1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <net/busy_poll.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epnested_mutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (rwlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a rwlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * The epnested_mutex is acquired when inserting an epoll fd onto another 61 * epoll fd. We do this so that we walk the epoll tree and ensure that this 62 * insertion does not create a cycle of epoll file descriptors, which 63 * could lead to deadlock. We need a global mutex to prevent two 64 * simultaneous inserts (A into B and B into A) from racing and 65 * constructing a cycle without either insert observing that it is 66 * going to. 67 * It is necessary to acquire multiple "ep->mtx"es at once in the 68 * case when one epoll fd is added to another. In this case, we 69 * always acquire the locks in the order of nesting (i.e. after 70 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 71 * before e2->mtx). Since we disallow cycles of epoll file 72 * descriptors, this ensures that the mutexes are well-ordered. In 73 * order to communicate this nesting to lockdep, when walking a tree 74 * of epoll file descriptors, we use the current recursion depth as 75 * the lockdep subkey. 76 * It is possible to drop the "ep->mtx" and to use the global 77 * mutex "epnested_mutex" (together with "ep->lock") to have it working, 78 * but having "ep->mtx" will make the interface more scalable. 79 * Events that require holding "epnested_mutex" are very rare, while for 80 * normal operations the epoll private "ep->mtx" will guarantee 81 * a better scalability. 82 */ 83 84 /* Epoll private bits inside the event mask */ 85 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 86 87 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 88 89 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 90 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 91 92 /* Maximum number of nesting allowed inside epoll sets */ 93 #define EP_MAX_NESTS 4 94 95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 96 97 #define EP_UNACTIVE_PTR ((void *) -1L) 98 99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 100 101 struct epoll_filefd { 102 struct file *file; 103 int fd; 104 } __packed; 105 106 /* Wait structure used by the poll hooks */ 107 struct eppoll_entry { 108 /* List header used to link this structure to the "struct epitem" */ 109 struct eppoll_entry *next; 110 111 /* The "base" pointer is set to the container "struct epitem" */ 112 struct epitem *base; 113 114 /* 115 * Wait queue item that will be linked to the target file wait 116 * queue head. 117 */ 118 wait_queue_entry_t wait; 119 120 /* The wait queue head that linked the "wait" wait queue item */ 121 wait_queue_head_t *whead; 122 }; 123 124 /* 125 * Each file descriptor added to the eventpoll interface will 126 * have an entry of this type linked to the "rbr" RB tree. 127 * Avoid increasing the size of this struct, there can be many thousands 128 * of these on a server and we do not want this to take another cache line. 129 */ 130 struct epitem { 131 union { 132 /* RB tree node links this structure to the eventpoll RB tree */ 133 struct rb_node rbn; 134 /* Used to free the struct epitem */ 135 struct rcu_head rcu; 136 }; 137 138 /* List header used to link this structure to the eventpoll ready list */ 139 struct list_head rdllink; 140 141 /* 142 * Works together "struct eventpoll"->ovflist in keeping the 143 * single linked chain of items. 