xref: /linux/fs/eventpoll.c (revision ecba1060583635ab55092072441ff903b5e9a659)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <asm/atomic.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (spinlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a spinlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66  * It is possible to drop the "ep->mtx" and to use the global
67  * mutex "epmutex" (together with "ep->lock") to have it working,
68  * but having "ep->mtx" will make the interface more scalable.
69  * Events that require holding "epmutex" are very rare, while for
70  * normal operations the epoll private "ep->mtx" will guarantee
71  * a better scalability.
72  */
73 
74 /* Epoll private bits inside the event mask */
75 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
76 
77 /* Maximum number of nesting allowed inside epoll sets */
78 #define EP_MAX_NESTS 4
79 
80 /* Maximum msec timeout value storeable in a long int */
81 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
82 
83 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
84 
85 #define EP_UNACTIVE_PTR ((void *) -1L)
86 
87 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
88 
89 struct epoll_filefd {
90 	struct file *file;
91 	int fd;
92 };
93 
94 /*
95  * Structure used to track possible nested calls, for too deep recursions
96  * and loop cycles.
97  */
98 struct nested_call_node {
99 	struct list_head llink;
100 	void *cookie;
101 	void *ctx;
102 };
103 
104 /*
105  * This structure is used as collector for nested calls, to check for
106  * maximum recursion dept and loop cycles.
107  */
108 struct nested_calls {
109 	struct list_head tasks_call_list;
110 	spinlock_t lock;
111 };
112 
113 /*
114  * Each file descriptor added to the eventpoll interface will
115  * have an entry of this type linked to the "rbr" RB tree.
116  */
117 struct epitem {
118 	/* RB tree node used to link this structure to the eventpoll RB tree */
119 	struct rb_node rbn;
120 
121 	/* List header used to link this structure to the eventpoll ready list */
122 	struct list_head rdllink;
123 
124 	/*
125 	 * Works together "struct eventpoll"->ovflist in keeping the
126 	 * single linked chain of items.
127 	 */
128 	struct epitem *next;
129 
130 	/* The file descriptor information this item refers to */
131 	struct epoll_filefd ffd;
132 
133 	/* Number of active wait queue attached to poll operations */
134 	int nwait;
135 
136 	/* List containing poll wait queues */
137 	struct list_head pwqlist;
138 
139 	/* The "container" of this item */
140 	struct eventpoll *ep;
141 
142 	/* List header used to link this item to the "struct file" items list */
143 	struct list_head fllink;
144 
145 	/* The structure that describe the interested events and the source fd */
146 	struct epoll_event event;
147 };
148 
149 /*
150  * This structure is stored inside the "private_data" member of the file
151  * structure and rapresent the main data sructure for the eventpoll
152  * interface.
153  */
154 struct eventpoll {
155 	/* Protect the this structure access */
156 	spinlock_t lock;
157 
158 	/*
159 	 * This mutex is used to ensure that files are not removed
160 	 * while epoll is using them. This is held during the event
161 	 * collection loop, the file cleanup path, the epoll file exit
162 	 * code and the ctl operations.
163 	 */
164 	struct mutex mtx;
165 
166 	/* Wait queue used by sys_epoll_wait() */
167 	wait_queue_head_t wq;
168 
169 	/* Wait queue used by file->poll() */
170 	wait_queue_head_t poll_wait;
171 
172 	/* List of ready file descriptors */
173 	struct list_head rdllist;
174 
175 	/* RB tree root used to store monitored fd structs */
176 	struct rb_root rbr;
177 
178 	/*
179 	 * This is a single linked list that chains all the "struct epitem" that
180 	 * happened while transfering ready events to userspace w/out
181 	 * holding ->lock.
182 	 */
183 	struct epitem *ovflist;
184 
185 	/* The user that created the eventpoll descriptor */
186 	struct user_struct *user;
187 };
188 
189 /* Wait structure used by the poll hooks */
190 struct eppoll_entry {
191 	/* List header used to link this structure to the "struct epitem" */
192 	struct list_head llink;
193 
194 	/* The "base" pointer is set to the container "struct epitem" */
195 	struct epitem *base;
196 
197 	/*
198 	 * Wait queue item that will be linked to the target file wait
199 	 * queue head.
200 	 */
201 	wait_queue_t wait;
202 
203 	/* The wait queue head that linked the "wait" wait queue item */
204 	wait_queue_head_t *whead;
205 };
206 
207 /* Wrapper struct used by poll queueing */
208 struct ep_pqueue {
209 	poll_table pt;
210 	struct epitem *epi;
211 };
212 
213 /* Used by the ep_send_events() function as callback private data */
214 struct ep_send_events_data {
215 	int maxevents;
216 	struct epoll_event __user *events;
217 };
218 
219 /*
220  * Configuration options available inside /proc/sys/fs/epoll/
221  */
222 /* Maximum number of epoll watched descriptors, per user */
223 static int max_user_watches __read_mostly;
224 
225 /*
226  * This mutex is used to serialize ep_free() and eventpoll_release_file().
