1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <asm/uaccess.h> 37 #include <asm/system.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <asm/atomic.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (spinlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a spinlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL). 66 * It is possible to drop the "ep->mtx" and to use the global 67 * mutex "epmutex" (together with "ep->lock") to have it working, 68 * but having "ep->mtx" will make the interface more scalable. 69 * Events that require holding "epmutex" are very rare, while for 70 * normal operations the epoll private "ep->mtx" will guarantee 71 * a better scalability. 72 */ 73 74 /* Epoll private bits inside the event mask */ 75 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 76 77 /* Maximum number of nesting allowed inside epoll sets */ 78 #define EP_MAX_NESTS 4 79 80 /* Maximum msec timeout value storeable in a long int */ 81 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ) 82 83 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 84 85 #define EP_UNACTIVE_PTR ((void *) -1L) 86 87 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 88 89 struct epoll_filefd { 90 struct file *file; 91 int fd; 92 }; 93 94 /* 95 * Structure used to track possible nested calls, for too deep recursions 96 * and loop cycles. 97 */ 98 struct nested_call_node { 99 struct list_head llink; 100 void *cookie; 101 void *ctx; 102 }; 103 104 /* 105 * This structure is used as collector for nested calls, to check for 106 * maximum recursion dept and loop cycles. 107 */ 108 struct nested_calls { 109 struct list_head tasks_call_list; 110 spinlock_t lock; 111 }; 112 113 /* 114 * Each file descriptor added to the eventpoll interface will 115 * have an entry of this type linked to the "rbr" RB tree. 116 */ 117 struct epitem { 118 /* RB tree node used to link this structure to the eventpoll RB tree */ 119 struct rb_node rbn; 120 121 /* List header used to link this structure to the eventpoll ready list */ 122 struct list_head rdllink; 123 124 /* 125 * Works together "struct eventpoll"->ovflist in keeping the 126 * single linked chain of items. 127 */ 128 struct epitem *next; 129 130 /* The file descriptor information this item refers to */ 131 struct epoll_filefd ffd; 132 133 /* Number of active wait queue attached to poll operations */ 134 int nwait; 135 136 /* List containing poll wait queues */ 137 struct list_head pwqlist; 138 139 /* The "container" of this item */ 140 struct eventpoll *ep; 141 142 /* List header used to link this item to the "struct file" items list */ 143 struct list_head fllink; 144 145 /* The structure that describe the interested events and the source fd */ 146 struct epoll_event event; 147 }; 148 149 /* 150 * This structure is stored inside the "private_data" member of the file 151 * structure and rapresent the main data sructure for the eventpoll 152 * interface. 153 */ 154 struct eventpoll { 155 /* Protect the this structure access */ 156 spinlock_t lock; 157 158 /* 159 * This mutex is used to ensure that files are not removed 160 * while epoll is using them. This is held during the event 161 * collection loop, the file cleanup path, the epoll file exit 162 * code and the ctl operations. 163 */ 164 struct mutex mtx; 165 166 /* Wait queue used by sys_epoll_wait() */ 167 wait_queue_head_t wq; 168 169 /* Wait queue used by file->poll() */ 170 wait_queue_head_t poll_wait; 171 172 /* List of ready file descriptors */ 173 struct list_head rdllist; 174 175 /* RB tree root used to store monitored fd structs */ 176 struct rb_root rbr; 177 178 /* 179 * This is a single linked list that chains all the "struct epitem" that 180 * happened while transfering ready events to userspace w/out 181 * holding ->lock. 182 */ 183 struct epitem *ovflist; 184 185 /* The user that created the eventpoll descriptor */ 186 struct user_struct *user; 187 }; 188 189 /* Wait structure used by the poll hooks */ 190 struct eppoll_entry { 191 /* List header used to link this structure to the "struct epitem" */ 192 struct list_head llink; 193 194 /* The "base" pointer is set to the container "struct epitem" */ 195 struct epitem *base; 196 197 /* 198 * Wait queue item that will be linked to the target file wait 199 * queue head. 200 */ 201 wait_queue_t wait; 202 203 /* The wait queue head that linked the "wait" wait queue item */ 204 wait_queue_head_t *whead; 205 }; 206 207 /* Wrapper struct used by poll queueing */ 208 struct ep_pqueue { 209 poll_table pt; 210 struct epitem *epi; 211 }; 212 213 /* Used by the ep_send_events() function as callback private data */ 214 struct ep_send_events_data { 215 int maxevents; 216 struct epoll_event __user *events; 217 }; 218 219 /* 220 * Configuration options available inside /proc/sys/fs/epoll/ 221 */ 222 /* Maximum number of epoll watched descriptors, per user */ 223 static int max_user_watches __read_mostly; 224 225 /* 226 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 227 */ 228 static DEFINE_MUTEX(epmutex); 229 230 /* Used for safe wake up implementation */ 231 static struct nested_calls poll_safewake_ncalls; 