xref: /linux/fs/eventpoll.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (spinlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a spinlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
92 
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
95 
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97 
98 #define EP_UNACTIVE_PTR ((void *) -1L)
99 
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101 
102 struct epoll_filefd {
103 	struct file *file;
104 	int fd;
105 };
106 
107 /*
108  * Structure used to track possible nested calls, for too deep recursions
109  * and loop cycles.
110  */
111 struct nested_call_node {
112 	struct list_head llink;
113 	void *cookie;
114 	void *ctx;
115 };
116 
117 /*
118  * This structure is used as collector for nested calls, to check for
119  * maximum recursion dept and loop cycles.
120  */
121 struct nested_calls {
122 	struct list_head tasks_call_list;
123 	spinlock_t lock;
124 };
125 
126 /*
127  * Each file descriptor added to the eventpoll interface will
128  * have an entry of this type linked to the "rbr" RB tree.
129  */
130 struct epitem {
131 	/* RB tree node used to link this structure to the eventpoll RB tree */
132 	struct rb_node rbn;
133 
134 	/* List header used to link this structure to the eventpoll ready list */
135 	struct list_head rdllink;
136 
137 	/*
138 	 * Works together "struct eventpoll"->ovflist in keeping the
139 	 * single linked chain of items.
140 	 */
141 	struct epitem *next;
142 
143 	/* The file descriptor information this item refers to */
144 	struct epoll_filefd ffd;
145 
146 	/* Number of active wait queue attached to poll operations */
147 	int nwait;
148 
149 	/* List containing poll wait queues */
150 	struct list_head pwqlist;
151 
152 	/* The "container" of this item */
153 	struct eventpoll *ep;
154 
155 	/* List header used to link this item to the "struct file" items list */
156 	struct list_head fllink;
157 
158 	/* The structure that describe the interested events and the source fd */
159 	struct epoll_event event;
160 };
161 
162 /*
163  * This structure is stored inside the "private_data" member of the file
164  * structure and represents the main data structure for the eventpoll
165  * interface.
166  */
167 struct eventpoll {
168 	/* Protect the access to this structure */
169 	spinlock_t lock;
170 
171 	/*
172 	 * This mutex is used to ensure that files are not removed
173 	 * while epoll is using them. This is held during the event
174 	 * collection loop, the file cleanup path, the epoll file exit
175 	 * code and the ctl operations.
176 	 */
177 	struct mutex mtx;
178 
179 	/* Wait queue used by sys_epoll_wait() */
180 	wait_queue_head_t wq;
181 
182 	/* Wait queue used by file->poll() */
183 	wait_queue_head_t poll_wait;
184 
185 	/* List of ready file descriptors */
186 	struct list_head rdllist;
187 
188 	/* RB tree root used to store monitored fd structs */
189 	struct rb_root rbr;
190 
191 	/*
192 	 * This is a single linked list that chains all the "struct epitem" that
193 	 * happened while transferring ready events to userspace w/out
194 	 * holding ->lock.
195 	 */
196 	struct epitem *ovflist;
197 
198 	/* The user that created the eventpoll descriptor */
199 	struct user_struct *user;
200 };
201 
202 /* Wait structure used by the poll hooks */
203 struct eppoll_entry {
204 	/* List header used to link this structure to the "struct epitem" */
205 	struct list_head llink;
206 
207 	/* The "base" pointer is set to the container "struct epitem" */
208 	struct epitem *base;
209 
210 	/*
211 	 * Wait queue item that will be linked to the target file wait
212 	 * queue head.
213 	 */
214 	wait_queue_t wait;
215 
216 	/* The wait queue head that linked the "wait" wait queue item */
217 	wait_queue_head_t *whead;
218 };
219 
220 /* Wrapper struct used by poll queueing */
221 struct ep_pqueue {
222 	poll_table pt;
223 	struct epitem *epi;
224 };
225 
226 /* Used by the ep_send_events() function as callback private data */
227 struct ep_send_events_data {
228 	int maxevents;
229 	struct epoll_event __user *events;
230 };
231 
232 /*
233  * Configuration options available inside /proc/sys/fs/epoll/
234  */
235 /* Maximum number of epoll watched descriptors, per user */
236 static long max_user_watches __read_mostly;
237 
238 /*
239  * This mutex is used to serialize ep_free() and eventpoll_release_file().
240  */
241 static DEFINE_MUTEX(epmutex);
242 
243 /* Used to check for epoll file descriptor inclusion loops */
244 static struct nested_calls poll_loop_ncalls;
245 
246 /* Used for safe wake up implementation */
247 static struct nested_calls poll_safewake_ncalls;
248 
249 /* Used to call file's f_op->poll() under the nested calls boundaries */
250 static struct nested_calls poll_readywalk_ncalls;
251 
252 /* Slab cache used to allocate "struct epitem" */
253 static struct kmem_cache *epi_cache __read_mostly;
254 
255 /* Slab cache used to allocate "struct eppoll_entry" */
256 static struct kmem_cache *pwq_cache __read_mostly;
257 
258 #ifdef CONFIG_SYSCTL
259 
260 #include <linux/sysctl.h>
261 
262 static long zero;
263 static long long_max = LONG_MAX;
264 
265 ctl_table epoll_table[] = {
266 	{
267 		.procname	= "max_user_watches",
268 		.data		= &max_user_watches,
269 		.maxlen		= sizeof(max_user_watches),
270 		.mode		= 0644,
271 		.proc_handler	= proc_doulongvec_minmax,
272 		.extra1		= &zero,
273 		.extra2		= &long_max,
274 	},
275 	{ }
276 };
277 #endif /* CONFIG_SYSCTL */
278 
279 
280 /* Setup the structure that is used as key for the RB tree */
281 static inline void ep_set_ffd(struct epoll_filefd *ffd,
282 			      struct file *file, int fd)
283 {
284 	ffd->file = file;
285 	ffd->fd = fd;
286 }
287 
288 /* Compare RB tree keys */
289 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
290 			     struct epoll_filefd *p2)
291 {
292 	return (p1->file > p2->file ? +1:
293 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
294 }
295 
296 /* Tells us if the item is currently linked */
297 static inline int ep_is_linked(struct list_head *p)
298 {
299 	return !list_empty(p);
300 }
301 
302 /* Get the "struct epitem" from a wait queue pointer */
303 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
304 {
305 	return container_of(p, struct eppoll_entry, wait)->base;
306 }
307 
308 /* Get the "struct epitem" from an epoll queue wrapper */
309 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
310 {
311 	return container_of(p, struct ep_pqueue, pt)->epi;
312 }
313 
314 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
315 static inline int ep_op_has_event(int op)
316 {
317 	return op != EPOLL_CTL_DEL;
318 }
319 
320 /* Initialize the poll safe wake up structure */
321 static void ep_nested_calls_init(struct nested_calls *ncalls)
322 {
323 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
324 	spin_lock_init(&ncalls->lock);
325 }
326 
327 /**
328  * ep_events_available - Checks if ready events might be available.