227  */
228 static DEFINE_MUTEX(epmutex);
229 
230 /* Used for safe wake up implementation */
231 static struct nested_calls poll_safewake_ncalls;
232 
233 /* Used to call file's f_op->poll() under the nested calls boundaries */
234 static struct nested_calls poll_readywalk_ncalls;
235 
236 /* Slab cache used to allocate "struct epitem" */
237 static struct kmem_cache *epi_cache __read_mostly;
238 
239 /* Slab cache used to allocate "struct eppoll_entry" */
240 static struct kmem_cache *pwq_cache __read_mostly;
241 
242 #ifdef CONFIG_SYSCTL
243 
244 #include <linux/sysctl.h>
245 
246 static int zero;
247 
248 ctl_table epoll_table[] = {
249 	{
250 		.procname	= "max_user_watches",
251 		.data		= &max_user_watches,
252 		.maxlen		= sizeof(int),
253 		.mode		= 0644,
254 		.proc_handler	= &proc_dointvec_minmax,
255 		.extra1		= &zero,
256 	},
257 	{ .ctl_name = 0 }
258 };
259 #endif /* CONFIG_SYSCTL */
260 
261 
262 /* Setup the structure that is used as key for the RB tree */
263 static inline void ep_set_ffd(struct epoll_filefd *ffd,
264 			      struct file *file, int fd)
265 {
266 	ffd->file = file;
267 	ffd->fd = fd;
268 }
269 
270 /* Compare RB tree keys */
271 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
272 			     struct epoll_filefd *p2)
273 {
274 	return (p1->file > p2->file ? +1:
275 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
276 }
277 
278 /* Tells us if the item is currently linked */
279 static inline int ep_is_linked(struct list_head *p)
280 {
281 	return !list_empty(p);
282 }
283 
284 /* Get the "struct epitem" from a wait queue pointer */
285 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
286 {
287 	return container_of(p, struct eppoll_entry, wait)->base;
288 }
289 
290 /* Get the "struct epitem" from an epoll queue wrapper */
291 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
292 {
293 	return container_of(p, struct ep_pqueue, pt)->epi;
294 }
295 
296 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
297 static inline int ep_op_has_event(int op)
298 {
299 	return op != EPOLL_CTL_DEL;
300 }
301 
302 /* Initialize the poll safe wake up structure */
303 static void ep_nested_calls_init(struct nested_calls *ncalls)
304 {
305 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
306 	spin_lock_init(&ncalls->lock);
307 }
308 
309 /**
310  * ep_call_nested - Perform a bound (possibly) nested call, by checking
311  *                  that the recursion limit is not exceeded, and that
312  *                  the same nested call (by the meaning of same cookie) is
313  *                  no re-entered.
314  *
315  * @ncalls: Pointer to the nested_calls structure to be used for this call.
316  * @max_nests: Maximum number of allowed nesting calls.
317  * @nproc: Nested call core function pointer.
318  * @priv: Opaque data to be passed to the @nproc callback.
319  * @cookie: Cookie to be used to identify this nested call.
320  * @ctx: This instance context.
321  *
322  * Returns: Returns the code returned by the @nproc callback, or -1 if
323  *          the maximum recursion limit has been exceeded.
324  */
325 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
326 			  int (*nproc)(void *, void *, int), void *priv,
327 			  void *cookie, void *ctx)
328 {
329 	int error, call_nests = 0;
330 	unsigned long flags;
331 	struct list_head *lsthead = &ncalls->tasks_call_list;
332 	struct nested_call_node *tncur;
333 	struct nested_call_node tnode;
334 
335 	spin_lock_irqsave(&ncalls->lock, flags);
336 
337 	/*
338 	 * Try to see if the current task is already inside this wakeup call.
339 	 * We use a list here, since the population inside this set is always
340 	 * very much limited.
341 	 */
342 	list_for_each_entry(tncur, lsthead, llink) {
343 		if (tncur->ctx == ctx &&
344 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
345 			/*
346 			 * Ops ... loop detected or maximum nest level reached.
347 			 * We abort this wake by breaking the cycle itself.
348 			 */
349 			error = -1;
350 			goto out_unlock;
351 		}
352 	}
353 
354 	/* Add the current task and cookie to the list */
355 	tnode.ctx = ctx;
356 	tnode.cookie = cookie;
357 	list_add(&tnode.llink, lsthead);
358 
359 	spin_unlock_irqrestore(&ncalls->lock, flags);
360 
361 	/* Call the nested function */
362 	error = (*nproc)(priv, cookie, call_nests);
363 
364 	/* Remove the current task from the list */
365 	spin_lock_irqsave(&ncalls->lock, flags);
366 	list_del(&tnode.llink);
367 out_unlock:
368 	spin_unlock_irqrestore(&ncalls->lock, flags);
369 
370 	return error;
371 }
372 
373 #ifdef CONFIG_DEBUG_LOCK_ALLOC
374 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
375 				     unsigned long events, int subclass)
376 {
377 	unsigned long flags;
378 
379 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
380 	wake_up_locked_poll(wqueue, events);
381 	spin_unlock_irqrestore(&wqueue->lock, flags);
382 }
383 #else
384 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
385 				     unsigned long events, int subclass)
386 {
387 	wake_up_poll(wqueue, events);
388 }
389 #endif
390 
391 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
392 {
393 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
394 			  1 + call_nests);
395 	return 0;
396 }
397 
398 /*
399  * Perform a safe wake up of the poll wait list. The problem is that
400  * with the new callback'd wake up system, it is possible that the
401  * poll callback is reentered from inside the call to wake_up() done
402  * on the poll wait queue head. The rule is that we cannot reenter the
403  * wake up code from the same task more than EP_MAX_NESTS times,
404  * and we cannot reenter the same wait queue head at all. This will
405  * enable to have a hierarchy of epoll file descriptor of no more than
406  * EP_MAX_NESTS deep.
407  */
408 static void ep_poll_safewake(wait_queue_head_t *wq)
409 {
410 	int this_cpu = get_cpu();
411 
412 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
413 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
414 
415 	put_cpu();
416 }
417 
418 /*
419  * This function unregisters poll callbacks from the associated file
420  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
421  * ep_free).
