1 /* 2 * fs/eventpoll.c ( Efficent event polling implementation ) 3 * Copyright (C) 2001,...,2006 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/kernel.h> 17 #include <linux/sched.h> 18 #include <linux/fs.h> 19 #include <linux/file.h> 20 #include <linux/signal.h> 21 #include <linux/errno.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/poll.h> 25 #include <linux/smp_lock.h> 26 #include <linux/string.h> 27 #include <linux/list.h> 28 #include <linux/hash.h> 29 #include <linux/spinlock.h> 30 #include <linux/syscalls.h> 31 #include <linux/rwsem.h> 32 #include <linux/rbtree.h> 33 #include <linux/wait.h> 34 #include <linux/eventpoll.h> 35 #include <linux/mount.h> 36 #include <linux/bitops.h> 37 #include <linux/mutex.h> 38 #include <asm/uaccess.h> 39 #include <asm/system.h> 40 #include <asm/io.h> 41 #include <asm/mman.h> 42 #include <asm/atomic.h> 43 #include <asm/semaphore.h> 44 45 46 /* 47 * LOCKING: 48 * There are three level of locking required by epoll : 49 * 50 * 1) epmutex (mutex) 51 * 2) ep->sem (rw_semaphore) 52 * 3) ep->lock (rw_lock) 53 * 54 * The acquire order is the one listed above, from 1 to 3. 55 * We need a spinlock (ep->lock) because we manipulate objects 56 * from inside the poll callback, that might be triggered from 57 * a wake_up() that in turn might be called from IRQ context. 58 * So we can't sleep inside the poll callback and hence we need 59 * a spinlock. During the event transfer loop (from kernel to 60 * user space) we could end up sleeping due a copy_to_user(), so 61 * we need a lock that will allow us to sleep. This lock is a 62 * read-write semaphore (ep->sem). It is acquired on read during 63 * the event transfer loop and in write during epoll_ctl(EPOLL_CTL_DEL) 64 * and during eventpoll_release_file(). Then we also need a global 65 * semaphore to serialize eventpoll_release_file() and ep_free(). 66 * This semaphore is acquired by ep_free() during the epoll file 67 * cleanup path and it is also acquired by eventpoll_release_file() 68 * if a file has been pushed inside an epoll set and it is then 69 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL). 70 * It is possible to drop the "ep->sem" and to use the global 71 * semaphore "epmutex" (together with "ep->lock") to have it working, 72 * but having "ep->sem" will make the interface more scalable. 73 * Events that require holding "epmutex" are very rare, while for 74 * normal operations the epoll private "ep->sem" will guarantee 75 * a greater scalability. 76 */ 77 78 79 #define EVENTPOLLFS_MAGIC 0x03111965 /* My birthday should work for this :) */ 80 81 #define DEBUG_EPOLL 0 82 83 #if DEBUG_EPOLL > 0 84 #define DPRINTK(x) printk x 85 #define DNPRINTK(n, x) do { if ((n) <= DEBUG_EPOLL) printk x; } while (0) 86 #else /* #if DEBUG_EPOLL > 0 */ 87 #define DPRINTK(x) (void) 0 88 #define DNPRINTK(n, x) (void) 0 89 #endif /* #if DEBUG_EPOLL > 0 */ 90 91 #define DEBUG_EPI 0 92 93 #if DEBUG_EPI != 0 94 #define EPI_SLAB_DEBUG (SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */) 95 #else /* #if DEBUG_EPI != 0 */ 96 #define EPI_SLAB_DEBUG 0 97 #endif /* #if DEBUG_EPI != 0 */ 98 99 /* Epoll private bits inside the event mask */ 100 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 101 102 /* Maximum number of poll wake up nests we are allowing */ 103 #define EP_MAX_POLLWAKE_NESTS 4 104 105 /* Maximum msec timeout value storeable in a long int */ 106 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ) 107 108 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 109 110 111 struct epoll_filefd { 112 struct file *file; 113 int fd; 114 }; 115 116 /* 117 * Node that is linked into the "wake_task_list" member of the "struct poll_safewake". 118 * It is used to keep track on all tasks that are currently inside the wake_up() code 119 * to 1) short-circuit the one coming from the same task and same wait queue head 120 * ( loop ) 2) allow a maximum number of epoll descriptors inclusion nesting 121 * 3) let go the ones coming from other tasks. 122 */ 123 struct wake_task_node { 124 struct list_head llink; 125 struct task_struct *task; 126 wait_queue_head_t *wq; 127 }; 128 129 /* 130 * This is used to implement the safe poll wake up avoiding to reenter 131 * the poll callback from inside wake_up(). 132 */ 133 struct poll_safewake { 134 struct list_head wake_task_list; 135 spinlock_t lock; 136 }; 137 138 /* 139 * This structure is stored inside the "private_data" member of the file 140 * structure and rapresent the main data sructure for the eventpoll 141 * interface. 142 */ 143 struct eventpoll { 144 /* Protect the this structure access */ 145 rwlock_t lock; 146 147 /* 148 * This semaphore is used to ensure that files are not removed 149 * while epoll is using them. This is read-held during the event 150 * collection loop and it is write-held during the file cleanup 151 * path, the epoll file exit code and the ctl operations. 152 */ 153 struct rw_semaphore sem; 154 155 /* Wait queue used by sys_epoll_wait() */ 156 wait_queue_head_t wq; 157 158 /* Wait queue used by file->poll() */ 159 wait_queue_head_t poll_wait; 160 161 /* List of ready file descriptors */ 162 struct list_head rdllist; 163 164 /* RB-Tree root used to store monitored fd structs */ 165 struct rb_root rbr; 166 }; 167 168 /* Wait structure used by the poll hooks */ 169 struct eppoll_entry { 170 /* List header used to link this structure to the "struct epitem" */ 171 struct list_head llink; 172 173 /* The "base" pointer is set to the container "struct epitem" */ 174 void *base; 175 176 /* 177 * Wait queue item that will be linked to the target file wait 178 * queue head. 179 */ 180 wait_queue_t wait; 181 182 /* The wait queue head that linked the "wait" wait queue item */ 183 wait_queue_head_t *whead; 184 }; 185 186 /* 187 * Each file descriptor added to the eventpoll interface will 188 * have an entry of this type linked to the hash. 189 */ 190 struct epitem { 191 /* RB-Tree node used to link this structure to the eventpoll rb-tree */ 192 struct rb_node rbn; 193 194 /* List header used to link this structure to the eventpoll ready list */ 195 struct list_head rdllink; 196 197 /* The file descriptor information this item refers to */ 198 struct epoll_filefd ffd; 199 200 /* Number of active wait queue attached to poll operations */ 201 int nwait; 202 203 /* List containing poll wait queues */ 204 struct list_head pwqlist; 205 206 /* The "container" of this item */ 207 struct eventpoll *ep; 208 209 /* The structure that describe the interested events and the source fd */ 210 struct epoll_event event; 211 212 /* 213 * Used to keep track of the usage count of the structure. This avoids 214 * that the structure will desappear from underneath our processing. 