xref: /linux/fs/eventpoll.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *  fs/eventpoll.c ( Efficent event polling implementation )
3  *  Copyright (C) 2001,...,2006	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/file.h>
20 #include <linux/signal.h>
21 #include <linux/errno.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/poll.h>
25 #include <linux/smp_lock.h>
26 #include <linux/string.h>
27 #include <linux/list.h>
28 #include <linux/hash.h>
29 #include <linux/spinlock.h>
30 #include <linux/syscalls.h>
31 #include <linux/rwsem.h>
32 #include <linux/rbtree.h>
33 #include <linux/wait.h>
34 #include <linux/eventpoll.h>
35 #include <linux/mount.h>
36 #include <linux/bitops.h>
37 #include <linux/mutex.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/mman.h>
42 #include <asm/atomic.h>
43 #include <asm/semaphore.h>
44 
45 
46 /*
47  * LOCKING:
48  * There are three level of locking required by epoll :
49  *
50  * 1) epmutex (mutex)
51  * 2) ep->sem (rw_semaphore)
52  * 3) ep->lock (rw_lock)
53  *
54  * The acquire order is the one listed above, from 1 to 3.
55  * We need a spinlock (ep->lock) because we manipulate objects
56  * from inside the poll callback, that might be triggered from
57  * a wake_up() that in turn might be called from IRQ context.
58  * So we can't sleep inside the poll callback and hence we need
59  * a spinlock. During the event transfer loop (from kernel to
60  * user space) we could end up sleeping due a copy_to_user(), so
61  * we need a lock that will allow us to sleep. This lock is a
62  * read-write semaphore (ep->sem). It is acquired on read during
63  * the event transfer loop and in write during epoll_ctl(EPOLL_CTL_DEL)
64  * and during eventpoll_release_file(). Then we also need a global
65  * semaphore to serialize eventpoll_release_file() and ep_free().
66  * This semaphore is acquired by ep_free() during the epoll file
67  * cleanup path and it is also acquired by eventpoll_release_file()
68  * if a file has been pushed inside an epoll set and it is then
69  * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
70  * It is possible to drop the "ep->sem" and to use the global
71  * semaphore "epmutex" (together with "ep->lock") to have it working,
72  * but having "ep->sem" will make the interface more scalable.
73  * Events that require holding "epmutex" are very rare, while for
74  * normal operations the epoll private "ep->sem" will guarantee
75  * a greater scalability.
76  */
77 
78 
79 #define EVENTPOLLFS_MAGIC 0x03111965 /* My birthday should work for this :) */
80 
81 #define DEBUG_EPOLL 0
82 
83 #if DEBUG_EPOLL > 0
84 #define DPRINTK(x) printk x
85 #define DNPRINTK(n, x) do { if ((n) <= DEBUG_EPOLL) printk x; } while (0)
86 #else /* #if DEBUG_EPOLL > 0 */
87 #define DPRINTK(x) (void) 0
88 #define DNPRINTK(n, x) (void) 0
89 #endif /* #if DEBUG_EPOLL > 0 */
90 
91 #define DEBUG_EPI 0
92 
93 #if DEBUG_EPI != 0
94 #define EPI_SLAB_DEBUG (SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */)
95 #else /* #if DEBUG_EPI != 0 */
96 #define EPI_SLAB_DEBUG 0
97 #endif /* #if DEBUG_EPI != 0 */
98 
99 /* Epoll private bits inside the event mask */
100 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
101 
102 /* Maximum number of poll wake up nests we are allowing */
103 #define EP_MAX_POLLWAKE_NESTS 4
104 
105 /* Maximum msec timeout value storeable in a long int */
106 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
107 
108 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
109 
110 
111 struct epoll_filefd {
112 	struct file *file;
113 	int fd;
114 };
115 
116 /*
117  * Node that is linked into the "wake_task_list" member of the "struct poll_safewake".
118  * It is used to keep track on all tasks that are currently inside the wake_up() code
119  * to 1) short-circuit the one coming from the same task and same wait queue head
120  * ( loop ) 2) allow a maximum number of epoll descriptors inclusion nesting
121  * 3) let go the ones coming from other tasks.
122  */
123 struct wake_task_node {
124 	struct list_head llink;
125 	struct task_struct *task;
126 	wait_queue_head_t *wq;
127 };
128 
129 /*
130  * This is used to implement the safe poll wake up avoiding to reenter
131  * the poll callback from inside wake_up().
132  */
133 struct poll_safewake {
134 	struct list_head wake_task_list;
135 	spinlock_t lock;
136 };
137 
138 /*
139  * This structure is stored inside the "private_data" member of the file
140  * structure and rapresent the main data sructure for the eventpoll
141  * interface.
142  */
143 struct eventpoll {
144 	/* Protect the this structure access */
145 	rwlock_t lock;
146 
147 	/*
148 	 * This semaphore is used to ensure that files are not removed
149 	 * while epoll is using them. This is read-held during the event
150 	 * collection loop and it is write-held during the file cleanup
151 	 * path, the epoll file exit code and the ctl operations.
152 	 */
153 	struct rw_semaphore sem;
154 
155 	/* Wait queue used by sys_epoll_wait() */
156 	wait_queue_head_t wq;
157 
158 	/* Wait queue used by file->poll() */
159 	wait_queue_head_t poll_wait;
160 
161 	/* List of ready file descriptors */
162 	struct list_head rdllist;
163 
164 	/* RB-Tree root used to store monitored fd structs */
165 	struct rb_root rbr;
166 };
167 
168 /* Wait structure used by the poll hooks */
169 struct eppoll_entry {
170 	/* List header used to link this structure to the "struct epitem" */
171 	struct list_head llink;
172 
173 	/* The "base" pointer is set to the container "struct epitem" */
174 	void *base;
175 
176 	/*
177 	 * Wait queue item that will be linked to the target file wait
178 	 * queue head.
179 	 */
180 	wait_queue_t wait;
181 
182 	/* The wait queue head that linked the "wait" wait queue item */
183 	wait_queue_head_t *whead;
184 };
185 
186 /*
187  * Each file descriptor added to the eventpoll interface will
188  * have an entry of this type linked to the hash.
189  */
190 struct epitem {
191 	/* RB-Tree node used to link this structure to the eventpoll rb-tree */
192 	struct rb_node rbn;
193 
194 	/* List header used to link this structure to the eventpoll ready list */
195 	struct list_head rdllink;
196 
197 	/* The file descriptor information this item refers to */
198 	struct epoll_filefd ffd;
199 
200 	/* Number of active wait queue attached to poll operations */
201 	int nwait;
202 
203 	/* List containing poll wait queues */
204 	struct list_head pwqlist;
205 
206 	/* The "container" of this item */
207 	struct eventpoll *ep;
208 
209 	/* The structure that describe the interested events and the source fd */
210 	struct epoll_event event;
211 
212 	/*
213 	 * Used to keep track of the usage count of the structure. This avoids
214 	 * that the structure will desappear from underneath our processing.