422  */
423 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
424 {
425 	struct list_head *lsthead = &epi->pwqlist;
426 	struct eppoll_entry *pwq;
427 
428 	while (!list_empty(lsthead)) {
429 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
430 
431 		list_del(&pwq->llink);
432 		remove_wait_queue(pwq->whead, &pwq->wait);
433 		kmem_cache_free(pwq_cache, pwq);
434 	}
435 }
436 
437 /**
438  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
439  *                      the scan code, to call f_op->poll(). Also allows for
440  *                      O(NumReady) performance.
441  *
442  * @ep: Pointer to the epoll private data structure.
443  * @sproc: Pointer to the scan callback.
444  * @priv: Private opaque data passed to the @sproc callback.
445  *
446  * Returns: The same integer error code returned by the @sproc callback.
447  */
448 static int ep_scan_ready_list(struct eventpoll *ep,
449 			      int (*sproc)(struct eventpoll *,
450 					   struct list_head *, void *),
451 			      void *priv)
452 {
453 	int error, pwake = 0;
454 	unsigned long flags;
455 	struct epitem *epi, *nepi;
456 	LIST_HEAD(txlist);
457 
458 	/*
459 	 * We need to lock this because we could be hit by
460 	 * eventpoll_release_file() and epoll_ctl().
461 	 */
462 	mutex_lock(&ep->mtx);
463 
464 	/*
465 	 * Steal the ready list, and re-init the original one to the
466 	 * empty list. Also, set ep->ovflist to NULL so that events
467 	 * happening while looping w/out locks, are not lost. We cannot
468 	 * have the poll callback to queue directly on ep->rdllist,
469 	 * because we want the "sproc" callback to be able to do it
470 	 * in a lockless way.
471 	 */
472 	spin_lock_irqsave(&ep->lock, flags);
473 	list_splice_init(&ep->rdllist, &txlist);
474 	ep->ovflist = NULL;
475 	spin_unlock_irqrestore(&ep->lock, flags);
476 
477 	/*
478 	 * Now call the callback function.
479 	 */
480 	error = (*sproc)(ep, &txlist, priv);
481 
482 	spin_lock_irqsave(&ep->lock, flags);
483 	/*
484 	 * During the time we spent inside the "sproc" callback, some
485 	 * other events might have been queued by the poll callback.
486 	 * We re-insert them inside the main ready-list here.
487 	 */
488 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
489 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
490 		/*
491 		 * We need to check if the item is already in the list.
492 		 * During the "sproc" callback execution time, items are
493 		 * queued into ->ovflist but the "txlist" might already
494 		 * contain them, and the list_splice() below takes care of them.
495 		 */
496 		if (!ep_is_linked(&epi->rdllink))
497 			list_add_tail(&epi->rdllink, &ep->rdllist);
498 	}
499 	/*
500 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
501 	 * releasing the lock, events will be queued in the normal way inside
502 	 * ep->rdllist.
503 	 */
504 	ep->ovflist = EP_UNACTIVE_PTR;
505 
506 	/*
507 	 * Quickly re-inject items left on "txlist".
508 	 */
509 	list_splice(&txlist, &ep->rdllist);
510 
511 	if (!list_empty(&ep->rdllist)) {
512 		/*
513 		 * Wake up (if active) both the eventpoll wait list and
514 		 * the ->poll() wait list (delayed after we release the lock).
515 		 */
516 		if (waitqueue_active(&ep->wq))
517 			wake_up_locked(&ep->wq);
518 		if (waitqueue_active(&ep->poll_wait))
519 			pwake++;
520 	}
521 	spin_unlock_irqrestore(&ep->lock, flags);
522 
523 	mutex_unlock(&ep->mtx);
524 
525 	/* We have to call this outside the lock */
526 	if (pwake)
527 		ep_poll_safewake(&ep->poll_wait);
528 
529 	return error;
530 }
531 
532 /*
533  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
534  * all the associated resources. Must be called with "mtx" held.
535  */
536 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
537 {
538 	unsigned long flags;
539 	struct file *file = epi->ffd.file;
540 
541 	/*
542 	 * Removes poll wait queue hooks. We _have_ to do this without holding
543 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
544 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
545 	 * queue head lock when unregistering the wait queue. The wakeup callback
546 	 * will run by holding the wait queue head lock and will call our callback
547 	 * that will try to get "ep->lock".
548 	 */
549 	ep_unregister_pollwait(ep, epi);
550 
551 	/* Remove the current item from the list of epoll hooks */
552 	spin_lock(&file->f_lock);
553 	if (ep_is_linked(&epi->fllink))
554 		list_del_init(&epi->fllink);
555 	spin_unlock(&file->f_lock);
556 
557 	rb_erase(&epi->rbn, &ep->rbr);
558 
559 	spin_lock_irqsave(&ep->lock, flags);
560 	if (ep_is_linked(&epi->rdllink))
561 		list_del_init(&epi->rdllink);
562 	spin_unlock_irqrestore(&ep->lock, flags);
563 
564 	/* At this point it is safe to free the eventpoll item */
565 	kmem_cache_free(epi_cache, epi);
566 
567 	atomic_dec(&ep->user->epoll_watches);
568 
569 	return 0;
570 }
571 
572 static void ep_free(struct eventpoll *ep)
573 {
574 	struct rb_node *rbp;
575 	struct epitem *epi;
576 
577 	/* We need to release all tasks waiting for these file */
578 	if (waitqueue_active(&ep->poll_wait))
579 		ep_poll_safewake(&ep->poll_wait);
580 
581 	/*
582 	 * We need to lock this because we could be hit by
583 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
584 	 * We do not need to hold "ep->mtx" here because the epoll file
585 	 * is on the way to be removed and no one has references to it
586 	 * anymore. The only hit might come from eventpoll_release_file() but
587 	 * holding "epmutex" is sufficent here.
