1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <asm/uaccess.h> 37 #include <asm/system.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (spinlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a spinlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 74 * case when one epoll fd is added to another. In this case, we 75 * always acquire the locks in the order of nesting (i.e. after 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 77 * before e2->mtx). Since we disallow cycles of epoll file 78 * descriptors, this ensures that the mutexes are well-ordered. In 79 * order to communicate this nesting to lockdep, when walking a tree 80 * of epoll file descriptors, we use the current recursion depth as 81 * the lockdep subkey. 82 * It is possible to drop the "ep->mtx" and to use the global 83 * mutex "epmutex" (together with "ep->lock") to have it working, 84 * but having "ep->mtx" will make the interface more scalable. 85 * Events that require holding "epmutex" are very rare, while for 86 * normal operations the epoll private "ep->mtx" will guarantee 87 * a better scalability. 88 */ 89 90 /* Epoll private bits inside the event mask */ 91 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 92 93 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 95 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 98 #define EP_UNACTIVE_PTR ((void *) -1L) 99 100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 102 struct epoll_filefd { 103 struct file *file; 104 int fd; 105 }; 106 107 /* 108 * Structure used to track possible nested calls, for too deep recursions 109 * and loop cycles. 110 */ 111 struct nested_call_node { 112 struct list_head llink; 113 void *cookie; 114 void *ctx; 115 }; 116 117 /* 118 * This structure is used as collector for nested calls, to check for 119 * maximum recursion dept and loop cycles. 120 */ 121 struct nested_calls { 122 struct list_head tasks_call_list; 123 spinlock_t lock; 124 }; 125 126 /* 127 * Each file descriptor added to the eventpoll interface will 128 * have an entry of this type linked to the "rbr" RB tree. 129 */ 130 struct epitem { 131 /* RB tree node used to link this structure to the eventpoll RB tree */ 132 struct rb_node rbn; 133 134 /* List header used to link this structure to the eventpoll ready list */ 135 struct list_head rdllink; 136 137 /* 138 * Works together "struct eventpoll"->ovflist in keeping the 139 * single linked chain of items. 140 */ 141 struct epitem *next; 142 143 /* The file descriptor information this item refers to */ 144 struct epoll_filefd ffd; 145 146 /* Number of active wait queue attached to poll operations */ 147 int nwait; 148 149 /* List containing poll wait queues */ 150 struct list_head pwqlist; 151 152 /* The "container" of this item */ 153 struct eventpoll *ep; 154 155 /* List header used to link this item to the "struct file" items list */ 156 struct list_head fllink; 157 158 /* The structure that describe the interested events and the source fd */ 159 struct epoll_event event; 160 }; 161 162 /* 163 * This structure is stored inside the "private_data" member of the file 164 * structure and represents the main data structure for the eventpoll 165 * interface. 166 */ 167 struct eventpoll { 168 /* Protect the access to this structure */ 169 spinlock_t lock; 170 171 /* 172 * This mutex is used to ensure that files are not removed 173 * while epoll is using them. This is held during the event 174 * collection loop, the file cleanup path, the epoll file exit 175 * code and the ctl operations. 176 */ 177 struct mutex mtx; 178 179 /* Wait queue used by sys_epoll_wait() */ 180 wait_queue_head_t wq; 181 182 /* Wait queue used by file->poll() */ 183 wait_queue_head_t poll_wait; 184 185 /* List of ready file descriptors */ 186 struct list_head rdllist; 187 188 /* RB tree root used to store monitored fd structs */ 189 struct rb_root rbr; 190 191 /* 192 * This is a single linked list that chains all the "struct epitem" that 193 * happened while transferring ready events to userspace w/out 194 * holding ->lock. 195 */ 196 struct epitem *ovflist; 197 198 /* The user that created the eventpoll descriptor */ 199 struct user_struct *user; 200 }; 201 202 /* Wait structure used by the poll hooks */ 203 struct eppoll_entry { 204 /* List header used to link this structure to the "struct epitem" */ 205 struct list_head llink; 206 207 /* The "base" pointer is set to the container "struct epitem" */ 208 struct epitem *base; 209 210 /* 211 * Wait queue item that will be linked to the target file wait 212 * queue head. 213 */ 214 wait_queue_t wait; 215 216 /* The wait queue head that linked the "wait" wait queue item */ 217 wait_queue_head_t *whead; 218 }; 219 220 /* Wrapper struct used by poll queueing */ 221 struct ep_pqueue { 222 poll_table pt; 223 struct epitem *epi; 224 }; 225 226 /* Used by the ep_send_events() function as callback private data */ 227 struct ep_send_events_data { 228 int maxevents; 229 struct epoll_event __user *events; 230 }; 231 232 /* 233 * Configuration options available inside /proc/sys/fs/epoll/ 234 */ 235 /* Maximum number of epoll watched descriptors, per user */ 236 static long max_user_watches __read_mostly; 237 238 /* 239 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 240 */ 241 static DEFINE_MUTEX(epmutex); 242 243 /* Used to check for epoll file descriptor inclusion loops */ 244 static struct nested_calls poll_loop_ncalls; 245 246 /* Used for safe wake up implementation */ 247 static struct nested_calls poll_safewake_ncalls; 248 249 /* Used to call file's f_op->poll() under the nested calls boundaries */ 250 static struct nested_calls poll_readywalk_ncalls; 251 252 /* Slab cache used to allocate "struct epitem" */ 253 static struct kmem_cache *epi_cache __read_mostly; 254 255 /* Slab cache