329  *
330  * @ep: Pointer to the eventpoll context.
331  *
332  * Returns: Returns a value different than zero if ready events are available,
333  *          or zero otherwise.
334  */
335 static inline int ep_events_available(struct eventpoll *ep)
336 {
337 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
338 }
339 
340 /**
341  * ep_call_nested - Perform a bound (possibly) nested call, by checking
342  *                  that the recursion limit is not exceeded, and that
343  *                  the same nested call (by the meaning of same cookie) is
344  *                  no re-entered.
345  *
346  * @ncalls: Pointer to the nested_calls structure to be used for this call.
347  * @max_nests: Maximum number of allowed nesting calls.
348  * @nproc: Nested call core function pointer.
349  * @priv: Opaque data to be passed to the @nproc callback.
350  * @cookie: Cookie to be used to identify this nested call.
351  * @ctx: This instance context.
352  *
353  * Returns: Returns the code returned by the @nproc callback, or -1 if
354  *          the maximum recursion limit has been exceeded.
355  */
356 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
357 			  int (*nproc)(void *, void *, int), void *priv,
358 			  void *cookie, void *ctx)
359 {
360 	int error, call_nests = 0;
361 	unsigned long flags;
362 	struct list_head *lsthead = &ncalls->tasks_call_list;
363 	struct nested_call_node *tncur;
364 	struct nested_call_node tnode;
365 
366 	spin_lock_irqsave(&ncalls->lock, flags);
367 
368 	/*
369 	 * Try to see if the current task is already inside this wakeup call.
370 	 * We use a list here, since the population inside this set is always
371 	 * very much limited.
372 	 */
373 	list_for_each_entry(tncur, lsthead, llink) {
374 		if (tncur->ctx == ctx &&
375 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
376 			/*
377 			 * Ops ... loop detected or maximum nest level reached.
378 			 * We abort this wake by breaking the cycle itself.
379 			 */
380 			error = -1;
381 			goto out_unlock;
382 		}
383 	}
384 
385 	/* Add the current task and cookie to the list */
386 	tnode.ctx = ctx;
387 	tnode.cookie = cookie;
388 	list_add(&tnode.llink, lsthead);
389 
390 	spin_unlock_irqrestore(&ncalls->lock, flags);
391 
392 	/* Call the nested function */
393 	error = (*nproc)(priv, cookie, call_nests);
394 
395 	/* Remove the current task from the list */
396 	spin_lock_irqsave(&ncalls->lock, flags);
397 	list_del(&tnode.llink);
398 out_unlock:
399 	spin_unlock_irqrestore(&ncalls->lock, flags);
400 
401 	return error;
402 }
403 
404 #ifdef CONFIG_DEBUG_LOCK_ALLOC
405 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
406 				     unsigned long events, int subclass)
407 {
408 	unsigned long flags;
409 
410 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
411 	wake_up_locked_poll(wqueue, events);
412 	spin_unlock_irqrestore(&wqueue->lock, flags);
413 }
414 #else
415 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
416 				     unsigned long events, int subclass)
417 {
418 	wake_up_poll(wqueue, events);
419 }
420 #endif
421 
422 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
423 {
424 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
425 			  1 + call_nests);
426 	return 0;
427 }
428 
429 /*
430  * Perform a safe wake up of the poll wait list. The problem is that
431  * with the new callback'd wake up system, it is possible that the
432  * poll callback is reentered from inside the call to wake_up() done
433  * on the poll wait queue head. The rule is that we cannot reenter the
434  * wake up code from the same task more than EP_MAX_NESTS times,
435  * and we cannot reenter the same wait queue head at all. This will
436  * enable to have a hierarchy of epoll file descriptor of no more than
437  * EP_MAX_NESTS deep.
438  */
439 static void ep_poll_safewake(wait_queue_head_t *wq)
440 {
441 	int this_cpu = get_cpu();
442 
443 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
444 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
445 
446 	put_cpu();
447 }
448 
449 /*
450  * This function unregisters poll callbacks from the associated file
451  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
452  * ep_free).
453  */
454 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
455 {
456 	struct list_head *lsthead = &epi->pwqlist;
457 	struct eppoll_entry *pwq;
458 
459 	while (!list_empty(lsthead)) {
460 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
461 
462 		list_del(&pwq->llink);
463 		remove_wait_queue(pwq->whead, &pwq->wait);
464 		kmem_cache_free(pwq_cache, pwq);
465 	}
466 }
467 
468 /**
469  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
470  *                      the scan code, to call f_op->poll(). Also allows for
471  *                      O(NumReady) performance.
472  *
473  * @ep: Pointer to the epoll private data structure.
474  * @sproc: Pointer to the scan callback.
475  * @priv: Private opaque data passed to the @sproc callback.
476  * @depth: The current depth of recursive f_op->poll calls.
477  *
478  * Returns: The same integer error code returned by the @sproc callback.
479  */
480 static int ep_scan_ready_list(struct eventpoll *ep,
481 			      int (*sproc)(struct eventpoll *,
482 					   struct list_head *, void *),
483 			      void *priv,
484 			      int depth)
485 {
486 	int error, pwake = 0;
487 	unsigned long flags;
488 	struct epitem *epi, *nepi;
489 	LIST_HEAD(txlist);
490 
491 	/*
492 	 * We need to lock this because we could be hit by
493 	 * eventpoll_release_file() and epoll_ctl().