215 */ 216 atomic_t usecnt; 217 218 /* List header used to link this item to the "struct file" items list */ 219 struct list_head fllink; 220 221 /* List header used to link the item to the transfer list */ 222 struct list_head txlink; 223 224 /* 225 * This is used during the collection/transfer of events to userspace 226 * to pin items empty events set. 227 */ 228 unsigned int revents; 229 }; 230 231 /* Wrapper struct used by poll queueing */ 232 struct ep_pqueue { 233 poll_table pt; 234 struct epitem *epi; 235 }; 236 237 238 239 static void ep_poll_safewake_init(struct poll_safewake *psw); 240 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq); 241 static int ep_getfd(int *efd, struct inode **einode, struct file **efile, 242 struct eventpoll *ep); 243 static int ep_alloc(struct eventpoll **pep); 244 static void ep_free(struct eventpoll *ep); 245 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd); 246 static void ep_use_epitem(struct epitem *epi); 247 static void ep_release_epitem(struct epitem *epi); 248 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 249 poll_table *pt); 250 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi); 251 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 252 struct file *tfile, int fd); 253 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 254 struct epoll_event *event); 255 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi); 256 static int ep_unlink(struct eventpoll *ep, struct epitem *epi); 257 static int ep_remove(struct eventpoll *ep, struct epitem *epi); 258 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key); 259 static int ep_eventpoll_close(struct inode *inode, struct file *file); 260 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait); 261 static int ep_collect_ready_items(struct eventpoll *ep, 262 struct list_head *txlist, int maxevents); 263 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist, 264 struct epoll_event __user *events); 265 static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist); 266 static int ep_events_transfer(struct eventpoll *ep, 267 struct epoll_event __user *events, 268 int maxevents); 269 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 270 int maxevents, long timeout); 271 static int eventpollfs_delete_dentry(struct dentry *dentry); 272 static struct inode *ep_eventpoll_inode(void); 273 static int eventpollfs_get_sb(struct file_system_type *fs_type, 274 int flags, const char *dev_name, 275 void *data, struct vfsmount *mnt); 276 277 /* 278 * This semaphore is used to serialize ep_free() and eventpoll_release_file(). 279 */ 280 static struct mutex epmutex; 281 282 /* Safe wake up implementation */ 283 static struct poll_safewake psw; 284 285 /* Slab cache used to allocate "struct epitem" */ 286 static struct kmem_cache *epi_cache __read_mostly; 287 288 /* Slab cache used to allocate "struct eppoll_entry" */ 289 static struct kmem_cache *pwq_cache __read_mostly; 290 291 /* Virtual fs used to allocate inodes for eventpoll files */ 292 static struct vfsmount *eventpoll_mnt __read_mostly; 293 294 /* File callbacks that implement the eventpoll file behaviour */ 295 static const struct file_operations eventpoll_fops = { 296 .release = ep_eventpoll_close, 297 .poll = ep_eventpoll_poll 298 }; 299 300 /* 301 * This is used to register the virtual file system from where 302 * eventpoll inodes are allocated. 303 */ 304 static struct file_system_type eventpoll_fs_type = { 305 .name = "eventpollfs", 306 .get_sb = eventpollfs_get_sb, 307 .kill_sb = kill_anon_super, 308 }; 309 310 /* Very basic directory entry operations for the eventpoll virtual file system */ 311 static struct dentry_operations eventpollfs_dentry_operations = { 312 .d_delete = eventpollfs_delete_dentry, 313 }; 314 315 316 317 /* Fast test to see if the file is an evenpoll file */ 318 static inline int is_file_epoll(struct file *f) 319 { 320 return f->f_op == &eventpoll_fops; 321 } 322 323 /* Setup the structure that is used as key for the rb-tree */ 324 static inline void ep_set_ffd(struct epoll_filefd *ffd, 325 struct file *file, int fd) 326 { 327 ffd->file = file; 328 ffd->fd = fd; 329 } 330 331 /* Compare rb-tree keys */ 332 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 333 struct epoll_filefd *p2) 334 { 335 return (p1->file > p2->file ? +1: 336 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 337 } 338 339 /* Special initialization for the rb-tree node to detect linkage */ 340 static inline void ep_rb_initnode(struct rb_node *n) 341 { 342 rb_set_parent(n, n); 343 } 344 345 /* Removes a node from the rb-tree and marks it for a fast is-linked check */ 346 static inline void ep_rb_erase(struct rb_node *n, struct rb_root *r) 347 { 348 rb_erase(n, r); 349 rb_set_parent(n, n); 350 } 351 352 /* Fast check to verify that the item is linked to the main rb-tree */ 353 static inline int ep_rb_linked(struct rb_node *n) 354 { 355 return rb_parent(n) != n; 356 } 357 358 /* 359 * Remove the item from the list and perform its initialization. 360 * This is useful for us because we can test if the item is linked 361 * using "ep_is_linked(p)". 