used to allocate "struct eppoll_entry" */ 256 static struct kmem_cache *pwq_cache __read_mostly; 257 258 #ifdef CONFIG_SYSCTL 259 260 #include <linux/sysctl.h> 261 262 static long zero; 263 static long long_max = LONG_MAX; 264 265 ctl_table epoll_table[] = { 266 { 267 .procname = "max_user_watches", 268 .data = &max_user_watches, 269 .maxlen = sizeof(max_user_watches), 270 .mode = 0644, 271 .proc_handler = proc_doulongvec_minmax, 272 .extra1 = &zero, 273 .extra2 = &long_max, 274 }, 275 { } 276 }; 277 #endif /* CONFIG_SYSCTL */ 278 279 280 /* Setup the structure that is used as key for the RB tree */ 281 static inline void ep_set_ffd(struct epoll_filefd *ffd, 282 struct file *file, int fd) 283 { 284 ffd->file = file; 285 ffd->fd = fd; 286 } 287 288 /* Compare RB tree keys */ 289 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 290 struct epoll_filefd *p2) 291 { 292 return (p1->file > p2->file ? +1: 293 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 294 } 295 296 /* Tells us if the item is currently linked */ 297 static inline int ep_is_linked(struct list_head *p) 298 { 299 return !list_empty(p); 300 } 301 302 /* Get the "struct epitem" from a wait queue pointer */ 303 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 304 { 305 return container_of(p, struct eppoll_entry, wait)->base; 306 } 307 308 /* Get the "struct epitem" from an epoll queue wrapper */ 309 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 310 { 311 return container_of(p, struct ep_pqueue, pt)->epi; 312 } 313 314 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 315 static inline int ep_op_has_event(int op) 316 { 317 return op != EPOLL_CTL_DEL; 318 } 319 320 /* Initialize the poll safe wake up structure */ 321 static void ep_nested_calls_init(struct nested_calls *ncalls) 322 { 323 INIT_LIST_HEAD(&ncalls->tasks_call_list); 324 spin_lock_init(&ncalls->lock); 325 } 326 327 /** 328 * ep_events_available - Checks if ready events might be available. 329 * 330 * @ep: Pointer to the eventpoll context. 331 * 332 * Returns: Returns a value different than zero if ready events are available, 333 * or zero otherwise. 334 */ 335 static inline int ep_events_available(struct eventpoll *ep) 336 { 337 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 338 } 339 340 /** 341 * ep_call_nested - Perform a bound (possibly) nested call, by checking 342 * that the recursion limit is not exceeded, and that 343 * the same nested call (by the meaning of same cookie) is 344 * no re-entered. 345 * 346 * @ncalls: Pointer to the nested_calls structure to be used for this call. 347 * @max_nests: Maximum number of allowed nesting calls. 348 * @nproc: Nested call core function pointer. 349 * @priv: Opaque data to be passed to the @nproc callback. 350 * @cookie: Cookie to be used to identify this nested call. 351 * @ctx: This instance context. 352 * 353 * Returns: Returns the code returned by the @nproc callback, or -1 if 354 * the maximum recursion limit has been exceeded. 355 */ 356 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 357 int (*nproc)(void *, void *, int), void *priv, 358 void *cookie, void *ctx) 359 { 360 int error, call_nests = 0; 361 unsigned long flags; 362 struct list_head *lsthead = &ncalls->tasks_call_list; 363 struct nested_call_node *tncur; 364 struct nested_call_node tnode; 365 366 spin_lock_irqsave(&ncalls->lock, flags); 367 368 /* 369 * Try to see if the current task is already inside this wakeup call. 370 * We use a list here, since the population inside this set is always 371 * very much limited. 372 */ 373 list_for_each_entry(tncur, lsthead, llink) { 374 if (tncur->ctx == ctx && 375 (tncur->cookie == cookie || ++call_nests > max_nests)) { 376 /* 377 * Ops ... loop detected or maximum nest level reached. 378 * We abort this wake by breaking the cycle itself. 379 */ 380 error = -1; 381 goto out_unlock; 382 } 383 } 384 385 /* Add the current task and cookie to the list */ 386 tnode.ctx = ctx; 387 tnode.cookie = cookie; 388 list_add(&tnode.llink, lsthead); 389 390 spin_unlock_irqrestore(&ncalls->lock, flags); 391 392 /* Call the nested function */ 393 error = (*nproc)(priv, cookie, call_nests); 394 395 /* Remove the current task from the list */ 396 spin_lock_irqsave(&ncalls->lock, flags); 397 list_del(&tnode.llink); 398 out_unlock: 399 spin_unlock_irqrestore(&ncalls->lock, flags); 400 401 return error; 402 } 403 404 #ifdef CONFIG_DEBUG_LOCK_ALLOC 405 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 406 unsigned long events, int subclass) 407 { 408 unsigned long flags; 409 410 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 411 wake_up_locked_poll(wqueue, events); 412 spin_unlock_irqrestore(&wqueue->lock, flags); 413 } 414 #else 415 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 416 unsigned long events, int subclass) 417 { 418 wake_up_poll(wqueue, events); 419 } 420 #endif 421 422 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 423 { 424 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 425 1 + call_nests); 426 return 0; 427 } 428 429 /* 430 * Perform a safe wake up of the poll wait list. The problem is that 431 * with the new callback'd wake up system, it is possible that the 432 * poll callback is reentered from inside the call to wake_up() done 433 * on the poll wait queue head. The rule is that we cannot reenter the 434 * wake up code from the same task more than EP_MAX_NESTS times, 435 * and we cannot reenter the same wait queue head at all. This will 436 * enable to have a hierarchy of epoll file descriptor of no more than 437 * EP_MAX_NESTS deep. 438 */ 439 static void ep_poll_safewake(wait_queue_head_t *wq) 440 { 441 int this_cpu = get_cpu(); 442 443 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 444 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 445 446 put_cpu(); 447 } 448 449 /* 450 * This function unregisters poll callbacks from the associated file 451 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 452 * ep_free). 