494 	 */
495 	mutex_lock_nested(&ep->mtx, depth);
496 
497 	/*
498 	 * Steal the ready list, and re-init the original one to the
499 	 * empty list. Also, set ep->ovflist to NULL so that events
500 	 * happening while looping w/out locks, are not lost. We cannot
501 	 * have the poll callback to queue directly on ep->rdllist,
502 	 * because we want the "sproc" callback to be able to do it
503 	 * in a lockless way.
504 	 */
505 	spin_lock_irqsave(&ep->lock, flags);
506 	list_splice_init(&ep->rdllist, &txlist);
507 	ep->ovflist = NULL;
508 	spin_unlock_irqrestore(&ep->lock, flags);
509 
510 	/*
511 	 * Now call the callback function.
512 	 */
513 	error = (*sproc)(ep, &txlist, priv);
514 
515 	spin_lock_irqsave(&ep->lock, flags);
516 	/*
517 	 * During the time we spent inside the "sproc" callback, some
518 	 * other events might have been queued by the poll callback.
519 	 * We re-insert them inside the main ready-list here.
520 	 */
521 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
522 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
523 		/*
524 		 * We need to check if the item is already in the list.
525 		 * During the "sproc" callback execution time, items are
526 		 * queued into ->ovflist but the "txlist" might already
527 		 * contain them, and the list_splice() below takes care of them.
528 		 */
529 		if (!ep_is_linked(&epi->rdllink))
530 			list_add_tail(&epi->rdllink, &ep->rdllist);
531 	}
532 	/*
533 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
534 	 * releasing the lock, events will be queued in the normal way inside
535 	 * ep->rdllist.
536 	 */
537 	ep->ovflist = EP_UNACTIVE_PTR;
538 
539 	/*
540 	 * Quickly re-inject items left on "txlist".
541 	 */
542 	list_splice(&txlist, &ep->rdllist);
543 
544 	if (!list_empty(&ep->rdllist)) {
545 		/*
546 		 * Wake up (if active) both the eventpoll wait list and
547 		 * the ->poll() wait list (delayed after we release the lock).
548 		 */
549 		if (waitqueue_active(&ep->wq))
550 			wake_up_locked(&ep->wq);
551 		if (waitqueue_active(&ep->poll_wait))
552 			pwake++;
553 	}
554 	spin_unlock_irqrestore(&ep->lock, flags);
555 
556 	mutex_unlock(&ep->mtx);
557 
558 	/* We have to call this outside the lock */
559 	if (pwake)
560 		ep_poll_safewake(&ep->poll_wait);
561 
562 	return error;
563 }
564 
565 /*
566  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
567  * all the associated resources. Must be called with "mtx" held.
568  */
569 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
570 {
571 	unsigned long flags;
572 	struct file *file = epi->ffd.file;
573 
574 	/*
575 	 * Removes poll wait queue hooks. We _have_ to do this without holding
576 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
577 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
578 	 * queue head lock when unregistering the wait queue. The wakeup callback
579 	 * will run by holding the wait queue head lock and will call our callback
580 	 * that will try to get "ep->lock".
581 	 */
582 	ep_unregister_pollwait(ep, epi);
583 
584 	/* Remove the current item from the list of epoll hooks */
585 	spin_lock(&file->f_lock);
586 	if (ep_is_linked(&epi->fllink))
587 		list_del_init(&epi->fllink);
588 	spin_unlock(&file->f_lock);
589 
590 	rb_erase(&epi->rbn, &ep->rbr);
591 
592 	spin_lock_irqsave(&ep->lock, flags);
593 	if (ep_is_linked(&epi->rdllink))
594 		list_del_init(&epi->rdllink);
595 	spin_unlock_irqrestore(&ep->lock, flags);
596 
597 	/* At this point it is safe to free the eventpoll item */
598 	kmem_cache_free(epi_cache, epi);
599 
600 	atomic_long_dec(&ep->user->epoll_watches);
601 
602 	return 0;
603 }
604 
605 static void ep_free(struct eventpoll *ep)
606 {
607 	struct rb_node *rbp;
608 	struct epitem *epi;
609 
610 	/* We need to release all tasks waiting for these file */
611 	if (waitqueue_active(&ep->poll_wait))
612 		ep_poll_safewake(&ep->poll_wait);
613 
614 	/*
615 	 * We need to lock this because we could be hit by
616 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
617 	 * We do not need to hold "ep->mtx" here because the epoll file
618 	 * is on the way to be removed and no one has references to it
619 	 * anymore. The only hit might come from eventpoll_release_file() but
620 	 * holding "epmutex" is sufficient here.
621 	 */
622 	mutex_lock(&epmutex);
623 
624 	/*
625 	 * Walks through the whole tree by unregistering poll callbacks.
626 	 */
627 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
628 		epi = rb_entry(rbp, struct epitem, rbn);
629 
630 		ep_unregister_pollwait(ep, epi);
631 	}
632 
633 	/*
634 	 * Walks through the whole tree by freeing each "struct epitem". At this
635 	 * point we are sure no poll callbacks will be lingering around, and also by
636 	 * holding "epmutex" we can be sure that no file cleanup code will hit
637 	 * us during this operation. So we can avoid the lock on "ep->lock".
638 	 */
639 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
640 		epi = rb_entry(rbp, struct epitem, rbn);
641 		ep_remove(ep, epi);
642 	}
643 
644 	mutex_unlock(&epmutex);
645 	mutex_destroy(&ep->mtx);
646 	free_uid(ep->user);
647 	kfree(ep);
648 }
649 
650 static int ep_eventpoll_release(struct inode *inode, struct file *file)
651 {
652 	struct eventpoll *ep = file->private_data;
653 
654 	if (ep)
655 		ep_free(ep);
656 
657 	return 0;
658 }
659 
660 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
661 			       void *priv)
662 {
663 	struct epitem *epi, *tmp;
664 
665 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
666 		if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
667 		    epi->event.events)
668 			return POLLIN | POLLRDNORM;
669 		else {
670 			/*
671 			 * Item has been dropped into the ready list by the poll
672 			 * callback, but it's not actually ready, as far as
673 			 * caller requested events goes. We can remove it here.