144 */ 145 struct epitem *next; 146 147 /* The file descriptor information this item refers to */ 148 struct epoll_filefd ffd; 149 150 /* 151 * Protected by file->f_lock, true for to-be-released epitem already 152 * removed from the "struct file" items list; together with 153 * eventpoll->refcount orchestrates "struct eventpoll" disposal 154 */ 155 bool dying; 156 157 /* List containing poll wait queues */ 158 struct eppoll_entry *pwqlist; 159 160 /* The "container" of this item */ 161 struct eventpoll *ep; 162 163 /* List header used to link this item to the "struct file" items list */ 164 struct hlist_node fllink; 165 166 /* wakeup_source used when EPOLLWAKEUP is set */ 167 struct wakeup_source __rcu *ws; 168 169 /* The structure that describe the interested events and the source fd */ 170 struct epoll_event event; 171 }; 172 173 /* 174 * This structure is stored inside the "private_data" member of the file 175 * structure and represents the main data structure for the eventpoll 176 * interface. 177 */ 178 struct eventpoll { 179 /* 180 * This mutex is used to ensure that files are not removed 181 * while epoll is using them. This is held during the event 182 * collection loop, the file cleanup path, the epoll file exit 183 * code and the ctl operations. 184 */ 185 struct mutex mtx; 186 187 /* Wait queue used by sys_epoll_wait() */ 188 wait_queue_head_t wq; 189 190 /* Wait queue used by file->poll() */ 191 wait_queue_head_t poll_wait; 192 193 /* List of ready file descriptors */ 194 struct list_head rdllist; 195 196 /* Lock which protects rdllist and ovflist */ 197 rwlock_t lock; 198 199 /* RB tree root used to store monitored fd structs */ 200 struct rb_root_cached rbr; 201 202 /* 203 * This is a single linked list that chains all the "struct epitem" that 204 * happened while transferring ready events to userspace w/out 205 * holding ->lock. 206 */ 207 struct epitem *ovflist; 208 209 /* wakeup_source used when ep_scan_ready_list is running */ 210 struct wakeup_source *ws; 211 212 /* The user that created the eventpoll descriptor */ 213 struct user_struct *user; 214 215 struct file *file; 216 217 /* used to optimize loop detection check */ 218 u64 gen; 219 struct hlist_head refs; 220 221 /* 222 * usage count, used together with epitem->dying to 223 * orchestrate the disposal of this struct 224 */ 225 refcount_t refcount; 226 227 #ifdef CONFIG_NET_RX_BUSY_POLL 228 /* used to track busy poll napi_id */ 229 unsigned int napi_id; 230 #endif 231 232 #ifdef CONFIG_DEBUG_LOCK_ALLOC 233 /* tracks wakeup nests for lockdep validation */ 234 u8 nests; 235 #endif 236 }; 237 238 /* Wrapper struct used by poll queueing */ 239 struct ep_pqueue { 240 poll_table pt; 241 struct epitem *epi; 242 }; 243 244 /* 245 * Configuration options available inside /proc/sys/fs/epoll/ 246 */ 247 /* Maximum number of epoll watched descriptors, per user */ 248 static long max_user_watches __read_mostly; 249 250 /* Used for cycles detection */ 251 static DEFINE_MUTEX(epnested_mutex); 252 253 static u64 loop_check_gen = 0; 254 255 /* Used to check for epoll file descriptor inclusion loops */ 256 static struct eventpoll *inserting_into; 257 258 /* Slab cache used to allocate "struct epitem" */ 259 static struct kmem_cache *epi_cache __ro_after_init; 260 261 /* Slab cache used to allocate "struct eppoll_entry" */ 262 static struct kmem_cache *pwq_cache __ro_after_init; 263 264 /* 265 * List of files with newly added links, where we may need to limit the number 266 * of emanating paths. Protected by the epnested_mutex. 267 */ 268 struct epitems_head { 269 struct hlist_head epitems; 270 struct epitems_head *next; 271 }; 272 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 273 274 static struct kmem_cache *ephead_cache __ro_after_init; 275 276 static inline void free_ephead(struct epitems_head *head) 277 { 278 if (head) 279 kmem_cache_free(ephead_cache, head); 280 } 281 282 static void list_file(struct file *file) 283 { 284 struct epitems_head *head; 285 286 head = container_of(file->f_ep, struct epitems_head, epitems); 287 if (!head->next) { 288 head->next = tfile_check_list; 289 tfile_check_list = head; 290 } 291 } 292 293 static void unlist_file(struct epitems_head *head) 294 { 295 struct epitems_head *to_free = head; 296 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 297 