453 */ 454 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 455 { 456 struct list_head *lsthead = &epi->pwqlist; 457 struct eppoll_entry *pwq; 458 459 while (!list_empty(lsthead)) { 460 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 461 462 list_del(&pwq->llink); 463 remove_wait_queue(pwq->whead, &pwq->wait); 464 kmem_cache_free(pwq_cache, pwq); 465 } 466 } 467 468 /** 469 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 470 * the scan code, to call f_op->poll(). Also allows for 471 * O(NumReady) performance. 472 * 473 * @ep: Pointer to the epoll private data structure. 474 * @sproc: Pointer to the scan callback. 475 * @priv: Private opaque data passed to the @sproc callback. 476 * @depth: The current depth of recursive f_op->poll calls. 477 * 478 * Returns: The same integer error code returned by the @sproc callback. 479 */ 480 static int ep_scan_ready_list(struct eventpoll *ep, 481 int (*sproc)(struct eventpoll *, 482 struct list_head *, void *), 483 void *priv, 484 int depth) 485 { 486 int error, pwake = 0; 487 unsigned long flags; 488 struct epitem *epi, *nepi; 489 LIST_HEAD(txlist); 490 491 /* 492 * We need to lock this because we could be hit by 493 * eventpoll_release_file() and epoll_ctl(). 494 */ 495 mutex_lock_nested(&ep->mtx, depth); 496 497 /* 498 * Steal the ready list, and re-init the original one to the 499 * empty list. Also, set ep->ovflist to NULL so that events 500 * happening while looping w/out locks, are not lost. We cannot 501 * have the poll callback to queue directly on ep->rdllist, 502 * because we want the "sproc" callback to be able to do it 503 * in a lockless way. 504 */ 505 spin_lock_irqsave(&ep->lock, flags); 506 list_splice_init(&ep->rdllist, &txlist); 507 ep->ovflist = NULL; 508 spin_unlock_irqrestore(&ep->lock, flags); 509 510 /* 511 * Now call the callback function. 512 */ 513 error = (*sproc)(ep, &txlist, priv); 514 515 spin_lock_irqsave(&ep->lock, flags); 516 /* 517 * During the time we spent inside the "sproc" callback, some 518 * other events might have been queued by the poll callback. 519 * We re-insert them inside the main ready-list here. 520 */ 521 for (nepi = ep->ovflist; (epi = nepi) != NULL; 522 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 523 /* 524 * We need to check if the item is already in the list. 525 * During the "sproc" callback execution time, items are 526 * queued into ->ovflist but the "txlist" might already 527 * contain them, and the list_splice() below takes care of them. 528 */ 529 if (!ep_is_linked(&epi->rdllink)) 530 list_add_tail(&epi->rdllink, &ep->rdllist); 531 } 532 /* 533 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 534 * releasing the lock, events will be queued in the normal way inside 535 * ep->rdllist. 536 */ 537 ep->ovflist = EP_UNACTIVE_PTR; 538 539 /* 540 * Quickly re-inject items left on "txlist". 541 */ 542 list_splice(&txlist, &ep->rdllist); 543 544 if (!list_empty(&ep->rdllist)) { 545 /* 546 * Wake up (if active) both the eventpoll wait list and 547 * the ->poll() wait list (delayed after we release the lock). 548 */ 549 if (waitqueue_active(&ep->wq)) 550 wake_up_locked(&ep->wq); 551 if (waitqueue_active(&ep->poll_wait)) 552 pwake++; 553 } 554 spin_unlock_irqrestore(&ep->lock, flags); 555 556 mutex_unlock(&ep->mtx); 557 558 /* We have to call this outside the lock */ 559 if (pwake) 560 ep_poll_safewake(&ep->poll_wait); 561 562 return error; 563 } 564 565 /* 566 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 567 * all the associated resources. Must be called with "mtx" held. 568 */ 569 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 570 { 571 unsigned long flags; 572 struct file *file = epi->ffd.file; 573 574 /* 575 * Removes poll wait queue hooks. We _have_ to do this without holding 576 * the "ep->lock" otherwise a deadlock might occur. This because of the 577 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 578 * queue head lock when unregistering the wait queue. The wakeup callback 579 * will run by holding the wait queue head lock and will call our callback 580 * that will try to get "ep->lock". 581 */ 582 ep_unregister_pollwait(ep, epi); 583 584 /* Remove the current item from the list of epoll hooks */ 585 spin_lock(&file->f_lock); 586 if (ep_is_linked(&epi->fllink)) 587 list_del_init(&epi->fllink); 588 spin_unlock(&file->f_lock); 589 590 rb_erase(&epi->rbn, &ep->rbr); 591 592 spin_lock_irqsave(&ep->lock, flags); 593 if (ep_is_linked(&epi->rdllink)) 594 list_del_init(&epi->rdllink); 595 spin_unlock_irqrestore(&ep->lock, flags); 596 597 /* At this point it is safe to free the eventpoll item */ 598 kmem_cache_free(epi_cache, epi); 599 600 atomic_long_dec(&ep->user->epoll_watches); 601 602 return 0; 603 } 604 605 static void ep_free(struct eventpoll *ep) 606 { 607 struct rb_node *rbp; 608 struct epitem *epi; 609 610 /* We need to release all tasks waiting for these file */ 611 if (waitqueue_active(&ep->poll_wait)) 612 ep_poll_safewake(&ep->poll_wait); 613 614 /* 615 * We need to lock this because we could be hit by 616 * eventpoll_release_file() while we're freeing the "struct eventpoll". 617 * We do not need to hold "ep->mtx" here because the epoll file 618 * is on the way to be removed and no one has references to it 619 * anymore. The only hit might come from eventpoll_release_file() but 620 * holding "epmutex" is sufficient here. 621 */ 622 mutex_lock(&epmutex); 623 624 /* 625 * Walks through the whole tree by unregistering poll callbacks. 