1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <linux/capability.h> 41 #include <net/busy_poll.h> 42 43 /* 44 * LOCKING: 45 * There are three level of locking required by epoll : 46 * 47 * 1) epnested_mutex (mutex) 48 * 2) ep->mtx (mutex) 49 * 3) ep->lock (rwlock) 50 * 51 * The acquire order is the one listed above, from 1 to 3. 52 * We need a rwlock (ep->lock) because we manipulate objects 53 * from inside the poll callback, that might be triggered from 54 * a wake_up() that in turn might be called from IRQ context. 55 * So we can't sleep inside the poll callback and hence we need 56 * a spinlock. During the event transfer loop (from kernel to 57 * user space) we could end up sleeping due a copy_to_user(), so 58 * we need a lock that will allow us to sleep. This lock is a 59 * mutex (ep->mtx). It is acquired during the event transfer loop, 60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 61 * The epnested_mutex is acquired when inserting an epoll fd onto another 62 * epoll fd. We do this so that we walk the epoll tree and ensure that this 63 * insertion does not create a cycle of epoll file descriptors, which 64 * could lead to deadlock. We need a global mutex to prevent two 65 * simultaneous inserts (A into B and B into A) from racing and 66 * constructing a cycle without either insert observing that it is 67 * going to. 68 * It is necessary to acquire multiple "ep->mtx"es at once in the 69 * case when one epoll fd is added to another. In this case, we 70 * always acquire the locks in the order of nesting (i.e. after 71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 72 * before e2->mtx). Since we disallow cycles of epoll file 73 * descriptors, this ensures that the mutexes are well-ordered. In 74 * order to communicate this nesting to lockdep, when walking a tree 75 * of epoll file descriptors, we use the current recursion depth as 76 * the lockdep subkey. 77 * It is possible to drop the "ep->mtx" and to use the global 78 * mutex "epnested_mutex" (together with "ep->lock") to have it working, 79 * but having "ep->mtx" will make the interface more scalable. 80 * Events that require holding "epnested_mutex" are very rare, while for 81 * normal operations the epoll private "ep->mtx" will guarantee 82 * a better scalability. 83 */ 84 85 /* Epoll private bits inside the event mask */ 86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 87 88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 89 90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 92 93 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 95 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 98 #define EP_UNACTIVE_PTR ((void *) -1L) 99 100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 102 struct epoll_filefd { 103 struct file *file; 104 int fd; 105 } __packed; 106 107 /* Wait structure used by the poll hooks */ 108 struct eppoll_entry { 109 /* List header used to link this structure to the "struct epitem" */ 110 struct eppoll_entry *next; 111 112 /* The "base" pointer is set to the container "struct epitem" */ 113 struct epitem *base; 114 115 /* 116 * Wait queue item that will be linked to the target file wait 117 * queue head. 118 */ 119 wait_queue_entry_t wait; 120 121 /* The wait queue head that linked the "wait" wait queue item */ 122 wait_queue_head_t *whead; 123 }; 124 125 /* 126 * Each file descriptor added to the eventpoll interface will 127 * have an entry of this type linked to the "rbr" RB tree. 128 * Avoid increasing the size of this struct, there can be many thousands 129 * of these on a server and we do not want this to take another cache line. 130 */ 131 struct epitem { 132 union { 133 /* RB tree node links this structure to the eventpoll RB tree */ 134 struct rb_node rbn; 135 /* Used to free the struct epitem */ 136 struct rcu_head rcu; 137 }; 138 139 /* List header used to link this structure to the eventpoll ready list */ 140 struct llist_node rdllink; 141 142 /* The file descriptor information this item refers to */ 143 struct epoll_filefd ffd; 144 145 /* 146 * Protected by file->f_lock, true for to-be-released epitem already 147 * removed from the "struct file" items list; together with 148 * eventpoll->refcount orchestrates "struct eventpoll" disposal 149 */ 150 bool dying; 151 152 /* List containing poll wait queues */ 153 struct eppoll_entry *pwqlist; 154 155 /* The "container" of this item */ 156 struct eventpoll *ep; 157 158 /* List header used to link this item to the "struct file" items list */ 159 struct hlist_node fllink; 160 161 /* wakeup_source used when EPOLLWAKEUP is set */ 162 struct wakeup_source __rcu *ws; 163 164 /* The structure that describe the interested events and the source fd */ 165 struct epoll_event event; 166 }; 167 168 /* 169 * This structure is stored inside the "private_data" member of the file 170 * structure and represents the main data structure for the eventpoll 171 * interface. 172 */ 173 struct eventpoll { 174 /* 175 * This mutex is used to ensure that files are not removed 176 * while epoll is using them. This is held during the event 177 * collection loop, the file cleanup path, the epoll file exit 178 * code and the ctl operations. 179 */ 180 struct mutex mtx; 181 182 /* Wait queue used by sys_epoll_wait() */ 183 wait_queue_head_t wq; 184 185 /* Wait queue used by file->poll() */ 186 wait_queue_head_t poll_wait; 187 188 /* 189 * List of ready file descriptors. Adding to this list is lockless. Items can be removed 190 * only with eventpoll::mtx 191 */ 192 struct llist_head rdllist; 193 194 /* RB tree root used to store monitored fd structs */ 195 struct rb_root_cached rbr; 196 197 /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */ 198 struct wakeup_source *ws; 199 200 /* The user that created the eventpoll descriptor */ 201 struct user_struct *user; 202 203 struct file *file; 204 205 /* used to optimize loop detection check */ 206 u64 gen; 207 struct hlist_head refs; 208 209 /* 210 * usage count, used together with epitem->dying to 211 * orchestrate the disposal of this struct 212 */ 213 refcount_t refcount; 214 215 #ifdef CONFIG_NET_RX_BUSY_POLL 216 /* used to track busy poll napi_id */ 217 unsigned int napi_id; 218 /* busy poll timeout */ 219 u32 busy_poll_usecs; 220 /* busy poll packet budget */ 221 u16 busy_poll_budget; 222 bool prefer_busy_poll; 223 #endif 224 225 #ifdef CONFIG_DEBUG_LOCK_ALLOC 226 /* tracks wakeup nests for lockdep validation */ 227 u8 nests; 228 #endif 229 }; 230 231 /* Wrapper struct used by poll queueing */ 232 struct ep_pqueue { 233 poll_table pt; 234 struct epitem *epi; 235 }; 236 237 /* 238 * Configuration options available inside /proc/sys/fs/epoll/ 239 */ 240 /* Maximum number of epoll watched descriptors, per user */ 241 static long max_user_watches __read_mostly; 242 243 /* Used for cycles detection */ 244 static DEFINE_MUTEX(epnested_mutex); 245 246 static u64 loop_check_gen = 0; 247 248 /* Used to check for epoll file descriptor inclusion loops */ 249 static struct eventpoll *inserting_into; 250 251 /* Slab cache used to allocate "struct epitem" */ 252 static struct kmem_cache *epi_cache __ro_after_init; 253 254 /* Slab cache used to allocate "struct eppoll_entry" */ 255 static struct kmem_cache *pwq_cache __ro_after_init; 256 257 /* 258 * List of files with newly added links, where we may need to limit the number 259 * of emanating paths. Protected by the epnested_mutex. 260 */ 261 struct epitems_head { 262 struct hlist_head epitems; 263 struct epitems_head *next; 264 }; 265 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 266 267 static struct kmem_cache *ephead_cache __ro_after_init; 268 269 static inline void free_ephead(struct epitems_head *head) 270 { 271 if (head) 272 kmem_cache_free(ephead_cache, head); 273 } 274 275 static void list_file(struct file *file) 276 { 277 struct epitems_head *head; 278 279 head = container_of(file->f_ep, struct epitems_head, epitems); 280 if (!head->next) { 281 head->next = tfile_check_list; 282 tfile_check_list = head; 283 } 284 } 285 286 static void unlist_file(struct epitems_head *head) 287 { 288 struct epitems_head *to_free = head; 289 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 290 if (p) { 291 struct epitem *epi= container_of(p, struct epitem, fllink); 292 spin_lock(&epi->ffd.file->f_lock); 293 if (!hlist_empty(&head->epitems)) 294 to_free = NULL; 295 head->next = NULL; 296 spin_unlock(&epi->ffd.file->f_lock); 297 } 298 free_ephead(to_free); 299 } 300 301 #ifdef CONFIG_SYSCTL 302 303 #include <linux/sysctl.h> 304 305 static long long_zero; 306 static long long_max = LONG_MAX; 307 308 static const struct ctl_table epoll_table[] = { 309 { 310 .procname = "max_user_watches", 311 .data = &max_user_watches, 312 .maxlen = sizeof(max_user_watches), 313 .mode = 0644, 314 .proc_handler = proc_doulongvec_minmax, 315 .extra1 = &long_zero, 316 .extra2 = &long_max, 317 }, 318 }; 319 320 static void __init epoll_sysctls_init(void) 321 { 322 register_sysctl("fs/epoll", epoll_table); 323 } 324 #else 325 #define epoll_sysctls_init() do { } while (0) 326 #endif /* CONFIG_SYSCTL */ 327 328 static const struct file_operations eventpoll_fops; 329 330 static inline int is_file_epoll(struct file *f) 331 { 332 return f->f_op == &eventpoll_fops; 333 } 334 335 /* Setup the structure that is used as key for the RB tree */ 336 static inline void ep_set_ffd(struct epoll_filefd *ffd, 337 struct file *file, int fd) 338 { 339 ffd->file = file; 340 ffd->fd = fd; 341 } 342 343 /* Compare RB tree keys */ 344 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 345 struct epoll_filefd *p2) 346 { 347 return (p1->file > p2->file ? +1: 348 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 349 } 350 351 /* 352 * Add the item to its container eventpoll's rdllist; do nothing if the item is already on rdllist. 