if (p) { 298 struct epitem *epi= container_of(p, struct epitem, fllink); 299 spin_lock(&epi->ffd.file->f_lock); 300 if (!hlist_empty(&head->epitems)) 301 to_free = NULL; 302 head->next = NULL; 303 spin_unlock(&epi->ffd.file->f_lock); 304 } 305 free_ephead(to_free); 306 } 307 308 #ifdef CONFIG_SYSCTL 309 310 #include <linux/sysctl.h> 311 312 static long long_zero; 313 static long long_max = LONG_MAX; 314 315 static struct ctl_table epoll_table[] = { 316 { 317 .procname = "max_user_watches", 318 .data = &max_user_watches, 319 .maxlen = sizeof(max_user_watches), 320 .mode = 0644, 321 .proc_handler = proc_doulongvec_minmax, 322 .extra1 = &long_zero, 323 .extra2 = &long_max, 324 }, 325 }; 326 327 static void __init epoll_sysctls_init(void) 328 { 329 register_sysctl("fs/epoll", epoll_table); 330 } 331 #else 332 #define epoll_sysctls_init() do { } while (0) 333 #endif /* CONFIG_SYSCTL */ 334 335 static const struct file_operations eventpoll_fops; 336 337 static inline int is_file_epoll(struct file *f) 338 { 339 return f->f_op == &eventpoll_fops; 340 } 341 342 /* Setup the structure that is used as key for the RB tree */ 343 static inline void ep_set_ffd(struct epoll_filefd *ffd, 344 struct file *file, int fd) 345 { 346 ffd->file = file; 347 ffd->fd = fd; 348 } 349 350 /* Compare RB tree keys */ 351 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 352 struct epoll_filefd *p2) 353 { 354 return (p1->file > p2->file ? +1: 355 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 356 } 357 358 /* Tells us if the item is currently linked */ 359 static inline int ep_is_linked(struct epitem *epi) 360 { 361 return !list_empty(&epi->rdllink); 362 } 363 364 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 365 { 366 return container_of(p, struct eppoll_entry, wait); 367 } 368 369 /* Get the "struct epitem" from a wait queue pointer */ 370 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 371 { 372 return container_of(p, struct eppoll_entry, wait)->base; 373 } 374 375 /** 376 * ep_events_available - Checks if ready events might be available. 377 * 378 * @ep: Pointer to the eventpoll context. 379 * 380 * Return: a value different than %zero if ready events are available, 381 * or %zero otherwise. 382 */ 383 static inline int ep_events_available(struct eventpoll *ep) 384 { 385 return !list_empty_careful(&ep->rdllist) || 386 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 387 } 388 389 #ifdef CONFIG_NET_RX_BUSY_POLL 390 static bool ep_busy_loop_end(void *p, unsigned long start_time) 391 { 392 struct eventpoll *ep = p; 393 394 return ep_events_available(ep) || busy_loop_timeout(start_time); 395 } 396 397 /* 398 * Busy poll if globally on and supporting sockets found && no events, 399 * busy loop will return if need_resched or ep_events_available. 400 * 401 * we must do our busy polling with irqs enabled 402 */ 403 static bool ep_busy_loop(struct eventpoll *ep, int nonblock) 404 { 405 unsigned int napi_id = READ_ONCE(ep->napi_id); 406 407 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) { 408 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false, 409 BUSY_POLL_BUDGET); 410 if (ep_events_available(ep)) 411 return true; 412 /* 413 * Busy poll timed out. Drop NAPI ID for now, we can add 414 * it back in when we have moved a socket with a valid NAPI 415 * ID onto the ready list. 416 */ 417 ep->napi_id = 0; 418 return false; 419 } 420 return false; 421 } 422 423 /* 424 * Set epoll busy poll NAPI ID from sk. 425 */ 426 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 427 { 428 struct eventpoll *ep; 429 unsigned int napi_id; 430 struct socket *sock; 431 struct sock *sk; 432 433 if (!net_busy_loop_on()) 434 return; 435 436 sock = sock_from_file(epi->ffd.file); 437 if (!sock) 438 return; 439 440 sk = sock->sk; 441 if (!sk) 442 return; 443 444 napi_id = READ_ONCE(sk->sk_napi_id); 445 ep = epi->ep; 446 447 /* Non-NAPI IDs can be rejected 448 * or 449 * Nothing