674 			 */
675 			list_del_init(&epi->rdllink);
676 		}
677 	}
678 
679 	return 0;
680 }
681 
682 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
683 {
684 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
685 }
686 
687 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
688 {
689 	int pollflags;
690 	struct eventpoll *ep = file->private_data;
691 
692 	/* Insert inside our poll wait queue */
693 	poll_wait(file, &ep->poll_wait, wait);
694 
695 	/*
696 	 * Proceed to find out if wanted events are really available inside
697 	 * the ready list. This need to be done under ep_call_nested()
698 	 * supervision, since the call to f_op->poll() done on listed files
699 	 * could re-enter here.
700 	 */
701 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
702 				   ep_poll_readyevents_proc, ep, ep, current);
703 
704 	return pollflags != -1 ? pollflags : 0;
705 }
706 
707 /* File callbacks that implement the eventpoll file behaviour */
708 static const struct file_operations eventpoll_fops = {
709 	.release	= ep_eventpoll_release,
710 	.poll		= ep_eventpoll_poll,
711 	.llseek		= noop_llseek,
712 };
713 
714 /* Fast test to see if the file is an eventpoll file */
715 static inline int is_file_epoll(struct file *f)
716 {
717 	return f->f_op == &eventpoll_fops;
718 }
719 
720 /*
721  * This is called from eventpoll_release() to unlink files from the eventpoll
722  * interface. We need to have this facility to cleanup correctly files that are
723  * closed without being removed from the eventpoll interface.
724  */
725 void eventpoll_release_file(struct file *file)
726 {
727 	struct list_head *lsthead = &file->f_ep_links;
728 	struct eventpoll *ep;
729 	struct epitem *epi;
730 
731 	/*
732 	 * We don't want to get "file->f_lock" because it is not
733 	 * necessary. It is not necessary because we're in the "struct file"
734 	 * cleanup path, and this means that no one is using this file anymore.
735 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
736 	 * point, the file counter already went to zero and fget() would fail.
737 	 * The only hit might come from ep_free() but by holding the mutex
738 	 * will correctly serialize the operation. We do need to acquire
739 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
740 	 * from anywhere but ep_free().
741 	 *
742 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
743 	 */
744 	mutex_lock(&epmutex);
745 
746 	while (!list_empty(lsthead)) {
747 		epi = list_first_entry(lsthead, struct epitem, fllink);
748 
749 		ep = epi->ep;
750 		list_del_init(&epi->fllink);
751 		mutex_lock_nested(&ep->mtx, 0);
752 		ep_remove(ep, epi);
753 		mutex_unlock(&ep->mtx);
754 	}
755 
756 	mutex_unlock(&epmutex);
757 }
758 
759 static int ep_alloc(struct eventpoll **pep)
760 {
761 	int error;
762 	struct user_struct *user;
763 	struct eventpoll *ep;
764 
765 	user = get_current_user();
766 	error = -ENOMEM;
767 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
768 	if (unlikely(!ep))
769 		goto free_uid;
770 
771 	spin_lock_init(&ep->lock);
772 	mutex_init(&ep->mtx);
773 	init_waitqueue_head(&ep->wq);
774 	init_waitqueue_head(&ep->poll_wait);
775 	INIT_LIST_HEAD(&ep->rdllist);
776 	ep->rbr = RB_ROOT;
777 	ep->ovflist = EP_UNACTIVE_PTR;
778 	ep->user = user;
779 
780 	*pep = ep;
781 
782 	return 0;
783 
784 free_uid:
785 	free_uid(user);
786 	return error;
787 }
788 
789 /*
790  * Search the file inside the eventpoll tree. The RB tree operations
791  * are protected by the "mtx" mutex, and ep_find() must be called with
792  * "mtx" held.
793  */
794 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
795 {
796 	int kcmp;
797 	struct rb_node *rbp;
798 	struct epitem *epi, *epir = NULL;
799 	struct epoll_filefd ffd;
800 
801 	ep_set_ffd(&ffd, file, fd);
802 	for (rbp = ep->rbr.rb_node; rbp; ) {
803 		epi = rb_entry(rbp, struct epitem, rbn);
804 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
805 		if (kcmp > 0)
806 			rbp = rbp->rb_right;
807 		else if (kcmp < 0)
808 			rbp = rbp->rb_left;
809 		else {
810 			epir = epi;
811 			break;
812 		}
813 	}
814 
815 	return epir;
816 }
817 
818 /*
819  * This is the callback that is passed to the wait queue wakeup
820  * mechanism. It is called by the stored file descriptors when they
821  * have events to report.
822  */
823 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
824 {
825 	int pwake = 0;
826 	unsigned long flags;
827 	struct epitem *epi = ep_item_from_wait(wait);
828 	struct eventpoll *ep = epi->ep;
829 
830 	spin_lock_irqsave(&ep->lock, flags);
831 
832 	/*
833 	 * If the event mask does not contain any poll(2) event, we consider the
834 	 * descriptor to be disabled. This condition is likely the effect of the
835 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
836 	 * until the next EPOLL_CTL_MOD will be issued.
837 	 */
838 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
839 		goto out_unlock;
840 
841 	/*
842 	 * Check the events coming with the callback. At this stage, not
843 	 * every device reports the events in the "key" parameter of the
844 	 * callback. We need to be able to handle both cases here, hence the
845 	 * test for "key" != NULL before the event match test.
846 	 */
847 	if (key && !((unsigned long) key & epi->event.events))
848 		goto out_unlock;
849 
850 	/*
851 	 * If we are transferring events to userspace, we can hold no locks
852 	 * (because we're accessing user memory, and because of linux f_op->poll()
853 	 * semantics). All the events that happen during that period of time are
854 	 * chained in ep->ovflist and requeued later on.