353 */ 354 static void epitem_ready(struct epitem *epi) 355 { 356 if (&epi->rdllink == cmpxchg(&epi->rdllink.next, &epi->rdllink, NULL)) 357 llist_add(&epi->rdllink, &epi->ep->rdllist); 358 359 } 360 361 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 362 { 363 return container_of(p, struct eppoll_entry, wait); 364 } 365 366 /* Get the "struct epitem" from a wait queue pointer */ 367 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 368 { 369 return container_of(p, struct eppoll_entry, wait)->base; 370 } 371 372 /** 373 * ep_events_available - Checks if ready events might be available. 374 * 375 * @ep: Pointer to the eventpoll context. 376 * 377 * Return: true if ready events might be available, false otherwise. 378 */ 379 static inline bool ep_events_available(struct eventpoll *ep) 380 { 381 bool available; 382 int locked; 383 384 locked = mutex_trylock(&ep->mtx); 385 if (!locked) { 386 /* 387 * The lock held and someone might have removed all items while inspecting it. The 388 * llist_empty() check in this case is futile. Assume that something is enqueued and 389 * let ep_try_send_events() figure it out. 390 */ 391 return true; 392 } 393 394 available = !llist_empty(&ep->rdllist); 395 mutex_unlock(&ep->mtx); 396 return available; 397 } 398 399 #ifdef CONFIG_NET_RX_BUSY_POLL 400 /** 401 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value 402 * from the epoll instance ep is preferred, but if it is not set fallback to 403 * the system-wide global via busy_loop_timeout. 404 * 405 * @start_time: The start time used to compute the remaining time until timeout. 406 * @ep: Pointer to the eventpoll context. 407 * 408 * Return: true if the timeout has expired, false otherwise. 409 */ 410 static bool busy_loop_ep_timeout(unsigned long start_time, 411 struct eventpoll *ep) 412 { 413 unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs); 414 415 if (bp_usec) { 416 unsigned long end_time = start_time + bp_usec; 417 unsigned long now = busy_loop_current_time(); 418 419 return time_after(now, end_time); 420 } else { 421 return busy_loop_timeout(start_time); 422 } 423 } 424 425 static bool ep_busy_loop_on(struct eventpoll *ep) 426 { 427 return !!READ_ONCE(ep->busy_poll_usecs) || 428 READ_ONCE(ep->prefer_busy_poll) || 429 net_busy_loop_on(); 430 } 431 432 static bool ep_busy_loop_end(void *p, unsigned long start_time) 433 { 434 struct eventpoll *ep = p; 435 436 return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep); 437 } 438 439 /* 440 * Busy poll if globally on and supporting sockets found && no events, 441 * busy loop will return if need_resched or ep_events_available. 442 * 443 * we must do our busy polling with irqs enabled 444 */ 445 static bool ep_busy_loop(struct eventpoll *ep) 446 { 447 unsigned int napi_id = READ_ONCE(ep->napi_id); 448 u16 budget = READ_ONCE(ep->busy_poll_budget); 449 bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 450 451 if (!budget) 452 budget = BUSY_POLL_BUDGET; 453 454 if (napi_id_valid(napi_id) && ep_busy_loop_on(ep)) { 455 napi_busy_loop(napi_id, ep_busy_loop_end, 456 ep, prefer_busy_poll, budget); 457 if (ep_events_available(ep)) 458 return true; 459 /* 460 * Busy poll timed out. Drop NAPI ID for now, we can add 461 * it back in when we have moved a socket with a valid NAPI 462 * ID onto the ready list. 463 */ 464 if (prefer_busy_poll) 465 napi_resume_irqs(napi_id); 466 ep->napi_id = 0; 467 return false; 468 } 469 return false; 470 } 471 472 /* 473 * Set epoll busy poll NAPI ID from sk. 474 */ 475 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 476 { 477 struct eventpoll *ep = epi->ep; 478 unsigned int napi_id; 479 struct socket *sock; 480 struct sock *sk; 481 482 if (!ep_busy_loop_on(ep)) 483 return; 484 485 sock = sock_from_file(epi->ffd.file); 486 if (!sock) 487 return; 488 489 sk = sock->sk; 490 if (!sk) 491 return; 492 493 napi_id = READ_ONCE(sk->sk_napi_id); 494 495 /* Non-NAPI IDs can be rejected 496 * or 497 * Nothing to do if we already have this ID 498 */ 499 if (!napi_id_valid(napi_id) || napi_id == ep->napi_id) 500 return; 501 502 /* record NAPI ID for use in next busy poll */ 503 ep->napi_id = napi_id; 504 } 505 506 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 507 unsigned long arg) 508 { 509 struct eventpoll *ep = file->private_data; 510 void __user *uarg = (void __user *)arg; 511 struct epoll_params epoll_params; 512 513 switch (cmd) { 514 case EPIOCSPARAMS: 515 if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params))) 516 return -EFAULT; 517 518 /* pad byte must be zero */ 519 if (epoll_params.__pad) 520 return -EINVAL; 521 522 if (epoll_params.busy_poll_usecs > S32_MAX) 523 return -EINVAL; 524 525 if (epoll_params.prefer_busy_poll > 1) 526 return -EINVAL; 527 528 if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT && 529 !capable(CAP_NET_ADMIN)) 530 return -EPERM; 531 532 WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs); 533 WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget); 534 WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll); 535 return 0; 536 case EPIOCGPARAMS: 537 memset(&epoll_params, 0, sizeof(epoll_params)); 538 epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs); 539 epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget); 540 epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 541 if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params))) 542 return -EFAULT; 543 return 0; 544 default: 545 return -ENOIOCTLCMD; 546 } 547 } 548 549 static void ep_suspend_napi_irqs(struct eventpoll *ep) 550 { 551 unsigned int napi_id = READ_ONCE(ep->napi_id); 552 553 if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll)) 554 napi_suspend_irqs(napi_id); 555 } 556 557 static void ep_resume_napi_irqs(struct eventpoll *ep) 558 { 559 unsigned int napi_id = READ_ONCE(ep->napi_id); 560 561 if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll)) 562 napi_resume_irqs(napi_id); 563 } 564 565 #else 566 567 static inline bool ep_busy_loop(struct eventpoll *ep) 568 { 569 return false; 570 } 571 572 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 573 { 574 } 575 576 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 577 unsigned long arg) 578 { 579 return -EOPNOTSUPP; 580 } 581 582 static void ep_suspend_napi_irqs(struct eventpoll *ep) 583 { 584 } 585 586 static void ep_resume_napi_irqs(struct eventpoll *ep) 587 { 588 } 589 590 #endif /* CONFIG_NET_RX_BUSY_POLL */ 591 592 /* 593 * As described in commit 0ccf831cb lockdep: annotate epoll 594 * the use of wait queues used by epoll is done in a very controlled 595 * manner. Wake ups can nest inside each other, but are never done 596 * with the same locking. For example: 597 * 598 * dfd = socket(...); 599 * efd1 = epoll_create(); 600 * efd2 = epoll_create(); 601 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 602 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 603 * 604 * When a packet arrives to the device underneath "dfd", the net code will 605 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 606 * callback wakeup entry on that queue, and the wake_up() performed by the 607 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 608 * (efd1) notices that it may have some event ready, so it needs to wake up 609 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 610 * that ends up in another wake_up(), after having checked about the 611 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid 612 * stack blasting. 613 * 614 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 615 * this special case of epoll. 616 */ 617 #ifdef CONFIG_DEBUG_LOCK_ALLOC 618 619 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 620 unsigned pollflags) 621 { 622 struct eventpoll *ep_src; 623 unsigned long flags; 624 u8 nests = 0; 625 626 /* 627 * To set the subclass or nesting level for spin_lock_irqsave_nested() 628 * it might be natural to create a per-cpu nest count. However, since 629 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 630 * schedule() in the -rt kernel, the per-cpu variable are no longer 631 * protected. Thus, we are introducing a per eventpoll nest field. 