to do if we already have this ID 450 */ 451 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 452 return; 453 454 /* record NAPI ID for use in next busy poll */ 455 ep->napi_id = napi_id; 456 } 457 458 #else 459 460 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) 461 { 462 return false; 463 } 464 465 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 466 { 467 } 468 469 #endif /* CONFIG_NET_RX_BUSY_POLL */ 470 471 /* 472 * As described in commit 0ccf831cb lockdep: annotate epoll 473 * the use of wait queues used by epoll is done in a very controlled 474 * manner. Wake ups can nest inside each other, but are never done 475 * with the same locking. For example: 476 * 477 * dfd = socket(...); 478 * efd1 = epoll_create(); 479 * efd2 = epoll_create(); 480 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 481 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 482 * 483 * When a packet arrives to the device underneath "dfd", the net code will 484 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 485 * callback wakeup entry on that queue, and the wake_up() performed by the 486 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 487 * (efd1) notices that it may have some event ready, so it needs to wake up 488 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 489 * that ends up in another wake_up(), after having checked about the 490 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid 491 * stack blasting. 492 * 493 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 494 * this special case of epoll. 495 */ 496 #ifdef CONFIG_DEBUG_LOCK_ALLOC 497 498 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 499 unsigned pollflags) 500 { 501 struct eventpoll *ep_src; 502 unsigned long flags; 503 u8 nests = 0; 504 505 /* 506 * To set the subclass or nesting level for spin_lock_irqsave_nested() 507 * it might be natural to create a per-cpu nest count. However, since 508 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 509 * schedule() in the -rt kernel, the per-cpu variable are no longer 510 * protected. Thus, we are introducing a per eventpoll nest field. 511 * If we are not being call from ep_poll_callback(), epi is NULL and 512 * we are at the first level of nesting, 0. Otherwise, we are being 513 * called from ep_poll_callback() and if a previous wakeup source is 514 * not an epoll file itself, we are at depth 1 since the wakeup source 515 * is depth 0. If the wakeup source is a previous epoll file in the 516 * wakeup chain then we use its nests value and record ours as 517 * nests + 1. The previous epoll file nests value is stable since its 518 * already holding its own poll_wait.lock. 519 */ 520 if (epi) { 521 if ((is_file_epoll(epi->ffd.file))) { 522 ep_src = epi->ffd.file->private_data; 523 nests = ep_src->nests; 524 } else { 525 nests = 1; 526 } 527 } 528 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 529 ep->nests = nests + 1; 530 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); 531 ep->nests = 0; 532 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 533 } 534 535 #else 536 537 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 538 __poll_t pollflags) 539 { 540 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); 541 } 542 543 #endif 544 545 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 546 { 547 wait_queue_head_t *whead; 548 549 rcu_read_lock(); 550 /* 551 * If it is cleared by POLLFREE, it should be rcu-safe. 552 * If we read NULL we need a barrier paired with 553 * smp_store_release() in ep_poll_callback(), otherwise 554 * we rely on whead->lock. 555 */ 556 whead = smp_load_acquire(&pwq->whead); 557 if (whead) 558 remove_wait_queue(whead, &pwq->wait); 559 rcu_read_unlock(); 560 } 561 562 /* 563 * This function unregisters poll callbacks from the associated file 564 * descriptor. Must be called with "mtx" held. 565 */ 566 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 567 { 568 struct