362 */ 363 static inline void ep_list_del(struct list_head *p) 364 { 365 list_del(p); 366 INIT_LIST_HEAD(p); 367 } 368 369 /* Tells us if the item is currently linked */ 370 static inline int ep_is_linked(struct list_head *p) 371 { 372 return !list_empty(p); 373 } 374 375 /* Get the "struct epitem" from a wait queue pointer */ 376 static inline struct epitem * ep_item_from_wait(wait_queue_t *p) 377 { 378 return container_of(p, struct eppoll_entry, wait)->base; 379 } 380 381 /* Get the "struct epitem" from an epoll queue wrapper */ 382 static inline struct epitem * ep_item_from_epqueue(poll_table *p) 383 { 384 return container_of(p, struct ep_pqueue, pt)->epi; 385 } 386 387 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 388 static inline int ep_op_hash_event(int op) 389 { 390 return op != EPOLL_CTL_DEL; 391 } 392 393 /* Initialize the poll safe wake up structure */ 394 static void ep_poll_safewake_init(struct poll_safewake *psw) 395 { 396 397 INIT_LIST_HEAD(&psw->wake_task_list); 398 spin_lock_init(&psw->lock); 399 } 400 401 402 /* 403 * Perform a safe wake up of the poll wait list. The problem is that 404 * with the new callback'd wake up system, it is possible that the 405 * poll callback is reentered from inside the call to wake_up() done 406 * on the poll wait queue head. The rule is that we cannot reenter the 407 * wake up code from the same task more than EP_MAX_POLLWAKE_NESTS times, 408 * and we cannot reenter the same wait queue head at all. This will 409 * enable to have a hierarchy of epoll file descriptor of no more than 410 * EP_MAX_POLLWAKE_NESTS deep. We need the irq version of the spin lock 411 * because this one gets called by the poll callback, that in turn is called 412 * from inside a wake_up(), that might be called from irq context. 413 */ 414 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq) 415 { 416 int wake_nests = 0; 417 unsigned long flags; 418 struct task_struct *this_task = current; 419 struct list_head *lsthead = &psw->wake_task_list, *lnk; 420 struct wake_task_node *tncur; 421 struct wake_task_node tnode; 422 423 spin_lock_irqsave(&psw->lock, flags); 424 425 /* Try to see if the current task is already inside this wakeup call */ 426 list_for_each(lnk, lsthead) { 427 tncur = list_entry(lnk, struct wake_task_node, llink); 428 429 if (tncur->wq == wq || 430 (tncur->task == this_task && ++wake_nests > EP_MAX_POLLWAKE_NESTS)) { 431 /* 432 * Ops ... loop detected or maximum nest level reached. 433 * We abort this wake by breaking the cycle itself. 434 */ 435 spin_unlock_irqrestore(&psw->lock, flags); 436 return; 437 } 438 } 439 440 /* Add the current task to the list */ 441 tnode.task = this_task; 442 tnode.wq = wq; 443 list_add(&tnode.llink, lsthead); 444 445 spin_unlock_irqrestore(&psw->lock, flags); 446 447 /* Do really wake up now */ 448 wake_up(wq); 449 450 /* Remove the current task from the list */ 451 spin_lock_irqsave(&psw->lock, flags); 452 list_del(&tnode.llink); 453 spin_unlock_irqrestore(&psw->lock, flags); 454 } 455 456 457 /* 458 * This is called from eventpoll_release() to unlink files from the eventpoll 459 * interface. We need to have this facility to cleanup correctly files that are 460 * closed without being removed from the eventpoll interface. 461 */ 462 void eventpoll_release_file(struct file *file) 463 { 464 struct list_head *lsthead = &file->f_ep_links; 465 struct eventpoll *ep; 466 struct epitem *epi; 467 468 /* 469 * We don't want to get "file->f_ep_lock" because it is not 470 * necessary. It is not necessary because we're in the "struct file" 471 * cleanup path, and this means that noone is using this file anymore. 472 * The only hit might come from ep_free() but by holding the semaphore 473 * will correctly serialize the operation. We do need to acquire 474 * "ep->sem" after "epmutex" because ep_remove() requires it when called 475 * from anywhere but ep_free(). 476 */ 477 mutex_lock(&epmutex); 478 479 while (!list_empty(lsthead)) { 480 epi = list_entry(lsthead->next, struct epitem, fllink); 481 482 ep = epi->ep; 483 ep_list_del(&epi->fllink); 484 down_write(&ep->sem); 485 ep_remove(ep, epi); 486 up_write(&ep->sem); 487 } 488 489 mutex_unlock(&epmutex); 490 } 491 492 493 /* 494 * It opens an eventpoll file descriptor by suggesting a storage of "size" 495 * file descriptors. The size parameter is just an hint about how to size 496 * data structures. It won't prevent the user to store more than "size" 497 * file descriptors inside the epoll interface. It is the kernel part of 498 * the userspace epoll_create(2). 499 */ 500 asmlinkage long sys_epoll_create(int size) 501 { 502 int error, fd = -1; 503 struct eventpoll *ep; 504 struct inode *inode; 505 struct file *file; 506 507 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n", 508 current, size)); 509 510 /* 511 * Sanity check on the size parameter, and create the internal data 512 * structure ( "struct eventpoll" ). 513 */ 514 error = -EINVAL; 515 if (size <= 0 || (error = ep_alloc(&ep)) != 0) 516 goto eexit_1; 517 518 /* 519 * Creates all the items needed to setup an eventpoll file. That is, 520 * a file structure, and inode and a free file descriptor. 521 */ 522 error = ep_getfd(&fd, &inode, &file, ep); 523 if (error) 524 goto eexit_2; 525 526 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n", 527 current, size, fd)); 528 529 return fd; 530 531 eexit_2: 532 ep_free(ep); 533 kfree(ep); 534 eexit_1: 535 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n", 536 current, size, error)); 537 return error; 538 } 539 540 541 /* 542 * The following function implements the controller interface for 543 * the eventpoll file that enables the insertion/removal/change of 544 * file descriptors inside the interest set. It represents 545 * the kernel part of the user space epoll_ctl(2). 546 */ 547 asmlinkage long 548 sys_epoll_ctl(int epfd, int op, int fd, struct epoll_event __user *event) 549 { 550 int error; 551 struct file *file, *tfile; 552 struct eventpoll *ep; 553 struct epitem *epi; 554 struct epoll_event epds; 555 556 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n", 557 current, epfd, op, fd, event)); 558 559 error = -EFAULT; 560 if (ep_op_hash_event(op) && 561 copy_from_user(&epds, event, sizeof(struct epoll_event))) 562 goto eexit_1; 563 564 /* Get the "struct file *" for the eventpoll file */ 565 error = -EBADF; 566 file = fget(epfd); 567 if (!file) 568 goto eexit_1; 569 570 /* Get the "struct file *" for the target file */ 571 tfile = fget(fd); 572 if (!tfile) 573 goto eexit_2; 574 575 /* The target file descriptor must support poll */ 576 error = -EPERM; 577 if (!tfile->f_op || !tfile->f_op->poll) 578 goto eexit_3; 579 580 /* 581 * We have to check that the file structure underneath the file descriptor 582 * the user passed to us _is_ an eventpoll file. And also we do not permit 583 * adding an epoll file descriptor inside itself. 584 */ 585 error = -EINVAL; 586 if (file == tfile || !is_file_epoll(file)) 587 goto eexit_3; 588 589 /* 590 * At this point it is safe to assume that the "private_data" contains 591 * our own data structure. 