632 * If we are not being call from ep_poll_callback(), epi is NULL and 633 * we are at the first level of nesting, 0. Otherwise, we are being 634 * called from ep_poll_callback() and if a previous wakeup source is 635 * not an epoll file itself, we are at depth 1 since the wakeup source 636 * is depth 0. If the wakeup source is a previous epoll file in the 637 * wakeup chain then we use its nests value and record ours as 638 * nests + 1. The previous epoll file nests value is stable since its 639 * already holding its own poll_wait.lock. 640 */ 641 if (epi) { 642 if ((is_file_epoll(epi->ffd.file))) { 643 ep_src = epi->ffd.file->private_data; 644 nests = ep_src->nests; 645 } else { 646 nests = 1; 647 } 648 } 649 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 650 ep->nests = nests + 1; 651 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); 652 ep->nests = 0; 653 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 654 } 655 656 #else 657 658 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 659 __poll_t pollflags) 660 { 661 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); 662 } 663 664 #endif 665 666 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 667 { 668 wait_queue_head_t *whead; 669 670 rcu_read_lock(); 671 /* 672 * If it is cleared by POLLFREE, it should be rcu-safe. 673 * If we read NULL we need a barrier paired with 674 * smp_store_release() in ep_poll_callback(), otherwise 675 * we rely on whead->lock. 676 */ 677 whead = smp_load_acquire(&pwq->whead); 678 if (whead) 679 remove_wait_queue(whead, &pwq->wait); 680 rcu_read_unlock(); 681 } 682 683 /* 684 * This function unregisters poll callbacks from the associated file 685 * descriptor. Must be called with "mtx" held. 686 */ 687 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 688 { 689 struct eppoll_entry **p = &epi->pwqlist; 690 struct eppoll_entry *pwq; 691 692 while ((pwq = *p) != NULL) { 693 *p = pwq->next; 694 ep_remove_wait_queue(pwq); 695 kmem_cache_free(pwq_cache, pwq); 696 } 697 } 698 699 /* call only when ep->mtx is held */ 700 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 701 { 702 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 703 } 704 705 /* call only when ep->mtx is held */ 706 static inline void ep_pm_stay_awake(struct epitem *epi) 707 { 708 struct wakeup_source *ws = ep_wakeup_source(epi); 709 710 if (ws) 711 __pm_stay_awake(ws); 712 } 713 714 static inline bool ep_has_wakeup_source(struct epitem *epi) 715 { 716 return rcu_access_pointer(epi->ws) ? true : false; 717 } 718 719 /* call when ep->mtx cannot be held (ep_poll_callback) */ 720 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 721 { 722 struct wakeup_source *ws; 723 724 rcu_read_lock(); 725 ws = rcu_dereference(epi->ws); 726 if (ws) 727 __pm_stay_awake(ws); 728 rcu_read_unlock(); 729 } 730 731 static void ep_get(struct eventpoll *ep) 732 { 733 refcount_inc(&ep->refcount); 734 } 735 736 /* 737 * Returns true if the event poll can be disposed 738 */ 739 static bool ep_refcount_dec_and_test(struct eventpoll *ep) 740 { 741 if (!refcount_dec_and_test(&ep->refcount)) 742 return false; 743 744 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); 745 return true; 746 } 747 748 static void ep_free(struct eventpoll *ep) 749 { 750 ep_resume_napi_irqs(ep); 751 mutex_destroy(&ep->mtx); 752 free_uid(ep->user); 753 wakeup_source_unregister(ep->ws); 754 kfree(ep); 755 } 756 757 /* 758 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 759 * all the associated resources. Must be called with "mtx" held. 760 * If the dying flag is set, do the removal only if force is true. 761 * This prevents ep_clear_and_put() from dropping all the ep references 762 * while running concurrently with eventpoll_release_file(). 763 * Returns true if the eventpoll can be disposed. 764 */ 765 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) 766 { 767 struct file *file = epi->ffd.file; 768 struct llist_node *put_back_last; 769 struct epitems_head *to_free; 770 struct hlist_head *head; 771 LLIST_HEAD(put_back); 772 773 lockdep_assert_held(&ep->mtx); 774 775 /* 776 * Removes poll wait queue hooks. 777 */ 778 ep_unregister_pollwait(ep, epi); 779 780 /* Remove the current item from the list of epoll hooks */ 781 spin_lock(&file->f_lock); 782 if (epi->dying && !force) { 783 spin_unlock(&file->f_lock); 784 return false; 785 } 786 787 to_free = NULL; 788 head = file->f_ep; 789 if (head->first == &epi->fllink && !epi->fllink.next) { 790 /* See eventpoll_release() for details. */ 791 WRITE_ONCE(file->f_ep, NULL); 792 if (!is_file_epoll(file)) { 793 struct epitems_head *v; 794 v = container_of(head, struct epitems_head, epitems); 795 if (!smp_load_acquire(&v->next)) 796 to_free = v; 797 } 798 } 799 hlist_del_rcu(&epi->fllink); 800 spin_unlock(&file->f_lock); 801 free_ephead(to_free); 802 803 rb_erase_cached(&epi->rbn, &ep->rbr); 804 805 if (llist_on_list(&epi->rdllink)) { 806 put_back_last = NULL; 807 while (true) { 808 struct llist_node *n = llist_del_first(&ep->rdllist); 809 810 if (&epi->rdllink == n || WARN_ON(!n)) 811 break; 812 if (!put_back_last) 813 put_back_last = n; 814 __llist_add(n, &put_back); 815 } 816 if (put_back_last) 817 llist_add_batch(put_back.first, put_back_last, &ep->rdllist); 818 } 819 820 wakeup_source_unregister(ep_wakeup_source(epi)); 821 /* 822 * At this point it is safe to free the eventpoll item. Use the union 823 * field epi->rcu, since we are trying to minimize the size of 824 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 825 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 826 * use of the rbn field. 827 */ 828 kfree_rcu(epi, rcu); 829 830 percpu_counter_dec(&ep->user->epoll_watches); 831 return true; 832 } 833 834 /* 835 * ep_remove variant for callers owing an additional reference to the ep 836 */ 837 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) 838 { 839 if (__ep_remove(ep, epi, false)) 840 WARN_ON_ONCE(ep_refcount_dec_and_test(ep)); 841 } 842 843 static void ep_clear_and_put(struct eventpoll *ep) 844 { 845 struct rb_node *rbp, *next; 846 struct epitem *epi; 847 848 /* We need to release all tasks waiting for these file */ 849 if (waitqueue_active(&ep->poll_wait)) 850 ep_poll_safewake(ep, NULL, 0); 851 852 mutex_lock(&ep->mtx); 853 854 /* 855 * Walks through the whole tree by unregistering poll callbacks. 856 */ 857 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 858 epi = rb_entry(rbp, struct epitem, rbn); 859 860 ep_unregister_pollwait(ep, epi); 861 cond_resched(); 862 } 863 864 /* 865 * Walks through the whole tree and try to free each "struct epitem". 866 * Note that ep_remove_safe() will not remove the epitem in case of a 867 * racing eventpoll_release_file(); the latter will do the removal. 868 * At this point we are sure no poll callbacks will be lingering around. 869 * Since we still own a reference to the eventpoll struct, the loop can't 870 * dispose it. 871 */ 872 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { 873 next = rb_next(rbp); 874 epi = rb_entry(rbp, struct epitem, rbn); 875 ep_remove_safe(ep, epi); 876 cond_resched(); 877 } 878 879 mutex_unlock(&ep->mtx); 880 if (ep_refcount_dec_and_test(ep)) 881 ep_free(ep); 882 } 883 884 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd, 885 unsigned long arg) 886 { 887 int ret; 888 889 if (!is_file_epoll(file)) 890 return -EINVAL; 891 892 switch (cmd) { 893 case EPIOCSPARAMS: 894 case EPIOCGPARAMS: 895 ret = ep_eventpoll_bp_ioctl(file, cmd, arg); 896 break; 897 default: 898 ret = -EINVAL; 899 break; 900 } 901 902 return ret; 903 } 904 905 static int ep_eventpoll_release(struct inode *inode, struct file *file) 906 { 907 struct eventpoll *ep = file->private_data; 908 909 if (ep) 910 ep_clear_and_put(ep); 911 912 return 0; 913 } 914 915 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 916 917 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 918 { 919 struct eventpoll *ep = file->private_data; 920 struct wakeup_source *ws; 921 struct llist_node *n; 922 struct epitem *epi; 923 poll_table pt; 924 __poll_t res = 0; 925 926 init_poll_funcptr(&pt, NULL); 927 928 /* Insert inside our poll wait queue */ 929 poll_wait(file, &ep->poll_wait, wait); 930 931 /* 932 * Proceed to find out if wanted events are really available inside 933 * the ready list. 934 */ 935 mutex_lock_nested(&ep->mtx, depth); 936 while (true) { 937 n = llist_del_first_init(&ep->rdllist); 938 if (!n) 939 break; 940 941 epi = llist_entry(n, struct epitem, rdllink); 942 943 if (ep_item_poll(epi, &pt, depth + 1)) { 944 res = EPOLLIN | EPOLLRDNORM; 945 epitem_ready(epi); 946 break; 947 } else { 948 /* 949 * We need to activate ep before deactivating epi, to prevent autosuspend 950 * just in case epi becomes active after ep_item_poll() above. 951 * 952 * This is similar to ep_send_events(). 