *src = kmap_local_page(bprm->page[index]) + offset;
742 sp -= PAGE_SIZE - offset;
743 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
744 ret = -EFAULT;
745 kunmap_local(src);
746 if (ret)
747 goto out;
748 }
749
750 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
751 *sp_location = sp;
752
753 out:
754 return ret;
755 }
756 EXPORT_SYMBOL(transfer_args_to_stack);
757
758 #endif /* CONFIG_MMU */
759
760 /*
761 * On success, caller must call do_close_execat() on the returned
762 * struct file to close it.
763 */
do_open_execat(int fd,struct filename * name,int flags)764 static struct file *do_open_execat(int fd, struct filename *name, int flags)
765 {
766 int err;
767 struct file *file __free(fput) = NULL;
768 struct open_flags open_exec_flags = {
769 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
770 .acc_mode = MAY_EXEC,
771 .intent = LOOKUP_OPEN,
772 .lookup_flags = LOOKUP_FOLLOW,
773 };
774
775 if ((flags &
776 ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH | AT_EXECVE_CHECK)) != 0)
777 return ERR_PTR(-EINVAL);
778 if (flags & AT_SYMLINK_NOFOLLOW)
779 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
780 if (flags & AT_EMPTY_PATH)
781 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
782
783 file = do_filp_open(fd, name, &open_exec_flags);
784 if (IS_ERR(file))
785 return file;
786
787 if (path_noexec(&file->f_path))
788 return ERR_PTR(-EACCES);
789
790 /*
791 * In the past the regular type check was here. It moved to may_open() in
792 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
793 * an invariant that all non-regular files error out before we get here.
794 */
795 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)))
796 return ERR_PTR(-EACCES);
797
798 err = exe_file_deny_write_access(file);
799 if (err)
800 return ERR_PTR(err);
801
802 return no_free_ptr(file);
803 }
804
805 /**
806 * open_exec - Open a path name for execution
807 *
808 * @name: path name to open with the intent of executing it.
809 *
810 * Returns ERR_PTR on failure or allocated struct file on success.
811 *
812 * As this is a wrapper for the internal do_open_execat(), callers
813 * must call exe_file_allow_write_access() before fput() on release. Also see
814 * do_close_execat().
815 */
open_exec(const char * name)816 struct file *open_exec(const char *name)
817 {
818 struct filename *filename = getname_kernel(name);
819 struct file *f = ERR_CAST(filename);
820
821 if (!IS_ERR(filename)) {
822 f = do_open_execat(AT_FDCWD, filename, 0);
823 putname(filename);
824 }
825 return f;
826 }
827 EXPORT_SYMBOL(open_exec);
828
829 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)830 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
831 {
832 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
833 if (res > 0)
834 flush_icache_user_range(addr, addr + len);
835 return res;
836 }
837 EXPORT_SYMBOL(read_code);
838 #endif
839
840 /*
841 * Maps the mm_struct mm into the current task struct.
842 * On success, this function returns with exec_update_lock
843 * held for writing.
844 */
exec_mmap(struct mm_struct * mm)845 static int exec_mmap(struct mm_struct *mm)
846 {
847 struct task_struct *tsk;
848 struct mm_struct *old_mm, *active_mm;
849 int ret;
850
851 /* Notify parent that we're no longer interested in the old VM */
852 tsk = current;
853 old_mm = current->mm;
854 exec_mm_release(tsk, old_mm);
855
856 ret = down_write_killable(&tsk->signal->exec_update_lock);
857 if (ret)
858 return ret;
859
860 if (old_mm) {
861 /*
862 * If there is a pending fatal signal perhaps a signal
863 * whose default action is to create a coredump get
864 * out and die instead of going through with the exec.
865 */
866 ret = mmap_read_lock_killable(old_mm);
867 if (ret) {
868 up_write(&tsk->signal->exec_update_lock);
869 return ret;
870 }
871 }
872
873 task_lock(tsk);
874 membarrier_exec_mmap(mm);
875
876 local_irq_disable();
877 active_mm = tsk->active_mm;
878 tsk->active_mm = mm;
879 tsk->mm = mm;
880 mm_init_cid(mm, tsk);
881 /*
882 * This prevents preemption while active_mm is being loaded and
883 * it and mm are being updated, which could cause problems for
884 * lazy tlb mm refcounting when these are updated by context
885 * switches. Not all architectures can handle irqs off over
886 * activate_mm yet.
887 */
888 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
889 local_irq_enable();
890 activate_mm(active_mm, mm);
891 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
892 local_irq_enable();
893 lru_gen_add_mm(mm);
894 task_unlock(tsk);
895 lru_gen_use_mm(mm);
896 if (old_mm) {
897 mmap_read_unlock(old_mm);
898 BUG_ON(active_mm != old_mm);
899 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
900 mm_update_next_owner(old_mm);
901 mmput(old_mm);
902 return 0;
903 }
904 mmdrop_lazy_tlb(active_mm);
905 return 0;
906 }
907
de_thread(struct task_struct * tsk)908 static int de_thread(struct task_struct *tsk)
909 {
910 struct signal_struct *sig = tsk->signal;
911 struct sighand_struct *oldsighand = tsk->sighand;
912 spinlock_t *lock = &oldsighand->siglock;
913
914 if (thread_group_empty(tsk))
915 goto no_thread_group;
916
917 /*
918 * Kill all other threads in the thread group.
919 */
920 spin_lock_irq(lock);
921 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
922 /*
923 * Another group action in progress, just
924 * return so that the signal is processed.