588 	 */
589 	mutex_lock(&epmutex);
590 
591 	/*
592 	 * Walks through the whole tree by unregistering poll callbacks.
593 	 */
594 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
595 		epi = rb_entry(rbp, struct epitem, rbn);
596 
597 		ep_unregister_pollwait(ep, epi);
598 	}
599 
600 	/*
601 	 * Walks through the whole tree by freeing each "struct epitem". At this
602 	 * point we are sure no poll callbacks will be lingering around, and also by
603 	 * holding "epmutex" we can be sure that no file cleanup code will hit
604 	 * us during this operation. So we can avoid the lock on "ep->lock".
605 	 */
606 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
607 		epi = rb_entry(rbp, struct epitem, rbn);
608 		ep_remove(ep, epi);
609 	}
610 
611 	mutex_unlock(&epmutex);
612 	mutex_destroy(&ep->mtx);
613 	free_uid(ep->user);
614 	kfree(ep);
615 }
616 
617 static int ep_eventpoll_release(struct inode *inode, struct file *file)
618 {
619 	struct eventpoll *ep = file->private_data;
620 
621 	if (ep)
622 		ep_free(ep);
623 
624 	return 0;
625 }
626 
627 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
628 			       void *priv)
629 {
630 	struct epitem *epi, *tmp;
631 
632 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
633 		if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
634 		    epi->event.events)
635 			return POLLIN | POLLRDNORM;
636 		else {
637 			/*
638 			 * Item has been dropped into the ready list by the poll
639 			 * callback, but it's not actually ready, as far as
640 			 * caller requested events goes. We can remove it here.
641 			 */
642 			list_del_init(&epi->rdllink);
643 		}
644 	}
645 
646 	return 0;
647 }
648 
649 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
650 {
651 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
652 }
653 
654 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
655 {
656 	int pollflags;
657 	struct eventpoll *ep = file->private_data;
658 
659 	/* Insert inside our poll wait queue */
660 	poll_wait(file, &ep->poll_wait, wait);
661 
662 	/*
663 	 * Proceed to find out if wanted events are really available inside
664 	 * the ready list. This need to be done under ep_call_nested()
665 	 * supervision, since the call to f_op->poll() done on listed files
666 	 * could re-enter here.
667 	 */
668 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
669 				   ep_poll_readyevents_proc, ep, ep, current);
670 
671 	return pollflags != -1 ? pollflags : 0;
672 }
673 
674 /* File callbacks that implement the eventpoll file behaviour */
675 static const struct file_operations eventpoll_fops = {
676 	.release	= ep_eventpoll_release,
677 	.poll		= ep_eventpoll_poll
678 };
679 
680 /* Fast test to see if the file is an evenpoll file */
681 static inline int is_file_epoll(struct file *f)
682 {
683 	return f->f_op == &eventpoll_fops;
684 }
685 
686 /*
687  * This is called from eventpoll_release() to unlink files from the eventpoll
688  * interface. We need to have this facility to cleanup correctly files that are
689  * closed without being removed from the eventpoll interface.
690  */
691 void eventpoll_release_file(struct file *file)
692 {
693 	struct list_head *lsthead = &file->f_ep_links;
694 	struct eventpoll *ep;
695 	struct epitem *epi;
696 
697 	/*
698 	 * We don't want to get "file->f_lock" because it is not
699 	 * necessary. It is not necessary because we're in the "struct file"
700 	 * cleanup path, and this means that noone is using this file anymore.
701 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
702 	 * point, the file counter already went to zero and fget() would fail.
703 	 * The only hit might come from ep_free() but by holding the mutex
704 	 * will correctly serialize the operation. We do need to acquire
705 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
706 	 * from anywhere but ep_free().
707 	 *
708 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
709 	 */
710 	mutex_lock(&epmutex);
711 
712 	while (!list_empty(lsthead)) {
713 		epi = list_first_entry(lsthead, struct epitem, fllink);
714 
715 		ep = epi->ep;
716 		list_del_init(&epi->fllink);
717 		mutex_lock(&ep->mtx);
718 		ep_remove(ep, epi);
719 		mutex_unlock(&ep->mtx);
720 	}
721 
722 	mutex_unlock(&epmutex);
723 }
724 
725 static int ep_alloc(struct eventpoll **pep)
726 {
727 	int error;
728 	struct user_struct *user;
729 	struct eventpoll *ep;
730 
731 	user = get_current_user();
732 	error = -ENOMEM;
733 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
734 	if (unlikely(!ep))
735 		goto free_uid;
736 
737 	spin_lock_init(&ep->lock);
738 	mutex_init(&ep->mtx);
739 	init_waitqueue_head(&ep->wq);
740 	init_waitqueue_head(&ep->poll_wait);
741 	INIT_LIST_HEAD(&ep->rdllist);
742 	ep->rbr = RB_ROOT;
743 	ep->ovflist = EP_UNACTIVE_PTR;
744 	ep->user = user;
745 
746 	*pep = ep;
747 
748 	return 0;
749 
750 free_uid:
751 	free_uid(user);
752 	return error;
753 }
754 
755 /*
756  * Search the file inside the eventpoll tree. The RB tree operations
757  * are protected by the "mtx" mutex, and ep_find() must be called with
758  * "mtx" held.