953 */ 954 ws = ep_wakeup_source(epi); 955 if (ws) { 956 if (ws->active) 957 __pm_stay_awake(ep->ws); 958 __pm_relax(ws); 959 } 960 __pm_relax(ep_wakeup_source(epi)); 961 962 /* Just in case epi becomes active right before __pm_relax() */ 963 if (unlikely(ep_item_poll(epi, &pt, depth + 1))) 964 ep_pm_stay_awake(epi); 965 966 __pm_relax(ep->ws); 967 } 968 } 969 mutex_unlock(&ep->mtx); 970 return res; 971 } 972 973 /* 974 * The ffd.file pointer may be in the process of being torn down due to 975 * being closed, but we may not have finished eventpoll_release() yet. 976 * 977 * Normally, even with the atomic_long_inc_not_zero, the file may have 978 * been free'd and then gotten re-allocated to something else (since 979 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU). 980 * 981 * But for epoll, users hold the ep->mtx mutex, and as such any file in 982 * the process of being free'd will block in eventpoll_release_file() 983 * and thus the underlying file allocation will not be free'd, and the 984 * file re-use cannot happen. 985 * 986 * For the same reason we can avoid a rcu_read_lock() around the 987 * operation - 'ffd.file' cannot go away even if the refcount has 988 * reached zero (but we must still not call out to ->poll() functions 989 * etc). 990 */ 991 static struct file *epi_fget(const struct epitem *epi) 992 { 993 struct file *file; 994 995 file = epi->ffd.file; 996 if (!file_ref_get(&file->f_ref)) 997 file = NULL; 998 return file; 999 } 1000 1001 /* 1002 * Differs from ep_eventpoll_poll() in that internal callers already have 1003 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 1004 * is correctly annotated. 1005 */ 1006 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 1007 int depth) 1008 { 1009 struct file *file = epi_fget(epi); 1010 __poll_t res; 1011 1012 /* 1013 * We could return EPOLLERR | EPOLLHUP or something, but let's 1014 * treat this more as "file doesn't exist, poll didn't happen". 1015 */ 1016 if (!file) 1017 return 0; 1018 1019 pt->_key = epi->event.events; 1020 if (!is_file_epoll(file)) 1021 res = vfs_poll(file, pt); 1022 else 1023 res = __ep_eventpoll_poll(file, pt, depth); 1024 fput(file); 1025 return res & epi->event.events; 1026 } 1027 1028 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 1029 { 1030 return __ep_eventpoll_poll(file, wait, 0); 1031 } 1032 1033 #ifdef CONFIG_PROC_FS 1034 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 1035 { 1036 struct eventpoll *ep = f->private_data; 1037 struct rb_node *rbp; 1038 1039 mutex_lock(&ep->mtx); 1040 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1041 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 1042 struct inode *inode = file_inode(epi->ffd.file); 1043 1044 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 1045 " pos:%lli ino:%lx sdev:%x\n", 1046 epi->ffd.fd, epi->event.events, 1047 (long long)epi->event.data, 1048 (long long)epi->ffd.file->f_pos, 1049 inode->i_ino, inode->i_sb->s_dev); 1050 if (seq_has_overflowed(m)) 1051 break; 1052 } 1053 mutex_unlock(&ep->mtx); 1054 } 1055 #endif 1056 1057 /* File callbacks that implement the eventpoll file behaviour */ 1058 static const struct file_operations eventpoll_fops = { 1059 #ifdef CONFIG_PROC_FS 1060 .show_fdinfo = ep_show_fdinfo, 1061 #endif 1062 .release = ep_eventpoll_release, 1063 .poll = ep_eventpoll_poll, 1064 .llseek = noop_llseek, 1065 .unlocked_ioctl = ep_eventpoll_ioctl, 1066 .compat_ioctl = compat_ptr_ioctl, 1067 }; 1068 1069 /* 1070 * This is called from eventpoll_release() to unlink files from the eventpoll 1071 * interface. We need to have this facility to cleanup correctly files that are 1072 * closed without being removed from the eventpoll interface. 1073 */ 1074 void eventpoll_release_file(struct file *file) 1075 { 1076 struct eventpoll *ep; 1077 struct epitem *epi; 1078 bool dispose; 1079 1080 /* 1081 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from 1082 * touching the epitems list before eventpoll_release_file() can access 1083 * the ep->mtx. 1084 */ 1085 again: 1086 spin_lock(&file->f_lock); 1087 if (file->f_ep && file->f_ep->first) { 1088 epi = hlist_entry(file->f_ep->first, struct epitem, fllink); 1089 epi->dying = true; 1090 spin_unlock(&file->f_lock); 1091 1092 /* 1093 * ep access is safe as we still own a reference to the ep 1094 * struct 1095 */ 1096 ep = epi->ep; 1097 mutex_lock(&ep->mtx); 1098 dispose = __ep_remove(ep, epi, true); 1099 mutex_unlock(&ep->mtx); 1100 1101 if (dispose && ep_refcount_dec_and_test(ep)) 1102 ep_free(ep); 1103 goto again; 1104 } 1105 spin_unlock(&file->f_lock); 1106 } 1107 1108 static int ep_alloc(struct eventpoll **pep) 1109 { 1110 struct eventpoll *ep; 1111 1112 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1113 if (unlikely(!ep)) 1114 return -ENOMEM; 1115 1116 mutex_init(&ep->mtx); 1117 init_waitqueue_head(&ep->wq); 1118 init_waitqueue_head(&ep->poll_wait); 1119 init_llist_head(&ep->rdllist); 1120 ep->rbr = RB_ROOT_CACHED; 1121 ep->user = get_current_user(); 1122 refcount_set(&ep->refcount, 1); 1123 1124 *pep = ep; 1125 1126 return 0; 1127 } 1128 1129 /* 1130 * Search the file inside the eventpoll tree. The RB tree operations 1131 * are protected by the "mtx" mutex, and ep_find() must be called with 1132 * "mtx" held. 1133 */ 1134 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1135 { 1136 int kcmp; 1137 struct rb_node *rbp; 1138 struct epitem *epi, *epir = NULL; 1139 struct epoll_filefd ffd; 1140 1141 ep_set_ffd(&ffd, file, fd); 1142 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1143 epi = rb_entry(rbp, struct epitem, rbn); 1144 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1145 if (kcmp > 0) 1146 rbp = rbp->rb_right; 1147 else if (kcmp < 0) 1148 rbp = rbp->rb_left; 1149 else { 1150 epir = epi; 1151 break; 1152 } 1153 } 1154 1155 return epir; 1156 } 1157 1158 #ifdef CONFIG_KCMP 1159 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1160 { 1161 struct rb_node *rbp; 1162 struct epitem *epi; 1163 1164 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1165 epi = rb_entry(rbp, struct epitem, rbn); 1166 if (epi->ffd.fd == tfd) { 1167 if (toff == 0) 1168 return epi; 1169 else 1170 toff--; 1171 } 1172 cond_resched(); 1173 } 1174 1175 return NULL; 1176 } 1177 1178 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1179 unsigned long toff) 1180 { 1181 struct file *file_raw; 1182 struct eventpoll *ep; 1183 struct epitem *epi; 1184 1185 if (!is_file_epoll(file)) 1186 return ERR_PTR(-EINVAL); 1187 1188 ep = file->private_data; 1189 1190 mutex_lock(&ep->mtx); 1191 epi = ep_find_tfd(ep, tfd, toff); 1192 if (epi) 1193 file_raw = epi->ffd.file; 1194 else 1195 file_raw = ERR_PTR(-ENOENT); 1196 mutex_unlock(&ep->mtx); 1197 1198 return file_raw; 1199 } 1200 #endif /* CONFIG_KCMP */ 1201 1202 /* 1203 * This is the callback that is passed to the wait queue wakeup 1204 * mechanism. It is called by the stored file descriptors when they 1205 * have events to report. 1206 * 1207 * Another thing worth to mention is that ep_poll_callback() can be called 1208 * concurrently for the same @epi from different CPUs if poll table was inited 1209 * with several wait queues entries. Plural wakeup from different CPUs of a 1210 * single wait queue is serialized by wq.lock, but the case when multiple wait 1211 * queues are used should be detected accordingly. This is detected using 1212 * cmpxchg() operation. 1213 */ 1214 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1215 { 1216 struct epitem *epi = ep_item_from_wait(wait); 1217 struct eventpoll *ep = epi->ep; 1218 __poll_t pollflags = key_to_poll(key); 1219 int ewake = 0; 1220 1221 ep_set_busy_poll_napi_id(epi); 1222 1223 /* 1224 * If the event mask does not contain any poll(2) event, we consider the 1225 * descriptor to be disabled. This condition is likely the effect of the 1226 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1227 * until the next EPOLL_CTL_MOD will be issued. 1228 */ 1229 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1230 goto out; 1231 1232 /* 1233 * Check the events coming with the callback. At this stage, not 1234 * every device reports the events in the "key" parameter of the 1235 * callback. We need to be able to handle both cases here, hence the 1236 * test for "key" != NULL before the event match test. 1237 */ 1238 if (pollflags && !(pollflags & epi->event.events)) 1239 goto out; 1240 1241 ep_pm_stay_awake_rcu(epi); 1242 epitem_ready(epi); 1243 1244 /* 1245 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1246 * wait list. 1247 */ 1248 if (waitqueue_active(&ep->wq)) { 1249 if ((epi->event.events & EPOLLEXCLUSIVE) && 1250 !(pollflags & POLLFREE)) { 1251 switch (pollflags & EPOLLINOUT_BITS) { 1252 case EPOLLIN: 1253 if (epi->event.events & EPOLLIN) 1254 ewake = 1; 1255 break; 1256 case EPOLLOUT: 1257 if (epi->event.events & EPOLLOUT) 1258 ewake = 1; 1259 break; 1260 case 0: 1261 ewake = 1; 1262 break; 1263 } 1264 } 1265 if (sync) 1266 wake_up_sync(&ep->wq); 1267 else 1268 wake_up(&ep->wq); 1269 } 1270 if (waitqueue_active(&ep->poll_wait)) 1271 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); 1272 1273 out: 1274 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1275 ewake = 1; 1276 1277 if (pollflags & POLLFREE) { 1278 /* 1279 * If we race with ep_remove_wait_queue() it can miss 1280 * ->whead = NULL and do another remove_wait_queue() after 1281 * us, so we can't use __remove_wait_queue(). 