925 */
926 spin_unlock_irq(lock);
927 return -EAGAIN;
928 }
929
930 sig->group_exec_task = tsk;
931 sig->notify_count = zap_other_threads(tsk);
932 if (!thread_group_leader(tsk))
933 sig->notify_count--;
934
935 while (sig->notify_count) {
936 __set_current_state(TASK_KILLABLE);
937 spin_unlock_irq(lock);
938 schedule();
939 if (__fatal_signal_pending(tsk))
940 goto killed;
941 spin_lock_irq(lock);
942 }
943 spin_unlock_irq(lock);
944
945 /*
946 * At this point all other threads have exited, all we have to
947 * do is to wait for the thread group leader to become inactive,
948 * and to assume its PID:
949 */
950 if (!thread_group_leader(tsk)) {
951 struct task_struct *leader = tsk->group_leader;
952
953 for (;;) {
954 cgroup_threadgroup_change_begin(tsk);
955 write_lock_irq(&tasklist_lock);
956 /*
957 * Do this under tasklist_lock to ensure that
958 * exit_notify() can't miss ->group_exec_task
959 */
960 sig->notify_count = -1;
961 if (likely(leader->exit_state))
962 break;
963 __set_current_state(TASK_KILLABLE);
964 write_unlock_irq(&tasklist_lock);
965 cgroup_threadgroup_change_end(tsk);
966 schedule();
967 if (__fatal_signal_pending(tsk))
968 goto killed;
969 }
970
971 /*
972 * The only record we have of the real-time age of a
973 * process, regardless of execs it's done, is start_time.
974 * All the past CPU time is accumulated in signal_struct
975 * from sister threads now dead. But in this non-leader
976 * exec, nothing survives from the original leader thread,
977 * whose birth marks the true age of this process now.
978 * When we take on its identity by switching to its PID, we
979 * also take its birthdate (always earlier than our own).
980 */
981 tsk->start_time = leader->start_time;
982 tsk->start_boottime = leader->start_boottime;
983
984 BUG_ON(!same_thread_group(leader, tsk));
985 /*
986 * An exec() starts a new thread group with the
987 * TGID of the previous thread group. Rehash the
988 * two threads with a switched PID, and release
989 * the former thread group leader:
990 */
991
992 /* Become a process group leader with the old leader's pid.
993 * The old leader becomes a thread of the this thread group.
994 */
995 exchange_tids(tsk, leader);
996 transfer_pid(leader, tsk, PIDTYPE_TGID);
997 transfer_pid(leader, tsk, PIDTYPE_PGID);
998 transfer_pid(leader, tsk, PIDTYPE_SID);
999
1000 list_replace_rcu(&leader->tasks, &tsk->tasks);
1001 list_replace_init(&leader->sibling, &tsk->sibling);
1002
1003 tsk->group_leader = tsk;
1004 leader->group_leader = tsk;
1005
1006 tsk->exit_signal = SIGCHLD;
1007 leader->exit_signal = -1;
1008
1009 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1010 leader->exit_state = EXIT_DEAD;
1011 /*
1012 * We are going to release_task()->ptrace_unlink() silently,
1013 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1014 * the tracer won't block again waiting for this thread.
1015 */
1016 if (unlikely(leader->ptrace))
1017 __wake_up_parent(leader, leader->parent);
1018 write_unlock_irq(&tasklist_lock);
1019 cgroup_threadgroup_change_end(tsk);
1020
1021 release_task(leader);
1022 }
1023
1024 sig->group_exec_task = NULL;
1025 sig->notify_count = 0;
1026
1027 no_thread_group:
1028 /* we have changed execution domain */
1029 tsk->exit_signal = SIGCHLD;
1030
1031 BUG_ON(!thread_group_leader(tsk));
1032 return 0;
1033
1034 killed:
1035 /* protects against exit_notify() and __exit_signal() */
1036 read_lock(&tasklist_lock);
1037 sig->group_exec_task = NULL;
1038 sig->notify_count = 0;
1039 read_unlock(&tasklist_lock);
1040 return -EAGAIN;
1041 }
1042
1043
1044 /*
1045 * This function makes sure the current process has its own signal table,
1046 * so that flush_signal_handlers can later reset the handlers without
1047 * disturbing other processes. (Other processes might share the signal
1048 * table via the CLONE_SIGHAND option to clone().)
1049 */
unshare_sighand(struct task_struct * me)1050 static int unshare_sighand(struct task_struct *me)
1051 {
1052 struct sighand_struct *oldsighand = me->sighand;
1053
1054 if (refcount_read(&oldsighand->count) != 1) {
1055 struct sighand_struct *newsighand;
1056 /*
1057 * This ->sighand is shared with the CLONE_SIGHAND
1058 * but not CLONE_THREAD task, switch to the new one.
1059 */
1060 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1061 if (!newsighand)
1062 return -ENOMEM;
1063
1064 refcount_set(&newsighand->count, 1);
1065
1066 write_lock_irq(&tasklist_lock);
1067 spin_lock(&oldsighand->siglock);
1068 memcpy(newsighand->action, oldsighand->action,
1069 sizeof(newsighand->action));
1070 rcu_assign_pointer(me->sighand, newsighand);
1071 spin_unlock(&oldsighand->siglock);
1072 write_unlock_irq(&tasklist_lock);
1073
1074 __cleanup_sighand(oldsighand);
1075 }
1076 return 0;
1077 }
1078
1079 /*
1080 * This is unlocked -- the string will always be NUL-terminated, but
1081 * may show overlapping contents if racing concurrent reads.