215 	 */
216 	atomic_t usecnt;
217 
218 	/* List header used to link this item to the "struct file" items list */
219 	struct list_head fllink;
220 
221 	/* List header used to link the item to the transfer list */
222 	struct list_head txlink;
223 
224 	/*
225 	 * This is used during the collection/transfer of events to userspace
226 	 * to pin items empty events set.
227 	 */
228 	unsigned int revents;
229 };
230 
231 /* Wrapper struct used by poll queueing */
232 struct ep_pqueue {
233 	poll_table pt;
234 	struct epitem *epi;
235 };
236 
237 
238 
239 static void ep_poll_safewake_init(struct poll_safewake *psw);
240 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq);
241 static int ep_getfd(int *efd, struct inode **einode, struct file **efile,
242 		    struct eventpoll *ep);
243 static int ep_alloc(struct eventpoll **pep);
244 static void ep_free(struct eventpoll *ep);
245 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd);
246 static void ep_use_epitem(struct epitem *epi);
247 static void ep_release_epitem(struct epitem *epi);
248 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
249 				 poll_table *pt);
250 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi);
251 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
252 		     struct file *tfile, int fd);
253 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
254 		     struct epoll_event *event);
255 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi);
256 static int ep_unlink(struct eventpoll *ep, struct epitem *epi);
257 static int ep_remove(struct eventpoll *ep, struct epitem *epi);
258 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key);
259 static int ep_eventpoll_close(struct inode *inode, struct file *file);
260 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait);
261 static int ep_collect_ready_items(struct eventpoll *ep,
262 				  struct list_head *txlist, int maxevents);
263 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist,
264 			  struct epoll_event __user *events);
265 static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist);
266 static int ep_events_transfer(struct eventpoll *ep,
267 			      struct epoll_event __user *events,
268 			      int maxevents);
269 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
270 		   int maxevents, long timeout);
271 static int eventpollfs_delete_dentry(struct dentry *dentry);
272 static struct inode *ep_eventpoll_inode(void);
273 static int eventpollfs_get_sb(struct file_system_type *fs_type,
274 			      int flags, const char *dev_name,
275 			      void *data, struct vfsmount *mnt);
276 
277 /*
278  * This semaphore is used to serialize ep_free() and eventpoll_release_file().
279  */
280 static struct mutex epmutex;
281 
282 /* Safe wake up implementation */
283 static struct poll_safewake psw;
284 
285 /* Slab cache used to allocate "struct epitem" */
286 static struct kmem_cache *epi_cache __read_mostly;
287 
288 /* Slab cache used to allocate "struct eppoll_entry" */
289 static struct kmem_cache *pwq_cache __read_mostly;
290 
291 /* Virtual fs used to allocate inodes for eventpoll files */
292 static struct vfsmount *eventpoll_mnt __read_mostly;
293 
294 /* File callbacks that implement the eventpoll file behaviour */
295 static const struct file_operations eventpoll_fops = {
296 	.release	= ep_eventpoll_close,
297 	.poll		= ep_eventpoll_poll
298 };
299 
300 /*
301  * This is used to register the virtual file system from where
302  * eventpoll inodes are allocated.
303  */
304 static struct file_system_type eventpoll_fs_type = {
305 	.name		= "eventpollfs",
306 	.get_sb		= eventpollfs_get_sb,
307 	.kill_sb	= kill_anon_super,
308 };
309 
310 /* Very basic directory entry operations for the eventpoll virtual file system */
311 static struct dentry_operations eventpollfs_dentry_operations = {
312 	.d_delete	= eventpollfs_delete_dentry,
313 };
314 
315 
316 
317 /* Fast test to see if the file is an evenpoll file */
318 static inline int is_file_epoll(struct file *f)
319 {
320 	return f->f_op == &eventpoll_fops;
321 }
322 
323 /* Setup the structure that is used as key for the rb-tree */
324 static inline void ep_set_ffd(struct epoll_filefd *ffd,
325 			      struct file *file, int fd)
326 {
327 	ffd->file = file;
328 	ffd->fd = fd;
329 }
330 
331 /* Compare rb-tree keys */
332 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
333 			     struct epoll_filefd *p2)
334 {
335 	return (p1->file > p2->file ? +1:
336 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
337 }
338 
339 /* Special initialization for the rb-tree node to detect linkage */
340 static inline void ep_rb_initnode(struct rb_node *n)
341 {
342 	rb_set_parent(n, n);
343 }
344 
345 /* Removes a node from the rb-tree and marks it for a fast is-linked check */
346 static inline void ep_rb_erase(struct rb_node *n, struct rb_root *r)
347 {
348 	rb_erase(n, r);
349 	rb_set_parent(n, n);
350 }
351 
352 /* Fast check to verify that the item is linked to the main rb-tree */
353 static inline int ep_rb_linked(struct rb_node *n)
354 {
355 	return rb_parent(n) != n;
356 }
357 
358 /*
359  * Remove the item from the list and perform its initialization.
360  * This is useful for us because we can test if the item is linked
361  * using "ep_is_linked(p)".
362  */
363 static inline void ep_list_del(struct list_head *p)
364 {
365 	list_del(p);
366 	INIT_LIST_HEAD(p);
367 }
368 
369 /* Tells us if the item is currently linked */
370 static inline int ep_is_linked(struct list_head *p)
371 {
372 	return !list_empty(p);
373 }
374 
375 /* Get the "struct epitem" from a wait queue pointer */
376 static inline struct epitem * ep_item_from_wait(wait_queue_t *p)
377 {
378 	return container_of(p, struct eppoll_entry, wait)->base;
379 }
380 
381 /* Get the "struct epitem" from an epoll queue wrapper */
382 static inline struct epitem * ep_item_from_epqueue(poll_table *p)
383 {
384 	return container_of(p, struct ep_pqueue, pt)->epi;
385 }
386 
387 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
388 static inline int ep_op_hash_event(int op)
389 {
390 	return op != EPOLL_CTL_DEL;
391 }
392 
393 /* Initialize the poll safe wake up structure */
394 static void ep_poll_safewake_init(struct poll_safewake *psw)
395 {
396 
397 	INIT_LIST_HEAD(&psw->wake_task_list);
398 	spin_lock_init(&psw->lock);
399 }
400 
401 
402 /*
403  * Perform a safe wake up of the poll wait list. The problem is that
404  * with the new callback'd wake up system, it is possible that the
405  * poll callback is reentered from inside the call to wake_up() done
406  * on the poll wait queue head. The rule is that we cannot reenter the
407  * wake up code from the same task more than EP_MAX_POLLWAKE_NESTS times,
408  * and we cannot reenter the same wait queue head at all. This will
409  * enable to have a hierarchy of epoll file descriptor of no more than
410  * EP_MAX_POLLWAKE_NESTS deep. We need the irq version of the spin lock
411  * because this one gets called by the poll callback, that in turn is called
412  * from inside a wake_up(), that might be called from irq context.