626 */ 627 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 628 epi = rb_entry(rbp, struct epitem, rbn); 629 630 ep_unregister_pollwait(ep, epi); 631 } 632 633 /* 634 * Walks through the whole tree by freeing each "struct epitem". At this 635 * point we are sure no poll callbacks will be lingering around, and also by 636 * holding "epmutex" we can be sure that no file cleanup code will hit 637 * us during this operation. So we can avoid the lock on "ep->lock". 638 */ 639 while ((rbp = rb_first(&ep->rbr)) != NULL) { 640 epi = rb_entry(rbp, struct epitem, rbn); 641 ep_remove(ep, epi); 642 } 643 644 mutex_unlock(&epmutex); 645 mutex_destroy(&ep->mtx); 646 free_uid(ep->user); 647 kfree(ep); 648 } 649 650 static int ep_eventpoll_release(struct inode *inode, struct file *file) 651 { 652 struct eventpoll *ep = file->private_data; 653 654 if (ep) 655 ep_free(ep); 656 657 return 0; 658 } 659 660 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 661 void *priv) 662 { 663 struct epitem *epi, *tmp; 664 665 list_for_each_entry_safe(epi, tmp, head, rdllink) { 666 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 667 epi->event.events) 668 return POLLIN | POLLRDNORM; 669 else { 670 /* 671 * Item has been dropped into the ready list by the poll 672 * callback, but it's not actually ready, as far as 673 * caller requested events goes. We can remove it here. 674 */ 675 list_del_init(&epi->rdllink); 676 } 677 } 678 679 return 0; 680 } 681 682 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 683 { 684 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1); 685 } 686 687 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 688 { 689 int pollflags; 690 struct eventpoll *ep = file->private_data; 691 692 /* Insert inside our poll wait queue */ 693 poll_wait(file, &ep->poll_wait, wait); 694 695 /* 696 * Proceed to find out if wanted events are really available inside 697 * the ready list. This need to be done under ep_call_nested() 698 * supervision, since the call to f_op->poll() done on listed files 699 * could re-enter here. 700 */ 701 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 702 ep_poll_readyevents_proc, ep, ep, current); 703 704 return pollflags != -1 ? pollflags : 0; 705 } 706 707 /* File callbacks that implement the eventpoll file behaviour */ 708 static const struct file_operations eventpoll_fops = { 709 .release = ep_eventpoll_release, 710 .poll = ep_eventpoll_poll, 711 .llseek = noop_llseek, 712 }; 713 714 /* Fast test to see if the file is an eventpoll file */ 715 static inline int is_file_epoll(struct file *f) 716 { 717 return f->f_op == &eventpoll_fops; 718 } 719 720 /* 721 * This is called from eventpoll_release() to unlink files from the eventpoll 722 * interface. We need to have this facility to cleanup correctly files that are 723 * closed without being removed from the eventpoll interface. 724 */ 725 void eventpoll_release_file(struct file *file) 726 { 727 struct list_head *lsthead = &file->f_ep_links; 728 struct eventpoll *ep; 729 struct epitem *epi; 730 731 /* 732 * We don't want to get "file->f_lock" because it is not 733 * necessary. It is not necessary because we're in the "struct file" 734 * cleanup path, and this means that no one is using this file anymore. 735 * So, for example, epoll_ctl() cannot hit here since if we reach this 736 * point, the file counter already went to zero and fget() would fail. 737 * The only hit might come from ep_free() but by holding the mutex 738 * will correctly serialize the operation. We do need to acquire 739 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 740 * from anywhere but ep_free(). 741 * 742 * Besides, ep_remove() acquires the lock, so we can't hold it here. 743 */ 744 mutex_lock(&epmutex); 745 746 while (!list_empty(lsthead)) { 747 epi = list_first_entry(lsthead, struct epitem, fllink); 748 749 ep = epi->ep; 750 list_del_init(&epi->fllink); 751 mutex_lock_nested(&ep->mtx, 0); 752 ep_remove(ep, epi); 753 mutex_unlock(&ep->mtx); 754 } 755 756 mutex_unlock(&epmutex); 757 } 758 759 static int ep_alloc(struct eventpoll **pep) 760 { 761 int error; 762 struct user_struct *user; 763 struct eventpoll *ep; 764 765 user = get_current_user(); 766 error = -ENOMEM; 767 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 768 if (unlikely(!ep)) 769 goto free_uid; 770 771 spin_lock_init(&ep->lock); 772 mutex_init(&ep->mtx); 773 init_waitqueue_head(&ep->wq); 774 init_waitqueue_head(&ep->poll_wait); 775 INIT_LIST_HEAD(&ep->rdllist); 776 ep->rbr = RB_ROOT; 777 ep->ovflist = EP_UNACTIVE_PTR; 778 ep->user = user; 779 780 *pep = ep; 781 782 return 0; 783 784 free_uid: 785 free_uid(user); 786 return error; 787 } 788 789 /* 790 * Search the file inside the eventpoll tree. The RB tree operations 791 * are protected by the "mtx" mutex, and ep_find() must be called with 792 * "mtx" held. 793 */ 794 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 795 { 796 int kcmp; 797 struct rb_node *rbp; 798 struct epitem *epi, *epir = NULL; 799 struct epoll_filefd ffd; 800 801 ep_set_ffd(&ffd, file, fd); 802 for (rbp = ep->rbr.rb_node; rbp; ) { 803 epi = rb_entry(rbp, struct epitem, rbn); 804 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 805 if (kcmp > 0) 806 rbp = rbp->rb_right; 807 else if (kcmp < 0) 808 rbp = rbp->rb_left; 809 else { 810 epir = epi; 811 break; 812 } 813 } 814 815 return epir; 816 } 817 818 /* 819 * This is the callback that is passed to the wait queue wakeup 820 * mechanism. It is called by the stored file descriptors when they 821 * have events to report. 822 */ 823 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 824 { 825 int pwake = 0; 826 unsigned long flags; 827 struct epitem *epi = ep_item_from_wait(wait); 828 struct eventpoll *ep = epi->ep; 829 830 spin_lock_irqsave(&ep->lock, flags); 831 832 /* 833 * If the event mask does not contain any poll(2) event, we consider the 834 * descriptor to be disabled. This condition is likely the effect of the 835 * EPOLLONESHOT bit that disables the descriptor when an event is received, 836 * until the next EPOLL_CTL_MOD will be issued. 