232 233 /* Used to call file's f_op->poll() under the nested calls boundaries */ 234 static struct nested_calls poll_readywalk_ncalls; 235 236 /* Slab cache used to allocate "struct epitem" */ 237 static struct kmem_cache *epi_cache __read_mostly; 238 239 /* Slab cache used to allocate "struct eppoll_entry" */ 240 static struct kmem_cache *pwq_cache __read_mostly; 241 242 #ifdef CONFIG_SYSCTL 243 244 #include <linux/sysctl.h> 245 246 static int zero; 247 248 ctl_table epoll_table[] = { 249 { 250 .procname = "max_user_watches", 251 .data = &max_user_watches, 252 .maxlen = sizeof(int), 253 .mode = 0644, 254 .proc_handler = &proc_dointvec_minmax, 255 .extra1 = &zero, 256 }, 257 { .ctl_name = 0 } 258 }; 259 #endif /* CONFIG_SYSCTL */ 260 261 262 /* Setup the structure that is used as key for the RB tree */ 263 static inline void ep_set_ffd(struct epoll_filefd *ffd, 264 struct file *file, int fd) 265 { 266 ffd->file = file; 267 ffd->fd = fd; 268 } 269 270 /* Compare RB tree keys */ 271 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 272 struct epoll_filefd *p2) 273 { 274 return (p1->file > p2->file ? +1: 275 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 276 } 277 278 /* Tells us if the item is currently linked */ 279 static inline int ep_is_linked(struct list_head *p) 280 { 281 return !list_empty(p); 282 } 283 284 /* Get the "struct epitem" from a wait queue pointer */ 285 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 286 { 287 return container_of(p, struct eppoll_entry, wait)->base; 288 } 289 290 /* Get the "struct epitem" from an epoll queue wrapper */ 291 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 292 { 293 return container_of(p, struct ep_pqueue, pt)->epi; 294 } 295 296 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 297 static inline int ep_op_has_event(int op) 298 { 299 return op != EPOLL_CTL_DEL; 300 } 301 302 /* Initialize the poll safe wake up structure */ 303 static void ep_nested_calls_init(struct nested_calls *ncalls) 304 { 305 INIT_LIST_HEAD(&ncalls->tasks_call_list); 306 spin_lock_init(&ncalls->lock); 307 } 308 309 /** 310 * ep_call_nested - Perform a bound (possibly) nested call, by checking 311 * that the recursion limit is not exceeded, and that 312 * the same nested call (by the meaning of same cookie) is 313 * no re-entered. 314 * 315 * @ncalls: Pointer to the nested_calls structure to be used for this call. 316 * @max_nests: Maximum number of allowed nesting calls. 317 * @nproc: Nested call core function pointer. 318 * @priv: Opaque data to be passed to the @nproc callback. 319 * @cookie: Cookie to be used to identify this nested call. 320 * @ctx: This instance context. 321 * 322 * Returns: Returns the code returned by the @nproc callback, or -1 if 323 * the maximum recursion limit has been exceeded. 324 */ 325 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 326 int (*nproc)(void *, void *, int), void *priv, 327 void *cookie, void *ctx) 328 { 329 int error, call_nests = 0; 330 unsigned long flags; 331 struct list_head *lsthead = &ncalls->tasks_call_list; 332 struct nested_call_node *tncur; 333 struct nested_call_node tnode; 334 335 spin_lock_irqsave(&ncalls->lock, flags); 336 337 /* 338 * Try to see if the current task is already inside this wakeup call. 339 * We use a list here, since the population inside this set is always 340 * very much limited. 341 */ 342 list_for_each_entry(tncur, lsthead, llink) { 343 if (tncur->ctx == ctx && 344 (tncur->cookie == cookie || ++call_nests > max_nests)) { 345 /* 346 * Ops ... loop detected or maximum nest level reached. 347 * We abort this wake by breaking the cycle itself. 348 */ 349 error = -1; 350 goto out_unlock; 351 } 352 } 353 354 /* Add the current task and cookie to the list */ 355 tnode.ctx = ctx; 356 tnode.cookie = cookie; 357 list_add(&tnode.llink, lsthead); 358 359 spin_unlock_irqrestore(&ncalls->lock, flags); 360 361 /* Call the nested function */ 362 error = (*nproc)(priv, cookie, call_nests); 363 364 /* Remove the current task from the list */ 365 spin_lock_irqsave(&ncalls->lock, flags); 366 list_del(&tnode.llink); 367 out_unlock: 368 spin_unlock_irqrestore(&ncalls->lock, flags); 369 370 return error; 371 } 372 373 #ifdef CONFIG_DEBUG_LOCK_ALLOC 374 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 375 unsigned long events, int subclass) 376 { 377 unsigned long flags; 378 379 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 380 wake_up_locked_poll(wqueue, events); 381 spin_unlock_irqrestore(&wqueue->lock, flags); 382 } 383 #else 384 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 385 unsigned long events, int subclass) 386 { 387 wake_up_poll(wqueue, events); 388 } 389 #endif 390 391 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 392 { 393 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 394 1 + call_nests); 395 return 0; 396 } 397 398 /* 399 * Perform a safe wake up of the poll wait list. The problem is that 400 * with the new callback'd wake up system, it is possible that the 401 * poll callback is reentered from inside the call to wake_up() done 402 * on the poll wait queue head. The rule is that we cannot reenter the 403 * wake up code from the same task more than EP_MAX_NESTS times, 404 * and we cannot reenter the same wait queue head at all. This will 405 * enable to have a hierarchy of epoll file descriptor of no more than 406 * EP_MAX_NESTS deep. 407 */ 408 static void ep_poll_safewake(wait_queue_head_t *wq) 409 { 410 int this_cpu = get_cpu(); 411 412 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 413 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 414 415 put_cpu(); 416 } 417 418 /* 419 * This function unregisters poll callbacks from the associated file 420 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 421 * ep_free). 