413  */
414 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq)
415 {
416 	int wake_nests = 0;
417 	unsigned long flags;
418 	struct task_struct *this_task = current;
419 	struct list_head *lsthead = &psw->wake_task_list, *lnk;
420 	struct wake_task_node *tncur;
421 	struct wake_task_node tnode;
422 
423 	spin_lock_irqsave(&psw->lock, flags);
424 
425 	/* Try to see if the current task is already inside this wakeup call */
426 	list_for_each(lnk, lsthead) {
427 		tncur = list_entry(lnk, struct wake_task_node, llink);
428 
429 		if (tncur->wq == wq ||
430 		    (tncur->task == this_task && ++wake_nests > EP_MAX_POLLWAKE_NESTS)) {
431 			/*
432 			 * Ops ... loop detected or maximum nest level reached.
433 			 * We abort this wake by breaking the cycle itself.
434 			 */
435 			spin_unlock_irqrestore(&psw->lock, flags);
436 			return;
437 		}
438 	}
439 
440 	/* Add the current task to the list */
441 	tnode.task = this_task;
442 	tnode.wq = wq;
443 	list_add(&tnode.llink, lsthead);
444 
445 	spin_unlock_irqrestore(&psw->lock, flags);
446 
447 	/* Do really wake up now */
448 	wake_up(wq);
449 
450 	/* Remove the current task from the list */
451 	spin_lock_irqsave(&psw->lock, flags);
452 	list_del(&tnode.llink);
453 	spin_unlock_irqrestore(&psw->lock, flags);
454 }
455 
456 
457 /*
458  * This is called from eventpoll_release() to unlink files from the eventpoll
459  * interface. We need to have this facility to cleanup correctly files that are
460  * closed without being removed from the eventpoll interface.
461  */
462 void eventpoll_release_file(struct file *file)
463 {
464 	struct list_head *lsthead = &file->f_ep_links;
465 	struct eventpoll *ep;
466 	struct epitem *epi;
467 
468 	/*
469 	 * We don't want to get "file->f_ep_lock" because it is not
470 	 * necessary. It is not necessary because we're in the "struct file"
471 	 * cleanup path, and this means that noone is using this file anymore.
472 	 * The only hit might come from ep_free() but by holding the semaphore
473 	 * will correctly serialize the operation. We do need to acquire
474 	 * "ep->sem" after "epmutex" because ep_remove() requires it when called
475 	 * from anywhere but ep_free().
476 	 */
477 	mutex_lock(&epmutex);
478 
479 	while (!list_empty(lsthead)) {
480 		epi = list_entry(lsthead->next, struct epitem, fllink);
481 
482 		ep = epi->ep;
483 		ep_list_del(&epi->fllink);
484 		down_write(&ep->sem);
485 		ep_remove(ep, epi);
486 		up_write(&ep->sem);
487 	}
488 
489 	mutex_unlock(&epmutex);
490 }
491 
492 
493 /*
494  * It opens an eventpoll file descriptor by suggesting a storage of "size"
495  * file descriptors. The size parameter is just an hint about how to size
496  * data structures. It won't prevent the user to store more than "size"
497  * file descriptors inside the epoll interface. It is the kernel part of
498  * the userspace epoll_create(2).
499  */
500 asmlinkage long sys_epoll_create(int size)
501 {
502 	int error, fd = -1;
503 	struct eventpoll *ep;
504 	struct inode *inode;
505 	struct file *file;
506 
507 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n",
508 		     current, size));
509 
510 	/*
511 	 * Sanity check on the size parameter, and create the internal data
512 	 * structure ( "struct eventpoll" ).
513 	 */
514 	error = -EINVAL;
515 	if (size <= 0 || (error = ep_alloc(&ep)) != 0)
516 		goto eexit_1;
517 
518 	/*
519 	 * Creates all the items needed to setup an eventpoll file. That is,
520 	 * a file structure, and inode and a free file descriptor.
521 	 */
522 	error = ep_getfd(&fd, &inode, &file, ep);
523 	if (error)
524 		goto eexit_2;
525 
526 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
527 		     current, size, fd));
528 
529 	return fd;
530 
531 eexit_2:
532 	ep_free(ep);
533 	kfree(ep);
534 eexit_1:
535 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
536 		     current, size, error));
537 	return error;
538 }
539 
540 
541 /*
542  * The following function implements the controller interface for
543  * the eventpoll file that enables the insertion/removal/change of
544  * file descriptors inside the interest set.  It represents
545  * the kernel part of the user space epoll_ctl(2).
546  */
547 asmlinkage long
548 sys_epoll_ctl(int epfd, int op, int fd, struct epoll_event __user *event)
549 {
550 	int error;
551 	struct file *file, *tfile;
552 	struct eventpoll *ep;
553 	struct epitem *epi;
554 	struct epoll_event epds;
555 
556 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n",
557 		     current, epfd, op, fd, event));
558 
559 	error = -EFAULT;
560 	if (ep_op_hash_event(op) &&
561 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
562 		goto eexit_1;
563 
564 	/* Get the "struct file *" for the eventpoll file */
565 	error = -EBADF;
566 	file = fget(epfd);
567 	if (!file)
568 		goto eexit_1;
569 
570 	/* Get the "struct file *" for the target file */
571 	tfile = fget(fd);
572 	if (!tfile)
573 		goto eexit_2;
574 
575 	/* The target file descriptor must support poll */
576 	error = -EPERM;
577 	if (!tfile->f_op || !tfile->f_op->poll)
578 		goto eexit_3;
579 
580 	/*
581 	 * We have to check that the file structure underneath the file descriptor
582 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
583 	 * adding an epoll file descriptor inside itself.
584 	 */
585 	error = -EINVAL;
586 	if (file == tfile || !is_file_epoll(file))
587 		goto eexit_3;
588 
589 	/*
590 	 * At this point it is safe to assume that the "private_data" contains
591 	 * our own data structure.
592 	 */
593 	ep = file->private_data;
594 
595 	down_write(&ep->sem);
596 
597 	/* Try to lookup the file inside our hash table */
598 	epi = ep_find(ep, tfile, fd);
599 
600 	error = -EINVAL;
601 	switch (op) {
602 	case EPOLL_CTL_ADD:
603 		if (!epi) {
604 			epds.events |= POLLERR | POLLHUP;
605 
606 			error = ep_insert(ep, &epds, tfile, fd);
607 		} else
608 			error = -EEXIST;
609 		break;
610 	case EPOLL_CTL_DEL:
611 		if (epi)
612 			error = ep_remove(ep, epi);
613 		else
614 			error = -ENOENT;
615 		break;
616 	case EPOLL_CTL_MOD:
617 		if (epi) {
618 			epds.events |= POLLERR | POLLHUP;
619 			error = ep_modify(ep, epi, &epds);
620 		} else
621 			error = -ENOENT;
622 		break;
623 	}
624 
625 	/*
626 	 * The function ep_find() increments the usage count of the structure
627 	 * so, if this is not NULL, we need to release it.
628 	 */
629 	if (epi)
630 		ep_release_epitem(epi);
631 
632 	up_write(&ep->sem);
633 
634 eexit_3:
635 	fput(tfile);
636 eexit_2:
637 	fput(file);
638 eexit_1:
639 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n",
640 		     current, epfd, op, fd, event, error));
641 
642 	return error;
643 }
644 
645 
646 /*
647  * Implement the event wait interface for the eventpoll file. It is the kernel
648  * part of the user space epoll_wait(2).