837 */ 838 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 839 goto out_unlock; 840 841 /* 842 * Check the events coming with the callback. At this stage, not 843 * every device reports the events in the "key" parameter of the 844 * callback. We need to be able to handle both cases here, hence the 845 * test for "key" != NULL before the event match test. 846 */ 847 if (key && !((unsigned long) key & epi->event.events)) 848 goto out_unlock; 849 850 /* 851 * If we are transferring events to userspace, we can hold no locks 852 * (because we're accessing user memory, and because of linux f_op->poll() 853 * semantics). All the events that happen during that period of time are 854 * chained in ep->ovflist and requeued later on. 855 */ 856 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 857 if (epi->next == EP_UNACTIVE_PTR) { 858 epi->next = ep->ovflist; 859 ep->ovflist = epi; 860 } 861 goto out_unlock; 862 } 863 864 /* If this file is already in the ready list we exit soon */ 865 if (!ep_is_linked(&epi->rdllink)) 866 list_add_tail(&epi->rdllink, &ep->rdllist); 867 868 /* 869 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 870 * wait list. 871 */ 872 if (waitqueue_active(&ep->wq)) 873 wake_up_locked(&ep->wq); 874 if (waitqueue_active(&ep->poll_wait)) 875 pwake++; 876 877 out_unlock: 878 spin_unlock_irqrestore(&ep->lock, flags); 879 880 /* We have to call this outside the lock */ 881 if (pwake) 882 ep_poll_safewake(&ep->poll_wait); 883 884 return 1; 885 } 886 887 /* 888 * This is the callback that is used to add our wait queue to the 889 * target file wakeup lists. 890 */ 891 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 892 poll_table *pt) 893 { 894 struct epitem *epi = ep_item_from_epqueue(pt); 895 struct eppoll_entry *pwq; 896 897 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 898 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 899 pwq->whead = whead; 900 pwq->base = epi; 901 add_wait_queue(whead, &pwq->wait); 902 list_add_tail(&pwq->llink, &epi->pwqlist); 903 epi->nwait++; 904 } else { 905 /* We have to signal that an error occurred */ 906 epi->nwait = -1; 907 } 908 } 909 910 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 911 { 912 int kcmp; 913 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 914 struct epitem *epic; 915 916 while (*p) { 917 parent = *p; 918 epic = rb_entry(parent, struct epitem, rbn); 919 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 920 if (kcmp > 0) 921 p = &parent->rb_right; 922 else 923 p = &parent->rb_left; 924 } 925 rb_link_node(&epi->rbn, parent, p); 926 rb_insert_color(&epi->rbn, &ep->rbr); 927 } 928 929 /* 930 * Must be called with "mtx" held. 931 */ 932 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 933 struct file *tfile, int fd) 934 { 935 int error, revents, pwake = 0; 936 unsigned long flags; 937 long user_watches; 938 struct epitem *epi; 939 struct ep_pqueue epq; 940 941 user_watches = atomic_long_read(&ep->user->epoll_watches); 942 if (unlikely(user_watches >= max_user_watches)) 943 return -ENOSPC; 944 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 945 return -ENOMEM; 946 947 /* Item initialization follow here ... */ 948 INIT_LIST_HEAD(&epi->rdllink); 949 INIT_LIST_HEAD(&epi->fllink); 950 INIT_LIST_HEAD(&epi->pwqlist); 951 epi->ep = ep; 952 ep_set_ffd(&epi->ffd, tfile, fd); 953 epi->event = *event; 954 epi->nwait = 0; 955 epi->next = EP_UNACTIVE_PTR; 956 957 /* Initialize the poll table using the queue callback */ 958 epq.epi = epi; 959 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 960 961 /* 962 * Attach the item to the poll hooks and get current event bits. 963 * We can safely use the file* here because its usage count has 964 * been increased by the caller of this function. Note that after 965 * this operation completes, the poll callback can start hitting 966 * the new item. 967 */ 968 revents = tfile->f_op->poll(tfile, &epq.pt); 969 970 /* 971 * We have to check if something went wrong during the poll wait queue 972 * install process. Namely an allocation for a wait queue failed due 973 * high memory pressure. 974 */ 975 error = -ENOMEM; 976 if (epi->nwait < 0) 977 goto error_unregister; 978 979 /* Add the current item to the list of active epoll hook for this file */ 980 spin_lock(&tfile->f_lock); 981 list_add_tail(&epi->fllink, &tfile->f_ep_links); 982 spin_unlock(&tfile->f_lock); 983 984 /* 985 * Add the current item to the RB tree. All RB tree operations are 986 * protected by "mtx", and ep_insert() is called with "mtx" held. 987 */ 988 ep_rbtree_insert(ep, epi); 989 990 /* We have to drop the new item inside our item list to keep track of it */ 991 spin_lock_irqsave(&ep->lock, flags); 992 993 /* If the file is already "ready" we drop it inside the ready list */ 994 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 995 list_add_tail(&epi->rdllink, &ep->rdllist); 996 997 /* Notify waiting tasks that events are available */ 998 if (waitqueue_active(&ep->wq)) 999 wake_up_locked(&ep->wq); 1000 if (waitqueue_active(&ep->poll_wait)) 1001 pwake++; 1002 } 1003 1004 spin_unlock_irqrestore(&ep->lock, flags); 1005 1006 atomic_long_inc(&ep->user->epoll_watches); 1007 1008 /* We have to call this outside the lock */ 1009 if (pwake) 1010 ep_poll_safewake(&ep->poll_wait); 1011 1012 return 0; 1013 1014 error_unregister: 1015 ep_unregister_pollwait(ep, epi); 1016 1017 /* 1018 * We need to do this because an event could have been arrived on some 1019 * allocated wait queue. Note that we don't care about the ep->ovflist 1020 * list, since that is used/cleaned only inside a section bound by "mtx". 