1282 */ 1283 list_del_init(&wait->entry); 1284 /* 1285 * ->whead != NULL protects us from the race with 1286 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() 1287 * takes whead->lock held by the caller. Once we nullify it, 1288 * nothing protects ep/epi or even wait. 1289 */ 1290 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1291 } 1292 1293 return ewake; 1294 } 1295 1296 /* 1297 * This is the callback that is used to add our wait queue to the 1298 * target file wakeup lists. 1299 */ 1300 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1301 poll_table *pt) 1302 { 1303 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1304 struct epitem *epi = epq->epi; 1305 struct eppoll_entry *pwq; 1306 1307 if (unlikely(!epi)) // an earlier allocation has failed 1308 return; 1309 1310 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1311 if (unlikely(!pwq)) { 1312 epq->epi = NULL; 1313 return; 1314 } 1315 1316 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1317 pwq->whead = whead; 1318 pwq->base = epi; 1319 if (epi->event.events & EPOLLEXCLUSIVE) 1320 add_wait_queue_exclusive(whead, &pwq->wait); 1321 else 1322 add_wait_queue(whead, &pwq->wait); 1323 pwq->next = epi->pwqlist; 1324 epi->pwqlist = pwq; 1325 } 1326 1327 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1328 { 1329 int kcmp; 1330 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1331 struct epitem *epic; 1332 bool leftmost = true; 1333 1334 while (*p) { 1335 parent = *p; 1336 epic = rb_entry(parent, struct epitem, rbn); 1337 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1338 if (kcmp > 0) { 1339 p = &parent->rb_right; 1340 leftmost = false; 1341 } else 1342 p = &parent->rb_left; 1343 } 1344 rb_link_node(&epi->rbn, parent, p); 1345 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1346 } 1347 1348 1349 1350 #define PATH_ARR_SIZE 5 1351 /* 1352 * These are the number paths of length 1 to 5, that we are allowing to emanate 1353 * from a single file of interest. For example, we allow 1000 paths of length 1354 * 1, to emanate from each file of interest. This essentially represents the 1355 * potential wakeup paths, which need to be limited in order to avoid massive 1356 * uncontrolled wakeup storms. The common use case should be a single ep which 1357 * is connected to n file sources. In this case each file source has 1 path 1358 * of length 1. Thus, the numbers below should be more than sufficient. These 1359 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1360 * and delete can't add additional paths. Protected by the epnested_mutex. 1361 */ 1362 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1363 static int path_count[PATH_ARR_SIZE]; 1364 1365 static int path_count_inc(int nests) 1366 { 1367 /* Allow an arbitrary number of depth 1 paths */ 1368 if (nests == 0) 1369 return 0; 1370 1371 if (++path_count[nests] > path_limits[nests]) 1372 return -1; 1373 return 0; 1374 } 1375 1376 static void path_count_init(void) 1377 { 1378 int i; 1379 1380 for (i = 0; i < PATH_ARR_SIZE; i++) 1381 path_count[i] = 0; 1382 } 1383 1384 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1385 { 1386 int error = 0; 1387 struct epitem *epi; 1388 1389 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1390 return -1; 1391 1392 /* CTL_DEL can remove links here, but that can't increase our count */ 1393 hlist_for_each_entry_rcu(epi, refs, fllink) { 1394 struct hlist_head *refs = &epi->ep->refs; 1395 if (hlist_empty(refs)) 1396 error = path_count_inc(depth); 1397 else 1398 error = reverse_path_check_proc(refs, depth + 1); 1399 if (error != 0) 1400 break; 1401 } 1402 return error; 1403 } 1404 1405 /** 1406 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1407 * links that are proposed to be newly added. We need to 1408 * make sure that those added links don't add too many 1409 * paths such that we will spend all our time waking up 1410 * eventpoll objects. 1411 * 1412 * Return: %zero if the proposed links don't create too many paths, 1413 * %-1 otherwise. 1414 */ 1415 static int reverse_path_check(void) 1416 { 1417 struct epitems_head *p; 1418 1419 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1420 int error; 1421 path_count_init(); 1422 rcu_read_lock(); 1423 error = reverse_path_check_proc(&p->epitems, 0); 1424 rcu_read_unlock(); 1425 if (error) 1426 return error; 1427 } 1428 return 0; 1429 } 1430 1431 static int ep_create_wakeup_source(struct epitem *epi) 1432 { 1433 struct name_snapshot n; 1434 struct wakeup_source *ws; 1435 1436 if (!epi->ep->ws) { 1437 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1438 if (!epi->ep->ws) 1439 return -ENOMEM; 1440 } 1441 1442 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1443 ws = wakeup_source_register(NULL, n.name.name); 1444 release_dentry_name_snapshot(&n); 1445 1446 if (!ws) 1447 return -ENOMEM; 1448 rcu_assign_pointer(epi->ws, ws); 1449 1450 return 0; 1451 } 1452 1453 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1454 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1455 { 1456 struct wakeup_source *ws = ep_wakeup_source(epi); 1457 1458 RCU_INIT_POINTER(epi->ws, NULL); 1459 1460 /* 1461 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1462 * used internally by wakeup_source_remove, too (called by 1463 * wakeup_source_unregister), so we cannot use call_rcu 1464 */ 1465 synchronize_rcu(); 1466 wakeup_source_unregister(ws); 1467 } 1468 1469 static int attach_epitem(struct file *file, struct epitem *epi) 1470 { 1471 struct epitems_head *to_free = NULL; 1472 struct hlist_head *head = NULL; 1473 struct eventpoll *ep = NULL; 1474 1475 if (is_file_epoll(file)) 1476 ep = file->private_data; 1477 1478 if (ep) { 1479 head = &ep->refs; 1480 } else if (!READ_ONCE(file->f_ep)) { 1481 allocate: 1482 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1483 if (!to_free) 1484 return -ENOMEM; 1485 head = &to_free->epitems; 1486 } 1487 spin_lock(&file->f_lock); 1488 if (!file->f_ep) { 1489 if (unlikely(!head)) { 1490 spin_unlock(&file->f_lock); 1491 goto allocate; 1492 } 1493 /* See eventpoll_release() for details. */ 1494 WRITE_ONCE(file->f_ep, head); 1495 to_free = NULL; 1496 } 1497 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1498 spin_unlock(&file->f_lock); 1499 free_ephead(to_free); 1500 return 0; 1501 } 1502 1503 /* 1504 * Must be called with "mtx" held. 1505 */ 1506 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1507 struct file *tfile, int fd, int full_check) 1508 { 1509 int error, pwake = 0; 1510 __poll_t revents; 1511 struct epitem *epi; 1512 struct ep_pqueue epq; 1513 struct eventpoll *tep = NULL; 1514 1515 if (is_file_epoll(tfile)) 1516 tep = tfile->private_data; 1517 1518 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1519 max_user_watches) >= 0)) 1520 return -ENOSPC; 1521 percpu_counter_inc(&ep->user->epoll_watches); 1522 1523 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1524 percpu_counter_dec(&ep->user->epoll_watches); 1525 return -ENOMEM; 1526 } 1527 1528 /* Item initialization follow here ... */ 1529 init_llist_node(&epi->rdllink); 1530 epi->ep = ep; 1531 ep_set_ffd(&epi->ffd, tfile, fd); 1532 epi->event = *event; 1533 1534 if (tep) 1535 mutex_lock_nested(&tep->mtx, 1); 1536 /* Add the current item to the list of active epoll hook for this file */ 1537 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1538 if (tep) 1539 mutex_unlock(&tep->mtx); 1540 kmem_cache_free(epi_cache, epi); 1541 percpu_counter_dec(&ep->user->epoll_watches); 1542 return -ENOMEM; 1543 } 1544 1545 if (full_check && !tep) 1546 list_file(tfile); 1547 1548 /* 1549 * Add the current item to the RB tree. All RB tree operations are 1550 * protected by "mtx", and ep_insert() is called with "mtx" held. 1551 */ 1552 ep_rbtree_insert(ep, epi); 1553 if (tep) 1554 mutex_unlock(&tep->mtx); 1555 1556 /* 1557 * ep_remove_safe() calls in the later error paths can't lead to 1558 * ep_free() as the ep file itself still holds an ep reference. 1559 */ 1560 ep_get(ep); 1561 1562 /* now check if we've created too many backpaths */ 1563 if (unlikely(full_check && reverse_path_check())) { 1564 ep_remove_safe(ep, epi); 1565 return -EINVAL; 1566 } 1567 1568 if (epi->event.events & EPOLLWAKEUP) { 1569 error = ep_create_wakeup_source(epi); 1570 if (error) { 1571 ep_remove_safe(ep, epi); 1572 return error; 1573 } 1574 } 1575 1576 /* Initialize the poll table using the queue callback */ 1577 epq.epi = epi; 1578 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1579 1580 /* 1581 * Attach the item to the poll hooks and get current event bits. 1582 * We can safely use the file* here because its usage count has 1583 * been increased by the caller of this function. Note that after 1584 * this operation completes, the poll callback can start hitting 1585 * the new item. 1586 */ 1587 revents = ep_item_poll(epi, &epq.pt, 1); 1588 1589 /* 1590 * We have to check if something went wrong during the poll wait queue 1591 * install process. Namely an allocation for a wait queue failed due 1592 * high memory pressure. 