649  */
650 asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events,
651 			       int maxevents, int timeout)
652 {
653 	int error;
654 	struct file *file;
655 	struct eventpoll *ep;
656 
657 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n",
658 		     current, epfd, events, maxevents, timeout));
659 
660 	/* The maximum number of event must be greater than zero */
661 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
662 		return -EINVAL;
663 
664 	/* Verify that the area passed by the user is writeable */
665 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
666 		error = -EFAULT;
667 		goto eexit_1;
668 	}
669 
670 	/* Get the "struct file *" for the eventpoll file */
671 	error = -EBADF;
672 	file = fget(epfd);
673 	if (!file)
674 		goto eexit_1;
675 
676 	/*
677 	 * We have to check that the file structure underneath the fd
678 	 * the user passed to us _is_ an eventpoll file.
679 	 */
680 	error = -EINVAL;
681 	if (!is_file_epoll(file))
682 		goto eexit_2;
683 
684 	/*
685 	 * At this point it is safe to assume that the "private_data" contains
686 	 * our own data structure.
687 	 */
688 	ep = file->private_data;
689 
690 	/* Time to fish for events ... */
691 	error = ep_poll(ep, events, maxevents, timeout);
692 
693 eexit_2:
694 	fput(file);
695 eexit_1:
696 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n",
697 		     current, epfd, events, maxevents, timeout, error));
698 
699 	return error;
700 }
701 
702 
703 #ifdef TIF_RESTORE_SIGMASK
704 
705 /*
706  * Implement the event wait interface for the eventpoll file. It is the kernel
707  * part of the user space epoll_pwait(2).
708  */
709 asmlinkage long sys_epoll_pwait(int epfd, struct epoll_event __user *events,
710 		int maxevents, int timeout, const sigset_t __user *sigmask,
711 		size_t sigsetsize)
712 {
713 	int error;
714 	sigset_t ksigmask, sigsaved;
715 
716 	/*
717 	 * If the caller wants a certain signal mask to be set during the wait,
718 	 * we apply it here.
719 	 */
720 	if (sigmask) {
721 		if (sigsetsize != sizeof(sigset_t))
722 			return -EINVAL;
723 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
724 			return -EFAULT;
725 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
726 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
727 	}
728 
729 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
730 
731 	/*
732 	 * If we changed the signal mask, we need to restore the original one.
733 	 * In case we've got a signal while waiting, we do not restore the
734 	 * signal mask yet, and we allow do_signal() to deliver the signal on
735 	 * the way back to userspace, before the signal mask is restored.
736 	 */
737 	if (sigmask) {
738 		if (error == -EINTR) {
739 			memcpy(&current->saved_sigmask, &sigsaved,
740 				sizeof(sigsaved));
741 			set_thread_flag(TIF_RESTORE_SIGMASK);
742 		} else
743 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
744 	}
745 
746 	return error;
747 }
748 
749 #endif /* #ifdef TIF_RESTORE_SIGMASK */
750 
751 
752 /*
753  * Creates the file descriptor to be used by the epoll interface.
754  */
755 static int ep_getfd(int *efd, struct inode **einode, struct file **efile,
756 		    struct eventpoll *ep)
757 {
758 	struct qstr this;
759 	char name[32];
760 	struct dentry *dentry;
761 	struct inode *inode;
762 	struct file *file;
763 	int error, fd;
764 
765 	/* Get an ready to use file */
766 	error = -ENFILE;
767 	file = get_empty_filp();
768 	if (!file)
769 		goto eexit_1;
770 
771 	/* Allocates an inode from the eventpoll file system */
772 	inode = ep_eventpoll_inode();
773 	if (IS_ERR(inode)) {
774 		error = PTR_ERR(inode);
775 		goto eexit_2;
776 	}
777 
778 	/* Allocates a free descriptor to plug the file onto */
779 	error = get_unused_fd();
780 	if (error < 0)
781 		goto eexit_3;
782 	fd = error;
783 
784 	/*
785 	 * Link the inode to a directory entry by creating a unique name
786 	 * using the inode number.
787 	 */
788 	error = -ENOMEM;
789 	sprintf(name, "[%lu]", inode->i_ino);
790 	this.name = name;
791 	this.len = strlen(name);
792 	this.hash = inode->i_ino;
793 	dentry = d_alloc(eventpoll_mnt->mnt_sb->s_root, &this);
794 	if (!dentry)
795 		goto eexit_4;
796 	dentry->d_op = &eventpollfs_dentry_operations;
797 	d_add(dentry, inode);
798 	file->f_path.mnt = mntget(eventpoll_mnt);
799 	file->f_path.dentry = dentry;
800 	file->f_mapping = inode->i_mapping;
801 
802 	file->f_pos = 0;
803 	file->f_flags = O_RDONLY;
804 	file->f_op = &eventpoll_fops;
805 	file->f_mode = FMODE_READ;
806 	file->f_version = 0;
807 	file->private_data = ep;
808 
809 	/* Install the new setup file into the allocated fd. */
810 	fd_install(fd, file);
811 
812 	*efd = fd;
813 	*einode = inode;
814 	*efile = file;
815 	return 0;
816 
817 eexit_4:
818 	put_unused_fd(fd);
819 eexit_3:
820 	iput(inode);
821 eexit_2:
822 	put_filp(file);
823 eexit_1:
824 	return error;
825 }
826 
827 
828 static int ep_alloc(struct eventpoll **pep)
829 {
830 	struct eventpoll *ep = kzalloc(sizeof(*ep), GFP_KERNEL);
831 
832 	if (!ep)
833 		return -ENOMEM;
834 
835 	rwlock_init(&ep->lock);
836 	init_rwsem(&ep->sem);
837 	init_waitqueue_head(&ep->wq);
838 	init_waitqueue_head(&ep->poll_wait);
839 	INIT_LIST_HEAD(&ep->rdllist);
840 	ep->rbr = RB_ROOT;
841 
842 	*pep = ep;
843 
844 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_alloc() ep=%p\n",
845 		     current, ep));
846 	return 0;
847 }
848 
849 
850 static void ep_free(struct eventpoll *ep)
851 {
852 	struct rb_node *rbp;
853 	struct epitem *epi;
854 
855 	/* We need to release all tasks waiting for these file */
856 	if (waitqueue_active(&ep->poll_wait))
857 		ep_poll_safewake(&psw, &ep->poll_wait);
858 
859 	/*
860 	 * We need to lock this because we could be hit by
861 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
862 	 * We do not need to hold "ep->sem" here because the epoll file
863 	 * is on the way to be removed and no one has references to it
864 	 * anymore. The only hit might come from eventpoll_release_file() but
865 	 * holding "epmutex" is sufficent here.
866 	 */
867 	mutex_lock(&epmutex);
868 
869 	/*
870 	 * Walks through the whole tree by unregistering poll callbacks.