eppoll_entry **p = &epi->pwqlist; 569 struct eppoll_entry *pwq; 570 571 while ((pwq = *p) != NULL) { 572 *p = pwq->next; 573 ep_remove_wait_queue(pwq); 574 kmem_cache_free(pwq_cache, pwq); 575 } 576 } 577 578 /* call only when ep->mtx is held */ 579 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 580 { 581 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 582 } 583 584 /* call only when ep->mtx is held */ 585 static inline void ep_pm_stay_awake(struct epitem *epi) 586 { 587 struct wakeup_source *ws = ep_wakeup_source(epi); 588 589 if (ws) 590 __pm_stay_awake(ws); 591 } 592 593 static inline bool ep_has_wakeup_source(struct epitem *epi) 594 { 595 return rcu_access_pointer(epi->ws) ? true : false; 596 } 597 598 /* call when ep->mtx cannot be held (ep_poll_callback) */ 599 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 600 { 601 struct wakeup_source *ws; 602 603 rcu_read_lock(); 604 ws = rcu_dereference(epi->ws); 605 if (ws) 606 __pm_stay_awake(ws); 607 rcu_read_unlock(); 608 } 609 610 611 /* 612 * ep->mutex needs to be held because we could be hit by 613 * eventpoll_release_file() and epoll_ctl(). 614 */ 615 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 616 { 617 /* 618 * Steal the ready list, and re-init the original one to the 619 * empty list. Also, set ep->ovflist to NULL so that events 620 * happening while looping w/out locks, are not lost. We cannot 621 * have the poll callback to queue directly on ep->rdllist, 622 * because we want the "sproc" callback to be able to do it 623 * in a lockless way. 624 */ 625 lockdep_assert_irqs_enabled(); 626 write_lock_irq(&ep->lock); 627 list_splice_init(&ep->rdllist, txlist); 628 WRITE_ONCE(ep->ovflist, NULL); 629 write_unlock_irq(&ep->lock); 630 } 631 632 static void ep_done_scan(struct eventpoll *ep, 633 struct list_head *txlist) 634 { 635 struct epitem *epi, *nepi; 636 637 write_lock_irq(&ep->lock); 638 /* 639 * During the time we spent inside the "sproc" callback, some 640 * other events might have been queued by the poll callback. 641 * We re-insert them inside the main ready-list here. 642 */ 643 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 644 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 645 /* 646 * We need to check if the item is already in the list. 647 * During the "sproc" callback execution time, items are 648 * queued into ->ovflist but the "txlist" might already 649 * contain them, and the list_splice() below takes care of them. 650 */ 651 if (!ep_is_linked(epi)) { 652 /* 653 * ->ovflist is LIFO, so we have to reverse it in order 654 * to keep in FIFO. 655 */ 656 list_add(&epi->rdllink, &ep->rdllist); 657 ep_pm_stay_awake(epi); 658 } 659 } 660 /* 661 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 662 * releasing the lock, events will be queued in the normal way inside 663 * ep->rdllist. 664 */ 665 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 666 667 /* 668 * Quickly re-inject items left on "txlist". 669 */ 670 list_splice(txlist, &ep->rdllist); 671 __pm_relax(ep->ws); 672 673 if (!list_empty(&ep->rdllist)) { 674 if (waitqueue_active(&ep->wq)) 675 wake_up(&ep->wq); 676 } 677 678 write_unlock_irq(&ep->lock); 679 } 680 681 static void epi_rcu_free(struct rcu_head *head) 682 { 683 struct epitem *epi = container_of(head, struct epitem, rcu); 684 kmem_cache_free(epi_cache, epi); 685 } 686 687 static void ep_get(struct eventpoll *ep) 688 { 689 refcount_inc(&ep->refcount); 690 } 691 692 /* 693 * Returns true if the event poll can be disposed 694 */ 695 static bool ep_refcount_dec_and_test(struct eventpoll *ep) 696 { 697 if (!refcount_dec_and_test(&ep->refcount)) 698 return false; 699 700 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); 701 return true; 702 } 703 704 static void ep_free(struct eventpoll *ep) 705 { 706 mutex_destroy(&ep->mtx); 707 free_uid(ep->user); 708 wakeup_source_unregister(ep->ws); 709 kfree(ep); 710 } 711 712 /* 713 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 714 * all the associated resources. Must be called with "mtx" held. 715 * If the dying flag is set, do the removal only if force is true. 716 * This prevents ep_clear_and_put() from dropping all the ep references 717 * while running concurrently with eventpoll_release_file(). 