1082 */
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1083 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1084 {
1085 size_t len = min(strlen(buf), sizeof(tsk->comm) - 1);
1086
1087 trace_task_rename(tsk, buf);
1088 memcpy(tsk->comm, buf, len);
1089 memset(&tsk->comm[len], 0, sizeof(tsk->comm) - len);
1090 perf_event_comm(tsk, exec);
1091 }
1092
1093 /*
1094 * Calling this is the point of no return. None of the failures will be
1095 * seen by userspace since either the process is already taking a fatal
1096 * signal (via de_thread() or coredump), or will have SEGV raised
1097 * (after exec_mmap()) by search_binary_handler (see below).
1098 */
begin_new_exec(struct linux_binprm * bprm)1099 int begin_new_exec(struct linux_binprm * bprm)
1100 {
1101 struct task_struct *me = current;
1102 int retval;
1103
1104 /* Once we are committed compute the creds */
1105 retval = bprm_creds_from_file(bprm);
1106 if (retval)
1107 return retval;
1108
1109 /*
1110 * This tracepoint marks the point before flushing the old exec where
1111 * the current task is still unchanged, but errors are fatal (point of
1112 * no return). The later "sched_process_exec" tracepoint is called after
1113 * the current task has successfully switched to the new exec.
1114 */
1115 trace_sched_prepare_exec(current, bprm);
1116
1117 /*
1118 * Ensure all future errors are fatal.
1119 */
1120 bprm->point_of_no_return = true;
1121
1122 /* Make this the only thread in the thread group */
1123 retval = de_thread(me);
1124 if (retval)
1125 goto out;
1126 /* see the comment in check_unsafe_exec() */
1127 current->fs->in_exec = 0;
1128 /*
1129 * Cancel any io_uring activity across execve
1130 */
1131 io_uring_task_cancel();
1132
1133 /* Ensure the files table is not shared. */
1134 retval = unshare_files();
1135 if (retval)
1136 goto out;
1137
1138 /*
1139 * Must be called _before_ exec_mmap() as bprm->mm is
1140 * not visible until then. Doing it here also ensures
1141 * we don't race against replace_mm_exe_file().
1142 */
1143 retval = set_mm_exe_file(bprm->mm, bprm->file);
1144 if (retval)
1145 goto out;
1146
1147 /* If the binary is not readable then enforce mm->dumpable=0 */
1148 would_dump(bprm, bprm->file);
1149 if (bprm->have_execfd)
1150 would_dump(bprm, bprm->executable);
1151
1152 /*
1153 * Release all of the old mmap stuff
1154 */
1155 acct_arg_size(bprm, 0);
1156 retval = exec_mmap(bprm->mm);
1157 if (retval)
1158 goto out;
1159
1160 bprm->mm = NULL;
1161
1162 retval = exec_task_namespaces();
1163 if (retval)
1164 goto out_unlock;
1165
1166 #ifdef CONFIG_POSIX_TIMERS
1167 spin_lock_irq(&me->sighand->siglock);
1168 posix_cpu_timers_exit(me);
1169 spin_unlock_irq(&me->sighand->siglock);
1170 exit_itimers(me);
1171 flush_itimer_signals();
1172 #endif
1173
1174 /*
1175 * Make the signal table private.
1176 */
1177 retval = unshare_sighand(me);
1178 if (retval)
1179 goto out_unlock;
1180
1181 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1182 PF_NOFREEZE | PF_NO_SETAFFINITY);
1183 flush_thread();
1184 me->personality &= ~bprm->per_clear;
1185
1186 clear_syscall_work_syscall_user_dispatch(me);
1187
1188 /*
1189 * We have to apply CLOEXEC before we change whether the process is
1190 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1191 * trying to access the should-be-closed file descriptors of a process
1192 * undergoing exec(2).
1193 */
1194 do_close_on_exec(me->files);
1195
1196 if (bprm->secureexec) {
1197 /* Make sure parent cannot signal privileged process. */
1198 me->pdeath_signal = 0;
1199
1200 /*
1201 * For secureexec, reset the stack limit to sane default to
1202 * avoid bad behavior from the prior rlimits. This has to
1203 * happen before arch_pick_mmap_layout(), which examines
1204 * RLIMIT_STACK, but after the point of no return to avoid
1205 * needing to clean up the change on failure.
1206 */
1207 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1208 bprm->rlim_stack.rlim_cur = _STK_LIM;
1209 }
1210
1211 me->sas_ss_sp = me->sas_ss_size = 0;
1212
1213 /*
1214 * Figure out dumpability. Note that this checking only of current
1215 * is wrong, but userspace depends on it. This should be testing
1216 * bprm->secureexec instead.
1217 */
1218 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1219 !(uid_eq(current_euid(), current_uid()) &&
1220 gid_eq(current_egid(), current_gid())))
1221 set_dumpable(current->mm, suid_dumpable);
1222 else
1223 set_dumpable(current->mm, SUID_DUMP_USER);
1224
1225 perf_event_exec();
1226
1227 /*
1228 * If the original filename was empty, alloc_bprm() made up a path
1229 * that will probably not be useful to admins running ps or similar.
1230 * Let's fix it up to be something reasonable.
1231 */
1232 if (bprm->comm_from_dentry) {
1233 /*
1234 * Hold RCU lock to keep the name from being freed behind our back.
1235 * Use acquire semantics to make sure the terminating NUL from
1236 * __d_alloc() is seen.