592 */ 593 ep = file->private_data; 594 595 down_write(&ep->sem); 596 597 /* Try to lookup the file inside our hash table */ 598 epi = ep_find(ep, tfile, fd); 599 600 error = -EINVAL; 601 switch (op) { 602 case EPOLL_CTL_ADD: 603 if (!epi) { 604 epds.events |= POLLERR | POLLHUP; 605 606 error = ep_insert(ep, &epds, tfile, fd); 607 } else 608 error = -EEXIST; 609 break; 610 case EPOLL_CTL_DEL: 611 if (epi) 612 error = ep_remove(ep, epi); 613 else 614 error = -ENOENT; 615 break; 616 case EPOLL_CTL_MOD: 617 if (epi) { 618 epds.events |= POLLERR | POLLHUP; 619 error = ep_modify(ep, epi, &epds); 620 } else 621 error = -ENOENT; 622 break; 623 } 624 625 /* 626 * The function ep_find() increments the usage count of the structure 627 * so, if this is not NULL, we need to release it. 628 */ 629 if (epi) 630 ep_release_epitem(epi); 631 632 up_write(&ep->sem); 633 634 eexit_3: 635 fput(tfile); 636 eexit_2: 637 fput(file); 638 eexit_1: 639 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n", 640 current, epfd, op, fd, event, error)); 641 642 return error; 643 } 644 645 646 /* 647 * Implement the event wait interface for the eventpoll file. It is the kernel 648 * part of the user space epoll_wait(2). 649 */ 650 asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events, 651 int maxevents, int timeout) 652 { 653 int error; 654 struct file *file; 655 struct eventpoll *ep; 656 657 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n", 658 current, epfd, events, maxevents, timeout)); 659 660 /* The maximum number of event must be greater than zero */ 661 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 662 return -EINVAL; 663 664 /* Verify that the area passed by the user is writeable */ 665 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 666 error = -EFAULT; 667 goto eexit_1; 668 } 669 670 /* Get the "struct file *" for the eventpoll file */ 671 error = -EBADF; 672 file = fget(epfd); 673 if (!file) 674 goto eexit_1; 675 676 /* 677 * We have to check that the file structure underneath the fd 678 * the user passed to us _is_ an eventpoll file. 679 */ 680 error = -EINVAL; 681 if (!is_file_epoll(file)) 682 goto eexit_2; 683 684 /* 685 * At this point it is safe to assume that the "private_data" contains 686 * our own data structure. 687 */ 688 ep = file->private_data; 689 690 /* Time to fish for events ... */ 691 error = ep_poll(ep, events, maxevents, timeout); 692 693 eexit_2: 694 fput(file); 695 eexit_1: 696 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n", 697 current, epfd, events, maxevents, timeout, error)); 698 699 return error; 700 } 701 702 703 #ifdef TIF_RESTORE_SIGMASK 704 705 /* 706 * Implement the event wait interface for the eventpoll file. It is the kernel 707 * part of the user space epoll_pwait(2). 708 */ 709 asmlinkage long sys_epoll_pwait(int epfd, struct epoll_event __user *events, 710 int maxevents, int timeout, const sigset_t __user *sigmask, 711 size_t sigsetsize) 712 { 713 int error; 714 sigset_t ksigmask, sigsaved; 715 716 /* 717 * If the caller wants a certain signal mask to be set during the wait, 718 * we apply it here. 719 */ 720 if (sigmask) { 721 if (sigsetsize != sizeof(sigset_t)) 722 return -EINVAL; 723 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 724 return -EFAULT; 725 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 726 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 727 } 728 729 error = sys_epoll_wait(epfd, events, maxevents, timeout); 730 731 /* 732 * If we changed the signal mask, we need to restore the original one. 733 * In case we've got a signal while waiting, we do not restore the 734 * signal mask yet, and we allow do_signal() to deliver the signal on 735 * the way back to userspace, before the signal mask is restored. 736 */ 737 if (sigmask) { 738 if (error == -EINTR) { 739 memcpy(¤t->saved_sigmask, &sigsaved, 740 sizeof(sigsaved)); 741 set_thread_flag(TIF_RESTORE_SIGMASK); 742 } else 743 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 744 } 745 746 return error; 747 } 748 749 #endif /* #ifdef TIF_RESTORE_SIGMASK */ 750 751 752 /* 753 * Creates the file descriptor to be used by the epoll interface. 754 */ 755 static int ep_getfd(int *efd, struct inode **einode, struct file **efile, 756 struct eventpoll *ep) 757 { 758 struct qstr this; 759 char name[32]; 760 struct dentry *dentry; 761 struct inode *inode; 762 struct file *file; 763 int error, fd; 764 765 /* Get an ready to use file */ 766 error = -ENFILE; 767 file = get_empty_filp(); 768 if (!file) 769 goto eexit_1; 770 771 /* Allocates an inode from the eventpoll file system */ 772 inode = ep_eventpoll_inode(); 773 if (IS_ERR(inode)) { 774 error = PTR_ERR(inode); 775 goto eexit_2; 776 } 777 778 /* Allocates a free descriptor to plug the file onto */ 779 error = get_unused_fd(); 780 if (error < 0) 781 goto eexit_3; 782 fd = error; 783 784 /* 785 * Link the inode to a directory entry by creating a unique name 786 * using the inode number. 787 */ 788 error = -ENOMEM; 789 sprintf(name, "[%lu]", inode->i_ino); 790 this.name = name; 791 this.len = strlen(name); 792 this.hash = inode->i_ino; 793 dentry = d_alloc(eventpoll_mnt->mnt_sb->s_root, &this); 794 if (!dentry) 795 goto eexit_4; 796 dentry->d_op = &eventpollfs_dentry_operations; 797 d_add(dentry, inode); 798 file->f_path.mnt = mntget(eventpoll_mnt); 799 file->f_path.dentry = dentry; 800 file->f_mapping = inode->i_mapping; 801 802 file->f_pos = 0; 803 file->f_flags = O_RDONLY; 804 file->f_op = &eventpoll_fops; 805 file->f_mode = FMODE_READ; 806 file->f_version = 0; 807 file->private_data = ep; 808 809 /* Install the new setup file into the allocated fd. */ 810 fd_install(fd, file); 811 812 *efd = fd; 813 *einode = inode; 814 *efile = file; 815 return 0; 816 817 eexit_4: 818 put_unused_fd(fd); 819 eexit_3: 820 iput(inode); 821 eexit_2: 822 put_filp(file); 823 eexit_1: 824 return error; 825 } 826 827 828 static int ep_alloc(struct eventpoll **pep) 829 { 830 struct eventpoll *ep = kzalloc(sizeof(*ep), GFP_KERNEL); 831 832 if (!ep) 833 return -ENOMEM; 834 835 rwlock_init(&ep->lock); 836 init_rwsem(&ep->sem); 837 init_waitqueue_head(&ep->wq); 838 init_waitqueue_head(&ep->poll_wait); 839 INIT_LIST_HEAD(&ep->rdllist); 840 ep->rbr = RB_ROOT; 841 842 *pep = ep; 843 844 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_alloc() ep=%p\n", 845 current, ep)); 846 return 0; 847 } 848 849 850 static void ep_free(struct eventpoll *ep) 851 { 852 struct rb_node *rbp; 853 struct epitem *epi; 854 855 /* We need to release all tasks waiting for these file */ 856 if (waitqueue_active(&ep->poll_wait)) 857 ep_poll_safewake(&psw, &ep->poll_wait); 858 859 /* 860 * We need to lock this because we could be hit by 861 * eventpoll_release_file() while we're freeing the "struct eventpoll". 