1593 */ 1594 if (unlikely(!epq.epi)) { 1595 ep_remove_safe(ep, epi); 1596 return -ENOMEM; 1597 } 1598 1599 /* record NAPI ID of new item if present */ 1600 ep_set_busy_poll_napi_id(epi); 1601 1602 /* If the file is already "ready" we drop it inside the ready list */ 1603 if (revents) { 1604 ep_pm_stay_awake(epi); 1605 epitem_ready(epi); 1606 1607 /* Notify waiting tasks that events are available */ 1608 if (waitqueue_active(&ep->wq)) 1609 wake_up(&ep->wq); 1610 if (waitqueue_active(&ep->poll_wait)) 1611 pwake++; 1612 } 1613 1614 /* We have to call this outside the lock */ 1615 if (pwake) 1616 ep_poll_safewake(ep, NULL, 0); 1617 1618 return 0; 1619 } 1620 1621 /* 1622 * Modify the interest event mask by dropping an event if the new mask 1623 * has a match in the current file status. Must be called with "mtx" held. 1624 */ 1625 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1626 const struct epoll_event *event) 1627 { 1628 poll_table pt; 1629 1630 init_poll_funcptr(&pt, NULL); 1631 1632 /* 1633 * Set the new event interest mask before calling f_op->poll(); 1634 * otherwise we might miss an event that happens between the 1635 * f_op->poll() call and the new event set registering. 1636 */ 1637 epi->event.events = event->events; /* need barrier below */ 1638 epi->event.data = event->data; /* protected by mtx */ 1639 if (epi->event.events & EPOLLWAKEUP) { 1640 if (!ep_has_wakeup_source(epi)) 1641 ep_create_wakeup_source(epi); 1642 } else if (ep_has_wakeup_source(epi)) { 1643 ep_destroy_wakeup_source(epi); 1644 } 1645 1646 /* 1647 * The following barrier has two effects: 1648 * 1649 * 1) Flush epi changes above to other CPUs. This ensures 1650 * we do not miss events from ep_poll_callback if an 1651 * event occurs immediately after we call f_op->poll(). 1652 * We need this because we did not take ep->lock while 1653 * changing epi above (but ep_poll_callback does take 1654 * ep->lock). 1655 * 1656 * 2) We also need to ensure we do not miss _past_ events 1657 * when calling f_op->poll(). This barrier also 1658 * pairs with the barrier in wq_has_sleeper (see 1659 * comments for wq_has_sleeper). 1660 * 1661 * This barrier will now guarantee ep_poll_callback or f_op->poll 1662 * (or both) will notice the readiness of an item. 1663 */ 1664 smp_mb(); 1665 1666 /* 1667 * Get current event bits. We can safely use the file* here because 1668 * its usage count has been increased by the caller of this function. 1669 * If the item is "hot" and it is not registered inside the ready 1670 * list, push it inside. 1671 */ 1672 if (ep_item_poll(epi, &pt, 1)) { 1673 ep_pm_stay_awake(epi); 1674 epitem_ready(epi); 1675 1676 /* Notify waiting tasks that events are available */ 1677 if (waitqueue_active(&ep->wq)) 1678 wake_up(&ep->wq); 1679 if (waitqueue_active(&ep->poll_wait)) 1680 ep_poll_safewake(ep, NULL, 0); 1681 } 1682 1683 return 0; 1684 } 1685 1686 static int ep_send_events(struct eventpoll *ep, 1687 struct epoll_event __user *events, int maxevents) 1688 { 1689 struct epitem *epi, *tmp; 1690 LLIST_HEAD(txlist); 1691 poll_table pt; 1692 int res = 0; 1693 1694 /* 1695 * Always short-circuit for fatal signals to allow threads to make a 1696 * timely exit without the chance of finding more events available and 1697 * fetching repeatedly. 1698 */ 1699 if (fatal_signal_pending(current)) 1700 return -EINTR; 1701 1702 init_poll_funcptr(&pt, NULL); 1703 1704 mutex_lock(&ep->mtx); 1705 1706 while (res < maxevents) { 1707 struct wakeup_source *ws; 1708 struct llist_node *n; 1709 __poll_t revents; 1710 1711 n = llist_del_first(&ep->rdllist); 1712 if (!n) 1713 break; 1714 1715 epi = llist_entry(n, struct epitem, rdllink); 1716 1717 /* 1718 * Activate ep->ws before deactivating epi->ws to prevent 1719 * triggering auto-suspend here (in case we reactive epi->ws 1720 * below). 1721 * 1722 * This could be rearranged to delay the deactivation of epi->ws 1723 * instead, but then epi->ws would temporarily be out of sync 1724 * with ep_is_linked(). 1725 */ 1726 ws = ep_wakeup_source(epi); 1727 if (ws) { 1728 if (ws->active) 1729 __pm_stay_awake(ep->ws); 1730 __pm_relax(ws); 1731 } 1732 1733 /* 1734 * If the event mask intersect the caller-requested one, 1735 * deliver the event to userspace. Again, we are holding ep->mtx, 1736 * so no operations coming from userspace can change the item. 1737 */ 1738 revents = ep_item_poll(epi, &pt, 1); 1739 if (!revents) { 1740 init_llist_node(n); 1741 1742 /* 1743 * Just in case epi becomes ready after ep_item_poll() above, but before 1744 * init_llist_node(). Make sure to add it to the ready list, otherwise an 1745 * event may be lost. 1746 */ 1747 if (unlikely(ep_item_poll(epi, &pt, 1))) { 1748 ep_pm_stay_awake(epi); 1749 epitem_ready(epi); 1750 } 1751 continue; 1752 } 1753 1754 events = epoll_put_uevent(revents, epi->event.data, events); 1755 if (!events) { 1756 llist_add(&epi->rdllink, &ep->rdllist); 1757 if (!res) 1758 res = -EFAULT; 1759 break; 1760 } 1761 res++; 1762 if (epi->event.events & EPOLLONESHOT) 1763 epi->event.events &= EP_PRIVATE_BITS; 1764 __llist_add(n, &txlist); 1765 } 1766 1767 llist_for_each_entry_safe(epi, tmp, txlist.first, rdllink) { 1768 init_llist_node(&epi->rdllink); 1769 1770 if (!(epi->event.events & EPOLLET)) { 1771 /* 1772 * If this file has been added with Level Trigger mode, we need to insert 1773 * back inside the ready list, so that the next call to epoll_wait() will 1774 * check again the events availability. 1775 */ 1776 ep_pm_stay_awake(epi); 1777 epitem_ready(epi); 1778 } 1779 } 1780 1781 __pm_relax(ep->ws); 1782 mutex_unlock(&ep->mtx); 1783 1784 if (!llist_empty(&ep->rdllist)) { 1785 if (waitqueue_active(&ep->wq)) 1786 wake_up(&ep->wq); 1787 } 1788 1789 return res; 1790 } 1791 1792 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1793 { 1794 struct timespec64 now; 1795 1796 if (ms < 0) 1797 return NULL; 1798 1799 if (!ms) { 1800 to->tv_sec = 0; 1801 to->tv_nsec = 0; 1802 return to; 1803 } 1804 1805 to->tv_sec = ms / MSEC_PER_SEC; 1806 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1807 1808 ktime_get_ts64(&now); 1809 *to = timespec64_add_safe(now, *to); 1810 return to; 1811 } 1812 1813 /* 1814 * autoremove_wake_function, but remove even on failure to wake up, because we 1815 * know that default_wake_function/ttwu will only fail if the thread is already 1816 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1817 * try to reuse it. 1818 */ 1819 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1820 unsigned int mode, int sync, void *key) 1821 { 1822 int ret = default_wake_function(wq_entry, mode, sync, key); 1823 1824 /* 1825 * Pairs with list_empty_careful in ep_poll, and ensures future loop 1826 * iterations see the cause of this wakeup. 1827 */ 1828 list_del_init_careful(&wq_entry->entry); 1829 return ret; 1830 } 1831 1832 static int ep_try_send_events(struct eventpoll *ep, 1833 struct epoll_event __user *events, int maxevents) 1834 { 1835 int res; 1836 1837 /* 1838 * Try to transfer events to user space. In case we get 0 events and 1839 * there's still timeout left over, we go trying again in search of 1840 * more luck. 1841 */ 1842 res = ep_send_events(ep, events, maxevents); 1843 if (res > 0) 1844 ep_suspend_napi_irqs(ep); 1845 return res; 1846 } 1847 1848 static int ep_schedule_timeout(ktime_t *to) 1849 { 1850 if (to) 1851 return ktime_after(*to, ktime_get()); 1852 else 1853 return 1; 1854 } 1855 1856 /** 1857 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1858 * event buffer. 1859 * 1860 * @ep: Pointer to the eventpoll context. 1861 * @events: Pointer to the userspace buffer where the ready events should be 1862 * stored. 1863 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1864 * @timeout: Maximum timeout for the ready events fetch operation, in 1865 * timespec. If the timeout is zero, the function will not block, 1866 * while if the @timeout ptr is NULL, the function will block 1867 * until at least one event has been retrieved (or an error 1868 * occurred). 1869 * 1870 * Return: the number of ready events which have been fetched, or an 1871 * error code, in case of error. 1872 */ 1873 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1874 int maxevents, struct timespec64 *timeout) 1875 { 1876 int res, eavail, timed_out = 0; 1877 u64 slack = 0; 1878 wait_queue_entry_t wait; 1879 ktime_t expires, *to = NULL; 1880 1881 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 1882 slack = select_estimate_accuracy(timeout); 1883 to = &expires; 1884 *to = timespec64_to_ktime(*timeout); 1885 } else if (timeout) { 1886 /* 1887 * Avoid the unnecessary trip to the wait queue loop, if the 1888 * caller specified a non blocking operation. 