1021 * And ep_insert() is called with "mtx" held. 1022 */ 1023 spin_lock_irqsave(&ep->lock, flags); 1024 if (ep_is_linked(&epi->rdllink)) 1025 list_del_init(&epi->rdllink); 1026 spin_unlock_irqrestore(&ep->lock, flags); 1027 1028 kmem_cache_free(epi_cache, epi); 1029 1030 return error; 1031 } 1032 1033 /* 1034 * Modify the interest event mask by dropping an event if the new mask 1035 * has a match in the current file status. Must be called with "mtx" held. 1036 */ 1037 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1038 { 1039 int pwake = 0; 1040 unsigned int revents; 1041 1042 /* 1043 * Set the new event interest mask before calling f_op->poll(); 1044 * otherwise we might miss an event that happens between the 1045 * f_op->poll() call and the new event set registering. 1046 */ 1047 epi->event.events = event->events; 1048 epi->event.data = event->data; /* protected by mtx */ 1049 1050 /* 1051 * Get current event bits. We can safely use the file* here because 1052 * its usage count has been increased by the caller of this function. 1053 */ 1054 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 1055 1056 /* 1057 * If the item is "hot" and it is not registered inside the ready 1058 * list, push it inside. 1059 */ 1060 if (revents & event->events) { 1061 spin_lock_irq(&ep->lock); 1062 if (!ep_is_linked(&epi->rdllink)) { 1063 list_add_tail(&epi->rdllink, &ep->rdllist); 1064 1065 /* Notify waiting tasks that events are available */ 1066 if (waitqueue_active(&ep->wq)) 1067 wake_up_locked(&ep->wq); 1068 if (waitqueue_active(&ep->poll_wait)) 1069 pwake++; 1070 } 1071 spin_unlock_irq(&ep->lock); 1072 } 1073 1074 /* We have to call this outside the lock */ 1075 if (pwake) 1076 ep_poll_safewake(&ep->poll_wait); 1077 1078 return 0; 1079 } 1080 1081 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1082 void *priv) 1083 { 1084 struct ep_send_events_data *esed = priv; 1085 int eventcnt; 1086 unsigned int revents; 1087 struct epitem *epi; 1088 struct epoll_event __user *uevent; 1089 1090 /* 1091 * We can loop without lock because we are passed a task private list. 1092 * Items cannot vanish during the loop because ep_scan_ready_list() is 1093 * holding "mtx" during this call. 1094 */ 1095 for (eventcnt = 0, uevent = esed->events; 1096 !list_empty(head) && eventcnt < esed->maxevents;) { 1097 epi = list_first_entry(head, struct epitem, rdllink); 1098 1099 list_del_init(&epi->rdllink); 1100 1101 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 1102 epi->event.events; 1103 1104 /* 1105 * If the event mask intersect the caller-requested one, 1106 * deliver the event to userspace. Again, ep_scan_ready_list() 1107 * is holding "mtx", so no operations coming from userspace 1108 * can change the item. 1109 */ 1110 if (revents) { 1111 if (__put_user(revents, &uevent->events) || 1112 __put_user(epi->event.data, &uevent->data)) { 1113 list_add(&epi->rdllink, head); 1114 return eventcnt ? eventcnt : -EFAULT; 1115 } 1116 eventcnt++; 1117 uevent++; 1118 if (epi->event.events & EPOLLONESHOT) 1119 epi->event.events &= EP_PRIVATE_BITS; 1120 else if (!(epi->event.events & EPOLLET)) { 1121 /* 1122 * If this file has been added with Level 1123 * Trigger mode, we need to insert back inside 1124 * the ready list, so that the next call to 1125 * epoll_wait() will check again the events 1126 * availability. At this point, no one can insert 1127 * into ep->rdllist besides us. The epoll_ctl() 1128 * callers are locked out by 1129 * ep_scan_ready_list() holding "mtx" and the 1130 * poll callback will queue them in ep->ovflist. 1131 */ 1132 list_add_tail(&epi->rdllink, &ep->rdllist); 1133 } 1134 } 1135 } 1136 1137 return eventcnt; 1138 } 1139 1140 static int ep_send_events(struct eventpoll *ep, 1141 struct epoll_event __user *events, int maxevents) 1142 { 1143 struct ep_send_events_data esed; 1144 1145 esed.maxevents = maxevents; 1146 esed.events = events; 1147 1148 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0); 1149 } 1150 1151 static inline struct timespec ep_set_mstimeout(long ms) 1152 { 1153 struct timespec now, ts = { 1154 .tv_sec = ms / MSEC_PER_SEC, 1155 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1156 }; 1157 1158 ktime_get_ts(&now); 1159 return timespec_add_safe(now, ts); 1160 } 1161 1162 /** 1163 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1164 * event buffer. 1165 * 1166 * @ep: Pointer to the eventpoll context. 1167 * @events: Pointer to the userspace buffer where the ready events should be 1168 * stored. 1169 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1170 * @timeout: Maximum timeout for the ready events fetch operation, in 1171 * milliseconds. If the @timeout is zero, the function will not block, 1172 * while if the @timeout is less than zero, the function will block 1173 * until at least one event has been retrieved (or an error 1174 * occurred). 1175 * 1176 * Returns: Returns the number of ready events which have been fetched, or an 1177 * error code, in case of error. 1178 */ 1179 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1180 int maxevents, long timeout) 1181 { 1182 int res = 0, eavail, timed_out = 0; 1183 unsigned long flags; 1184 long slack = 0; 1185 wait_queue_t wait; 1186 ktime_t expires, *to = NULL; 1187 1188 if (timeout > 0) { 1189 struct timespec end_time = ep_set_mstimeout(timeout); 1190 1191 slack = select_estimate_accuracy(&end_time); 1192 to = &expires; 1193 *to = timespec_to_ktime(end_time); 1194 } else if (timeout == 0) { 1195 /* 1196 * Avoid the unnecessary trip to the wait queue loop, if the 1197 * caller specified a non blocking operation. 1198 */ 1199 timed_out = 1; 1200 spin_lock_irqsave(&ep->lock, flags); 1201 goto check_events; 1202 } 1203 1204 fetch_events: 1205 spin_lock_irqsave(&ep->lock, flags); 1206 1207 if (!ep_events_available(ep)) { 1208 /* 1209 * We don't have any available event to return to the caller. 