871 	 */
872 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
873 		epi = rb_entry(rbp, struct epitem, rbn);
874 
875 		ep_unregister_pollwait(ep, epi);
876 	}
877 
878 	/*
879 	 * Walks through the whole hash by freeing each "struct epitem". At this
880 	 * point we are sure no poll callbacks will be lingering around, and also by
881 	 * write-holding "sem" we can be sure that no file cleanup code will hit
882 	 * us during this operation. So we can avoid the lock on "ep->lock".
883 	 */
884 	while ((rbp = rb_first(&ep->rbr)) != 0) {
885 		epi = rb_entry(rbp, struct epitem, rbn);
886 		ep_remove(ep, epi);
887 	}
888 
889 	mutex_unlock(&epmutex);
890 }
891 
892 
893 /*
894  * Search the file inside the eventpoll hash. It add usage count to
895  * the returned item, so the caller must call ep_release_epitem()
896  * after finished using the "struct epitem".
897  */
898 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
899 {
900 	int kcmp;
901 	unsigned long flags;
902 	struct rb_node *rbp;
903 	struct epitem *epi, *epir = NULL;
904 	struct epoll_filefd ffd;
905 
906 	ep_set_ffd(&ffd, file, fd);
907 	read_lock_irqsave(&ep->lock, flags);
908 	for (rbp = ep->rbr.rb_node; rbp; ) {
909 		epi = rb_entry(rbp, struct epitem, rbn);
910 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
911 		if (kcmp > 0)
912 			rbp = rbp->rb_right;
913 		else if (kcmp < 0)
914 			rbp = rbp->rb_left;
915 		else {
916 			ep_use_epitem(epi);
917 			epir = epi;
918 			break;
919 		}
920 	}
921 	read_unlock_irqrestore(&ep->lock, flags);
922 
923 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_find(%p) -> %p\n",
924 		     current, file, epir));
925 
926 	return epir;
927 }
928 
929 
930 /*
931  * Increment the usage count of the "struct epitem" making it sure
932  * that the user will have a valid pointer to reference.
933  */
934 static void ep_use_epitem(struct epitem *epi)
935 {
936 
937 	atomic_inc(&epi->usecnt);
938 }
939 
940 
941 /*
942  * Decrement ( release ) the usage count by signaling that the user
943  * has finished using the structure. It might lead to freeing the
944  * structure itself if the count goes to zero.
945  */
946 static void ep_release_epitem(struct epitem *epi)
947 {
948 
949 	if (atomic_dec_and_test(&epi->usecnt))
950 		kmem_cache_free(epi_cache, epi);
951 }
952 
953 
954 /*
955  * This is the callback that is used to add our wait queue to the
956  * target file wakeup lists.
957  */
958 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
959 				 poll_table *pt)
960 {
961 	struct epitem *epi = ep_item_from_epqueue(pt);
962 	struct eppoll_entry *pwq;
963 
964 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
965 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
966 		pwq->whead = whead;
967 		pwq->base = epi;
968 		add_wait_queue(whead, &pwq->wait);
969 		list_add_tail(&pwq->llink, &epi->pwqlist);
970 		epi->nwait++;
971 	} else {
972 		/* We have to signal that an error occurred */
973 		epi->nwait = -1;
974 	}
975 }
976 
977 
978 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
979 {
980 	int kcmp;
981 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
982 	struct epitem *epic;
983 
984 	while (*p) {
985 		parent = *p;
986 		epic = rb_entry(parent, struct epitem, rbn);
987 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
988 		if (kcmp > 0)
989 			p = &parent->rb_right;
990 		else
991 			p = &parent->rb_left;
992 	}
993 	rb_link_node(&epi->rbn, parent, p);
994 	rb_insert_color(&epi->rbn, &ep->rbr);
995 }
996 
997 
998 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
999 		     struct file *tfile, int fd)
1000 {
1001 	int error, revents, pwake = 0;
1002 	unsigned long flags;
1003 	struct epitem *epi;
1004 	struct ep_pqueue epq;
1005 
1006 	error = -ENOMEM;
1007 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1008 		goto eexit_1;
1009 
1010 	/* Item initialization follow here ... */
1011 	ep_rb_initnode(&epi->rbn);
1012 	INIT_LIST_HEAD(&epi->rdllink);
1013 	INIT_LIST_HEAD(&epi->fllink);
1014 	INIT_LIST_HEAD(&epi->txlink);
1015 	INIT_LIST_HEAD(&epi->pwqlist);
1016 	epi->ep = ep;
1017 	ep_set_ffd(&epi->ffd, tfile, fd);
1018 	epi->event = *event;
1019 	atomic_set(&epi->usecnt, 1);
1020 	epi->nwait = 0;
1021 
1022 	/* Initialize the poll table using the queue callback */
1023 	epq.epi = epi;
1024 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1025 
1026 	/*
1027 	 * Attach the item to the poll hooks and get current event bits.
1028 	 * We can safely use the file* here because its usage count has
1029 	 * been increased by the caller of this function.
1030 	 */
1031 	revents = tfile->f_op->poll(tfile, &epq.pt);
1032 
1033 	/*
1034 	 * We have to check if something went wrong during the poll wait queue
1035 	 * install process. Namely an allocation for a wait queue failed due
1036 	 * high memory pressure.
1037 	 */
1038 	if (epi->nwait < 0)
1039 		goto eexit_2;
1040 
1041 	/* Add the current item to the list of active epoll hook for this file */
1042 	spin_lock(&tfile->f_ep_lock);
1043 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
1044 	spin_unlock(&tfile->f_ep_lock);
1045 
1046 	/* We have to drop the new item inside our item list to keep track of it */
1047 	write_lock_irqsave(&ep->lock, flags);
1048 
1049 	/* Add the current item to the rb-tree */
1050 	ep_rbtree_insert(ep, epi);
1051 
1052 	/* If the file is already "ready" we drop it inside the ready list */
1053 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1054 		list_add_tail(&epi->rdllink, &ep->rdllist);
1055 
1056 		/* Notify waiting tasks that events are available */
1057 		if (waitqueue_active(&ep->wq))
1058 			__wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE);
1059 		if (waitqueue_active(&ep->poll_wait))
1060 			pwake++;
1061 	}
1062 
1063 	write_unlock_irqrestore(&ep->lock, flags);
1064 
1065 	/* We have to call this outside the lock */
1066 	if (pwake)
1067 		ep_poll_safewake(&psw, &ep->poll_wait);
1068 
1069 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n",
1070 		     current, ep, tfile, fd));
1071 
1072 	return 0;
1073 
1074 eexit_2:
1075 	ep_unregister_pollwait(ep, epi);
1076 
1077 	/*
1078 	 * We need to do this because an event could have been arrived on some
1079 	 * allocated wait queue.
1080 	 */
1081 	write_lock_irqsave(&ep->lock, flags);
1082 	if (ep_is_linked(&epi->rdllink))
1083 		ep_list_del(&epi->rdllink);
1084 	write_unlock_irqrestore(&ep->lock, flags);
1085 
1086 	kmem_cache_free(epi_cache, epi);
1087 eexit_1:
1088 	return error;
1089 }
1090 
1091 
1092 /*
1093  * Modify the interest event mask by dropping an event if the new mask
1094  * has a match in the current file status.