1889 */ 1890 timed_out = 1; 1891 } 1892 1893 /* 1894 * This call is racy: We may or may not see events that are being added 1895 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 1896 * with a non-zero timeout, this thread will check the ready list under 1897 * lock and will add to the wait queue. For cases with a zero 1898 * timeout, the user by definition should not care and will have to 1899 * recheck again. 1900 */ 1901 eavail = ep_events_available(ep); 1902 1903 while (1) { 1904 if (eavail) { 1905 res = ep_try_send_events(ep, events, maxevents); 1906 if (res) 1907 return res; 1908 } 1909 1910 if (timed_out) 1911 return 0; 1912 1913 eavail = ep_busy_loop(ep); 1914 if (eavail) 1915 continue; 1916 1917 if (signal_pending(current)) 1918 return -EINTR; 1919 1920 /* 1921 * Internally init_wait() uses autoremove_wake_function(), 1922 * thus wait entry is removed from the wait queue on each 1923 * wakeup. Why it is important? In case of several waiters 1924 * each new wakeup will hit the next waiter, giving it the 1925 * chance to harvest new event. Otherwise wakeup can be 1926 * lost. This is also good performance-wise, because on 1927 * normal wakeup path no need to call __remove_wait_queue() 1928 * explicitly, thus ep->lock is not taken, which halts the 1929 * event delivery. 1930 * 1931 * In fact, we now use an even more aggressive function that 1932 * unconditionally removes, because we don't reuse the wait 1933 * entry between loop iterations. This lets us also avoid the 1934 * performance issue if a process is killed, causing all of its 1935 * threads to wake up without being removed normally. 1936 */ 1937 init_wait(&wait); 1938 wait.func = ep_autoremove_wake_function; 1939 1940 prepare_to_wait_exclusive(&ep->wq, &wait, TASK_INTERRUPTIBLE); 1941 1942 if (!ep_events_available(ep)) 1943 timed_out = !ep_schedule_timeout(to) || 1944 !schedule_hrtimeout_range(to, slack, 1945 HRTIMER_MODE_ABS); 1946 1947 finish_wait(&ep->wq, &wait); 1948 eavail = ep_events_available(ep); 1949 } 1950 } 1951 1952 /** 1953 * ep_loop_check_proc - verify that adding an epoll file inside another 1954 * epoll structure does not violate the constraints, in 1955 * terms of closed loops, or too deep chains (which can 1956 * result in excessive stack usage). 1957 * 1958 * @ep: the &struct eventpoll to be currently checked. 1959 * @depth: Current depth of the path being checked. 1960 * 1961 * Return: %zero if adding the epoll @file inside current epoll 1962 * structure @ep does not violate the constraints, or %-1 otherwise. 1963 */ 1964 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 1965 { 1966 int error = 0; 1967 struct rb_node *rbp; 1968 struct epitem *epi; 1969 1970 mutex_lock_nested(&ep->mtx, depth + 1); 1971 ep->gen = loop_check_gen; 1972 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1973 epi = rb_entry(rbp, struct epitem, rbn); 1974 if (unlikely(is_file_epoll(epi->ffd.file))) { 1975 struct eventpoll *ep_tovisit; 1976 ep_tovisit = epi->ffd.file->private_data; 1977 if (ep_tovisit->gen == loop_check_gen) 1978 continue; 1979 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 1980 error = -1; 1981 else 1982 error = ep_loop_check_proc(ep_tovisit, depth + 1); 1983 if (error != 0) 1984 break; 1985 } else { 1986 /* 1987 * If we've reached a file that is not associated with 1988 * an ep, then we need to check if the newly added 1989 * links are going to add too many wakeup paths. We do 1990 * this by adding it to the tfile_check_list, if it's 1991 * not already there, and calling reverse_path_check() 1992 * during ep_insert(). 1993 */ 1994 list_file(epi->ffd.file); 1995 } 1996 } 1997 mutex_unlock(&ep->mtx); 1998 1999 return error; 2000 } 2001 2002 /** 2003 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 2004 * into another epoll file (represented by @ep) does not create 2005 * closed loops or too deep chains. 2006 * 2007 * @ep: Pointer to the epoll we are inserting into. 2008 * @to: Pointer to the epoll to be inserted. 2009 * 2010 * Return: %zero if adding the epoll @to inside the epoll @from 2011 * does not violate the constraints, or %-1 otherwise. 2012 */ 2013 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 2014 { 2015 inserting_into = ep; 2016 return ep_loop_check_proc(to, 0); 2017 } 2018 2019 static void clear_tfile_check_list(void) 2020 { 2021 rcu_read_lock(); 2022 while (tfile_check_list != EP_UNACTIVE_PTR) { 2023 struct epitems_head *head = tfile_check_list; 2024 tfile_check_list = head->next; 2025 unlist_file(head); 2026 } 2027 rcu_read_unlock(); 2028 } 2029 2030 /* 2031 * Open an eventpoll file descriptor. 2032 */ 2033 static int do_epoll_create(int flags) 2034 { 2035 int error, fd; 2036 struct eventpoll *ep = NULL; 2037 struct file *file; 2038 2039 /* Check the EPOLL_* constant for consistency. */ 2040 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2041 2042 if (flags & ~EPOLL_CLOEXEC) 2043 return -EINVAL; 2044 /* 2045 * Create the internal data structure ("struct eventpoll"). 2046 */ 2047 error = ep_alloc(&ep); 2048 if (error < 0) 2049 return error; 2050 /* 2051 * Creates all the items needed to setup an eventpoll file. That is, 2052 * a file structure and a free file descriptor. 2053 */ 2054 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2055 if (fd < 0) { 2056 error = fd; 2057 goto out_free_ep; 2058 } 2059 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2060 O_RDWR | (flags & O_CLOEXEC)); 2061 if (IS_ERR(file)) { 2062 error = PTR_ERR(file); 2063 goto out_free_fd; 2064 } 2065 ep->file = file; 2066 fd_install(fd, file); 2067 return fd; 2068 2069 out_free_fd: 2070 put_unused_fd(fd); 2071 out_free_ep: 2072 ep_clear_and_put(ep); 2073 return error; 2074 } 2075 2076 SYSCALL_DEFINE1(epoll_create1, int, flags) 2077 { 2078 return do_epoll_create(flags); 2079 } 2080 2081 SYSCALL_DEFINE1(epoll_create, int, size) 2082 { 2083 if (size <= 0) 2084 return -EINVAL; 2085 2086 return do_epoll_create(0); 2087 } 2088 2089 #ifdef CONFIG_PM_SLEEP 2090 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2091 { 2092 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 2093 epev->events &= ~EPOLLWAKEUP; 2094 } 2095 #else 2096 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2097 { 2098 epev->events &= ~EPOLLWAKEUP; 2099 } 2100 #endif 2101 2102 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2103 bool nonblock) 2104 { 2105 if (!nonblock) { 2106 mutex_lock_nested(mutex, depth); 2107 return 0; 2108 } 2109 if (mutex_trylock(mutex)) 2110 return 0; 2111 return -EAGAIN; 2112 } 2113 2114 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2115 bool nonblock) 2116 { 2117 int error; 2118 int full_check = 0; 2119 struct eventpoll *ep; 2120 struct epitem *epi; 2121 struct eventpoll *tep = NULL; 2122 2123 CLASS(fd, f)(epfd); 2124 if (fd_empty(f)) 2125 return -EBADF; 2126 2127 /* Get the "struct file *" for the target file */ 2128 CLASS(fd, tf)(fd); 2129 if (fd_empty(tf)) 2130 return -EBADF; 2131 2132 /* The target file descriptor must support poll */ 2133 if (!file_can_poll(fd_file(tf))) 2134 return -EPERM; 2135 2136 /* Check if EPOLLWAKEUP is allowed */ 2137 if (ep_op_has_event(op)) 2138 ep_take_care_of_epollwakeup(epds); 2139 2140 /* 2141 * We have to check that the file structure underneath the file descriptor 2142 * the user passed to us _is_ an eventpoll file. And also we do not permit 2143 * adding an epoll file descriptor inside itself. 2144 */ 2145 error = -EINVAL; 2146 if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f))) 2147 goto error_tgt_fput; 2148 2149 /* 2150 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2151 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2152 * Also, we do not currently supported nested exclusive wakeups. 2153 */ 2154 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2155 if (op == EPOLL_CTL_MOD) 2156 goto error_tgt_fput; 2157 if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) || 2158 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2159 goto error_tgt_fput; 2160 } 2161 2162 /* 2163 * At this point it is safe to assume that the "private_data" contains 2164 * our own data structure. 2165 */ 2166 ep = fd_file(f)->private_data; 2167 2168 /* 2169 * When we insert an epoll file descriptor inside another epoll file 2170 * descriptor, there is the chance of creating closed loops, which are 2171 * better be handled here, than in more critical paths. While we are 2172 * checking for loops we also determine the list of files reachable 2173 * and hang them on the tfile_check_list, so we can check that we 2174 * haven't created too many possible wakeup paths. 