1210 * We need to sleep here, and we will be wake up by 1211 * ep_poll_callback() when events will become available. 1212 */ 1213 init_waitqueue_entry(&wait, current); 1214 __add_wait_queue_exclusive(&ep->wq, &wait); 1215 1216 for (;;) { 1217 /* 1218 * We don't want to sleep if the ep_poll_callback() sends us 1219 * a wakeup in between. That's why we set the task state 1220 * to TASK_INTERRUPTIBLE before doing the checks. 1221 */ 1222 set_current_state(TASK_INTERRUPTIBLE); 1223 if (ep_events_available(ep) || timed_out) 1224 break; 1225 if (signal_pending(current)) { 1226 res = -EINTR; 1227 break; 1228 } 1229 1230 spin_unlock_irqrestore(&ep->lock, flags); 1231 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1232 timed_out = 1; 1233 1234 spin_lock_irqsave(&ep->lock, flags); 1235 } 1236 __remove_wait_queue(&ep->wq, &wait); 1237 1238 set_current_state(TASK_RUNNING); 1239 } 1240 check_events: 1241 /* Is it worth to try to dig for events ? */ 1242 eavail = ep_events_available(ep); 1243 1244 spin_unlock_irqrestore(&ep->lock, flags); 1245 1246 /* 1247 * Try to transfer events to user space. In case we get 0 events and 1248 * there's still timeout left over, we go trying again in search of 1249 * more luck. 1250 */ 1251 if (!res && eavail && 1252 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1253 goto fetch_events; 1254 1255 return res; 1256 } 1257 1258 /** 1259 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1260 * API, to verify that adding an epoll file inside another 1261 * epoll structure, does not violate the constraints, in 1262 * terms of closed loops, or too deep chains (which can 1263 * result in excessive stack usage). 1264 * 1265 * @priv: Pointer to the epoll file to be currently checked. 1266 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1267 * data structure pointer. 1268 * @call_nests: Current dept of the @ep_call_nested() call stack. 1269 * 1270 * Returns: Returns zero if adding the epoll @file inside current epoll 1271 * structure @ep does not violate the constraints, or -1 otherwise. 1272 */ 1273 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1274 { 1275 int error = 0; 1276 struct file *file = priv; 1277 struct eventpoll *ep = file->private_data; 1278 struct rb_node *rbp; 1279 struct epitem *epi; 1280 1281 mutex_lock_nested(&ep->mtx, call_nests + 1); 1282 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1283 epi = rb_entry(rbp, struct epitem, rbn); 1284 if (unlikely(is_file_epoll(epi->ffd.file))) { 1285 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1286 ep_loop_check_proc, epi->ffd.file, 1287 epi->ffd.file->private_data, current); 1288 if (error != 0) 1289 break; 1290 } 1291 } 1292 mutex_unlock(&ep->mtx); 1293 1294 return error; 1295 } 1296 1297 /** 1298 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1299 * another epoll file (represented by @ep) does not create 1300 * closed loops or too deep chains. 1301 * 1302 * @ep: Pointer to the epoll private data structure. 1303 * @file: Pointer to the epoll file to be checked. 1304 * 1305 * Returns: Returns zero if adding the epoll @file inside current epoll 1306 * structure @ep does not violate the constraints, or -1 otherwise. 1307 */ 1308 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1309 { 1310 return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1311 ep_loop_check_proc, file, ep, current); 1312 } 1313 1314 /* 1315 * Open an eventpoll file descriptor. 1316 */ 1317 SYSCALL_DEFINE1(epoll_create1, int, flags) 1318 { 1319 int error; 1320 struct eventpoll *ep = NULL; 1321 1322 /* Check the EPOLL_* constant for consistency. */ 1323 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1324 1325 if (flags & ~EPOLL_CLOEXEC) 1326 return -EINVAL; 1327 /* 1328 * Create the internal data structure ("struct eventpoll"). 1329 */ 1330 error = ep_alloc(&ep); 1331 if (error < 0) 1332 return error; 1333 /* 1334 * Creates all the items needed to setup an eventpoll file. That is, 1335 * a file structure and a free file descriptor. 1336 */ 1337 error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep, 1338 O_RDWR | (flags & O_CLOEXEC)); 1339 if (error < 0) 1340 ep_free(ep); 1341 1342 return error; 1343 } 1344 1345 SYSCALL_DEFINE1(epoll_create, int, size) 1346 { 1347 if (size <= 0) 1348 return -EINVAL; 1349 1350 return sys_epoll_create1(0); 1351 } 1352 1353 /* 1354 * The following function implements the controller interface for 1355 * the eventpoll file that enables the insertion/removal/change of 1356 * file descriptors inside the interest set. 1357 */ 1358 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1359 struct epoll_event __user *, event) 1360 { 1361 int error; 1362 int did_lock_epmutex = 0; 1363 struct file *file, *tfile; 1364 struct eventpoll *ep; 1365 struct epitem *epi; 1366 struct epoll_event epds; 1367 1368 error = -EFAULT; 1369 if (ep_op_has_event(op) && 1370 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1371 goto error_return; 1372 1373 /* Get the "struct file *" for the eventpoll file */ 1374 error = -EBADF; 1375 file = fget(epfd); 1376 if (!file) 1377 goto error_return; 1378 1379 /* Get the "struct file *" for the target file */ 1380 tfile = fget(fd); 1381 if (!tfile) 1382 goto error_fput; 1383 1384 /* The target file descriptor must support poll */ 1385 error = -EPERM; 1386 if (!tfile->f_op || !tfile->f_op->poll) 1387 goto error_tgt_fput; 1388 1389 /* 1390 * We have to check that the file structure underneath the file descriptor 1391 * the user passed to us _is_ an eventpoll file. And also we do not permit 1392 * adding an epoll file descriptor inside itself. 1393 */ 1394 error = -EINVAL; 1395 if (file == tfile || !is_file_epoll(file)) 1396 goto error_tgt_fput; 1397 1398 /* 1399 * At this point it is safe to assume that the "private_data" contains 1400 * our own data structure. 