718 * Returns true if the eventpoll can be disposed. 719 */ 720 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) 721 { 722 struct file *file = epi->ffd.file; 723 struct epitems_head *to_free; 724 struct hlist_head *head; 725 726 lockdep_assert_irqs_enabled(); 727 728 /* 729 * Removes poll wait queue hooks. 730 */ 731 ep_unregister_pollwait(ep, epi); 732 733 /* Remove the current item from the list of epoll hooks */ 734 spin_lock(&file->f_lock); 735 if (epi->dying && !force) { 736 spin_unlock(&file->f_lock); 737 return false; 738 } 739 740 to_free = NULL; 741 head = file->f_ep; 742 if (head->first == &epi->fllink && !epi->fllink.next) { 743 file->f_ep = NULL; 744 if (!is_file_epoll(file)) { 745 struct epitems_head *v; 746 v = container_of(head, struct epitems_head, epitems); 747 if (!smp_load_acquire(&v->next)) 748 to_free = v; 749 } 750 } 751 hlist_del_rcu(&epi->fllink); 752 spin_unlock(&file->f_lock); 753 free_ephead(to_free); 754 755 rb_erase_cached(&epi->rbn, &ep->rbr); 756 757 write_lock_irq(&ep->lock); 758 if (ep_is_linked(epi)) 759 list_del_init(&epi->rdllink); 760 write_unlock_irq(&ep->lock); 761 762 wakeup_source_unregister(ep_wakeup_source(epi)); 763 /* 764 * At this point it is safe to free the eventpoll item. Use the union 765 * field epi->rcu, since we are trying to minimize the size of 766 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 767 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 768 * use of the rbn field. 769 */ 770 call_rcu(&epi->rcu, epi_rcu_free); 771 772 percpu_counter_dec(&ep->user->epoll_watches); 773 return ep_refcount_dec_and_test(ep); 774 } 775 776 /* 777 * ep_remove variant for callers owing an additional reference to the ep 778 */ 779 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) 780 { 781 WARN_ON_ONCE(__ep_remove(ep, epi, false)); 782 } 783 784 static void ep_clear_and_put(struct eventpoll *ep) 785 { 786 struct rb_node *rbp, *next; 787 struct epitem *epi; 788 bool dispose; 789 790 /* We need to release all tasks waiting for these file */ 791 if (waitqueue_active(&ep->poll_wait)) 792 ep_poll_safewake(ep, NULL, 0); 793 794 mutex_lock(&ep->mtx); 795 796 /* 797 * Walks through the whole tree by unregistering poll callbacks. 798 */ 799 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 800 epi = rb_entry(rbp, struct epitem, rbn); 801 802 ep_unregister_pollwait(ep, epi); 803 cond_resched(); 804 } 805 806 /* 807 * Walks through the whole tree and try to free each "struct epitem". 808 * Note that ep_remove_safe() will not remove the epitem in case of a 809 * racing eventpoll_release_file(); the latter will do the removal. 810 * At this point we are sure no poll callbacks will be lingering around. 811 * Since we still own a reference to the eventpoll struct, the loop can't 812 * dispose it. 813 */ 814 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { 815 next = rb_next(rbp); 816 epi = rb_entry(rbp, struct epitem, rbn); 817 ep_remove_safe(ep, epi); 818 cond_resched(); 819 } 820 821 dispose = ep_refcount_dec_and_test(ep); 822 mutex_unlock(&ep->mtx); 823 824 if (dispose) 825 ep_free(ep); 826 } 827 828 static int ep_eventpoll_release(struct inode *inode, struct file *file) 829 { 830 struct eventpoll *ep = file->private_data; 831 832 if (ep) 833 ep_clear_and_put(ep); 834 835 return 0; 836 } 837 838 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 839 840 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 841 { 842 struct eventpoll *ep = file->private_data; 843 LIST_HEAD(txlist); 844 struct epitem *epi, *tmp; 845 poll_table pt; 846 __poll_t res = 0; 847 848 init_poll_funcptr(&pt, NULL); 