855 	 */
856 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
857 		if (epi->next == EP_UNACTIVE_PTR) {
858 			epi->next = ep->ovflist;
859 			ep->ovflist = epi;
860 		}
861 		goto out_unlock;
862 	}
863 
864 	/* If this file is already in the ready list we exit soon */
865 	if (!ep_is_linked(&epi->rdllink))
866 		list_add_tail(&epi->rdllink, &ep->rdllist);
867 
868 	/*
869 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
870 	 * wait list.
871 	 */
872 	if (waitqueue_active(&ep->wq))
873 		wake_up_locked(&ep->wq);
874 	if (waitqueue_active(&ep->poll_wait))
875 		pwake++;
876 
877 out_unlock:
878 	spin_unlock_irqrestore(&ep->lock, flags);
879 
880 	/* We have to call this outside the lock */
881 	if (pwake)
882 		ep_poll_safewake(&ep->poll_wait);
883 
884 	return 1;
885 }
886 
887 /*
888  * This is the callback that is used to add our wait queue to the
889  * target file wakeup lists.
890  */
891 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
892 				 poll_table *pt)
893 {
894 	struct epitem *epi = ep_item_from_epqueue(pt);
895 	struct eppoll_entry *pwq;
896 
897 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
898 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
899 		pwq->whead = whead;
900 		pwq->base = epi;
901 		add_wait_queue(whead, &pwq->wait);
902 		list_add_tail(&pwq->llink, &epi->pwqlist);
903 		epi->nwait++;
904 	} else {
905 		/* We have to signal that an error occurred */
906 		epi->nwait = -1;
907 	}
908 }
909 
910 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
911 {
912 	int kcmp;
913 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
914 	struct epitem *epic;
915 
916 	while (*p) {
917 		parent = *p;
918 		epic = rb_entry(parent, struct epitem, rbn);
919 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
920 		if (kcmp > 0)
921 			p = &parent->rb_right;
922 		else
923 			p = &parent->rb_left;
924 	}
925 	rb_link_node(&epi->rbn, parent, p);
926 	rb_insert_color(&epi->rbn, &ep->rbr);
927 }
928 
929 /*
930  * Must be called with "mtx" held.
931  */
932 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
933 		     struct file *tfile, int fd)
934 {
935 	int error, revents, pwake = 0;
936 	unsigned long flags;
937 	long user_watches;
938 	struct epitem *epi;
939 	struct ep_pqueue epq;
940 
941 	user_watches = atomic_long_read(&ep->user->epoll_watches);
942 	if (unlikely(user_watches >= max_user_watches))
943 		return -ENOSPC;
944 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
945 		return -ENOMEM;
946 
947 	/* Item initialization follow here ... */
948 	INIT_LIST_HEAD(&epi->rdllink);
949 	INIT_LIST_HEAD(&epi->fllink);
950 	INIT_LIST_HEAD(&epi->pwqlist);
951 	epi->ep = ep;
952 	ep_set_ffd(&epi->ffd, tfile, fd);
953 	epi->event = *event;
954 	epi->nwait = 0;
955 	epi->next = EP_UNACTIVE_PTR;
956 
957 	/* Initialize the poll table using the queue callback */
958 	epq.epi = epi;
959 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
960 
961 	/*
962 	 * Attach the item to the poll hooks and get current event bits.
963 	 * We can safely use the file* here because its usage count has
964 	 * been increased by the caller of this function. Note that after
965 	 * this operation completes, the poll callback can start hitting
966 	 * the new item.
967 	 */
968 	revents = tfile->f_op->poll(tfile, &epq.pt);
969 
970 	/*
971 	 * We have to check if something went wrong during the poll wait queue
972 	 * install process. Namely an allocation for a wait queue failed due
973 	 * high memory pressure.
974 	 */
975 	error = -ENOMEM;
976 	if (epi->nwait < 0)
977 		goto error_unregister;
978 
979 	/* Add the current item to the list of active epoll hook for this file */
980 	spin_lock(&tfile->f_lock);
981 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
982 	spin_unlock(&tfile->f_lock);
983 
984 	/*
985 	 * Add the current item to the RB tree. All RB tree operations are
986 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
987 	 */
988 	ep_rbtree_insert(ep, epi);
989 
990 	/* We have to drop the new item inside our item list to keep track of it */
991 	spin_lock_irqsave(&ep->lock, flags);
992 
993 	/* If the file is already "ready" we drop it inside the ready list */
994 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
995 		list_add_tail(&epi->rdllink, &ep->rdllist);
996 
997 		/* Notify waiting tasks that events are available */
998 		if (waitqueue_active(&ep->wq))
999 			wake_up_locked(&ep->wq);
1000 		if (waitqueue_active(&ep->poll_wait))
1001 			pwake++;
1002 	}
1003 
1004 	spin_unlock_irqrestore(&ep->lock, flags);
1005 
1006 	atomic_long_inc(&ep->user->epoll_watches);
1007 
1008 	/* We have to call this outside the lock */
1009 	if (pwake)
1010 		ep_poll_safewake(&ep->poll_wait);
1011 
1012 	return 0;
1013 
1014 error_unregister:
1015 	ep_unregister_pollwait(ep, epi);
1016 
1017 	/*
1018 	 * We need to do this because an event could have been arrived on some
1019 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1020 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1021 	 * And ep_insert() is called with "mtx" held.
1022 	 */
1023 	spin_lock_irqsave(&ep->lock, flags);
1024 	if (ep_is_linked(&epi->rdllink))
1025 		list_del_init(&epi->rdllink);
1026 	spin_unlock_irqrestore(&ep->lock, flags);
1027 
1028 	kmem_cache_free(epi_cache, epi);
1029 
1030 	return error;
1031 }
1032 
1033 /*
1034  * Modify the interest event mask by dropping an event if the new mask
1035  * has a match in the current file status. Must be called with "mtx" held.
1036  */
1037 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1038 {
1039 	int pwake = 0;
1040 	unsigned int revents;
1041 
1042 	/*
1043 	 * Set the new event interest mask before calling f_op->poll();
1044 	 * otherwise we might miss an event that happens between the
1045 	 * f_op->poll() call and the new event set registering.