759  */
760 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
761 {
762 	int kcmp;
763 	struct rb_node *rbp;
764 	struct epitem *epi, *epir = NULL;
765 	struct epoll_filefd ffd;
766 
767 	ep_set_ffd(&ffd, file, fd);
768 	for (rbp = ep->rbr.rb_node; rbp; ) {
769 		epi = rb_entry(rbp, struct epitem, rbn);
770 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
771 		if (kcmp > 0)
772 			rbp = rbp->rb_right;
773 		else if (kcmp < 0)
774 			rbp = rbp->rb_left;
775 		else {
776 			epir = epi;
777 			break;
778 		}
779 	}
780 
781 	return epir;
782 }
783 
784 /*
785  * This is the callback that is passed to the wait queue wakeup
786  * machanism. It is called by the stored file descriptors when they
787  * have events to report.
788  */
789 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
790 {
791 	int pwake = 0;
792 	unsigned long flags;
793 	struct epitem *epi = ep_item_from_wait(wait);
794 	struct eventpoll *ep = epi->ep;
795 
796 	spin_lock_irqsave(&ep->lock, flags);
797 
798 	/*
799 	 * If the event mask does not contain any poll(2) event, we consider the
800 	 * descriptor to be disabled. This condition is likely the effect of the
801 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
802 	 * until the next EPOLL_CTL_MOD will be issued.
803 	 */
804 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
805 		goto out_unlock;
806 
807 	/*
808 	 * Check the events coming with the callback. At this stage, not
809 	 * every device reports the events in the "key" parameter of the
810 	 * callback. We need to be able to handle both cases here, hence the
811 	 * test for "key" != NULL before the event match test.
812 	 */
813 	if (key && !((unsigned long) key & epi->event.events))
814 		goto out_unlock;
815 
816 	/*
817 	 * If we are trasfering events to userspace, we can hold no locks
818 	 * (because we're accessing user memory, and because of linux f_op->poll()
819 	 * semantics). All the events that happens during that period of time are
820 	 * chained in ep->ovflist and requeued later on.
821 	 */
822 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
823 		if (epi->next == EP_UNACTIVE_PTR) {
824 			epi->next = ep->ovflist;
825 			ep->ovflist = epi;
826 		}
827 		goto out_unlock;
828 	}
829 
830 	/* If this file is already in the ready list we exit soon */
831 	if (!ep_is_linked(&epi->rdllink))
832 		list_add_tail(&epi->rdllink, &ep->rdllist);
833 
834 	/*
835 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
836 	 * wait list.
837 	 */
838 	if (waitqueue_active(&ep->wq))
839 		wake_up_locked(&ep->wq);
840 	if (waitqueue_active(&ep->poll_wait))
841 		pwake++;
842 
843 out_unlock:
844 	spin_unlock_irqrestore(&ep->lock, flags);
845 
846 	/* We have to call this outside the lock */
847 	if (pwake)
848 		ep_poll_safewake(&ep->poll_wait);
849 
850 	return 1;
851 }
852 
853 /*
854  * This is the callback that is used to add our wait queue to the
855  * target file wakeup lists.
856  */
857 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
858 				 poll_table *pt)
859 {
860 	struct epitem *epi = ep_item_from_epqueue(pt);
861 	struct eppoll_entry *pwq;
862 
863 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
864 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
865 		pwq->whead = whead;
866 		pwq->base = epi;
867 		add_wait_queue(whead, &pwq->wait);
868 		list_add_tail(&pwq->llink, &epi->pwqlist);
869 		epi->nwait++;
870 	} else {
871 		/* We have to signal that an error occurred */
872 		epi->nwait = -1;
873 	}
874 }
875 
876 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
877 {
878 	int kcmp;
879 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
880 	struct epitem *epic;
881 
882 	while (*p) {
883 		parent = *p;
884 		epic = rb_entry(parent, struct epitem, rbn);
885 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
886 		if (kcmp > 0)
887 			p = &parent->rb_right;
888 		else
889 			p = &parent->rb_left;
890 	}
891 	rb_link_node(&epi->rbn, parent, p);
892 	rb_insert_color(&epi->rbn, &ep->rbr);
893 }
894 
895 /*
896  * Must be called with "mtx" held.
897  */
898 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
899 		     struct file *tfile, int fd)
900 {
901 	int error, revents, pwake = 0;
902 	unsigned long flags;
903 	struct epitem *epi;
904 	struct ep_pqueue epq;
905 
906 	if (unlikely(atomic_read(&ep->user->epoll_watches) >=
907 		     max_user_watches))
908 		return -ENOSPC;
909 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
910 		return -ENOMEM;
911 
912 	/* Item initialization follow here ... */
913 	INIT_LIST_HEAD(&epi->rdllink);
914 	INIT_LIST_HEAD(&epi->fllink);
915 	INIT_LIST_HEAD(&epi->pwqlist);
916 	epi->ep = ep;
917 	ep_set_ffd(&epi->ffd, tfile, fd);
918 	epi->event = *event;
919 	epi->nwait = 0;
920 	epi->next = EP_UNACTIVE_PTR;
921 
922 	/* Initialize the poll table using the queue callback */
923 	epq.epi = epi;
924 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
925 
926 	/*
927 	 * Attach the item to the poll hooks and get current event bits.
928 	 * We can safely use the file* here because its usage count has
929 	 * been increased by the caller of this function. Note that after
930 	 * this operation completes, the poll callback can start hitting
931 	 * the new item.