1237 *
1238 * Note, we're deliberately sloppy here. We don't need to care about
1239 * detecting a concurrent rename and just want a terminated name.
1240 */
1241 rcu_read_lock();
1242 __set_task_comm(me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name),
1243 true);
1244 rcu_read_unlock();
1245 } else {
1246 __set_task_comm(me, kbasename(bprm->filename), true);
1247 }
1248
1249 /* An exec changes our domain. We are no longer part of the thread
1250 group */
1251 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1252 flush_signal_handlers(me, 0);
1253
1254 retval = set_cred_ucounts(bprm->cred);
1255 if (retval < 0)
1256 goto out_unlock;
1257
1258 /*
1259 * install the new credentials for this executable
1260 */
1261 security_bprm_committing_creds(bprm);
1262
1263 commit_creds(bprm->cred);
1264 bprm->cred = NULL;
1265
1266 /*
1267 * Disable monitoring for regular users
1268 * when executing setuid binaries. Must
1269 * wait until new credentials are committed
1270 * by commit_creds() above
1271 */
1272 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1273 perf_event_exit_task(me);
1274 /*
1275 * cred_guard_mutex must be held at least to this point to prevent
1276 * ptrace_attach() from altering our determination of the task's
1277 * credentials; any time after this it may be unlocked.
1278 */
1279 security_bprm_committed_creds(bprm);
1280
1281 /* Pass the opened binary to the interpreter. */
1282 if (bprm->have_execfd) {
1283 retval = FD_ADD(0, bprm->executable);
1284 if (retval < 0)
1285 goto out_unlock;
1286 bprm->executable = NULL;
1287 bprm->execfd = retval;
1288 }
1289 return 0;
1290
1291 out_unlock:
1292 up_write(&me->signal->exec_update_lock);
1293 if (!bprm->cred)
1294 mutex_unlock(&me->signal->cred_guard_mutex);
1295
1296 out:
1297 return retval;
1298 }
1299 EXPORT_SYMBOL(begin_new_exec);
1300
would_dump(struct linux_binprm * bprm,struct file * file)1301 void would_dump(struct linux_binprm *bprm, struct file *file)
1302 {
1303 struct inode *inode = file_inode(file);
1304 struct mnt_idmap *idmap = file_mnt_idmap(file);
1305 if (inode_permission(idmap, inode, MAY_READ) < 0) {
1306 struct user_namespace *old, *user_ns;
1307 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1308
1309 /* Ensure mm->user_ns contains the executable */
1310 user_ns = old = bprm->mm->user_ns;
1311 while ((user_ns != &init_user_ns) &&
1312 !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1313 user_ns = user_ns->parent;
1314
1315 if (old != user_ns) {
1316 bprm->mm->user_ns = get_user_ns(user_ns);
1317 put_user_ns(old);
1318 }
1319 }
1320 }
1321 EXPORT_SYMBOL(would_dump);
1322
setup_new_exec(struct linux_binprm * bprm)1323 void setup_new_exec(struct linux_binprm * bprm)
1324 {
1325 /* Setup things that can depend upon the personality */
1326 struct task_struct *me = current;
1327
1328 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1329
1330 arch_setup_new_exec();
1331
1332 /* Set the new mm task size. We have to do that late because it may
1333 * depend on TIF_32BIT which is only updated in flush_thread() on
1334 * some architectures like powerpc
1335 */
1336 me->mm->task_size = TASK_SIZE;
1337 up_write(&me->signal->exec_update_lock);
1338 mutex_unlock(&me->signal->cred_guard_mutex);
1339 }
1340 EXPORT_SYMBOL(setup_new_exec);
1341
1342 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1343 void finalize_exec(struct linux_binprm *bprm)
1344 {
1345 /* Store any stack rlimit changes before starting thread. */
1346 task_lock(current->group_leader);
1347 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1348 task_unlock(current->group_leader);
1349 }
1350 EXPORT_SYMBOL(finalize_exec);
1351
1352 /*
1353 * Prepare credentials and lock ->cred_guard_mutex.
1354 * setup_new_exec() commits the new creds and drops the lock.
1355 * Or, if exec fails before, free_bprm() should release ->cred
1356 * and unlock.