1046 	 */
1047 	epi->event.events = event->events;
1048 	epi->event.data = event->data; /* protected by mtx */
1049 
1050 	/*
1051 	 * Get current event bits. We can safely use the file* here because
1052 	 * its usage count has been increased by the caller of this function.
1053 	 */
1054 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1055 
1056 	/*
1057 	 * If the item is "hot" and it is not registered inside the ready
1058 	 * list, push it inside.
1059 	 */
1060 	if (revents & event->events) {
1061 		spin_lock_irq(&ep->lock);
1062 		if (!ep_is_linked(&epi->rdllink)) {
1063 			list_add_tail(&epi->rdllink, &ep->rdllist);
1064 
1065 			/* Notify waiting tasks that events are available */
1066 			if (waitqueue_active(&ep->wq))
1067 				wake_up_locked(&ep->wq);
1068 			if (waitqueue_active(&ep->poll_wait))
1069 				pwake++;
1070 		}
1071 		spin_unlock_irq(&ep->lock);
1072 	}
1073 
1074 	/* We have to call this outside the lock */
1075 	if (pwake)
1076 		ep_poll_safewake(&ep->poll_wait);
1077 
1078 	return 0;
1079 }
1080 
1081 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1082 			       void *priv)
1083 {
1084 	struct ep_send_events_data *esed = priv;
1085 	int eventcnt;
1086 	unsigned int revents;
1087 	struct epitem *epi;
1088 	struct epoll_event __user *uevent;
1089 
1090 	/*
1091 	 * We can loop without lock because we are passed a task private list.
1092 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1093 	 * holding "mtx" during this call.
1094 	 */
1095 	for (eventcnt = 0, uevent = esed->events;
1096 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1097 		epi = list_first_entry(head, struct epitem, rdllink);
1098 
1099 		list_del_init(&epi->rdllink);
1100 
1101 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1102 			epi->event.events;
1103 
1104 		/*
1105 		 * If the event mask intersect the caller-requested one,
1106 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1107 		 * is holding "mtx", so no operations coming from userspace
1108 		 * can change the item.
1109 		 */
1110 		if (revents) {
1111 			if (__put_user(revents, &uevent->events) ||
1112 			    __put_user(epi->event.data, &uevent->data)) {
1113 				list_add(&epi->rdllink, head);
1114 				return eventcnt ? eventcnt : -EFAULT;
1115 			}
1116 			eventcnt++;
1117 			uevent++;
1118 			if (epi->event.events & EPOLLONESHOT)
1119 				epi->event.events &= EP_PRIVATE_BITS;
1120 			else if (!(epi->event.events & EPOLLET)) {
1121 				/*
1122 				 * If this file has been added with Level
1123 				 * Trigger mode, we need to insert back inside
1124 				 * the ready list, so that the next call to
1125 				 * epoll_wait() will check again the events
1126 				 * availability. At this point, no one can insert
1127 				 * into ep->rdllist besides us. The epoll_ctl()
1128 				 * callers are locked out by
1129 				 * ep_scan_ready_list() holding "mtx" and the
1130 				 * poll callback will queue them in ep->ovflist.
1131 				 */
1132 				list_add_tail(&epi->rdllink, &ep->rdllist);
1133 			}
1134 		}
1135 	}
1136 
1137 	return eventcnt;
1138 }
1139 
1140 static int ep_send_events(struct eventpoll *ep,
1141 			  struct epoll_event __user *events, int maxevents)
1142 {
1143 	struct ep_send_events_data esed;
1144 
1145 	esed.maxevents = maxevents;
1146 	esed.events = events;
1147 
1148 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1149 }
1150 
1151 static inline struct timespec ep_set_mstimeout(long ms)
1152 {
1153 	struct timespec now, ts = {
1154 		.tv_sec = ms / MSEC_PER_SEC,
1155 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1156 	};
1157 
1158 	ktime_get_ts(&now);
1159 	return timespec_add_safe(now, ts);
1160 }
1161 
1162 /**
1163  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1164  *           event buffer.
1165  *
1166  * @ep: Pointer to the eventpoll context.
1167  * @events: Pointer to the userspace buffer where the ready events should be
1168  *          stored.
1169  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1170  * @timeout: Maximum timeout for the ready events fetch operation, in
1171  *           milliseconds. If the @timeout is zero, the function will not block,
1172  *           while if the @timeout is less than zero, the function will block
1173  *           until at least one event has been retrieved (or an error
1174  *           occurred).
1175  *
1176  * Returns: Returns the number of ready events which have been fetched, or an
1177  *          error code, in case of error.
1178  */
1179 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1180 		   int maxevents, long timeout)
1181 {
1182 	int res = 0, eavail, timed_out = 0;
1183 	unsigned long flags;
1184 	long slack = 0;
1185 	wait_queue_t wait;
1186 	ktime_t expires, *to = NULL;
1187 
1188 	if (timeout > 0) {
1189 		struct timespec end_time = ep_set_mstimeout(timeout);
1190 
1191 		slack = select_estimate_accuracy(&end_time);
1192 		to = &expires;
1193 		*to = timespec_to_ktime(end_time);
1194 	} else if (timeout == 0) {
1195 		/*
1196 		 * Avoid the unnecessary trip to the wait queue loop, if the
1197 		 * caller specified a non blocking operation.
1198 		 */
1199 		timed_out = 1;
1200 		spin_lock_irqsave(&ep->lock, flags);
1201 		goto check_events;
1202 	}
1203 
1204 fetch_events:
1205 	spin_lock_irqsave(&ep->lock, flags);
1206 
1207 	if (!ep_events_available(ep)) {
1208 		/*
1209 		 * We don't have any available event to return to the caller.
1210 		 * We need to sleep here, and we will be wake up by
1211 		 * ep_poll_callback() when events will become available.
1212 		 */
1213 		init_waitqueue_entry(&wait, current);
1214 		__add_wait_queue_exclusive(&ep->wq, &wait);
1215 
1216 		for (;;) {
1217 			/*
1218 			 * We don't want to sleep if the ep_poll_callback() sends us
1219 			 * a wakeup in between. That's why we set the task state
1220 			 * to TASK_INTERRUPTIBLE before doing the checks.