862 * We do not need to hold "ep->sem" here because the epoll file 863 * is on the way to be removed and no one has references to it 864 * anymore. The only hit might come from eventpoll_release_file() but 865 * holding "epmutex" is sufficent here. 866 */ 867 mutex_lock(&epmutex); 868 869 /* 870 * Walks through the whole tree by unregistering poll callbacks. 871 */ 872 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 873 epi = rb_entry(rbp, struct epitem, rbn); 874 875 ep_unregister_pollwait(ep, epi); 876 } 877 878 /* 879 * Walks through the whole hash by freeing each "struct epitem". At this 880 * point we are sure no poll callbacks will be lingering around, and also by 881 * write-holding "sem" we can be sure that no file cleanup code will hit 882 * us during this operation. So we can avoid the lock on "ep->lock". 883 */ 884 while ((rbp = rb_first(&ep->rbr)) != 0) { 885 epi = rb_entry(rbp, struct epitem, rbn); 886 ep_remove(ep, epi); 887 } 888 889 mutex_unlock(&epmutex); 890 } 891 892 893 /* 894 * Search the file inside the eventpoll hash. It add usage count to 895 * the returned item, so the caller must call ep_release_epitem() 896 * after finished using the "struct epitem". 897 */ 898 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 899 { 900 int kcmp; 901 unsigned long flags; 902 struct rb_node *rbp; 903 struct epitem *epi, *epir = NULL; 904 struct epoll_filefd ffd; 905 906 ep_set_ffd(&ffd, file, fd); 907 read_lock_irqsave(&ep->lock, flags); 908 for (rbp = ep->rbr.rb_node; rbp; ) { 909 epi = rb_entry(rbp, struct epitem, rbn); 910 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 911 if (kcmp > 0) 912 rbp = rbp->rb_right; 913 else if (kcmp < 0) 914 rbp = rbp->rb_left; 915 else { 916 ep_use_epitem(epi); 917 epir = epi; 918 break; 919 } 920 } 921 read_unlock_irqrestore(&ep->lock, flags); 922 923 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_find(%p) -> %p\n", 924 current, file, epir)); 925 926 return epir; 927 } 928 929 930 /* 931 * Increment the usage count of the "struct epitem" making it sure 932 * that the user will have a valid pointer to reference. 933 */ 934 static void ep_use_epitem(struct epitem *epi) 935 { 936 937 atomic_inc(&epi->usecnt); 938 } 939 940 941 /* 942 * Decrement ( release ) the usage count by signaling that the user 943 * has finished using the structure. It might lead to freeing the 944 * structure itself if the count goes to zero. 945 */ 946 static void ep_release_epitem(struct epitem *epi) 947 { 948 949 if (atomic_dec_and_test(&epi->usecnt)) 950 kmem_cache_free(epi_cache, epi); 951 } 952 953 954 /* 955 * This is the callback that is used to add our wait queue to the 956 * target file wakeup lists. 957 */ 958 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 959 poll_table *pt) 960 { 961 struct epitem *epi = ep_item_from_epqueue(pt); 962 struct eppoll_entry *pwq; 963 964 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 965 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 966 pwq->whead = whead; 967 pwq->base = epi; 968 add_wait_queue(whead, &pwq->wait); 969 list_add_tail(&pwq->llink, &epi->pwqlist); 970 epi->nwait++; 971 } else { 972 /* We have to signal that an error occurred */ 973 epi->nwait = -1; 974 } 975 } 976 977 978 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 979 { 980 int kcmp; 981 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 982 struct epitem *epic; 983 984 while (*p) { 985 parent = *p; 986 epic = rb_entry(parent, struct epitem, rbn); 987 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 988 if (kcmp > 0) 989 p = &parent->rb_right; 990 else 991 p = &parent->rb_left; 992 } 993 rb_link_node(&epi->rbn, parent, p); 994 rb_insert_color(&epi->rbn, &ep->rbr); 995 } 996 997 998 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 999 struct file *tfile, int fd) 1000 { 1001 int error, revents, pwake = 0; 1002 unsigned long flags; 1003 struct epitem *epi; 1004 struct ep_pqueue epq; 1005 1006 error = -ENOMEM; 1007 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1008 goto eexit_1; 1009 1010 /* Item initialization follow here ... */ 1011 ep_rb_initnode(&epi->rbn); 1012 INIT_LIST_HEAD(&epi->rdllink); 1013 INIT_LIST_HEAD(&epi->fllink); 1014 INIT_LIST_HEAD(&epi->txlink); 1015 INIT_LIST_HEAD(&epi->pwqlist); 1016 epi->ep = ep; 1017 ep_set_ffd(&epi->ffd, tfile, fd); 1018 epi->event = *event; 1019 atomic_set(&epi->usecnt, 1); 1020 epi->nwait = 0; 1021 1022 /* Initialize the poll table using the queue callback */ 1023 epq.epi = epi; 1024 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1025 1026 /* 1027 * Attach the item to the poll hooks and get current event bits. 1028 * We can safely use the file* here because its usage count has 1029 * been increased by the caller of this function. 1030 */ 1031 revents = tfile->f_op->poll(tfile, &epq.pt); 1032 1033 /* 1034 * We have to check if something went wrong during the poll wait queue 1035 * install process. Namely an allocation for a wait queue failed due 1036 * high memory pressure. 1037 */ 1038 if (epi->nwait < 0) 1039 goto eexit_2; 1040 1041 /* Add the current item to the list of active epoll hook for this file */ 1042 spin_lock(&tfile->f_ep_lock); 1043 list_add_tail(&epi->fllink, &tfile->f_ep_links); 1044 spin_unlock(&tfile->f_ep_lock); 1045 1046 /* We have to drop the new item inside our item list to keep track of it */ 1047 write_lock_irqsave(&ep->lock, flags); 1048 1049 /* Add the current item to the rb-tree */ 1050 ep_rbtree_insert(ep, epi); 1051 1052 /* If the file is already "ready" we drop it inside the ready list */ 1053 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1054 list_add_tail(&epi->rdllink, &ep->rdllist); 1055 1056 /* Notify waiting tasks that events are available */ 1057 if (waitqueue_active(&ep->wq)) 1058 __wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE); 1059 if (waitqueue_active(&ep->poll_wait)) 1060 pwake++; 1061 } 1062 1063 write_unlock_irqrestore(&ep->lock, flags); 1064 1065 /* We have to call this outside the lock */ 1066 if (pwake) 1067 ep_poll_safewake(&psw, &ep->poll_wait); 1068 1069 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n", 1070 current, ep, tfile, fd)); 1071 1072 return 0; 1073 1074 eexit_2: 1075 ep_unregister_pollwait(ep, epi); 1076 1077 /* 1078 * We need to do this because an event could have been arrived on some 1079 * allocated wait queue. 