422 */ 423 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 424 { 425 struct list_head *lsthead = &epi->pwqlist; 426 struct eppoll_entry *pwq; 427 428 while (!list_empty(lsthead)) { 429 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 430 431 list_del(&pwq->llink); 432 remove_wait_queue(pwq->whead, &pwq->wait); 433 kmem_cache_free(pwq_cache, pwq); 434 } 435 } 436 437 /** 438 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 439 * the scan code, to call f_op->poll(). Also allows for 440 * O(NumReady) performance. 441 * 442 * @ep: Pointer to the epoll private data structure. 443 * @sproc: Pointer to the scan callback. 444 * @priv: Private opaque data passed to the @sproc callback. 445 * 446 * Returns: The same integer error code returned by the @sproc callback. 447 */ 448 static int ep_scan_ready_list(struct eventpoll *ep, 449 int (*sproc)(struct eventpoll *, 450 struct list_head *, void *), 451 void *priv) 452 { 453 int error, pwake = 0; 454 unsigned long flags; 455 struct epitem *epi, *nepi; 456 LIST_HEAD(txlist); 457 458 /* 459 * We need to lock this because we could be hit by 460 * eventpoll_release_file() and epoll_ctl(). 461 */ 462 mutex_lock(&ep->mtx); 463 464 /* 465 * Steal the ready list, and re-init the original one to the 466 * empty list. Also, set ep->ovflist to NULL so that events 467 * happening while looping w/out locks, are not lost. We cannot 468 * have the poll callback to queue directly on ep->rdllist, 469 * because we want the "sproc" callback to be able to do it 470 * in a lockless way. 471 */ 472 spin_lock_irqsave(&ep->lock, flags); 473 list_splice_init(&ep->rdllist, &txlist); 474 ep->ovflist = NULL; 475 spin_unlock_irqrestore(&ep->lock, flags); 476 477 /* 478 * Now call the callback function. 479 */ 480 error = (*sproc)(ep, &txlist, priv); 481 482 spin_lock_irqsave(&ep->lock, flags); 483 /* 484 * During the time we spent inside the "sproc" callback, some 485 * other events might have been queued by the poll callback. 486 * We re-insert them inside the main ready-list here. 487 */ 488 for (nepi = ep->ovflist; (epi = nepi) != NULL; 489 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 490 /* 491 * We need to check if the item is already in the list. 492 * During the "sproc" callback execution time, items are 493 * queued into ->ovflist but the "txlist" might already 494 * contain them, and the list_splice() below takes care of them. 495 */ 496 if (!ep_is_linked(&epi->rdllink)) 497 list_add_tail(&epi->rdllink, &ep->rdllist); 498 } 499 /* 500 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 501 * releasing the lock, events will be queued in the normal way inside 502 * ep->rdllist. 503 */ 504 ep->ovflist = EP_UNACTIVE_PTR; 505 506 /* 507 * Quickly re-inject items left on "txlist". 508 */ 509 list_splice(&txlist, &ep->rdllist); 510 511 if (!list_empty(&ep->rdllist)) { 512 /* 513 * Wake up (if active) both the eventpoll wait list and 514 * the ->poll() wait list (delayed after we release the lock). 515 */ 516 if (waitqueue_active(&ep->wq)) 517 wake_up_locked(&ep->wq); 518 if (waitqueue_active(&ep->poll_wait)) 519 pwake++; 520 } 521 spin_unlock_irqrestore(&ep->lock, flags); 522 523 mutex_unlock(&ep->mtx); 524 525 /* We have to call this outside the lock */ 526 if (pwake) 527 ep_poll_safewake(&ep->poll_wait); 528 529 return error; 530 } 531 532 /* 533 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 534 * all the associated resources. Must be called with "mtx" held. 535 */ 536 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 537 { 538 unsigned long flags; 539 struct file *file = epi->ffd.file; 540 541 /* 542 * Removes poll wait queue hooks. We _have_ to do this without holding 543 * the "ep->lock" otherwise a deadlock might occur. This because of the 544 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 545 * queue head lock when unregistering the wait queue. The wakeup callback 546 * will run by holding the wait queue head lock and will call our callback 547 * that will try to get "ep->lock". 