1221 			 */
1222 			set_current_state(TASK_INTERRUPTIBLE);
1223 			if (ep_events_available(ep) || timed_out)
1224 				break;
1225 			if (signal_pending(current)) {
1226 				res = -EINTR;
1227 				break;
1228 			}
1229 
1230 			spin_unlock_irqrestore(&ep->lock, flags);
1231 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1232 				timed_out = 1;
1233 
1234 			spin_lock_irqsave(&ep->lock, flags);
1235 		}
1236 		__remove_wait_queue(&ep->wq, &wait);
1237 
1238 		set_current_state(TASK_RUNNING);
1239 	}
1240 check_events:
1241 	/* Is it worth to try to dig for events ? */
1242 	eavail = ep_events_available(ep);
1243 
1244 	spin_unlock_irqrestore(&ep->lock, flags);
1245 
1246 	/*
1247 	 * Try to transfer events to user space. In case we get 0 events and
1248 	 * there's still timeout left over, we go trying again in search of
1249 	 * more luck.
1250 	 */
1251 	if (!res && eavail &&
1252 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1253 		goto fetch_events;
1254 
1255 	return res;
1256 }
1257 
1258 /**
1259  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1260  *                      API, to verify that adding an epoll file inside another
1261  *                      epoll structure, does not violate the constraints, in
1262  *                      terms of closed loops, or too deep chains (which can
1263  *                      result in excessive stack usage).
1264  *
1265  * @priv: Pointer to the epoll file to be currently checked.
1266  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1267  *          data structure pointer.
1268  * @call_nests: Current dept of the @ep_call_nested() call stack.
1269  *
1270  * Returns: Returns zero if adding the epoll @file inside current epoll
1271  *          structure @ep does not violate the constraints, or -1 otherwise.
1272  */
1273 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1274 {
1275 	int error = 0;
1276 	struct file *file = priv;
1277 	struct eventpoll *ep = file->private_data;
1278 	struct rb_node *rbp;
1279 	struct epitem *epi;
1280 
1281 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1282 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1283 		epi = rb_entry(rbp, struct epitem, rbn);
1284 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1285 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1286 					       ep_loop_check_proc, epi->ffd.file,
1287 					       epi->ffd.file->private_data, current);
1288 			if (error != 0)
1289 				break;
1290 		}
1291 	}
1292 	mutex_unlock(&ep->mtx);
1293 
1294 	return error;
1295 }
1296 
1297 /**
1298  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1299  *                 another epoll file (represented by @ep) does not create
1300  *                 closed loops or too deep chains.
1301  *
1302  * @ep: Pointer to the epoll private data structure.
1303  * @file: Pointer to the epoll file to be checked.
1304  *
1305  * Returns: Returns zero if adding the epoll @file inside current epoll
1306  *          structure @ep does not violate the constraints, or -1 otherwise.
1307  */
1308 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1309 {
1310 	return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1311 			      ep_loop_check_proc, file, ep, current);
1312 }
1313 
1314 /*
1315  * Open an eventpoll file descriptor.
1316  */
1317 SYSCALL_DEFINE1(epoll_create1, int, flags)
1318 {
1319 	int error;
1320 	struct eventpoll *ep = NULL;
1321 
1322 	/* Check the EPOLL_* constant for consistency.  */
1323 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1324 
1325 	if (flags & ~EPOLL_CLOEXEC)
1326 		return -EINVAL;
1327 	/*
1328 	 * Create the internal data structure ("struct eventpoll").
1329 	 */
1330 	error = ep_alloc(&ep);
1331 	if (error < 0)
1332 		return error;
1333 	/*
1334 	 * Creates all the items needed to setup an eventpoll file. That is,
1335 	 * a file structure and a free file descriptor.
1336 	 */
1337 	error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1338 				 O_RDWR | (flags & O_CLOEXEC));
1339 	if (error < 0)
1340 		ep_free(ep);
1341 
1342 	return error;
1343 }
1344 
1345 SYSCALL_DEFINE1(epoll_create, int, size)
1346 {
1347 	if (size <= 0)
1348 		return -EINVAL;
1349 
1350 	return sys_epoll_create1(0);
1351 }
1352 
1353 /*
1354  * The following function implements the controller interface for
1355  * the eventpoll file that enables the insertion/removal/change of
1356  * file descriptors inside the interest set.
1357  */
1358 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1359 		struct epoll_event __user *, event)
1360 {
1361 	int error;
1362 	int did_lock_epmutex = 0;
1363 	struct file *file, *tfile;
1364 	struct eventpoll *ep;
1365 	struct epitem *epi;
1366 	struct epoll_event epds;
1367 
1368 	error = -EFAULT;
1369 	if (ep_op_has_event(op) &&
1370 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1371 		goto error_return;
1372 
1373 	/* Get the "struct file *" for the eventpoll file */
1374 	error = -EBADF;
1375 	file = fget(epfd);
1376 	if (!file)
1377 		goto error_return;
1378 
1379 	/* Get the "struct file *" for the target file */
1380 	tfile = fget(fd);
1381 	if (!tfile)
1382 		goto error_fput;
1383 
1384 	/* The target file descriptor must support poll */
1385 	error = -EPERM;
1386 	if (!tfile->f_op || !tfile->f_op->poll)
1387 		goto error_tgt_fput;
1388 
1389 	/*
1390 	 * We have to check that the file structure underneath the file descriptor
1391 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1392 	 * adding an epoll file descriptor inside itself.
1393 	 */
1394 	error = -EINVAL;
1395 	if (file == tfile || !is_file_epoll(file))
1396 		goto error_tgt_fput;
1397 
1398 	/*
1399 	 * At this point it is safe to assume that the "private_data" contains
1400 	 * our own data structure.
1401 	 */
1402 	ep = file->private_data;
1403 
1404 	/*
1405 	 * When we insert an epoll file descriptor, inside another epoll file
1406 	 * descriptor, there is the change of creating closed loops, which are
1407 	 * better be handled here, than in more critical paths.