1357 */
prepare_bprm_creds(struct linux_binprm * bprm)1358 static int prepare_bprm_creds(struct linux_binprm *bprm)
1359 {
1360 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1361 return -ERESTARTNOINTR;
1362
1363 bprm->cred = prepare_exec_creds();
1364 if (likely(bprm->cred))
1365 return 0;
1366
1367 mutex_unlock(¤t->signal->cred_guard_mutex);
1368 return -ENOMEM;
1369 }
1370
1371 /* Matches do_open_execat() */
do_close_execat(struct file * file)1372 static void do_close_execat(struct file *file)
1373 {
1374 if (!file)
1375 return;
1376 exe_file_allow_write_access(file);
1377 fput(file);
1378 }
1379
free_bprm(struct linux_binprm * bprm)1380 static void free_bprm(struct linux_binprm *bprm)
1381 {
1382 if (bprm->mm) {
1383 acct_arg_size(bprm, 0);
1384 mmput(bprm->mm);
1385 }
1386 free_arg_pages(bprm);
1387 if (bprm->cred) {
1388 /* in case exec fails before de_thread() succeeds */
1389 current->fs->in_exec = 0;
1390 mutex_unlock(¤t->signal->cred_guard_mutex);
1391 abort_creds(bprm->cred);
1392 }
1393 do_close_execat(bprm->file);
1394 if (bprm->executable)
1395 fput(bprm->executable);
1396 /* If a binfmt changed the interp, free it. */
1397 if (bprm->interp != bprm->filename)
1398 kfree(bprm->interp);
1399 kfree(bprm->fdpath);
1400 kfree(bprm);
1401 }
1402
alloc_bprm(int fd,struct filename * filename,int flags)1403 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1404 {
1405 struct linux_binprm *bprm;
1406 struct file *file;
1407 int retval = -ENOMEM;
1408
1409 file = do_open_execat(fd, filename, flags);
1410 if (IS_ERR(file))
1411 return ERR_CAST(file);
1412
1413 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1414 if (!bprm) {
1415 do_close_execat(file);
1416 return ERR_PTR(-ENOMEM);
1417 }
1418
1419 bprm->file = file;
1420
1421 if (fd == AT_FDCWD || filename->name[0] == '/') {
1422 bprm->filename = filename->name;
1423 } else {
1424 if (filename->name[0] == '\0') {
1425 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1426 bprm->comm_from_dentry = 1;
1427 } else {
1428 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1429 fd, filename->name);
1430 }
1431 if (!bprm->fdpath)
1432 goto out_free;
1433
1434 /*
1435 * Record that a name derived from an O_CLOEXEC fd will be
1436 * inaccessible after exec. This allows the code in exec to
1437 * choose to fail when the executable is not mmaped into the
1438 * interpreter and an open file descriptor is not passed to
1439 * the interpreter. This makes for a better user experience
1440 * than having the interpreter start and then immediately fail
1441 * when it finds the executable is inaccessible.
1442 */
1443 if (get_close_on_exec(fd))
1444 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1445
1446 bprm->filename = bprm->fdpath;
1447 }
1448 bprm->interp = bprm->filename;
1449
1450 /*
1451 * At this point, security_file_open() has already been called (with
1452 * __FMODE_EXEC) and access control checks for AT_EXECVE_CHECK will
1453 * stop just after the security_bprm_creds_for_exec() call in
1454 * bprm_execve(). Indeed, the kernel should not try to parse the
1455 * content of the file with exec_binprm() nor change the calling
1456 * thread, which means that the following security functions will not
1457 * be called:
1458 * - security_bprm_check()
1459 * - security_bprm_creds_from_file()
1460 * - security_bprm_committing_creds()
1461 * - security_bprm_committed_creds()
1462 */
1463 bprm->is_check = !!(flags & AT_EXECVE_CHECK);
1464
1465 retval = bprm_mm_init(bprm);
1466 if (!retval)
1467 return bprm;
1468
1469 out_free:
1470 free_bprm(bprm);
1471 return ERR_PTR(retval);
1472 }
1473
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1474 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1475 {
1476 /* If a binfmt changed the interp, free it first. */
1477 if (bprm->interp != bprm->filename)
1478 kfree(bprm->interp);
1479 bprm->interp = kstrdup(interp, GFP_KERNEL);
1480 if (!bprm->interp)
1481 return -ENOMEM;
1482 return 0;
1483 }
1484 EXPORT_SYMBOL(bprm_change_interp);
1485
1486 /*
1487 * determine how safe it is to execute the proposed program
1488 * - the caller must hold ->cred_guard_mutex to protect against
1489 * PTRACE_ATTACH or seccomp thread-sync
1490 */
check_unsafe_exec(struct linux_binprm * bprm)1491 static void check_unsafe_exec(struct linux_binprm *bprm)
1492 {
1493 struct task_struct *p = current, *t;
1494 unsigned n_fs;
1495
1496 if (p->ptrace)
1497 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1498
1499 /*
1500 * This isn't strictly necessary, but it makes it harder for LSMs to
1501 * mess up.
1502 */
1503 if (task_no_new_privs(current))
1504 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1505
1506 /*
1507 * If another task is sharing our fs, we cannot safely
1508 * suid exec because the differently privileged task
1509 * will be able to manipulate the current directory, etc.
1510 * It would be nice to force an unshare instead...
1511 *
1512 * Otherwise we set fs->in_exec = 1 to deny clone(CLONE_FS)
1513 * from another sub-thread until de_thread() succeeds, this
1514 * state is protected by cred_guard_mutex we hold.
1515 */
1516 n_fs = 1;
1517 read_seqlock_excl(&p->fs->seq);
1518 rcu_read_lock();
1519 for_other_threads(p, t) {
1520 if (t->fs == p->fs)
1521 n_fs++;
1522 }
1523 rcu_read_unlock();
1524
1525 /* "users" and "in_exec" locked for copy_fs() */
1526 if (p->fs->users > n_fs)
1527 bprm->unsafe |= LSM_UNSAFE_SHARE;
1528 else
1529 p->fs->in_exec = 1;
1530 read_sequnlock_excl(&p->fs->seq);
1531 }
1532
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1533 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1534 {
1535 /* Handle suid and sgid on files */
1536 struct mnt_idmap *idmap;
1537 struct inode *inode = file_inode(file);
1538 unsigned int mode;
1539 vfsuid_t vfsuid;
1540 vfsgid_t vfsgid;
1541 int err;
1542
1543 if (!mnt_may_suid(file->f_path.mnt))
1544 return;
1545
1546 if (task_no_new_privs(current))
1547 return;
1548
1549 mode = READ_ONCE(inode->i_mode);
1550 if (!(mode & (S_ISUID|S_ISGID)))
1551 return;
1552
1553 idmap = file_mnt_idmap(file);
1554
1555 /* Be careful if suid/sgid is set */
1556 inode_lock(inode);
1557
1558 /* Atomically reload and check mode/uid/gid now that lock held. */
1559 mode = inode->i_mode;
1560 vfsuid = i_uid_into_vfsuid(idmap, inode);
1561 vfsgid = i_gid_into_vfsgid(idmap, inode);
1562 err = inode_permission(idmap, inode, MAY_EXEC);
1563 inode_unlock(inode);
1564
1565 /* Did the exec bit vanish out from under us? Give up. */
1566 if (err)
1567 return;
1568
1569 /* We ignore suid/sgid if there are no mappings for them in the ns */
1570 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1571 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1572 return;
1573
1574 if (mode & S_ISUID) {
1575 bprm->per_clear |= PER_CLEAR_ON_SETID;
1576 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1577 }
1578
1579 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1580 bprm->per_clear |= PER_CLEAR_ON_SETID;
1581 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1582 }
1583 }
1584
1585 /*
1586 * Compute brpm->cred based upon the final binary.