1080 */ 1081 write_lock_irqsave(&ep->lock, flags); 1082 if (ep_is_linked(&epi->rdllink)) 1083 ep_list_del(&epi->rdllink); 1084 write_unlock_irqrestore(&ep->lock, flags); 1085 1086 kmem_cache_free(epi_cache, epi); 1087 eexit_1: 1088 return error; 1089 } 1090 1091 1092 /* 1093 * Modify the interest event mask by dropping an event if the new mask 1094 * has a match in the current file status. 1095 */ 1096 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1097 { 1098 int pwake = 0; 1099 unsigned int revents; 1100 unsigned long flags; 1101 1102 /* 1103 * Set the new event interest mask before calling f_op->poll(), otherwise 1104 * a potential race might occur. In fact if we do this operation inside 1105 * the lock, an event might happen between the f_op->poll() call and the 1106 * new event set registering. 1107 */ 1108 epi->event.events = event->events; 1109 1110 /* 1111 * Get current event bits. We can safely use the file* here because 1112 * its usage count has been increased by the caller of this function. 1113 */ 1114 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 1115 1116 write_lock_irqsave(&ep->lock, flags); 1117 1118 /* Copy the data member from inside the lock */ 1119 epi->event.data = event->data; 1120 1121 /* 1122 * If the item is not linked to the hash it means that it's on its 1123 * way toward the removal. Do nothing in this case. 1124 */ 1125 if (ep_rb_linked(&epi->rbn)) { 1126 /* 1127 * If the item is "hot" and it is not registered inside the ready 1128 * list, push it inside. If the item is not "hot" and it is currently 1129 * registered inside the ready list, unlink it. 1130 */ 1131 if (revents & event->events) { 1132 if (!ep_is_linked(&epi->rdllink)) { 1133 list_add_tail(&epi->rdllink, &ep->rdllist); 1134 1135 /* Notify waiting tasks that events are available */ 1136 if (waitqueue_active(&ep->wq)) 1137 __wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE | 1138 TASK_INTERRUPTIBLE); 1139 if (waitqueue_active(&ep->poll_wait)) 1140 pwake++; 1141 } 1142 } 1143 } 1144 1145 write_unlock_irqrestore(&ep->lock, flags); 1146 1147 /* We have to call this outside the lock */ 1148 if (pwake) 1149 ep_poll_safewake(&psw, &ep->poll_wait); 1150 1151 return 0; 1152 } 1153 1154 1155 /* 1156 * This function unregister poll callbacks from the associated file descriptor. 1157 * Since this must be called without holding "ep->lock" the atomic exchange trick 1158 * will protect us from multiple unregister. 1159 */ 1160 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 1161 { 1162 int nwait; 1163 struct list_head *lsthead = &epi->pwqlist; 1164 struct eppoll_entry *pwq; 1165 1166 /* This is called without locks, so we need the atomic exchange */ 1167 nwait = xchg(&epi->nwait, 0); 1168 1169 if (nwait) { 1170 while (!list_empty(lsthead)) { 1171 pwq = list_entry(lsthead->next, struct eppoll_entry, llink); 1172 1173 ep_list_del(&pwq->llink); 1174 remove_wait_queue(pwq->whead, &pwq->wait); 1175 kmem_cache_free(pwq_cache, pwq); 1176 } 1177 } 1178 } 1179 1180 1181 /* 1182 * Unlink the "struct epitem" from all places it might have been hooked up. 1183 * This function must be called with write IRQ lock on "ep->lock". 1184 */ 1185 static int ep_unlink(struct eventpoll *ep, struct epitem *epi) 1186 { 1187 int error; 1188 1189 /* 1190 * It can happen that this one is called for an item already unlinked. 1191 * The check protect us from doing a double unlink ( crash ). 1192 */ 1193 error = -ENOENT; 1194 if (!ep_rb_linked(&epi->rbn)) 1195 goto eexit_1; 1196 1197 /* 1198 * Clear the event mask for the unlinked item. This will avoid item 1199 * notifications to be sent after the unlink operation from inside 1200 * the kernel->userspace event transfer loop. 1201 */ 1202 epi->event.events = 0; 1203 1204 /* 1205 * At this point is safe to do the job, unlink the item from our rb-tree. 1206 * This operation togheter with the above check closes the door to 1207 * double unlinks. 1208 */ 1209 ep_rb_erase(&epi->rbn, &ep->rbr); 1210 1211 /* 1212 * If the item we are going to remove is inside the ready file descriptors 1213 * we want to remove it from this list to avoid stale events. 1214 */ 1215 if (ep_is_linked(&epi->rdllink)) 1216 ep_list_del(&epi->rdllink); 1217 1218 error = 0; 1219 eexit_1: 1220 1221 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_unlink(%p, %p) = %d\n", 1222 current, ep, epi->ffd.file, error)); 1223 1224 return error; 1225 } 1226 1227 1228 /* 1229 * Removes a "struct epitem" from the eventpoll hash and deallocates 1230 * all the associated resources. 1231 */ 1232 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 1233 { 1234 int error; 1235 unsigned long flags; 1236 struct file *file = epi->ffd.file; 1237 1238 /* 1239 * Removes poll wait queue hooks. We _have_ to do this without holding 1240 * the "ep->lock" otherwise a deadlock might occur. This because of the 1241 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 1242 * queue head lock when unregistering the wait queue. The wakeup callback 1243 * will run by holding the wait queue head lock and will call our callback 1244 * that will try to get "ep->lock". 1245 */ 1246 ep_unregister_pollwait(ep, epi); 1247 1248 /* Remove the current item from the list of epoll hooks */ 1249 spin_lock(&file->f_ep_lock); 1250 if (ep_is_linked(&epi->fllink)) 1251 ep_list_del(&epi->fllink); 1252 spin_unlock(&file->f_ep_lock); 1253 1254 /* We need to acquire the write IRQ lock before calling ep_unlink() */ 1255 write_lock_irqsave(&ep->lock, flags); 1256 1257 /* Really unlink the item from the hash */ 1258 error = ep_unlink(ep, epi); 1259 1260 write_unlock_irqrestore(&ep->lock, flags); 1261 1262 if (error) 1263 goto eexit_1; 1264 1265 /* At this point it is safe to free the eventpoll item */ 1266 ep_release_epitem(epi); 1267 1268 error = 0; 1269 eexit_1: 1270 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_remove(%p, %p) = %d\n", 1271 current, ep, file, error)); 1272 1273 return error; 1274 } 1275 1276 1277 /* 1278 * This is the callback that is passed to the wait queue wakeup 1279 * machanism. It is called by the stored file descriptors when they 1280 * have events to report. 