932 	 */
933 	revents = tfile->f_op->poll(tfile, &epq.pt);
934 
935 	/*
936 	 * We have to check if something went wrong during the poll wait queue
937 	 * install process. Namely an allocation for a wait queue failed due
938 	 * high memory pressure.
939 	 */
940 	error = -ENOMEM;
941 	if (epi->nwait < 0)
942 		goto error_unregister;
943 
944 	/* Add the current item to the list of active epoll hook for this file */
945 	spin_lock(&tfile->f_lock);
946 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
947 	spin_unlock(&tfile->f_lock);
948 
949 	/*
950 	 * Add the current item to the RB tree. All RB tree operations are
951 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
952 	 */
953 	ep_rbtree_insert(ep, epi);
954 
955 	/* We have to drop the new item inside our item list to keep track of it */
956 	spin_lock_irqsave(&ep->lock, flags);
957 
958 	/* If the file is already "ready" we drop it inside the ready list */
959 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
960 		list_add_tail(&epi->rdllink, &ep->rdllist);
961 
962 		/* Notify waiting tasks that events are available */
963 		if (waitqueue_active(&ep->wq))
964 			wake_up_locked(&ep->wq);
965 		if (waitqueue_active(&ep->poll_wait))
966 			pwake++;
967 	}
968 
969 	spin_unlock_irqrestore(&ep->lock, flags);
970 
971 	atomic_inc(&ep->user->epoll_watches);
972 
973 	/* We have to call this outside the lock */
974 	if (pwake)
975 		ep_poll_safewake(&ep->poll_wait);
976 
977 	return 0;
978 
979 error_unregister:
980 	ep_unregister_pollwait(ep, epi);
981 
982 	/*
983 	 * We need to do this because an event could have been arrived on some
984 	 * allocated wait queue. Note that we don't care about the ep->ovflist
985 	 * list, since that is used/cleaned only inside a section bound by "mtx".
986 	 * And ep_insert() is called with "mtx" held.
987 	 */
988 	spin_lock_irqsave(&ep->lock, flags);
989 	if (ep_is_linked(&epi->rdllink))
990 		list_del_init(&epi->rdllink);
991 	spin_unlock_irqrestore(&ep->lock, flags);
992 
993 	kmem_cache_free(epi_cache, epi);
994 
995 	return error;
996 }
997 
998 /*
999  * Modify the interest event mask by dropping an event if the new mask
1000  * has a match in the current file status. Must be called with "mtx" held.
1001  */
1002 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1003 {
1004 	int pwake = 0;
1005 	unsigned int revents;
1006 
1007 	/*
1008 	 * Set the new event interest mask before calling f_op->poll();
1009 	 * otherwise we might miss an event that happens between the
1010 	 * f_op->poll() call and the new event set registering.
1011 	 */
1012 	epi->event.events = event->events;
1013 	epi->event.data = event->data; /* protected by mtx */
1014 
1015 	/*
1016 	 * Get current event bits. We can safely use the file* here because
1017 	 * its usage count has been increased by the caller of this function.
1018 	 */
1019 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1020 
1021 	/*
1022 	 * If the item is "hot" and it is not registered inside the ready
1023 	 * list, push it inside.
1024 	 */
1025 	if (revents & event->events) {
1026 		spin_lock_irq(&ep->lock);
1027 		if (!ep_is_linked(&epi->rdllink)) {
1028 			list_add_tail(&epi->rdllink, &ep->rdllist);
1029 
1030 			/* Notify waiting tasks that events are available */
1031 			if (waitqueue_active(&ep->wq))
1032 				wake_up_locked(&ep->wq);
1033 			if (waitqueue_active(&ep->poll_wait))
1034 				pwake++;
1035 		}
1036 		spin_unlock_irq(&ep->lock);
1037 	}
1038 
1039 	/* We have to call this outside the lock */
1040 	if (pwake)
1041 		ep_poll_safewake(&ep->poll_wait);
1042 
1043 	return 0;
1044 }
1045 
1046 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1047 			       void *priv)
1048 {
1049 	struct ep_send_events_data *esed = priv;
1050 	int eventcnt;
1051 	unsigned int revents;
1052 	struct epitem *epi;
1053 	struct epoll_event __user *uevent;
1054 
1055 	/*
1056 	 * We can loop without lock because we are passed a task private list.
1057 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1058 	 * holding "mtx" during this call.
1059 	 */
1060 	for (eventcnt = 0, uevent = esed->events;
1061 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1062 		epi = list_first_entry(head, struct epitem, rdllink);
1063 
1064 		list_del_init(&epi->rdllink);
1065 
1066 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1067 			epi->event.events;
1068 
1069 		/*
1070 		 * If the event mask intersect the caller-requested one,
1071 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1072 		 * is holding "mtx", so no operations coming from userspace
1073 		 * can change the item.
1074 		 */
1075 		if (revents) {
1076 			if (__put_user(revents, &uevent->events) ||
1077 			    __put_user(epi->event.data, &uevent->data)) {
1078 				list_add(&epi->rdllink, head);
1079 				return eventcnt ? eventcnt : -EFAULT;
1080 			}
1081 			eventcnt++;
1082 			uevent++;
1083 			if (epi->event.events & EPOLLONESHOT)
1084 				epi->event.events &= EP_PRIVATE_BITS;
1085 			else if (!(epi->event.events & EPOLLET)) {
1086 				/*
1087 				 * If this file has been added with Level
1088 				 * Trigger mode, we need to insert back inside
1089 				 * the ready list, so that the next call to
1090 				 * epoll_wait() will check again the events
1091 				 * availability. At this point, noone can insert
1092 				 * into ep->rdllist besides us. The epoll_ctl()
1093 				 * callers are locked out by
1094 				 * ep_scan_ready_list() holding "mtx" and the
1095 				 * poll callback will queue them in ep->ovflist.