1587 */
bprm_creds_from_file(struct linux_binprm * bprm)1588 static int bprm_creds_from_file(struct linux_binprm *bprm)
1589 {
1590 /* Compute creds based on which file? */
1591 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1592
1593 bprm_fill_uid(bprm, file);
1594 return security_bprm_creds_from_file(bprm, file);
1595 }
1596
1597 /*
1598 * Fill the binprm structure from the inode.
1599 * Read the first BINPRM_BUF_SIZE bytes
1600 *
1601 * This may be called multiple times for binary chains (scripts for example).
1602 */
prepare_binprm(struct linux_binprm * bprm)1603 static int prepare_binprm(struct linux_binprm *bprm)
1604 {
1605 loff_t pos = 0;
1606
1607 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1608 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1609 }
1610
1611 /*
1612 * Arguments are '\0' separated strings found at the location bprm->p
1613 * points to; chop off the first by relocating brpm->p to right after
1614 * the first '\0' encountered.
1615 */
remove_arg_zero(struct linux_binprm * bprm)1616 int remove_arg_zero(struct linux_binprm *bprm)
1617 {
1618 unsigned long offset;
1619 char *kaddr;
1620 struct page *page;
1621
1622 if (!bprm->argc)
1623 return 0;
1624
1625 do {
1626 offset = bprm->p & ~PAGE_MASK;
1627 page = get_arg_page(bprm, bprm->p, 0);
1628 if (!page)
1629 return -EFAULT;
1630 kaddr = kmap_local_page(page);
1631
1632 for (; offset < PAGE_SIZE && kaddr[offset];
1633 offset++, bprm->p++)
1634 ;
1635
1636 kunmap_local(kaddr);
1637 put_arg_page(page);
1638 } while (offset == PAGE_SIZE);
1639
1640 bprm->p++;
1641 bprm->argc--;
1642
1643 return 0;
1644 }
1645 EXPORT_SYMBOL(remove_arg_zero);
1646
1647 /*
1648 * cycle the list of binary formats handler, until one recognizes the image
1649 */
search_binary_handler(struct linux_binprm * bprm)1650 static int search_binary_handler(struct linux_binprm *bprm)
1651 {
1652 struct linux_binfmt *fmt;
1653 int retval;
1654
1655 retval = prepare_binprm(bprm);
1656 if (retval < 0)
1657 return retval;
1658
1659 retval = security_bprm_check(bprm);
1660 if (retval)
1661 return retval;
1662
1663 read_lock(&binfmt_lock);
1664 list_for_each_entry(fmt, &formats, lh) {
1665 if (!try_module_get(fmt->module))
1666 continue;
1667 read_unlock(&binfmt_lock);
1668
1669 retval = fmt->load_binary(bprm);
1670
1671 read_lock(&binfmt_lock);
1672 put_binfmt(fmt);
1673 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1674 read_unlock(&binfmt_lock);
1675 return retval;
1676 }
1677 }
1678 read_unlock(&binfmt_lock);
1679
1680 return -ENOEXEC;
1681 }
1682
1683 /* binfmt handlers will call back into begin_new_exec() on success. */
exec_binprm(struct linux_binprm * bprm)1684 static int exec_binprm(struct linux_binprm *bprm)
1685 {
1686 pid_t old_pid, old_vpid;
1687 int ret, depth;
1688
1689 /* Need to fetch pid before load_binary changes it */
1690 old_pid = current->pid;
1691 rcu_read_lock();
1692 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1693 rcu_read_unlock();
1694
1695 /* This allows 4 levels of binfmt rewrites before failing hard. */
1696 for (depth = 0;; depth++) {
1697 struct file *exec;
1698 if (depth > 5)
1699 return -ELOOP;
1700
1701 ret = search_binary_handler(bprm);
1702 if (ret < 0)
1703 return ret;
1704 if (!bprm->interpreter)
1705 break;
1706
1707 exec = bprm->file;
1708 bprm->file = bprm->interpreter;
1709 bprm->interpreter = NULL;
1710
1711 exe_file_allow_write_access(exec);
1712 if (unlikely(bprm->have_execfd)) {
1713 if (bprm->executable) {
1714 fput(exec);
1715 return -ENOEXEC;
1716 }
1717 bprm->executable = exec;
1718 } else
1719 fput(exec);
1720 }
1721
1722 audit_bprm(bprm);
1723 trace_sched_process_exec(current, old_pid, bprm);
1724 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1725 proc_exec_connector(current);
1726 return 0;
1727 }
1728
bprm_execve(struct linux_binprm * bprm)1729 static int bprm_execve(struct linux_binprm *bprm)
1730 {
1731 int retval;
1732
1733 retval = prepare_bprm_creds(bprm);
1734 if (retval)
1735 return retval;
1736
1737 /*
1738 * Check for unsafe execution states before exec_binprm(), which
1739 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1740 * where setuid-ness is evaluated.