1281 */ 1282 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 1283 { 1284 int pwake = 0; 1285 unsigned long flags; 1286 struct epitem *epi = ep_item_from_wait(wait); 1287 struct eventpoll *ep = epi->ep; 1288 1289 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n", 1290 current, epi->ffd.file, epi, ep)); 1291 1292 write_lock_irqsave(&ep->lock, flags); 1293 1294 /* 1295 * If the event mask does not contain any poll(2) event, we consider the 1296 * descriptor to be disabled. This condition is likely the effect of the 1297 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1298 * until the next EPOLL_CTL_MOD will be issued. 1299 */ 1300 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1301 goto is_disabled; 1302 1303 /* If this file is already in the ready list we exit soon */ 1304 if (ep_is_linked(&epi->rdllink)) 1305 goto is_linked; 1306 1307 list_add_tail(&epi->rdllink, &ep->rdllist); 1308 1309 is_linked: 1310 /* 1311 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1312 * wait list. 1313 */ 1314 if (waitqueue_active(&ep->wq)) 1315 __wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE | 1316 TASK_INTERRUPTIBLE); 1317 if (waitqueue_active(&ep->poll_wait)) 1318 pwake++; 1319 1320 is_disabled: 1321 write_unlock_irqrestore(&ep->lock, flags); 1322 1323 /* We have to call this outside the lock */ 1324 if (pwake) 1325 ep_poll_safewake(&psw, &ep->poll_wait); 1326 1327 return 1; 1328 } 1329 1330 1331 static int ep_eventpoll_close(struct inode *inode, struct file *file) 1332 { 1333 struct eventpoll *ep = file->private_data; 1334 1335 if (ep) { 1336 ep_free(ep); 1337 kfree(ep); 1338 } 1339 1340 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: close() ep=%p\n", current, ep)); 1341 return 0; 1342 } 1343 1344 1345 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 1346 { 1347 unsigned int pollflags = 0; 1348 unsigned long flags; 1349 struct eventpoll *ep = file->private_data; 1350 1351 /* Insert inside our poll wait queue */ 1352 poll_wait(file, &ep->poll_wait, wait); 1353 1354 /* Check our condition */ 1355 read_lock_irqsave(&ep->lock, flags); 1356 if (!list_empty(&ep->rdllist)) 1357 pollflags = POLLIN | POLLRDNORM; 1358 read_unlock_irqrestore(&ep->lock, flags); 1359 1360 return pollflags; 1361 } 1362 1363 1364 /* 1365 * Since we have to release the lock during the __copy_to_user() operation and 1366 * during the f_op->poll() call, we try to collect the maximum number of items 1367 * by reducing the irqlock/irqunlock switching rate. 1368 */ 1369 static int ep_collect_ready_items(struct eventpoll *ep, struct list_head *txlist, int maxevents) 1370 { 1371 int nepi; 1372 unsigned long flags; 1373 struct list_head *lsthead = &ep->rdllist, *lnk; 1374 struct epitem *epi; 1375 1376 write_lock_irqsave(&ep->lock, flags); 1377 1378 for (nepi = 0, lnk = lsthead->next; lnk != lsthead && nepi < maxevents;) { 1379 epi = list_entry(lnk, struct epitem, rdllink); 1380 1381 lnk = lnk->next; 1382 1383 /* If this file is already in the ready list we exit soon */ 1384 if (!ep_is_linked(&epi->txlink)) { 1385 /* 1386 * This is initialized in this way so that the default 1387 * behaviour of the reinjecting code will be to push back 1388 * the item inside the ready list. 1389 */ 1390 epi->revents = epi->event.events; 1391 1392 /* Link the ready item into the transfer list */ 1393 list_add(&epi->txlink, txlist); 1394 nepi++; 1395 1396 /* 1397 * Unlink the item from the ready list. 1398 */ 1399 ep_list_del(&epi->rdllink); 1400 } 1401 } 1402 1403 write_unlock_irqrestore(&ep->lock, flags); 1404 1405 return nepi; 1406 } 1407 1408 1409 /* 1410 * This function is called without holding the "ep->lock" since the call to 1411 * __copy_to_user() might sleep, and also f_op->poll() might reenable the IRQ 1412 * because of the way poll() is traditionally implemented in Linux. 1413 */ 1414 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist, 1415 struct epoll_event __user *events) 1416 { 1417 int eventcnt = 0; 1418 unsigned int revents; 1419 struct list_head *lnk; 1420 struct epitem *epi; 1421 1422 /* 1423 * We can loop without lock because this is a task private list. 1424 * The test done during the collection loop will guarantee us that 1425 * another task will not try to collect this file. Also, items 1426 * cannot vanish during the loop because we are holding "sem". 1427 */ 1428 list_for_each(lnk, txlist) { 1429 epi = list_entry(lnk, struct epitem, txlink); 1430 1431 /* 1432 * Get the ready file event set. We can safely use the file 1433 * because we are holding the "sem" in read and this will 1434 * guarantee that both the file and the item will not vanish. 1435 */ 1436 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 1437 1438 /* 1439 * Set the return event set for the current file descriptor. 1440 * Note that only the task task was successfully able to link 1441 * the item to its "txlist" will write this field. 1442 */ 1443 epi->revents = revents & epi->event.events; 1444 1445 if (epi->revents) { 1446 if (__put_user(epi->revents, 1447 &events[eventcnt].events) || 1448 __put_user(epi->event.data, 1449 &events[eventcnt].data)) 1450 return -EFAULT; 1451 if (epi->event.events & EPOLLONESHOT) 1452 epi->event.events &= EP_PRIVATE_BITS; 1453 eventcnt++; 1454 } 1455 } 1456 return eventcnt; 1457 } 1458 1459 1460 /* 1461 * Walk through the transfer list we collected with ep_collect_ready_items() 1462 * and, if 1) the item is still "alive" 2) its event set is not empty 3) it's 1463 * not already linked, links it to the ready list. Same as above, we are holding 1464 * "sem" so items cannot vanish underneath our nose. 1465 */ 1466 static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist) 1467 { 1468 int ricnt = 0, pwake = 0; 1469 unsigned long flags; 1470 struct epitem *epi; 1471 1472 write_lock_irqsave(&ep->lock, flags); 1473 1474 while (!list_empty(txlist)) { 1475 epi = list_entry(txlist->next, struct epitem, txlink); 1476 1477 /* Unlink the current item from the transfer list */ 1478 ep_list_del(&epi->txlink); 1479 1480 /* 1481 * If the item is no more linked to the interest set, we don't 1482 * have to push it inside the ready list because the following 1483 * ep_release_epitem() is going to drop it. Also, if the current 1484 * item is set to have an Edge Triggered behaviour, we don't have 1485 * to push it back either. 