548 */ 549 ep_unregister_pollwait(ep, epi); 550 551 /* Remove the current item from the list of epoll hooks */ 552 spin_lock(&file->f_lock); 553 if (ep_is_linked(&epi->fllink)) 554 list_del_init(&epi->fllink); 555 spin_unlock(&file->f_lock); 556 557 rb_erase(&epi->rbn, &ep->rbr); 558 559 spin_lock_irqsave(&ep->lock, flags); 560 if (ep_is_linked(&epi->rdllink)) 561 list_del_init(&epi->rdllink); 562 spin_unlock_irqrestore(&ep->lock, flags); 563 564 /* At this point it is safe to free the eventpoll item */ 565 kmem_cache_free(epi_cache, epi); 566 567 atomic_dec(&ep->user->epoll_watches); 568 569 return 0; 570 } 571 572 static void ep_free(struct eventpoll *ep) 573 { 574 struct rb_node *rbp; 575 struct epitem *epi; 576 577 /* We need to release all tasks waiting for these file */ 578 if (waitqueue_active(&ep->poll_wait)) 579 ep_poll_safewake(&ep->poll_wait); 580 581 /* 582 * We need to lock this because we could be hit by 583 * eventpoll_release_file() while we're freeing the "struct eventpoll". 584 * We do not need to hold "ep->mtx" here because the epoll file 585 * is on the way to be removed and no one has references to it 586 * anymore. The only hit might come from eventpoll_release_file() but 587 * holding "epmutex" is sufficent here. 588 */ 589 mutex_lock(&epmutex); 590 591 /* 592 * Walks through the whole tree by unregistering poll callbacks. 593 */ 594 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 595 epi = rb_entry(rbp, struct epitem, rbn); 596 597 ep_unregister_pollwait(ep, epi); 598 } 599 600 /* 601 * Walks through the whole tree by freeing each "struct epitem". At this 602 * point we are sure no poll callbacks will be lingering around, and also by 603 * holding "epmutex" we can be sure that no file cleanup code will hit 604 * us during this operation. So we can avoid the lock on "ep->lock". 605 */ 606 while ((rbp = rb_first(&ep->rbr)) != NULL) { 607 epi = rb_entry(rbp, struct epitem, rbn); 608 ep_remove(ep, epi); 609 } 610 611 mutex_unlock(&epmutex); 612 mutex_destroy(&ep->mtx); 613 free_uid(ep->user); 614 kfree(ep); 615 } 616 617 static int ep_eventpoll_release(struct inode *inode, struct file *file) 618 { 619 struct eventpoll *ep = file->private_data; 620 621 if (ep) 622 ep_free(ep); 623 624 return 0; 625 } 626 627 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 628 void *priv) 629 { 630 struct epitem *epi, *tmp; 631 632 list_for_each_entry_safe(epi, tmp, head, rdllink) { 633 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 634 epi->event.events) 635 return POLLIN | POLLRDNORM; 636 else { 637 /* 638 * Item has been dropped into the ready list by the poll 639 * callback, but it's not actually ready, as far as 640 * caller requested events goes. We can remove it here. 641 */ 642 list_del_init(&epi->rdllink); 643 } 644 } 645 646 return 0; 647 } 648 649 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 650 { 651 return ep_scan_ready_list(priv, ep_read_events_proc, NULL); 652 } 653 654 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 655 { 656 int pollflags; 657 struct eventpoll *ep = file->private_data; 658 659 /* Insert inside our poll wait queue */ 660 poll_wait(file, &ep->poll_wait, wait); 661 662 /* 663 * Proceed to find out if wanted events are really available inside 664 * the ready list. This need to be done under ep_call_nested() 665 * supervision, since the call to f_op->poll() done on listed files 666 * could re-enter here. 667 */ 668 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 669 ep_poll_readyevents_proc, ep, ep, current); 670 671 return pollflags != -1 ? pollflags : 0; 672 } 673 674 /* File callbacks that implement the eventpoll file behaviour */ 675 static const struct file_operations eventpoll_fops = { 676 .release = ep_eventpoll_release, 677 .poll = ep_eventpoll_poll 678 }; 679 680 /* Fast test to see if the file is an evenpoll file */ 681 static inline int is_file_epoll(struct file *f) 682 { 683 return f->f_op == &eventpoll_fops; 684 } 685 686 /* 687 * This is called from eventpoll_release() to unlink files from the eventpoll 688 * interface. We need to have this facility to cleanup correctly files that are 689 * closed without being removed from the eventpoll interface. 690 */ 691 void eventpoll_release_file(struct file *file) 692 { 693 struct list_head *lsthead = &file->f_ep_links; 694 struct eventpoll *ep; 695 struct epitem *epi; 696 697 /* 698 * We don't want to get "file->f_lock" because it is not 699 * necessary. It is not necessary because we're in the "struct file" 700 * cleanup path, and this means that noone is using this file anymore. 701 * So, for example, epoll_ctl() cannot hit here since if we reach this 702 * point, the file counter already went to zero and fget() would fail. 703 * The only hit might come from ep_free() but by holding the mutex 704 * will correctly serialize the operation. We do need to acquire 705 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 706 * from anywhere but ep_free(). 