1095  */
1096 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1097 {
1098 	int pwake = 0;
1099 	unsigned int revents;
1100 	unsigned long flags;
1101 
1102 	/*
1103 	 * Set the new event interest mask before calling f_op->poll(), otherwise
1104 	 * a potential race might occur. In fact if we do this operation inside
1105 	 * the lock, an event might happen between the f_op->poll() call and the
1106 	 * new event set registering.
1107 	 */
1108 	epi->event.events = event->events;
1109 
1110 	/*
1111 	 * Get current event bits. We can safely use the file* here because
1112 	 * its usage count has been increased by the caller of this function.
1113 	 */
1114 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1115 
1116 	write_lock_irqsave(&ep->lock, flags);
1117 
1118 	/* Copy the data member from inside the lock */
1119 	epi->event.data = event->data;
1120 
1121 	/*
1122 	 * If the item is not linked to the hash it means that it's on its
1123 	 * way toward the removal. Do nothing in this case.
1124 	 */
1125 	if (ep_rb_linked(&epi->rbn)) {
1126 		/*
1127 		 * If the item is "hot" and it is not registered inside the ready
1128 		 * list, push it inside. If the item is not "hot" and it is currently
1129 		 * registered inside the ready list, unlink it.
1130 		 */
1131 		if (revents & event->events) {
1132 			if (!ep_is_linked(&epi->rdllink)) {
1133 				list_add_tail(&epi->rdllink, &ep->rdllist);
1134 
1135 				/* Notify waiting tasks that events are available */
1136 				if (waitqueue_active(&ep->wq))
1137 					__wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE |
1138 							 TASK_INTERRUPTIBLE);
1139 				if (waitqueue_active(&ep->poll_wait))
1140 					pwake++;
1141 			}
1142 		}
1143 	}
1144 
1145 	write_unlock_irqrestore(&ep->lock, flags);
1146 
1147 	/* We have to call this outside the lock */
1148 	if (pwake)
1149 		ep_poll_safewake(&psw, &ep->poll_wait);
1150 
1151 	return 0;
1152 }
1153 
1154 
1155 /*
1156  * This function unregister poll callbacks from the associated file descriptor.
1157  * Since this must be called without holding "ep->lock" the atomic exchange trick
1158  * will protect us from multiple unregister.
1159  */
1160 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1161 {
1162 	int nwait;
1163 	struct list_head *lsthead = &epi->pwqlist;
1164 	struct eppoll_entry *pwq;
1165 
1166 	/* This is called without locks, so we need the atomic exchange */
1167 	nwait = xchg(&epi->nwait, 0);
1168 
1169 	if (nwait) {
1170 		while (!list_empty(lsthead)) {
1171 			pwq = list_entry(lsthead->next, struct eppoll_entry, llink);
1172 
1173 			ep_list_del(&pwq->llink);
1174 			remove_wait_queue(pwq->whead, &pwq->wait);
1175 			kmem_cache_free(pwq_cache, pwq);
1176 		}
1177 	}
1178 }
1179 
1180 
1181 /*
1182  * Unlink the "struct epitem" from all places it might have been hooked up.
1183  * This function must be called with write IRQ lock on "ep->lock".
1184  */
1185 static int ep_unlink(struct eventpoll *ep, struct epitem *epi)
1186 {
1187 	int error;
1188 
1189 	/*
1190 	 * It can happen that this one is called for an item already unlinked.
1191 	 * The check protect us from doing a double unlink ( crash ).
1192 	 */
1193 	error = -ENOENT;
1194 	if (!ep_rb_linked(&epi->rbn))
1195 		goto eexit_1;
1196 
1197 	/*
1198 	 * Clear the event mask for the unlinked item. This will avoid item
1199 	 * notifications to be sent after the unlink operation from inside
1200 	 * the kernel->userspace event transfer loop.
1201 	 */
1202 	epi->event.events = 0;
1203 
1204 	/*
1205 	 * At this point is safe to do the job, unlink the item from our rb-tree.
1206 	 * This operation togheter with the above check closes the door to
1207 	 * double unlinks.
1208 	 */
1209 	ep_rb_erase(&epi->rbn, &ep->rbr);
1210 
1211 	/*
1212 	 * If the item we are going to remove is inside the ready file descriptors
1213 	 * we want to remove it from this list to avoid stale events.
1214 	 */
1215 	if (ep_is_linked(&epi->rdllink))
1216 		ep_list_del(&epi->rdllink);
1217 
1218 	error = 0;
1219 eexit_1:
1220 
1221 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_unlink(%p, %p) = %d\n",
1222 		     current, ep, epi->ffd.file, error));
1223 
1224 	return error;
1225 }
1226 
1227 
1228 /*
1229  * Removes a "struct epitem" from the eventpoll hash and deallocates
1230  * all the associated resources.
1231  */
1232 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
1233 {
1234 	int error;
1235 	unsigned long flags;
1236 	struct file *file = epi->ffd.file;
1237 
1238 	/*
1239 	 * Removes poll wait queue hooks. We _have_ to do this without holding
1240 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
1241 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
1242 	 * queue head lock when unregistering the wait queue. The wakeup callback
1243 	 * will run by holding the wait queue head lock and will call our callback
1244 	 * that will try to get "ep->lock".
1245 	 */
1246 	ep_unregister_pollwait(ep, epi);
1247 
1248 	/* Remove the current item from the list of epoll hooks */
1249 	spin_lock(&file->f_ep_lock);
1250 	if (ep_is_linked(&epi->fllink))
1251 		ep_list_del(&epi->fllink);
1252 	spin_unlock(&file->f_ep_lock);
1253 
1254 	/* We need to acquire the write IRQ lock before calling ep_unlink() */
1255 	write_lock_irqsave(&ep->lock, flags);
1256 
1257 	/* Really unlink the item from the hash */
1258 	error = ep_unlink(ep, epi);
1259 
1260 	write_unlock_irqrestore(&ep->lock, flags);
1261 
1262 	if (error)
1263 		goto eexit_1;
1264 
1265 	/* At this point it is safe to free the eventpoll item */
1266 	ep_release_epitem(epi);
1267 
1268 	error = 0;
1269 eexit_1:
1270 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_remove(%p, %p) = %d\n",
1271 		     current, ep, file, error));
1272 
1273 	return error;
1274 }
1275 
1276 
1277 /*
1278  * This is the callback that is passed to the wait queue wakeup
1279  * machanism. It is called by the stored file descriptors when they
1280  * have events to report.
1281  */
1282 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
1283 {
1284 	int pwake = 0;
1285 	unsigned long flags;
1286 	struct epitem *epi = ep_item_from_wait(wait);
1287 	struct eventpoll *ep = epi->ep;
1288 
1289 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n",
1290 		     current, epi->ffd.file, epi, ep));
1291 
1292 	write_lock_irqsave(&ep->lock, flags);
1293 
1294 	/*
1295 	 * If the event mask does not contain any poll(2) event, we consider the
1296 	 * descriptor to be disabled. This condition is likely the effect of the
1297 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1298 	 * until the next EPOLL_CTL_MOD will be issued.