2175 * 2176 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2177 * the epoll file descriptor is attaching directly to a wakeup source, 2178 * unless the epoll file descriptor is nested. The purpose of taking the 2179 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and 2180 * deep wakeup paths from forming in parallel through multiple 2181 * EPOLL_CTL_ADD operations. 2182 */ 2183 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2184 if (error) 2185 goto error_tgt_fput; 2186 if (op == EPOLL_CTL_ADD) { 2187 if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen || 2188 is_file_epoll(fd_file(tf))) { 2189 mutex_unlock(&ep->mtx); 2190 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); 2191 if (error) 2192 goto error_tgt_fput; 2193 loop_check_gen++; 2194 full_check = 1; 2195 if (is_file_epoll(fd_file(tf))) { 2196 tep = fd_file(tf)->private_data; 2197 error = -ELOOP; 2198 if (ep_loop_check(ep, tep) != 0) 2199 goto error_tgt_fput; 2200 } 2201 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2202 if (error) 2203 goto error_tgt_fput; 2204 } 2205 } 2206 2207 /* 2208 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2209 * above, we can be sure to be able to use the item looked up by 2210 * ep_find() till we release the mutex. 2211 */ 2212 epi = ep_find(ep, fd_file(tf), fd); 2213 2214 error = -EINVAL; 2215 switch (op) { 2216 case EPOLL_CTL_ADD: 2217 if (!epi) { 2218 epds->events |= EPOLLERR | EPOLLHUP; 2219 error = ep_insert(ep, epds, fd_file(tf), fd, full_check); 2220 } else 2221 error = -EEXIST; 2222 break; 2223 case EPOLL_CTL_DEL: 2224 if (epi) { 2225 /* 2226 * The eventpoll itself is still alive: the refcount 2227 * can't go to zero here. 2228 */ 2229 ep_remove_safe(ep, epi); 2230 error = 0; 2231 } else { 2232 error = -ENOENT; 2233 } 2234 break; 2235 case EPOLL_CTL_MOD: 2236 if (epi) { 2237 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2238 epds->events |= EPOLLERR | EPOLLHUP; 2239 error = ep_modify(ep, epi, epds); 2240 } 2241 } else 2242 error = -ENOENT; 2243 break; 2244 } 2245 mutex_unlock(&ep->mtx); 2246 2247 error_tgt_fput: 2248 if (full_check) { 2249 clear_tfile_check_list(); 2250 loop_check_gen++; 2251 mutex_unlock(&epnested_mutex); 2252 } 2253 return error; 2254 } 2255 2256 /* 2257 * The following function implements the controller interface for 2258 * the eventpoll file that enables the insertion/removal/change of 2259 * file descriptors inside the interest set. 2260 */ 2261 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2262 struct epoll_event __user *, event) 2263 { 2264 struct epoll_event epds; 2265 2266 if (ep_op_has_event(op) && 2267 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2268 return -EFAULT; 2269 2270 return do_epoll_ctl(epfd, op, fd, &epds, false); 2271 } 2272 2273 static int ep_check_params(struct file *file, struct epoll_event __user *evs, 2274 int maxevents) 2275 { 2276 /* The maximum number of event must be greater than zero */ 2277 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2278 return -EINVAL; 2279 2280 /* Verify that the area passed by the user is writeable */ 2281 if (!access_ok(evs, maxevents * sizeof(struct epoll_event))) 2282 return -EFAULT; 2283 2284 /* 2285 * We have to check that the file structure underneath the fd 2286 * the user passed to us _is_ an eventpoll file. 2287 */ 2288 if (!is_file_epoll(file)) 2289 return -EINVAL; 2290 2291 return 0; 2292 } 2293 2294 int epoll_sendevents(struct file *file, struct epoll_event __user *events, 2295 int maxevents) 2296 { 2297 struct eventpoll *ep; 2298 int ret; 2299 2300 ret = ep_check_params(file, events, maxevents); 2301 if (unlikely(ret)) 2302 return ret; 2303 2304 ep = file->private_data; 2305 /* 2306 * Racy call, but that's ok - it should get retried based on 2307 * poll readiness anyway. 2308 */ 2309 if (ep_events_available(ep)) 2310 return ep_try_send_events(ep, events, maxevents); 2311 return 0; 2312 } 2313 2314 /* 2315 * Implement the event wait interface for the eventpoll file. It is the kernel 2316 * part of the user space epoll_wait(2). 2317 */ 2318 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2319 int maxevents, struct timespec64 *to) 2320 { 2321 struct eventpoll *ep; 2322 int ret; 2323 2324 /* Get the "struct file *" for the eventpoll file */ 2325 CLASS(fd, f)(epfd); 2326 if (fd_empty(f)) 2327 return -EBADF; 2328 2329 ret = ep_check_params(fd_file(f), events, maxevents); 2330 if (unlikely(ret)) 2331 return ret; 2332 2333 /* 2334 * At this point it is safe to assume that the "private_data" contains 2335 * our own data structure. 2336 */ 2337 ep = fd_file(f)->private_data; 2338 2339 /* Time to fish for events ... */ 2340 return ep_poll(ep, events, maxevents, to); 2341 } 2342 2343 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2344 int, maxevents, int, timeout) 2345 { 2346 struct timespec64 to; 2347 2348 return do_epoll_wait(epfd, events, maxevents, 2349 ep_timeout_to_timespec(&to, timeout)); 2350 } 2351 2352 /* 2353 * Implement the event wait interface for the eventpoll file. It is the kernel 2354 * part of the user space epoll_pwait(2). 2355 */ 2356 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2357 int maxevents, struct timespec64 *to, 2358 const sigset_t __user *sigmask, size_t sigsetsize) 2359 { 2360 int error; 2361 2362 /* 2363 * If the caller wants a certain signal mask to be set during the wait, 2364 * we apply it here. 2365 */ 2366 error = set_user_sigmask(sigmask, sigsetsize); 2367 if (error) 2368 return error; 2369 2370 error = do_epoll_wait(epfd, events, maxevents, to); 2371 2372 restore_saved_sigmask_unless(error == -EINTR); 2373 2374 return error; 2375 } 2376 2377 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2378 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2379 size_t, sigsetsize) 2380 { 2381 struct timespec64 to; 2382 2383 return do_epoll_pwait(epfd, events, maxevents, 2384 ep_timeout_to_timespec(&to, timeout), 2385 sigmask, sigsetsize); 2386 } 2387 2388 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2389 int, maxevents, const struct __kernel_timespec __user *, timeout, 2390 const sigset_t __user *, sigmask, size_t, sigsetsize) 2391 { 2392 struct timespec64 ts, *to = NULL; 2393 2394 if (timeout) { 2395 if (get_timespec64(&ts, timeout)) 2396 return -EFAULT; 2397 to = &ts; 2398 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2399 return -EINVAL; 2400 } 2401 2402 return do_epoll_pwait(epfd, events, maxevents, to, 2403 sigmask, sigsetsize); 2404 } 2405 2406 #ifdef CONFIG_COMPAT 2407 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2408 int maxevents, struct timespec64 *timeout, 2409 const compat_sigset_t __user *sigmask, 2410 compat_size_t sigsetsize) 2411 { 2412 long err; 2413 2414 /* 2415 * If the caller wants a certain signal mask to be set during the wait, 2416 * we apply it here. 2417 */ 2418 err = set_compat_user_sigmask(sigmask, sigsetsize); 2419 if (err) 2420 return err; 2421 2422 err = do_epoll_wait(epfd, events, maxevents, timeout); 2423 2424 restore_saved_sigmask_unless(err == -EINTR); 2425 2426 return err; 2427 } 2428 2429 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2430 struct epoll_event __user *, events, 2431 int, maxevents, int, timeout, 2432 const compat_sigset_t __user *, sigmask, 2433 compat_size_t, sigsetsize) 2434 { 2435 struct timespec64 to; 2436 2437 return do_compat_epoll_pwait(epfd, events, maxevents, 2438 ep_timeout_to_timespec(&to, timeout), 2439 sigmask, sigsetsize); 2440 } 2441 2442 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2443 struct epoll_event __user *, events, 2444 int, maxevents, 2445 const struct __kernel_timespec __user *, timeout, 2446 const compat_sigset_t __user *, sigmask, 2447 compat_size_t, sigsetsize) 2448 { 2449 struct timespec64 ts, *to = NULL; 2450 2451 if (timeout) { 2452 if (get_timespec64(&ts, timeout)) 2453 return -EFAULT; 2454 to = &ts; 2455 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2456 return -EINVAL; 2457 } 2458 2459 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2460 sigmask, sigsetsize); 2461 } 2462 2463 #endif 2464 2465 static int __init eventpoll_init(void) 2466 { 2467 struct sysinfo si; 2468 2469 si_meminfo(&si); 2470 /* 2471 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2472 */ 2473 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2474 EP_ITEM_COST; 2475 BUG_ON(max_user_watches < 0); 2476 2477 /* 2478 * We can have many thousands of epitems, so prevent this from 2479 * using an extra cache line on 64-bit (and smaller) CPUs 2480 */ 2481 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2482 2483 /* Allocates slab cache used to allocate "struct epitem" items */ 2484 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2485 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2486 2487 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2488 pwq_cache = kmem_cache_create("eventpoll_pwq", 2489 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2490 epoll_sysctls_init(); 2491 2492 ephead_cache = kmem_cache_create("ep_head", 2493 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2494 2495 return 0; 2496 } 2497 fs_initcall(eventpoll_init); 2498