707 * 708 * Besides, ep_remove() acquires the lock, so we can't hold it here. 709 */ 710 mutex_lock(&epmutex); 711 712 while (!list_empty(lsthead)) { 713 epi = list_first_entry(lsthead, struct epitem, fllink); 714 715 ep = epi->ep; 716 list_del_init(&epi->fllink); 717 mutex_lock(&ep->mtx); 718 ep_remove(ep, epi); 719 mutex_unlock(&ep->mtx); 720 } 721 722 mutex_unlock(&epmutex); 723 } 724 725 static int ep_alloc(struct eventpoll **pep) 726 { 727 int error; 728 struct user_struct *user; 729 struct eventpoll *ep; 730 731 user = get_current_user(); 732 error = -ENOMEM; 733 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 734 if (unlikely(!ep)) 735 goto free_uid; 736 737 spin_lock_init(&ep->lock); 738 mutex_init(&ep->mtx); 739 init_waitqueue_head(&ep->wq); 740 init_waitqueue_head(&ep->poll_wait); 741 INIT_LIST_HEAD(&ep->rdllist); 742 ep->rbr = RB_ROOT; 743 ep->ovflist = EP_UNACTIVE_PTR; 744 ep->user = user; 745 746 *pep = ep; 747 748 return 0; 749 750 free_uid: 751 free_uid(user); 752 return error; 753 } 754 755 /* 756 * Search the file inside the eventpoll tree. The RB tree operations 757 * are protected by the "mtx" mutex, and ep_find() must be called with 758 * "mtx" held. 759 */ 760 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 761 { 762 int kcmp; 763 struct rb_node *rbp; 764 struct epitem *epi, *epir = NULL; 765 struct epoll_filefd ffd; 766 767 ep_set_ffd(&ffd, file, fd); 768 for (rbp = ep->rbr.rb_node; rbp; ) { 769 epi = rb_entry(rbp, struct epitem, rbn); 770 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 771 if (kcmp > 0) 772 rbp = rbp->rb_right; 773 else if (kcmp < 0) 774 rbp = rbp->rb_left; 775 else { 776 epir = epi; 777 break; 778 } 779 } 780 781 return epir; 782 } 783 784 /* 785 * This is the callback that is passed to the wait queue wakeup 786 * machanism. It is called by the stored file descriptors when they 787 * have events to report. 788 */ 789 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 790 { 791 int pwake = 0; 792 unsigned long flags; 793 struct epitem *epi = ep_item_from_wait(wait); 794 struct eventpoll *ep = epi->ep; 795 796 spin_lock_irqsave(&ep->lock, flags); 797 798 /* 799 * If the event mask does not contain any poll(2) event, we consider the 800 * descriptor to be disabled. This condition is likely the effect of the 801 * EPOLLONESHOT bit that disables the descriptor when an event is received, 802 * until the next EPOLL_CTL_MOD will be issued. 803 */ 804 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 805 goto out_unlock; 806 807 /* 808 * Check the events coming with the callback. At this stage, not 809 * every device reports the events in the "key" parameter of the 810 * callback. We need to be able to handle both cases here, hence the 811 * test for "key" != NULL before the event match test. 812 */ 813 if (key && !((unsigned long) key & epi->event.events)) 814 goto out_unlock; 815 816 /* 817 * If we are trasfering events to userspace, we can hold no locks 818 * (because we're accessing user memory, and because of linux f_op->poll() 819 * semantics). All the events that happens during that period of time are 820 * chained in ep->ovflist and requeued later on. 821 */ 822 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 823 if (epi->next == EP_UNACTIVE_PTR) { 824 epi->next = ep->ovflist; 825 ep->ovflist = epi; 826 } 827 goto out_unlock; 828 } 829 830 /* If this file is already in the ready list we exit soon */ 831 if (!ep_is_linked(&epi->rdllink)) 832 list_add_tail(&epi->rdllink, &ep->rdllist); 833 834 /* 835 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 836 * wait list. 837 */ 838 if (waitqueue_active(&ep->wq)) 839 wake_up_locked(&ep->wq); 840 if (waitqueue_active(&ep->poll_wait)) 841 pwake++; 842 843 out_unlock: 844 spin_unlock_irqrestore(&ep->lock, flags); 845 846 /* We have to call this outside the lock */ 847 if (pwake) 848 ep_poll_safewake(&ep->poll_wait); 849 850 return 1; 851 } 852 853 /* 854 * This is the callback that is used to add our wait queue to the 855 * target file wakeup lists. 856 */ 857 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 858 poll_table *pt) 859 { 860 struct epitem *epi = ep_item_from_epqueue(pt); 861 struct eppoll_entry *pwq; 862 863 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 864 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 865 pwq->whead = whead; 866 pwq->base = epi; 867 add_wait_queue(whead, &pwq->wait); 868 list_add_tail(&pwq->llink, &epi->pwqlist); 869 epi->nwait++; 870 } else { 871 /* We have to signal that an error occurred */ 872 epi->nwait = -1; 873 } 874 } 875 876 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 877 { 878 int kcmp; 879 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 880 struct epitem *epic; 881 882 while (*p) { 883 parent = *p; 884 epic = rb_entry(parent, struct epitem, rbn); 885 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 886 if (kcmp > 0) 887 p = &parent->rb_right; 888 else 889 p = &parent->rb_left; 890 } 891 rb_link_node(&epi->rbn, parent, p); 892 rb_insert_color(&epi->rbn, &ep->rbr); 893 } 894 895 /* 896 * Must be called with "mtx" held. 897 */ 898 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 899 struct file *tfile, int fd) 900 { 901 int error, revents, pwake = 0; 902 unsigned long flags; 903 struct epitem *epi; 904 struct ep_pqueue epq; 905 906 if (unlikely(atomic_read(&ep->user->epoll_watches) >= 907 max_user_watches)) 908 return -ENOSPC; 909 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 910 return -ENOMEM; 911 912 /* Item initialization follow here ... */ 913 INIT_LIST_HEAD(&epi->rdllink); 914 INIT_LIST_HEAD(&epi->fllink); 915 INIT_LIST_HEAD(&epi->pwqlist); 916 epi->ep = ep; 917 ep_set_ffd(&epi->ffd, tfile, fd); 918 epi->event = *event; 919 epi->nwait = 0; 920 epi->next = EP_UNACTIVE_PTR; 921 922 /* Initialize the poll table using the queue callback */ 923 epq.epi = epi; 924 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 925 926 /* 927 * Attach the item to the poll hooks and get current event bits. 928 * We can safely use the file* here because its usage count has 929 * been increased by the caller of this function. Note that after 930 * this operation completes, the poll callback can start hitting 931 * the new item. 932 */ 933 revents = tfile->f_op->poll(tfile, &epq.pt); 934 935 /* 936 * We have to check if something went wrong during the poll wait queue 937 * install process. Namely an allocation for a wait queue failed due 938 * high memory pressure. 