1096 				 */
1097 				list_add_tail(&epi->rdllink, &ep->rdllist);
1098 			}
1099 		}
1100 	}
1101 
1102 	return eventcnt;
1103 }
1104 
1105 static int ep_send_events(struct eventpoll *ep,
1106 			  struct epoll_event __user *events, int maxevents)
1107 {
1108 	struct ep_send_events_data esed;
1109 
1110 	esed.maxevents = maxevents;
1111 	esed.events = events;
1112 
1113 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1114 }
1115 
1116 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1117 		   int maxevents, long timeout)
1118 {
1119 	int res, eavail;
1120 	unsigned long flags;
1121 	long jtimeout;
1122 	wait_queue_t wait;
1123 
1124 	/*
1125 	 * Calculate the timeout by checking for the "infinite" value (-1)
1126 	 * and the overflow condition. The passed timeout is in milliseconds,
1127 	 * that why (t * HZ) / 1000.
1128 	 */
1129 	jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1130 		MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1131 
1132 retry:
1133 	spin_lock_irqsave(&ep->lock, flags);
1134 
1135 	res = 0;
1136 	if (list_empty(&ep->rdllist)) {
1137 		/*
1138 		 * We don't have any available event to return to the caller.
1139 		 * We need to sleep here, and we will be wake up by
1140 		 * ep_poll_callback() when events will become available.
1141 		 */
1142 		init_waitqueue_entry(&wait, current);
1143 		wait.flags |= WQ_FLAG_EXCLUSIVE;
1144 		__add_wait_queue(&ep->wq, &wait);
1145 
1146 		for (;;) {
1147 			/*
1148 			 * We don't want to sleep if the ep_poll_callback() sends us
1149 			 * a wakeup in between. That's why we set the task state
1150 			 * to TASK_INTERRUPTIBLE before doing the checks.
1151 			 */
1152 			set_current_state(TASK_INTERRUPTIBLE);
1153 			if (!list_empty(&ep->rdllist) || !jtimeout)
1154 				break;
1155 			if (signal_pending(current)) {
1156 				res = -EINTR;
1157 				break;
1158 			}
1159 
1160 			spin_unlock_irqrestore(&ep->lock, flags);
1161 			jtimeout = schedule_timeout(jtimeout);
1162 			spin_lock_irqsave(&ep->lock, flags);
1163 		}
1164 		__remove_wait_queue(&ep->wq, &wait);
1165 
1166 		set_current_state(TASK_RUNNING);
1167 	}
1168 	/* Is it worth to try to dig for events ? */
1169 	eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
1170 
1171 	spin_unlock_irqrestore(&ep->lock, flags);
1172 
1173 	/*
1174 	 * Try to transfer events to user space. In case we get 0 events and
1175 	 * there's still timeout left over, we go trying again in search of
1176 	 * more luck.
1177 	 */
1178 	if (!res && eavail &&
1179 	    !(res = ep_send_events(ep, events, maxevents)) && jtimeout)
1180 		goto retry;
1181 
1182 	return res;
1183 }
1184 
1185 /*
1186  * Open an eventpoll file descriptor.
1187  */
1188 SYSCALL_DEFINE1(epoll_create1, int, flags)
1189 {
1190 	int error;
1191 	struct eventpoll *ep = NULL;
1192 
1193 	/* Check the EPOLL_* constant for consistency.  */
1194 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1195 
1196 	if (flags & ~EPOLL_CLOEXEC)
1197 		return -EINVAL;
1198 	/*
1199 	 * Create the internal data structure ("struct eventpoll").
1200 	 */
1201 	error = ep_alloc(&ep);
1202 	if (error < 0)
1203 		return error;
1204 	/*
1205 	 * Creates all the items needed to setup an eventpoll file. That is,
1206 	 * a file structure and a free file descriptor.
1207 	 */
1208 	error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1209 				 flags & O_CLOEXEC);
1210 	if (error < 0)
1211 		ep_free(ep);
1212 
1213 	return error;
1214 }
1215 
1216 SYSCALL_DEFINE1(epoll_create, int, size)
1217 {
1218 	if (size <= 0)
1219 		return -EINVAL;
1220 
1221 	return sys_epoll_create1(0);
1222 }
1223 
1224 /*
1225  * The following function implements the controller interface for
1226  * the eventpoll file that enables the insertion/removal/change of
1227  * file descriptors inside the interest set.
1228  */
1229 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1230 		struct epoll_event __user *, event)
1231 {
1232 	int error;
1233 	struct file *file, *tfile;
1234 	struct eventpoll *ep;
1235 	struct epitem *epi;
1236 	struct epoll_event epds;
1237 
1238 	error = -EFAULT;
1239 	if (ep_op_has_event(op) &&
1240 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1241 		goto error_return;
1242 
1243 	/* Get the "struct file *" for the eventpoll file */
1244 	error = -EBADF;
1245 	file = fget(epfd);
1246 	if (!file)
1247 		goto error_return;
1248 
1249 	/* Get the "struct file *" for the target file */
1250 	tfile = fget(fd);
1251 	if (!tfile)
1252 		goto error_fput;
1253 
1254 	/* The target file descriptor must support poll */
1255 	error = -EPERM;
1256 	if (!tfile->f_op || !tfile->f_op->poll)
1257 		goto error_tgt_fput;
1258 
1259 	/*
1260 	 * We have to check that the file structure underneath the file descriptor
1261 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1262 	 * adding an epoll file descriptor inside itself.