1408 	 *
1409 	 * We hold epmutex across the loop check and the insert in this case, in
1410 	 * order to prevent two separate inserts from racing and each doing the
1411 	 * insert "at the same time" such that ep_loop_check passes on both
1412 	 * before either one does the insert, thereby creating a cycle.
1413 	 */
1414 	if (unlikely(is_file_epoll(tfile) && op == EPOLL_CTL_ADD)) {
1415 		mutex_lock(&epmutex);
1416 		did_lock_epmutex = 1;
1417 		error = -ELOOP;
1418 		if (ep_loop_check(ep, tfile) != 0)
1419 			goto error_tgt_fput;
1420 	}
1421 
1422 
1423 	mutex_lock_nested(&ep->mtx, 0);
1424 
1425 	/*
1426 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1427 	 * above, we can be sure to be able to use the item looked up by
1428 	 * ep_find() till we release the mutex.
1429 	 */
1430 	epi = ep_find(ep, tfile, fd);
1431 
1432 	error = -EINVAL;
1433 	switch (op) {
1434 	case EPOLL_CTL_ADD:
1435 		if (!epi) {
1436 			epds.events |= POLLERR | POLLHUP;
1437 			error = ep_insert(ep, &epds, tfile, fd);
1438 		} else
1439 			error = -EEXIST;
1440 		break;
1441 	case EPOLL_CTL_DEL:
1442 		if (epi)
1443 			error = ep_remove(ep, epi);
1444 		else
1445 			error = -ENOENT;
1446 		break;
1447 	case EPOLL_CTL_MOD:
1448 		if (epi) {
1449 			epds.events |= POLLERR | POLLHUP;
1450 			error = ep_modify(ep, epi, &epds);
1451 		} else
1452 			error = -ENOENT;
1453 		break;
1454 	}
1455 	mutex_unlock(&ep->mtx);
1456 
1457 error_tgt_fput:
1458 	if (unlikely(did_lock_epmutex))
1459 		mutex_unlock(&epmutex);
1460 
1461 	fput(tfile);
1462 error_fput:
1463 	fput(file);
1464 error_return:
1465 
1466 	return error;
1467 }
1468 
1469 /*
1470  * Implement the event wait interface for the eventpoll file. It is the kernel
1471  * part of the user space epoll_wait(2).
1472  */
1473 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1474 		int, maxevents, int, timeout)
1475 {
1476 	int error;
1477 	struct file *file;
1478 	struct eventpoll *ep;
1479 
1480 	/* The maximum number of event must be greater than zero */
1481 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1482 		return -EINVAL;
1483 
1484 	/* Verify that the area passed by the user is writeable */
1485 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1486 		error = -EFAULT;
1487 		goto error_return;
1488 	}
1489 
1490 	/* Get the "struct file *" for the eventpoll file */
1491 	error = -EBADF;
1492 	file = fget(epfd);
1493 	if (!file)
1494 		goto error_return;
1495 
1496 	/*
1497 	 * We have to check that the file structure underneath the fd
1498 	 * the user passed to us _is_ an eventpoll file.
1499 	 */
1500 	error = -EINVAL;
1501 	if (!is_file_epoll(file))
1502 		goto error_fput;
1503 
1504 	/*
1505 	 * At this point it is safe to assume that the "private_data" contains
1506 	 * our own data structure.
1507 	 */
1508 	ep = file->private_data;
1509 
1510 	/* Time to fish for events ... */
1511 	error = ep_poll(ep, events, maxevents, timeout);
1512 
1513 error_fput:
1514 	fput(file);
1515 error_return:
1516 
1517 	return error;
1518 }
1519 
1520 #ifdef HAVE_SET_RESTORE_SIGMASK
1521 
1522 /*
1523  * Implement the event wait interface for the eventpoll file. It is the kernel
1524  * part of the user space epoll_pwait(2).
1525  */
1526 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1527 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1528 		size_t, sigsetsize)
1529 {
1530 	int error;
1531 	sigset_t ksigmask, sigsaved;
1532 
1533 	/*
1534 	 * If the caller wants a certain signal mask to be set during the wait,
1535 	 * we apply it here.
1536 	 */
1537 	if (sigmask) {
1538 		if (sigsetsize != sizeof(sigset_t))
1539 			return -EINVAL;
1540 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1541 			return -EFAULT;
1542 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1543 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1544 	}
1545 
1546 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1547 
1548 	/*
1549 	 * If we changed the signal mask, we need to restore the original one.
1550 	 * In case we've got a signal while waiting, we do not restore the
1551 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1552 	 * the way back to userspace, before the signal mask is restored.
1553 	 */
1554 	if (sigmask) {
1555 		if (error == -EINTR) {
1556 			memcpy(&current->saved_sigmask, &sigsaved,
1557 			       sizeof(sigsaved));
1558 			set_restore_sigmask();
1559 		} else
1560 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1561 	}
1562 
1563 	return error;
1564 }
1565 
1566 #endif /* HAVE_SET_RESTORE_SIGMASK */
1567 
1568 static int __init eventpoll_init(void)
1569 {
1570 	struct sysinfo si;
1571 
1572 	si_meminfo(&si);
1573 	/*
1574 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1575 	 */
1576 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1577 		EP_ITEM_COST;
1578 	BUG_ON(max_user_watches < 0);
1579 
1580 	/*
1581 	 * Initialize the structure used to perform epoll file descriptor
1582 	 * inclusion loops checks.
1583 	 */
1584 	ep_nested_calls_init(&poll_loop_ncalls);
1585 
1586 	/* Initialize the structure used to perform safe poll wait head wake ups */
1587 	ep_nested_calls_init(&poll_safewake_ncalls);
1588 
1589 	/* Initialize the structure used to perform file's f_op->poll() calls */
1590 	ep_nested_calls_init(&poll_readywalk_ncalls);
1591 
1592 	/* Allocates slab cache used to allocate "struct epitem" items */
1593 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1594 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1595 
1596 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1597 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1598 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1599 
1600 	return 0;
1601 }
1602 fs_initcall(eventpoll_init);
1603