939 */ 940 error = -ENOMEM; 941 if (epi->nwait < 0) 942 goto error_unregister; 943 944 /* Add the current item to the list of active epoll hook for this file */ 945 spin_lock(&tfile->f_lock); 946 list_add_tail(&epi->fllink, &tfile->f_ep_links); 947 spin_unlock(&tfile->f_lock); 948 949 /* 950 * Add the current item to the RB tree. All RB tree operations are 951 * protected by "mtx", and ep_insert() is called with "mtx" held. 952 */ 953 ep_rbtree_insert(ep, epi); 954 955 /* We have to drop the new item inside our item list to keep track of it */ 956 spin_lock_irqsave(&ep->lock, flags); 957 958 /* If the file is already "ready" we drop it inside the ready list */ 959 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 960 list_add_tail(&epi->rdllink, &ep->rdllist); 961 962 /* Notify waiting tasks that events are available */ 963 if (waitqueue_active(&ep->wq)) 964 wake_up_locked(&ep->wq); 965 if (waitqueue_active(&ep->poll_wait)) 966 pwake++; 967 } 968 969 spin_unlock_irqrestore(&ep->lock, flags); 970 971 atomic_inc(&ep->user->epoll_watches); 972 973 /* We have to call this outside the lock */ 974 if (pwake) 975 ep_poll_safewake(&ep->poll_wait); 976 977 return 0; 978 979 error_unregister: 980 ep_unregister_pollwait(ep, epi); 981 982 /* 983 * We need to do this because an event could have been arrived on some 984 * allocated wait queue. Note that we don't care about the ep->ovflist 985 * list, since that is used/cleaned only inside a section bound by "mtx". 986 * And ep_insert() is called with "mtx" held. 987 */ 988 spin_lock_irqsave(&ep->lock, flags); 989 if (ep_is_linked(&epi->rdllink)) 990 list_del_init(&epi->rdllink); 991 spin_unlock_irqrestore(&ep->lock, flags); 992 993 kmem_cache_free(epi_cache, epi); 994 995 return error; 996 } 997 998 /* 999 * Modify the interest event mask by dropping an event if the new mask 1000 * has a match in the current file status. Must be called with "mtx" held. 1001 */ 1002 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1003 { 1004 int pwake = 0; 1005 unsigned int revents; 1006 1007 /* 1008 * Set the new event interest mask before calling f_op->poll(); 1009 * otherwise we might miss an event that happens between the 1010 * f_op->poll() call and the new event set registering. 1011 */ 1012 epi->event.events = event->events; 1013 epi->event.data = event->data; /* protected by mtx */ 1014 1015 /* 1016 * Get current event bits. We can safely use the file* here because 1017 * its usage count has been increased by the caller of this function. 1018 */ 1019 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 1020 1021 /* 1022 * If the item is "hot" and it is not registered inside the ready 1023 * list, push it inside. 1024 */ 1025 if (revents & event->events) { 1026 spin_lock_irq(&ep->lock); 1027 if (!ep_is_linked(&epi->rdllink)) { 1028 list_add_tail(&epi->rdllink, &ep->rdllist); 1029 1030 /* Notify waiting tasks that events are available */ 1031 if (waitqueue_active(&ep->wq)) 1032 wake_up_locked(&ep->wq); 1033 if (waitqueue_active(&ep->poll_wait)) 1034 pwake++; 1035 } 1036 spin_unlock_irq(&ep->lock); 1037 } 1038 1039 /* We have to call this outside the lock */ 1040 if (pwake) 1041 ep_poll_safewake(&ep->poll_wait); 1042 1043 return 0; 1044 } 1045 1046 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1047 void *priv) 1048 { 1049 struct ep_send_events_data *esed = priv; 1050 int eventcnt; 1051 unsigned int revents; 1052 struct epitem *epi; 1053 struct epoll_event __user *uevent; 1054 1055 /* 1056 * We can loop without lock because we are passed a task private list. 1057 * Items cannot vanish during the loop because ep_scan_ready_list() is 1058 * holding "mtx" during this call. 1059 */ 1060 for (eventcnt = 0, uevent = esed->events; 1061 !list_empty(head) && eventcnt < esed->maxevents;) { 1062 epi = list_first_entry(head, struct epitem, rdllink); 1063 1064 list_del_init(&epi->rdllink); 1065 1066 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 1067 epi->event.events; 1068 1069 /* 1070 * If the event mask intersect the caller-requested one, 1071 * deliver the event to userspace. Again, ep_scan_ready_list() 1072 * is holding "mtx", so no operations coming from userspace 1073 * can change the item. 1074 */ 1075 if (revents) { 1076 if (__put_user(revents, &uevent->events) || 1077 __put_user(epi->event.data, &uevent->data)) { 1078 list_add(&epi->rdllink, head); 1079 return eventcnt ? eventcnt : -EFAULT; 1080 } 1081 eventcnt++; 1082 uevent++; 1083 if (epi->event.events & EPOLLONESHOT) 1084 epi->event.events &= EP_PRIVATE_BITS; 1085 else if (!