1299 	 */
1300 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1301 		goto is_disabled;
1302 
1303 	/* If this file is already in the ready list we exit soon */
1304 	if (ep_is_linked(&epi->rdllink))
1305 		goto is_linked;
1306 
1307 	list_add_tail(&epi->rdllink, &ep->rdllist);
1308 
1309 is_linked:
1310 	/*
1311 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1312 	 * wait list.
1313 	 */
1314 	if (waitqueue_active(&ep->wq))
1315 		__wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE |
1316 				 TASK_INTERRUPTIBLE);
1317 	if (waitqueue_active(&ep->poll_wait))
1318 		pwake++;
1319 
1320 is_disabled:
1321 	write_unlock_irqrestore(&ep->lock, flags);
1322 
1323 	/* We have to call this outside the lock */
1324 	if (pwake)
1325 		ep_poll_safewake(&psw, &ep->poll_wait);
1326 
1327 	return 1;
1328 }
1329 
1330 
1331 static int ep_eventpoll_close(struct inode *inode, struct file *file)
1332 {
1333 	struct eventpoll *ep = file->private_data;
1334 
1335 	if (ep) {
1336 		ep_free(ep);
1337 		kfree(ep);
1338 	}
1339 
1340 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: close() ep=%p\n", current, ep));
1341 	return 0;
1342 }
1343 
1344 
1345 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
1346 {
1347 	unsigned int pollflags = 0;
1348 	unsigned long flags;
1349 	struct eventpoll *ep = file->private_data;
1350 
1351 	/* Insert inside our poll wait queue */
1352 	poll_wait(file, &ep->poll_wait, wait);
1353 
1354 	/* Check our condition */
1355 	read_lock_irqsave(&ep->lock, flags);
1356 	if (!list_empty(&ep->rdllist))
1357 		pollflags = POLLIN | POLLRDNORM;
1358 	read_unlock_irqrestore(&ep->lock, flags);
1359 
1360 	return pollflags;
1361 }
1362 
1363 
1364 /*
1365  * Since we have to release the lock during the __copy_to_user() operation and
1366  * during the f_op->poll() call, we try to collect the maximum number of items
1367  * by reducing the irqlock/irqunlock switching rate.
1368  */
1369 static int ep_collect_ready_items(struct eventpoll *ep, struct list_head *txlist, int maxevents)
1370 {
1371 	int nepi;
1372 	unsigned long flags;
1373 	struct list_head *lsthead = &ep->rdllist, *lnk;
1374 	struct epitem *epi;
1375 
1376 	write_lock_irqsave(&ep->lock, flags);
1377 
1378 	for (nepi = 0, lnk = lsthead->next; lnk != lsthead && nepi < maxevents;) {
1379 		epi = list_entry(lnk, struct epitem, rdllink);
1380 
1381 		lnk = lnk->next;
1382 
1383 		/* If this file is already in the ready list we exit soon */
1384 		if (!ep_is_linked(&epi->txlink)) {
1385 			/*
1386 			 * This is initialized in this way so that the default
1387 			 * behaviour of the reinjecting code will be to push back
1388 			 * the item inside the ready list.
1389 			 */
1390 			epi->revents = epi->event.events;
1391 
1392 			/* Link the ready item into the transfer list */
1393 			list_add(&epi->txlink, txlist);
1394 			nepi++;
1395 
1396 			/*
1397 			 * Unlink the item from the ready list.
1398 			 */
1399 			ep_list_del(&epi->rdllink);
1400 		}
1401 	}
1402 
1403 	write_unlock_irqrestore(&ep->lock, flags);
1404 
1405 	return nepi;
1406 }
1407 
1408 
1409 /*
1410  * This function is called without holding the "ep->lock" since the call to
1411  * __copy_to_user() might sleep, and also f_op->poll() might reenable the IRQ
1412  * because of the way poll() is traditionally implemented in Linux.
1413  */
1414 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist,
1415 			  struct epoll_event __user *events)
1416 {
1417 	int eventcnt = 0;
1418 	unsigned int revents;
1419 	struct list_head *lnk;
1420 	struct epitem *epi;
1421 
1422 	/*
1423 	 * We can loop without lock because this is a task private list.
1424 	 * The test done during the collection loop will guarantee us that
1425 	 * another task will not try to collect this file. Also, items
1426 	 * cannot vanish during the loop because we are holding "sem".
1427 	 */
1428 	list_for_each(lnk, txlist) {
1429 		epi = list_entry(lnk, struct epitem, txlink);
1430 
1431 		/*
1432 		 * Get the ready file event set. We can safely use the file
1433 		 * because we are holding the "sem" in read and this will
1434 		 * guarantee that both the file and the item will not vanish.
1435 		 */
1436 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1437 
1438 		/*
1439 		 * Set the return event set for the current file descriptor.
1440 		 * Note that only the task task was successfully able to link
1441 		 * the item to its "txlist" will write this field.
1442 		 */
1443 		epi->revents = revents & epi->event.events;
1444 
1445 		if (epi->revents) {
1446 			if (__put_user(epi->revents,
1447 				       &events[eventcnt].events) ||
1448 			    __put_user(epi->event.data,
1449 				       &events[eventcnt].data))
1450 				return -EFAULT;
1451 			if (epi->event.events & EPOLLONESHOT)
1452 				epi->event.events &= EP_PRIVATE_BITS;
1453 			eventcnt++;
1454 		}
1455 	}
1456 	return eventcnt;
1457 }
1458 
1459 
1460 /*
1461  * Walk through the transfer list we collected with ep_collect_ready_items()
1462  * and, if 1) the item is still "alive" 2) its event set is not empty 3) it's
1463  * not already linked, links it to the ready list. Same as above, we are holding
1464  * "sem" so items cannot vanish underneath our nose.
1465  */
1466 static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist)
1467 {
1468 	int ricnt = 0, pwake = 0;
1469 	unsigned long flags;
1470 	struct epitem *epi;
1471 
1472 	write_lock_irqsave(&ep->lock, flags);
1473 
1474 	while (!list_empty(txlist)) {
1475 		epi = list_entry(txlist->next, struct epitem, txlink);
1476 
1477 		/* Unlink the current item from the transfer list */
1478 		ep_list_del(&epi->txlink);
1479 
1480 		/*
1481 		 * If the item is no more linked to the interest set, we don't
1482 		 * have to push it inside the ready list because the following
1483 		 * ep_release_epitem() is going to drop it. Also, if the current
1484 		 * item is set to have an Edge Triggered behaviour, we don't have
1485 		 * to push it back either.
1486 		 */
1487 		if (ep_rb_linked(&epi->rbn) && !(epi->event.events & EPOLLET) &&
1488 		    (epi->revents & epi->event.events) && !ep_is_linked(&epi->rdllink)) {
1489 			list_add_tail(&epi->rdllink, &ep->rdllist);
1490 			ricnt++;
1491 		}
1492 	}
1493 
1494 	if (ricnt) {
1495 		/*
1496 		 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1497 		 * wait list.