1401 */ 1402 ep = file->private_data; 1403 1404 /* 1405 * When we insert an epoll file descriptor, inside another epoll file 1406 * descriptor, there is the change of creating closed loops, which are 1407 * better be handled here, than in more critical paths. 1408 * 1409 * We hold epmutex across the loop check and the insert in this case, in 1410 * order to prevent two separate inserts from racing and each doing the 1411 * insert "at the same time" such that ep_loop_check passes on both 1412 * before either one does the insert, thereby creating a cycle. 1413 */ 1414 if (unlikely(is_file_epoll(tfile) && op == EPOLL_CTL_ADD)) { 1415 mutex_lock(&epmutex); 1416 did_lock_epmutex = 1; 1417 error = -ELOOP; 1418 if (ep_loop_check(ep, tfile) != 0) 1419 goto error_tgt_fput; 1420 } 1421 1422 1423 mutex_lock_nested(&ep->mtx, 0); 1424 1425 /* 1426 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1427 * above, we can be sure to be able to use the item looked up by 1428 * ep_find() till we release the mutex. 1429 */ 1430 epi = ep_find(ep, tfile, fd); 1431 1432 error = -EINVAL; 1433 switch (op) { 1434 case EPOLL_CTL_ADD: 1435 if (!epi) { 1436 epds.events |= POLLERR | POLLHUP; 1437 error = ep_insert(ep, &epds, tfile, fd); 1438 } else 1439 error = -EEXIST; 1440 break; 1441 case EPOLL_CTL_DEL: 1442 if (epi) 1443 error = ep_remove(ep, epi); 1444 else 1445 error = -ENOENT; 1446 break; 1447 case EPOLL_CTL_MOD: 1448 if (epi) { 1449 epds.events |= POLLERR | POLLHUP; 1450 error = ep_modify(ep, epi, &epds); 1451 } else 1452 error = -ENOENT; 1453 break; 1454 } 1455 mutex_unlock(&ep->mtx); 1456 1457 error_tgt_fput: 1458 if (unlikely(did_lock_epmutex)) 1459 mutex_unlock(&epmutex); 1460 1461 fput(tfile); 1462 error_fput: 1463 fput(file); 1464 error_return: 1465 1466 return error; 1467 } 1468 1469 /* 1470 * Implement the event wait interface for the eventpoll file. It is the kernel 1471 * part of the user space epoll_wait(2). 1472 */ 1473 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1474 int, maxevents, int, timeout) 1475 { 1476 int error; 1477 struct file *file; 1478 struct eventpoll *ep; 1479 1480 /* The maximum number of event must be greater than zero */ 1481 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1482 return -EINVAL; 1483 1484 /* Verify that the area passed by the user is writeable */ 1485 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 1486 error = -EFAULT; 1487 goto error_return; 1488 } 1489 1490 /* Get the "struct file *" for the eventpoll file */ 1491 error = -EBADF; 1492 file = fget(epfd); 1493 if (!file) 1494 goto error_return; 1495 1496 /* 1497 * We have to check that the file structure underneath the fd 1498 * the user passed to us _is_ an eventpoll file. 1499 */ 1500 error = -EINVAL; 1501 if (!is_file_epoll(file)) 1502 goto error_fput; 1503 1504 /* 1505 * At this point it is safe to assume that the "private_data" contains 1506 * our own data structure. 1507 */ 1508 ep = file->private_data; 1509 1510 /* Time to fish for events ... */ 1511 error = ep_poll(ep, events, maxevents, timeout); 1512 1513 error_fput: 1514 fput(file); 1515 error_return: 1516 1517 return error; 1518 } 1519 1520 #ifdef HAVE_SET_RESTORE_SIGMASK 1521 1522 /* 1523 * Implement the event wait interface for the eventpoll file. It is the kernel 1524 * part of the user space epoll_pwait(2). 1525 */ 1526 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1527 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1528 size_t, sigsetsize) 1529 { 1530 int error; 1531 sigset_t ksigmask, sigsaved; 1532 1533 /* 1534 * If the caller wants a certain signal mask to be set during the wait, 1535 * we apply it here. 1536 */ 1537 if (sigmask) { 1538 if (sigsetsize != sizeof(sigset_t)) 1539 return -EINVAL; 1540 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1541 return -EFAULT; 1542 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1543 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1544 } 1545 1546 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1547 1548 /* 1549 * If we changed the signal mask, we need to restore the original one. 1550 * In case we've got a signal while waiting, we do not restore the 1551 * signal mask yet, and we allow do_signal() to deliver the signal on 1552 * the way back to userspace, before the signal mask is restored. 1553 */ 1554 if (sigmask) { 1555 if (error == -EINTR) { 1556 memcpy(¤t->saved_sigmask, &sigsaved, 1557 sizeof(sigsaved)); 1558 set_restore_sigmask(); 1559 } else 1560 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1561 } 1562 1563 return error; 1564 } 1565 1566 #endif /* HAVE_SET_RESTORE_SIGMASK */ 1567 1568 static int __init eventpoll_init(void) 1569 { 1570 struct sysinfo si; 1571 1572 si_meminfo(&si); 1573 /* 1574 * Allows top 4% of lomem to be allocated for epoll watches (per user). 1575 */ 1576 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 1577 EP_ITEM_COST; 1578 BUG_ON(max_user_watches < 0); 1579 1580 /* 1581 * Initialize the structure used to perform epoll file descriptor 1582 * inclusion loops checks. 1583 */ 1584 ep_nested_calls_init(&poll_loop_ncalls); 1585 1586 /* Initialize the structure used to perform safe poll wait head wake ups */ 1587 ep_nested_calls_init(&poll_safewake_ncalls); 1588 1589 /* Initialize the structure used to perform file's f_op->poll() calls */ 1590 ep_nested_calls_init(&poll_readywalk_ncalls); 1591 1592 /* Allocates slab cache used to allocate "struct epitem" items */ 1593 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1594 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1595 1596 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1597 pwq_cache = kmem_cache_create("eventpoll_pwq", 1598 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 1599 1600 return 0; 1601 } 1602 fs_initcall(eventpoll_init); 1603