(epi->event.events & EPOLLET)) { 1086 /* 1087 * If this file has been added with Level 1088 * Trigger mode, we need to insert back inside 1089 * the ready list, so that the next call to 1090 * epoll_wait() will check again the events 1091 * availability. At this point, noone can insert 1092 * into ep->rdllist besides us. The epoll_ctl() 1093 * callers are locked out by 1094 * ep_scan_ready_list() holding "mtx" and the 1095 * poll callback will queue them in ep->ovflist. 1096 */ 1097 list_add_tail(&epi->rdllink, &ep->rdllist); 1098 } 1099 } 1100 } 1101 1102 return eventcnt; 1103 } 1104 1105 static int ep_send_events(struct eventpoll *ep, 1106 struct epoll_event __user *events, int maxevents) 1107 { 1108 struct ep_send_events_data esed; 1109 1110 esed.maxevents = maxevents; 1111 esed.events = events; 1112 1113 return ep_scan_ready_list(ep, ep_send_events_proc, &esed); 1114 } 1115 1116 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1117 int maxevents, long timeout) 1118 { 1119 int res, eavail; 1120 unsigned long flags; 1121 long jtimeout; 1122 wait_queue_t wait; 1123 1124 /* 1125 * Calculate the timeout by checking for the "infinite" value (-1) 1126 * and the overflow condition. The passed timeout is in milliseconds, 1127 * that why (t * HZ) / 1000. 1128 */ 1129 jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ? 1130 MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000; 1131 1132 retry: 1133 spin_lock_irqsave(&ep->lock, flags); 1134 1135 res = 0; 1136 if (list_empty(&ep->rdllist)) { 1137 /* 1138 * We don't have any available event to return to the caller. 1139 * We need to sleep here, and we will be wake up by 1140 * ep_poll_callback() when events will become available. 1141 */ 1142 init_waitqueue_entry(&wait, current); 1143 wait.flags |= WQ_FLAG_EXCLUSIVE; 1144 __add_wait_queue(&ep->wq, &wait); 1145 1146 for (;;) { 1147 /* 1148 * We don't want to sleep if the ep_poll_callback() sends us 1149 * a wakeup in between. That's why we set the task state 1150 * to TASK_INTERRUPTIBLE before doing the checks. 1151 */ 1152 set_current_state(TASK_INTERRUPTIBLE); 1153 if (!list_empty(&ep->rdllist) || !jtimeout) 1154 break; 1155 if (signal_pending(current)) { 1156 res = -EINTR; 1157 break; 1158 } 1159 1160 spin_unlock_irqrestore(&ep->lock, flags); 1161 jtimeout = schedule_timeout(jtimeout); 1162 spin_lock_irqsave(&ep->lock, flags); 1163 } 1164 __remove_wait_queue(&ep->wq, &wait); 1165 1166 set_current_state(TASK_RUNNING); 1167 } 1168 /* Is it worth to try to dig for events ? */ 1169 eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 1170 1171 spin_unlock_irqrestore(&ep->lock, flags); 1172 1173 /* 1174 * Try to transfer events to user space. In case we get 0 events and 1175 * there's still timeout left over, we go trying again in search of 1176 * more luck. 1177 */ 1178 if (!res && eavail && 1179 !(res = ep_send_events(ep, events, maxevents)) && jtimeout) 1180 goto retry; 1181 1182 return res; 1183 } 1184 1185 /* 1186 * Open an eventpoll file descriptor. 1187 */ 1188 SYSCALL_DEFINE1(epoll_create1, int, flags) 1189 { 1190 int error; 1191 struct eventpoll *ep = NULL; 1192 1193 /* Check the EPOLL_* constant for consistency. */ 1194 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1195 1196 if (flags & ~EPOLL_CLOEXEC) 1197 return -EINVAL; 1198 /* 1199 * Create the internal data structure ("struct eventpoll"). 1200 */ 1201 error = ep_alloc(&ep); 1202 if (error < 0) 1203 return error; 1204 /* 1205 * Creates all the items needed to setup an eventpoll file. That is, 1206 * a file structure and a free file descriptor. 1207 */ 1208 error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep, 1209 flags & O_CLOEXEC); 1210 if (error < 0) 1211 ep_free(ep); 1212 1213 return error; 1214 } 1215 1216 SYSCALL_DEFINE1(epoll_create, int, size) 1217 { 1218 if (size <= 0) 1219 return -EINVAL; 1220 1221 return sys_epoll_create1(0); 1222 } 1223 1224 /* 1225 * The following function implements the controller interface for 1226 * the eventpoll file that enables the insertion/removal/change of 1227 * file descriptors inside the interest set. 1228 */ 1229 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1230 struct epoll_event __user *, event) 1231 { 1232 int error; 1233 struct file *file, *tfile; 1234 struct eventpoll *ep; 1235 struct epitem *epi; 1236 struct epoll_event epds; 1237 1238 error = -EFAULT; 1239 if (ep_op_has_event(op) && 1240 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1241 goto error_return; 1242 1243 /* Get the "struct file *" for the eventpoll file */ 1244 error = -EBADF; 1245 file = fget(epfd); 1246 if (!file) 1247 goto error_return; 1248 1249 /* Get the "struct file *" for the target file */ 1250 tfile = fget(fd); 1251 if (!tfile) 1252 goto error_fput; 1253 1254 /* The target file descriptor must support poll */ 1255 error = -EPERM; 1256 if (!tfile->f_op || !tfile->f_op->poll) 1257 goto error_tgt_fput; 1258 1259 /* 1260 * We have to check that the file structure underneath the file descriptor 1261 * the user passed to us _is_ an eventpoll file. And also we do not permit 1262 * adding an epoll file descriptor inside itself. 