1263 	 */
1264 	error = -EINVAL;
1265 	if (file == tfile || !is_file_epoll(file))
1266 		goto error_tgt_fput;
1267 
1268 	/*
1269 	 * At this point it is safe to assume that the "private_data" contains
1270 	 * our own data structure.
1271 	 */
1272 	ep = file->private_data;
1273 
1274 	mutex_lock(&ep->mtx);
1275 
1276 	/*
1277 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1278 	 * above, we can be sure to be able to use the item looked up by
1279 	 * ep_find() till we release the mutex.
1280 	 */
1281 	epi = ep_find(ep, tfile, fd);
1282 
1283 	error = -EINVAL;
1284 	switch (op) {
1285 	case EPOLL_CTL_ADD:
1286 		if (!epi) {
1287 			epds.events |= POLLERR | POLLHUP;
1288 			error = ep_insert(ep, &epds, tfile, fd);
1289 		} else
1290 			error = -EEXIST;
1291 		break;
1292 	case EPOLL_CTL_DEL:
1293 		if (epi)
1294 			error = ep_remove(ep, epi);
1295 		else
1296 			error = -ENOENT;
1297 		break;
1298 	case EPOLL_CTL_MOD:
1299 		if (epi) {
1300 			epds.events |= POLLERR | POLLHUP;
1301 			error = ep_modify(ep, epi, &epds);
1302 		} else
1303 			error = -ENOENT;
1304 		break;
1305 	}
1306 	mutex_unlock(&ep->mtx);
1307 
1308 error_tgt_fput:
1309 	fput(tfile);
1310 error_fput:
1311 	fput(file);
1312 error_return:
1313 
1314 	return error;
1315 }
1316 
1317 /*
1318  * Implement the event wait interface for the eventpoll file. It is the kernel
1319  * part of the user space epoll_wait(2).
1320  */
1321 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1322 		int, maxevents, int, timeout)
1323 {
1324 	int error;
1325 	struct file *file;
1326 	struct eventpoll *ep;
1327 
1328 	/* The maximum number of event must be greater than zero */
1329 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1330 		return -EINVAL;
1331 
1332 	/* Verify that the area passed by the user is writeable */
1333 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1334 		error = -EFAULT;
1335 		goto error_return;
1336 	}
1337 
1338 	/* Get the "struct file *" for the eventpoll file */
1339 	error = -EBADF;
1340 	file = fget(epfd);
1341 	if (!file)
1342 		goto error_return;
1343 
1344 	/*
1345 	 * We have to check that the file structure underneath the fd
1346 	 * the user passed to us _is_ an eventpoll file.
1347 	 */
1348 	error = -EINVAL;
1349 	if (!is_file_epoll(file))
1350 		goto error_fput;
1351 
1352 	/*
1353 	 * At this point it is safe to assume that the "private_data" contains
1354 	 * our own data structure.
1355 	 */
1356 	ep = file->private_data;
1357 
1358 	/* Time to fish for events ... */
1359 	error = ep_poll(ep, events, maxevents, timeout);
1360 
1361 error_fput:
1362 	fput(file);
1363 error_return:
1364 
1365 	return error;
1366 }
1367 
1368 #ifdef HAVE_SET_RESTORE_SIGMASK
1369 
1370 /*
1371  * Implement the event wait interface for the eventpoll file. It is the kernel
1372  * part of the user space epoll_pwait(2).
1373  */
1374 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1375 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1376 		size_t, sigsetsize)
1377 {
1378 	int error;
1379 	sigset_t ksigmask, sigsaved;
1380 
1381 	/*
1382 	 * If the caller wants a certain signal mask to be set during the wait,
1383 	 * we apply it here.
1384 	 */
1385 	if (sigmask) {
1386 		if (sigsetsize != sizeof(sigset_t))
1387 			return -EINVAL;
1388 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1389 			return -EFAULT;
1390 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1391 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1392 	}
1393 
1394 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1395 
1396 	/*
1397 	 * If we changed the signal mask, we need to restore the original one.
1398 	 * In case we've got a signal while waiting, we do not restore the
1399 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1400 	 * the way back to userspace, before the signal mask is restored.
1401 	 */
1402 	if (sigmask) {
1403 		if (error == -EINTR) {
1404 			memcpy(&current->saved_sigmask, &sigsaved,
1405 			       sizeof(sigsaved));
1406 			set_restore_sigmask();
1407 		} else
1408 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1409 	}
1410 
1411 	return error;
1412 }
1413 
1414 #endif /* HAVE_SET_RESTORE_SIGMASK */
1415 
1416 static int __init eventpoll_init(void)
1417 {
1418 	struct sysinfo si;
1419 
1420 	si_meminfo(&si);
1421 	/*
1422 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1423 	 */
1424 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1425 		EP_ITEM_COST;
1426 
1427 	/* Initialize the structure used to perform safe poll wait head wake ups */
1428 	ep_nested_calls_init(&poll_safewake_ncalls);
1429 
1430 	/* Initialize the structure used to perform file's f_op->poll() calls */
1431 	ep_nested_calls_init(&poll_readywalk_ncalls);
1432 
1433 	/* Allocates slab cache used to allocate "struct epitem" items */
1434 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1435 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1436 
1437 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1438 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1439 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1440 
1441 	return 0;
1442 }
1443 fs_initcall(eventpoll_init);
1444