1486 */ 1487 if (ep_rb_linked(&epi->rbn) && !(epi->event.events & EPOLLET) && 1488 (epi->revents & epi->event.events) && !ep_is_linked(&epi->rdllink)) { 1489 list_add_tail(&epi->rdllink, &ep->rdllist); 1490 ricnt++; 1491 } 1492 } 1493 1494 if (ricnt) { 1495 /* 1496 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1497 * wait list. 1498 */ 1499 if (waitqueue_active(&ep->wq)) 1500 __wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE | 1501 TASK_INTERRUPTIBLE); 1502 if (waitqueue_active(&ep->poll_wait)) 1503 pwake++; 1504 } 1505 1506 write_unlock_irqrestore(&ep->lock, flags); 1507 1508 /* We have to call this outside the lock */ 1509 if (pwake) 1510 ep_poll_safewake(&psw, &ep->poll_wait); 1511 } 1512 1513 1514 /* 1515 * Perform the transfer of events to user space. 1516 */ 1517 static int ep_events_transfer(struct eventpoll *ep, 1518 struct epoll_event __user *events, int maxevents) 1519 { 1520 int eventcnt = 0; 1521 struct list_head txlist; 1522 1523 INIT_LIST_HEAD(&txlist); 1524 1525 /* 1526 * We need to lock this because we could be hit by 1527 * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL). 1528 */ 1529 down_read(&ep->sem); 1530 1531 /* Collect/extract ready items */ 1532 if (ep_collect_ready_items(ep, &txlist, maxevents) > 0) { 1533 /* Build result set in userspace */ 1534 eventcnt = ep_send_events(ep, &txlist, events); 1535 1536 /* Reinject ready items into the ready list */ 1537 ep_reinject_items(ep, &txlist); 1538 } 1539 1540 up_read(&ep->sem); 1541 1542 return eventcnt; 1543 } 1544 1545 1546 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1547 int maxevents, long timeout) 1548 { 1549 int res, eavail; 1550 unsigned long flags; 1551 long jtimeout; 1552 wait_queue_t wait; 1553 1554 /* 1555 * Calculate the timeout by checking for the "infinite" value ( -1 ) 1556 * and the overflow condition. The passed timeout is in milliseconds, 1557 * that why (t * HZ) / 1000. 1558 */ 1559 jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ? 1560 MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000; 1561 1562 retry: 1563 write_lock_irqsave(&ep->lock, flags); 1564 1565 res = 0; 1566 if (list_empty(&ep->rdllist)) { 1567 /* 1568 * We don't have any available event to return to the caller. 1569 * We need to sleep here, and we will be wake up by 1570 * ep_poll_callback() when events will become available. 1571 */ 1572 init_waitqueue_entry(&wait, current); 1573 __add_wait_queue(&ep->wq, &wait); 1574 1575 for (;;) { 1576 /* 1577 * We don't want to sleep if the ep_poll_callback() sends us 1578 * a wakeup in between. That's why we set the task state 1579 * to TASK_INTERRUPTIBLE before doing the checks. 1580 */ 1581 set_current_state(TASK_INTERRUPTIBLE); 1582 if (!list_empty(&ep->rdllist) || !jtimeout) 1583 break; 1584 if (signal_pending(current)) { 1585 res = -EINTR; 1586 break; 1587 } 1588 1589 write_unlock_irqrestore(&ep->lock, flags); 1590 jtimeout = schedule_timeout(jtimeout); 1591 write_lock_irqsave(&ep->lock, flags); 1592 } 1593 __remove_wait_queue(&ep->wq, &wait); 1594 1595 set_current_state(TASK_RUNNING); 1596 } 1597 1598 /* Is it worth to try to dig for events ? */ 1599 eavail = !list_empty(&ep->rdllist); 1600 1601 write_unlock_irqrestore(&ep->lock, flags); 1602 1603 /* 1604 * Try to transfer events to user space. In case we get 0 events and 1605 * there's still timeout left over, we go trying again in search of 1606 * more luck. 1607 */ 1608 if (!res && eavail && 1609 !(res = ep_events_transfer(ep, events, maxevents)) && jtimeout) 1610 goto retry; 1611 1612 return res; 1613 } 1614 1615 1616 static int eventpollfs_delete_dentry(struct dentry *dentry) 1617 { 1618 1619 return 1; 1620 } 1621 1622 1623 static struct inode *ep_eventpoll_inode(void) 1624 { 1625 int error = -ENOMEM; 1626 struct inode *inode = new_inode(eventpoll_mnt->mnt_sb); 1627 1628 if (!inode) 1629 goto eexit_1; 1630 1631 inode->i_fop = &eventpoll_fops; 1632 1633 /* 1634 * Mark the inode dirty from the very beginning, 1635 * that way it will never be moved to the dirty 1636 * list because mark_inode_dirty() will think 1637 * that it already _is_ on the dirty list. 1638 */ 1639 inode->i_state = I_DIRTY; 1640 inode->i_mode = S_IRUSR | S_IWUSR; 1641 inode->i_uid = current->fsuid; 1642 inode->i_gid = current->fsgid; 1643 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1644 return inode; 1645 1646 eexit_1: 1647 return ERR_PTR(error); 1648 } 1649 1650 1651 static int 1652 eventpollfs_get_sb(struct file_system_type *fs_type, int flags, 1653 const char *dev_name, void *data, struct vfsmount *mnt) 1654 { 1655 return get_sb_pseudo(fs_type, "eventpoll:", NULL, EVENTPOLLFS_MAGIC, 1656 mnt); 1657 } 1658 1659 1660 static int __init eventpoll_init(void) 1661 { 1662 int error; 1663 1664 mutex_init(&epmutex); 1665 1666 /* Initialize the structure used to perform safe poll wait head wake ups */ 1667 ep_poll_safewake_init(&psw); 1668 1669 /* Allocates slab cache used to allocate "struct epitem" items */ 1670 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1671 0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC, 1672 NULL, NULL); 1673 1674 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1675 pwq_cache = kmem_cache_create("eventpoll_pwq", 1676 sizeof(struct eppoll_entry), 0, 1677 EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL); 1678 1679 /* 1680 * Register the virtual file system that will be the source of inodes 1681 * for the eventpoll files 1682 */ 1683 error = register_filesystem(&eventpoll_fs_type); 1684 if (error) 1685 goto epanic; 1686 1687 /* Mount the above commented virtual file system */ 1688 eventpoll_mnt = kern_mount(&eventpoll_fs_type); 1689 error = PTR_ERR(eventpoll_mnt); 1690 if (IS_ERR(eventpoll_mnt)) 1691 goto epanic; 1692 1693 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: successfully initialized.\n", 1694 current)); 1695 return 0; 1696 1697 epanic: 1698 panic("eventpoll_init() failed\n"); 1699 } 1700 1701 1702 static void __exit eventpoll_exit(void) 1703 { 1704 /* Undo all operations done inside eventpoll_init() */ 1705 unregister_filesystem(&eventpoll_fs_type); 1706 mntput(eventpoll_mnt); 1707 kmem_cache_destroy(pwq_cache); 1708 kmem_cache_destroy(epi_cache); 1709 } 1710 1711 module_init(eventpoll_init); 1712 module_exit(eventpoll_exit); 1713 1714 MODULE_LICENSE("GPL"); 1715