1741 */
1742 check_unsafe_exec(bprm);
1743 current->in_execve = 1;
1744 sched_mm_cid_before_execve(current);
1745
1746 sched_exec();
1747
1748 /* Set the unchanging part of bprm->cred */
1749 retval = security_bprm_creds_for_exec(bprm);
1750 if (retval || bprm->is_check)
1751 goto out;
1752
1753 retval = exec_binprm(bprm);
1754 if (retval < 0)
1755 goto out;
1756
1757 sched_mm_cid_after_execve(current);
1758 rseq_execve(current);
1759 /* execve succeeded */
1760 current->in_execve = 0;
1761 user_events_execve(current);
1762 acct_update_integrals(current);
1763 task_numa_free(current, false);
1764 return retval;
1765
1766 out:
1767 /*
1768 * If past the point of no return ensure the code never
1769 * returns to the userspace process. Use an existing fatal
1770 * signal if present otherwise terminate the process with
1771 * SIGSEGV.
1772 */
1773 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1774 force_fatal_sig(SIGSEGV);
1775
1776 sched_mm_cid_after_execve(current);
1777 rseq_force_update();
1778 current->in_execve = 0;
1779
1780 return retval;
1781 }
1782
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1783 static int do_execveat_common(int fd, struct filename *filename,
1784 struct user_arg_ptr argv,
1785 struct user_arg_ptr envp,
1786 int flags)
1787 {
1788 struct linux_binprm *bprm;
1789 int retval;
1790
1791 if (IS_ERR(filename))
1792 return PTR_ERR(filename);
1793
1794 /*
1795 * We move the actual failure in case of RLIMIT_NPROC excess from
1796 * set*uid() to execve() because too many poorly written programs
1797 * don't check setuid() return code. Here we additionally recheck
1798 * whether NPROC limit is still exceeded.
1799 */
1800 if ((current->flags & PF_NPROC_EXCEEDED) &&
1801 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1802 retval = -EAGAIN;
1803 goto out_ret;
1804 }
1805
1806 /* We're below the limit (still or again), so we don't want to make
1807 * further execve() calls fail. */
1808 current->flags &= ~PF_NPROC_EXCEEDED;
1809
1810 bprm = alloc_bprm(fd, filename, flags);
1811 if (IS_ERR(bprm)) {
1812 retval = PTR_ERR(bprm);
1813 goto out_ret;
1814 }
1815
1816 retval = count(argv, MAX_ARG_STRINGS);
1817 if (retval < 0)
1818 goto out_free;
1819 bprm->argc = retval;
1820
1821 retval = count(envp, MAX_ARG_STRINGS);
1822 if (retval < 0)
1823 goto out_free;
1824 bprm->envc = retval;
1825
1826 retval = bprm_stack_limits(bprm);
1827 if (retval < 0)
1828 goto out_free;
1829
1830 retval = copy_string_kernel(bprm->filename, bprm);
1831 if (retval < 0)
1832 goto out_free;
1833 bprm->exec = bprm->p;
1834
1835 retval = copy_strings(bprm->envc, envp, bprm);
1836 if (retval < 0)
1837 goto out_free;
1838
1839 retval = copy_strings(bprm->argc, argv, bprm);
1840 if (retval < 0)
1841 goto out_free;
1842
1843 /*
1844 * When argv is empty, add an empty string ("") as argv[0] to
1845 * ensure confused userspace programs that start processing
1846 * from argv[1] won't end up walking envp. See also
1847 * bprm_stack_limits().
1848 */
1849 if (bprm->argc == 0) {
1850 retval = copy_string_kernel("", bprm);
1851 if (retval < 0)
1852 goto out_free;
1853 bprm->argc = 1;
1854
1855 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1856 current->comm, bprm->filename);
1857 }
1858
1859 retval = bprm_execve(bprm);
1860 out_free:
1861 free_bprm(bprm);
1862
1863 out_ret:
1864 putname(filename);
1865 return retval;
1866 }
1867
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1868 int kernel_execve(const char *kernel_filename,
1869 const char *const *argv, const char *const *envp)
1870 {
1871 struct filename *filename;
1872 struct linux_binprm *bprm;
1873 int fd = AT_FDCWD;
1874 int retval;
1875
1876 /* It is non-sense for kernel threads to call execve */
1877 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1878 return -EINVAL;
1879
1880 filename = getname_kernel(kernel_filename);
1881 if (IS_ERR(filename))
1882 return PTR_ERR(filename);
1883
1884 bprm = alloc_bprm(fd, filename, 0);
1885 if (IS_ERR(bprm)) {
1886 retval = PTR_ERR(bprm);
1887 goto out_ret;
1888 }
1889
1890 retval = count_strings_kernel(argv);
1891 if (WARN_ON_ONCE(retval == 0))
1892 retval = -EINVAL;
1893 if (retval < 0)
1894 goto out_free;
1895 bprm->argc = retval;
1896
1897 retval = count_strings_kernel(envp);
1898 if (retval < 0)
1899 goto out_free;
1900 bprm->envc = retval;
1901
1902 retval = bprm_stack_limits(bprm);
1903 if (retval < 0)
1904 goto out_free;
1905
1906 retval = copy_string_kernel(bprm->filename, bprm);
1907 if (retval < 0)
1908 goto out_free;
1909 bprm->exec = bprm->p;
1910
1911 retval = copy_strings_kernel(bprm->envc, envp, bprm);
1912 if (retval < 0)
1913 goto out_free;
1914
1915 retval = copy_strings_kernel(bprm->argc, argv, bprm);
1916 if (retval < 0)
1917 goto out_free;
1918
1919 retval = bprm_execve(bprm);
1920 out_free:
1921 free_bprm(bprm);
1922 out_ret:
1923 putname(filename);
1924 return retval;
1925 }
1926
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1927 static int do_execve(struct filename *filename,
1928 const char __user *const __user *__argv,
1929 const char __user *const __user *__envp)
1930 {
1931 struct user_arg_ptr argv = { .ptr.native = __argv };
1932 struct user_arg_ptr envp = { .ptr.native = __envp };
1933 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1934 }
1935
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)1936 static int do_execveat(int fd, struct filename *filename,
1937 const char __user *const __user *__argv,
1938 const char __user *const __user *__envp,
1939 int flags)
1940 {
1941 struct user_arg_ptr argv = { .ptr.native = __argv };
1942 struct user_arg_ptr envp = { .ptr.native = __envp };
1943
1944 return do_execveat_common(fd, filename, argv, envp, flags);
1945 }
1946
1947 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1948 static int compat_do_execve(struct filename *filename,
1949 const compat_uptr_t __user *__argv,
1950 const compat_uptr_t __user *__envp)
1951 {
1952 struct user_arg_ptr argv = {
1953 .is_compat = true,
1954 .ptr.compat = __argv,
1955 };
1956 struct user_arg_ptr envp = {
1957 .is_compat = true,
1958 .ptr.compat = __envp,
1959 };
1960 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1961 }
1962
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)1963 static int compat_do_execveat(int fd, struct filename *filename,
1964 const compat_uptr_t __user *__argv,
1965 const compat_uptr_t __user *__envp,
1966 int flags)
1967 {
1968 struct user_arg_ptr argv = {
1969 .is_compat = true,
1970 .ptr.compat = __argv,
1971 };
1972 struct user_arg_ptr envp = {
1973 .is_compat = true,
1974 .ptr.compat = __envp,
1975 };
1976 return do_execveat_common(fd, filename, argv, envp, flags);
1977 }
1978 #endif
1979
set_binfmt(struct linux_binfmt * new)1980 void set_binfmt(struct linux_binfmt *new)
1981 {
1982 struct mm_struct *mm = current->mm;
1983
1984 if (mm->binfmt)
1985 module_put(mm->binfmt->module);
1986
1987 mm->binfmt = new;
1988 if (new)
1989 __module_get(new->module);
1990 }
1991 EXPORT_SYMBOL(set_binfmt);
1992
1993 /*
1994 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1995 */
set_dumpable(struct mm_struct * mm,int value)1996 void set_dumpable(struct mm_struct *mm, int value)
1997 {
1998 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1999 return;
2000
2001 __mm_flags_set_mask_dumpable(mm, value);
2002 }
2003
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2004 SYSCALL_DEFINE3(execve,
2005 const char __user *, filename,
2006 const char __user *const __user *, argv,
2007 const char __user *const __user *, envp)
2008 {
2009 return do_execve(getname(filename), argv, envp);
2010 }
2011
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2012 SYSCALL_DEFINE5(execveat,
2013 int, fd, const char __user *, filename,
2014 const char __user *const __user *, argv,
2015 const char __user *const __user *, envp,
2016 int, flags)
2017 {
2018 return do_execveat(fd,
2019 getname_uflags(filename, flags),
2020 argv, envp, flags);
2021 }
2022
2023 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2024 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2025 const compat_uptr_t __user *, argv,
2026 const compat_uptr_t __user *, envp)
2027 {
2028 return compat_do_execve(getname(filename), argv, envp);
2029 }
2030
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2031 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2032 const char __user *, filename,
2033 const compat_uptr_t __user *, argv,
2034 const compat_uptr_t __user *, envp,
2035 int, flags)
2036 {
2037 return compat_do_execveat(fd,
2038 getname_uflags(filename, flags),
2039 argv, envp, flags);
2040 }
2041 #endif
2042
2043 #ifdef CONFIG_SYSCTL
2044
proc_dointvec_minmax_coredump(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2045 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2046 void *buffer, size_t *lenp, loff_t *ppos)
2047 {
2048 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2049
2050 if (!error && write)
2051 validate_coredump_safety();
2052 return error;
2053 }
2054
2055 static const struct ctl_table fs_exec_sysctls[] = {
2056 {
2057 .procname = "suid_dumpable",
2058 .data = &suid_dumpable,
2059 .maxlen = sizeof(int),
2060 .mode = 0644,
2061 .proc_handler = proc_dointvec_minmax_coredump,
2062 .extra1 = SYSCTL_ZERO,
2063 .extra2 = SYSCTL_TWO,
2064 },
2065 };
2066
init_fs_exec_sysctls(void)2067 static int __init init_fs_exec_sysctls(void)
2068 {
2069 register_sysctl_init("fs", fs_exec_sysctls);
2070 return 0;
2071 }
2072
2073 fs_initcall(init_fs_exec_sysctls);
2074 #endif /* CONFIG_SYSCTL */
2075
2076 #ifdef CONFIG_EXEC_KUNIT_TEST
2077 #include "tests/exec_kunit.c"
2078 #endif
2079