849 850 /* Insert inside our poll wait queue */ 851 poll_wait(file, &ep->poll_wait, wait); 852 853 /* 854 * Proceed to find out if wanted events are really available inside 855 * the ready list. 856 */ 857 mutex_lock_nested(&ep->mtx, depth); 858 ep_start_scan(ep, &txlist); 859 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 860 if (ep_item_poll(epi, &pt, depth + 1)) { 861 res = EPOLLIN | EPOLLRDNORM; 862 break; 863 } else { 864 /* 865 * Item has been dropped into the ready list by the poll 866 * callback, but it's not actually ready, as far as 867 * caller requested events goes. We can remove it here. 868 */ 869 __pm_relax(ep_wakeup_source(epi)); 870 list_del_init(&epi->rdllink); 871 } 872 } 873 ep_done_scan(ep, &txlist); 874 mutex_unlock(&ep->mtx); 875 return res; 876 } 877 878 /* 879 * Differs from ep_eventpoll_poll() in that internal callers already have 880 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 881 * is correctly annotated. 882 */ 883 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 884 int depth) 885 { 886 struct file *file = epi->ffd.file; 887 __poll_t res; 888 889 pt->_key = epi->event.events; 890 if (!is_file_epoll(file)) 891 res = vfs_poll(file, pt); 892 else 893 res = __ep_eventpoll_poll(file, pt, depth); 894 return res & epi->event.events; 895 } 896 897 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 898 { 899 return __ep_eventpoll_poll(file, wait, 0); 900 } 901 902 #ifdef CONFIG_PROC_FS 903 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 904 { 905 struct eventpoll *ep = f->private_data; 906 struct rb_node *rbp; 907 908 mutex_lock(&ep->mtx); 909 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 910 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 911 struct inode *inode = file_inode(epi->ffd.file); 912 913 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 914 " pos:%lli ino:%lx sdev:%x\n", 915 epi->ffd.fd, epi->event.events, 916 (long long)epi->event.data, 917 (long long)epi->ffd.file->f_pos, 918 inode->i_ino, inode->i_sb->s_dev); 919 if (seq_has_overflowed(m)) 920 break; 921 } 922 mutex_unlock(&ep->mtx); 923 } 924 #endif 925 926 /* File callbacks that implement the eventpoll file behaviour */ 927 static const struct file_operations eventpoll_fops = { 928 #ifdef CONFIG_PROC_FS 929 .show_fdinfo = ep_show_fdinfo, 930 #endif 931 .release = ep_eventpoll_release, 932 .poll = ep_eventpoll_poll, 933 .llseek = noop_llseek, 934 }; 935 936 /* 937 * This is called from eventpoll_release() to unlink files from the eventpoll 938 * interface. We need to have this facility to cleanup correctly files that are 939 * closed without being removed from the eventpoll interface. 940 */ 941 void eventpoll_release_file(struct file *file) 942 { 943 struct eventpoll *ep; 944 struct epitem *epi; 945 bool dispose; 946 947 /* 948 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from 949 * touching the epitems list before eventpoll_release_file() can access 950 * the ep->mtx. 951 */ 952 again: 953 spin_lock(&file->f_lock); 954 if (file->f_ep && file->f_ep->first) { 955 epi = hlist_entry(file->f_ep->first, struct epitem, fllink); 956 epi->dying = true; 957 spin_unlock(&file->f_lock); 958 959 /* 960 * ep access is safe as we still own a reference to the ep 961 * struct 962 */ 963 ep = epi->ep; 964 mutex_lock(&ep->mtx); 965 dispose = __ep_remove(ep, epi, true); 966 mutex_unlock(&ep->mtx); 967 968 if (dispose) 969 ep_free(ep); 970 goto again; 971 } 972 spin_unlock(&file->f_lock); 973 } 974 975 static int ep_alloc(struct eventpoll **pep) 976 { 977 struct eventpoll *ep; 978 979 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 980 if (unlikely(!ep)) 981 return -ENOMEM; 982 983 mutex_init(&ep->mtx); 984 rwlock_init(&ep->lock); 985 init_waitqueue_head(&ep->wq); 986 init_waitqueue_head(&ep->poll_wait); 987 INIT_LIST_HEAD(&ep->rdllist); 988 ep->rbr = RB_ROOT_CACHED; 989 ep->ovflist = EP_UNACTIVE_PTR; 990 ep->user = get_current_user(); 