1498 		 */
1499 		if (waitqueue_active(&ep->wq))
1500 			__wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE |
1501 					 TASK_INTERRUPTIBLE);
1502 		if (waitqueue_active(&ep->poll_wait))
1503 			pwake++;
1504 	}
1505 
1506 	write_unlock_irqrestore(&ep->lock, flags);
1507 
1508 	/* We have to call this outside the lock */
1509 	if (pwake)
1510 		ep_poll_safewake(&psw, &ep->poll_wait);
1511 }
1512 
1513 
1514 /*
1515  * Perform the transfer of events to user space.
1516  */
1517 static int ep_events_transfer(struct eventpoll *ep,
1518 			      struct epoll_event __user *events, int maxevents)
1519 {
1520 	int eventcnt = 0;
1521 	struct list_head txlist;
1522 
1523 	INIT_LIST_HEAD(&txlist);
1524 
1525 	/*
1526 	 * We need to lock this because we could be hit by
1527 	 * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL).
1528 	 */
1529 	down_read(&ep->sem);
1530 
1531 	/* Collect/extract ready items */
1532 	if (ep_collect_ready_items(ep, &txlist, maxevents) > 0) {
1533 		/* Build result set in userspace */
1534 		eventcnt = ep_send_events(ep, &txlist, events);
1535 
1536 		/* Reinject ready items into the ready list */
1537 		ep_reinject_items(ep, &txlist);
1538 	}
1539 
1540 	up_read(&ep->sem);
1541 
1542 	return eventcnt;
1543 }
1544 
1545 
1546 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1547 		   int maxevents, long timeout)
1548 {
1549 	int res, eavail;
1550 	unsigned long flags;
1551 	long jtimeout;
1552 	wait_queue_t wait;
1553 
1554 	/*
1555 	 * Calculate the timeout by checking for the "infinite" value ( -1 )
1556 	 * and the overflow condition. The passed timeout is in milliseconds,
1557 	 * that why (t * HZ) / 1000.
1558 	 */
1559 	jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1560 		MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1561 
1562 retry:
1563 	write_lock_irqsave(&ep->lock, flags);
1564 
1565 	res = 0;
1566 	if (list_empty(&ep->rdllist)) {
1567 		/*
1568 		 * We don't have any available event to return to the caller.
1569 		 * We need to sleep here, and we will be wake up by
1570 		 * ep_poll_callback() when events will become available.
1571 		 */
1572 		init_waitqueue_entry(&wait, current);
1573 		__add_wait_queue(&ep->wq, &wait);
1574 
1575 		for (;;) {
1576 			/*
1577 			 * We don't want to sleep if the ep_poll_callback() sends us
1578 			 * a wakeup in between. That's why we set the task state
1579 			 * to TASK_INTERRUPTIBLE before doing the checks.
1580 			 */
1581 			set_current_state(TASK_INTERRUPTIBLE);
1582 			if (!list_empty(&ep->rdllist) || !jtimeout)
1583 				break;
1584 			if (signal_pending(current)) {
1585 				res = -EINTR;
1586 				break;
1587 			}
1588 
1589 			write_unlock_irqrestore(&ep->lock, flags);
1590 			jtimeout = schedule_timeout(jtimeout);
1591 			write_lock_irqsave(&ep->lock, flags);
1592 		}
1593 		__remove_wait_queue(&ep->wq, &wait);
1594 
1595 		set_current_state(TASK_RUNNING);
1596 	}
1597 
1598 	/* Is it worth to try to dig for events ? */
1599 	eavail = !list_empty(&ep->rdllist);
1600 
1601 	write_unlock_irqrestore(&ep->lock, flags);
1602 
1603 	/*
1604 	 * Try to transfer events to user space. In case we get 0 events and
1605 	 * there's still timeout left over, we go trying again in search of
1606 	 * more luck.
1607 	 */
1608 	if (!res && eavail &&
1609 	    !(res = ep_events_transfer(ep, events, maxevents)) && jtimeout)
1610 		goto retry;
1611 
1612 	return res;
1613 }
1614 
1615 
1616 static int eventpollfs_delete_dentry(struct dentry *dentry)
1617 {
1618 
1619 	return 1;
1620 }
1621 
1622 
1623 static struct inode *ep_eventpoll_inode(void)
1624 {
1625 	int error = -ENOMEM;
1626 	struct inode *inode = new_inode(eventpoll_mnt->mnt_sb);
1627 
1628 	if (!inode)
1629 		goto eexit_1;
1630 
1631 	inode->i_fop = &eventpoll_fops;
1632 
1633 	/*
1634 	 * Mark the inode dirty from the very beginning,
1635 	 * that way it will never be moved to the dirty
1636 	 * list because mark_inode_dirty() will think
1637 	 * that it already _is_ on the dirty list.
1638 	 */
1639 	inode->i_state = I_DIRTY;
1640 	inode->i_mode = S_IRUSR | S_IWUSR;
1641 	inode->i_uid = current->fsuid;
1642 	inode->i_gid = current->fsgid;
1643 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1644 	return inode;
1645 
1646 eexit_1:
1647 	return ERR_PTR(error);
1648 }
1649 
1650 
1651 static int
1652 eventpollfs_get_sb(struct file_system_type *fs_type, int flags,
1653 		   const char *dev_name, void *data, struct vfsmount *mnt)
1654 {
1655 	return get_sb_pseudo(fs_type, "eventpoll:", NULL, EVENTPOLLFS_MAGIC,
1656 			     mnt);
1657 }
1658 
1659 
1660 static int __init eventpoll_init(void)
1661 {
1662 	int error;
1663 
1664 	mutex_init(&epmutex);
1665 
1666 	/* Initialize the structure used to perform safe poll wait head wake ups */
1667 	ep_poll_safewake_init(&psw);
1668 
1669 	/* Allocates slab cache used to allocate "struct epitem" items */
1670 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1671 			0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC,
1672 			NULL, NULL);
1673 
1674 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1675 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1676 			sizeof(struct eppoll_entry), 0,
1677 			EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL);
1678 
1679 	/*
1680 	 * Register the virtual file system that will be the source of inodes
1681 	 * for the eventpoll files
1682 	 */
1683 	error = register_filesystem(&eventpoll_fs_type);
1684 	if (error)
1685 		goto epanic;
1686 
1687 	/* Mount the above commented virtual file system */
1688 	eventpoll_mnt = kern_mount(&eventpoll_fs_type);
1689 	error = PTR_ERR(eventpoll_mnt);
1690 	if (IS_ERR(eventpoll_mnt))
1691 		goto epanic;
1692 
1693 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: successfully initialized.\n",
1694 			current));
1695 	return 0;
1696 
1697 epanic:
1698 	panic("eventpoll_init() failed\n");
1699 }
1700 
1701 
1702 static void __exit eventpoll_exit(void)
1703 {
1704 	/* Undo all operations done inside eventpoll_init() */
1705 	unregister_filesystem(&eventpoll_fs_type);
1706 	mntput(eventpoll_mnt);
1707 	kmem_cache_destroy(pwq_cache);
1708 	kmem_cache_destroy(epi_cache);
1709 }
1710 
1711 module_init(eventpoll_init);
1712 module_exit(eventpoll_exit);
1713 
1714 MODULE_LICENSE("GPL");
1715