1263 */ 1264 error = -EINVAL; 1265 if (file == tfile || !is_file_epoll(file)) 1266 goto error_tgt_fput; 1267 1268 /* 1269 * At this point it is safe to assume that the "private_data" contains 1270 * our own data structure. 1271 */ 1272 ep = file->private_data; 1273 1274 mutex_lock(&ep->mtx); 1275 1276 /* 1277 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1278 * above, we can be sure to be able to use the item looked up by 1279 * ep_find() till we release the mutex. 1280 */ 1281 epi = ep_find(ep, tfile, fd); 1282 1283 error = -EINVAL; 1284 switch (op) { 1285 case EPOLL_CTL_ADD: 1286 if (!epi) { 1287 epds.events |= POLLERR | POLLHUP; 1288 error = ep_insert(ep, &epds, tfile, fd); 1289 } else 1290 error = -EEXIST; 1291 break; 1292 case EPOLL_CTL_DEL: 1293 if (epi) 1294 error = ep_remove(ep, epi); 1295 else 1296 error = -ENOENT; 1297 break; 1298 case EPOLL_CTL_MOD: 1299 if (epi) { 1300 epds.events |= POLLERR | POLLHUP; 1301 error = ep_modify(ep, epi, &epds); 1302 } else 1303 error = -ENOENT; 1304 break; 1305 } 1306 mutex_unlock(&ep->mtx); 1307 1308 error_tgt_fput: 1309 fput(tfile); 1310 error_fput: 1311 fput(file); 1312 error_return: 1313 1314 return error; 1315 } 1316 1317 /* 1318 * Implement the event wait interface for the eventpoll file. It is the kernel 1319 * part of the user space epoll_wait(2). 1320 */ 1321 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1322 int, maxevents, int, timeout) 1323 { 1324 int error; 1325 struct file *file; 1326 struct eventpoll *ep; 1327 1328 /* The maximum number of event must be greater than zero */ 1329 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1330 return -EINVAL; 1331 1332 /* Verify that the area passed by the user is writeable */ 1333 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 1334 error = -EFAULT; 1335 goto error_return; 1336 } 1337 1338 /* Get the "struct file *" for the eventpoll file */ 1339 error = -EBADF; 1340 file = fget(epfd); 1341 if (!file) 1342 goto error_return; 1343 1344 /* 1345 * We have to check that the file structure underneath the fd 1346 * the user passed to us _is_ an eventpoll file. 1347 */ 1348 error = -EINVAL; 1349 if (!is_file_epoll(file)) 1350 goto error_fput; 1351 1352 /* 1353 * At this point it is safe to assume that the "private_data" contains 1354 * our own data structure. 1355 */ 1356 ep = file->private_data; 1357 1358 /* Time to fish for events ... */ 1359 error = ep_poll(ep, events, maxevents, timeout); 1360 1361 error_fput: 1362 fput(file); 1363 error_return: 1364 1365 return error; 1366 } 1367 1368 #ifdef HAVE_SET_RESTORE_SIGMASK 1369 1370 /* 1371 * Implement the event wait interface for the eventpoll file. It is the kernel 1372 * part of the user space epoll_pwait(2). 1373 */ 1374 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1375 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1376 size_t, sigsetsize) 1377 { 1378 int error; 1379 sigset_t ksigmask, sigsaved; 1380 1381 /* 1382 * If the caller wants a certain signal mask to be set during the wait, 1383 * we apply it here. 1384 */ 1385 if (sigmask) { 1386 if (sigsetsize != sizeof(sigset_t)) 1387 return -EINVAL; 1388 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1389 return -EFAULT; 1390 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1391 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1392 } 1393 1394 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1395 1396 /* 1397 * If we changed the signal mask, we need to restore the original one. 1398 * In case we've got a signal while waiting, we do not restore the 1399 * signal mask yet, and we allow do_signal() to deliver the signal on 1400 * the way back to userspace, before the signal mask is restored. 1401 */ 1402 if (sigmask) { 1403 if (error == -EINTR) { 1404 memcpy(¤t->saved_sigmask, &sigsaved, 1405 sizeof(sigsaved)); 1406 set_restore_sigmask(); 1407 } else 1408 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1409 } 1410 1411 return error; 1412 } 1413 1414 #endif /* HAVE_SET_RESTORE_SIGMASK */ 1415 1416 static int __init eventpoll_init(void) 1417 { 1418 struct sysinfo si; 1419 1420 si_meminfo(&si); 1421 /* 1422 * Allows top 4% of lomem to be allocated for epoll watches (per user). 1423 */ 1424 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 1425 EP_ITEM_COST; 1426 1427 /* Initialize the structure used to perform safe poll wait head wake ups */ 1428 ep_nested_calls_init(&poll_safewake_ncalls); 1429 1430 /* Initialize the structure used to perform file's f_op->poll() calls */ 1431 ep_nested_calls_init(&poll_readywalk_ncalls); 1432 1433 /* Allocates slab cache used to allocate "struct epitem" items */ 1434 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1435 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1436 1437 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1438 pwq_cache = kmem_cache_create("eventpoll_pwq", 1439 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 1440 1441 return 0; 1442 } 1443 fs_initcall(eventpoll_init); 1444