991 refcount_set(&ep->refcount, 1); 992 993 *pep = ep; 994 995 return 0; 996 } 997 998 /* 999 * Search the file inside the eventpoll tree. The RB tree operations 1000 * are protected by the "mtx" mutex, and ep_find() must be called with 1001 * "mtx" held. 1002 */ 1003 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1004 { 1005 int kcmp; 1006 struct rb_node *rbp; 1007 struct epitem *epi, *epir = NULL; 1008 struct epoll_filefd ffd; 1009 1010 ep_set_ffd(&ffd, file, fd); 1011 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1012 epi = rb_entry(rbp, struct epitem, rbn); 1013 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1014 if (kcmp > 0) 1015 rbp = rbp->rb_right; 1016 else if (kcmp < 0) 1017 rbp = rbp->rb_left; 1018 else { 1019 epir = epi; 1020 break; 1021 } 1022 } 1023 1024 return epir; 1025 } 1026 1027 #ifdef CONFIG_KCMP 1028 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1029 { 1030 struct rb_node *rbp; 1031 struct epitem *epi; 1032 1033 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1034 epi = rb_entry(rbp, struct epitem, rbn); 1035 if (epi->ffd.fd == tfd) { 1036 if (toff == 0) 1037 return epi; 1038 else 1039 toff--; 1040 } 1041 cond_resched(); 1042 } 1043 1044 return NULL; 1045 } 1046 1047 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1048 unsigned long toff) 1049 { 1050 struct file *file_raw; 1051 struct eventpoll *ep; 1052 struct epitem *epi; 1053 1054 if (!is_file_epoll(file)) 1055 return ERR_PTR(-EINVAL); 1056 1057 ep = file->private_data; 1058 1059 mutex_lock(&ep->mtx); 1060 epi = ep_find_tfd(ep, tfd, toff); 1061 if (epi) 1062 file_raw = epi->ffd.file; 1063 else 1064 file_raw = ERR_PTR(-ENOENT); 1065 mutex_unlock(&ep->mtx); 1066 1067 return file_raw; 1068 } 1069 #endif /* CONFIG_KCMP */ 1070 1071 /* 1072 * Adds a new entry to the tail of the list in a lockless way, i.e. 1073 * multiple CPUs are allowed to call this function concurrently. 1074 * 1075 * Beware: it is necessary to prevent any other modifications of the 1076 * existing list until all changes are completed, in other words 1077 * concurrent list_add_tail_lockless() calls should be protected 1078 * with a read lock, where write lock acts as a barrier which 1079 * makes sure all list_add_tail_lockless() calls are fully 1080 * completed. 1081 * 1082 * Also an element can be locklessly added to the list only in one 1083 * direction i.e. either to the tail or to the head, otherwise 1084 * concurrent access will corrupt the list. 1085 * 1086 * Return: %false if element has been already added to the list, %true 1087 * otherwise. 1088 */ 1089 static inline bool list_add_tail_lockless(struct list_head *new, 1090 struct list_head *head) 1091 { 1092 struct list_head *prev; 1093 1094 /* 1095 * This is simple 'new->next = head' operation, but cmpxchg() 1096 * is used in order to detect that same element has been just 1097 * added to the list from another CPU: the winner observes 1098 * new->next == new. 1099 */ 1100 if (!try_cmpxchg(&new->next, &new, head)) 1101 return false; 1102 1103 /* 1104 * Initially ->next of a new element must be updated with the head 1105 * (we are inserting to the tail) and only then pointers are atomically 1106 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1107 * updated before pointers are actually swapped and pointers are 1108 * swapped before prev->next is updated. 1109 */ 1110 1111 prev = xchg(&head->prev, new); 1112 1113 /* 1114 * It is safe to modify prev->next and new->prev, because a new element 1115 * is added only to the tail and new->next is updated before XCHG. 1116 */ 1117 1118 prev->next = new; 1119 new->prev = prev; 1120 1121 return true; 1122 } 1123 1124 /* 1125 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1126 * i.e. multiple CPUs are allowed to call this function concurrently. 1127 * 1128 * Return: %false if epi element has been already chained, %true otherwise. 1129 */ 1130 static inline bool chain_epi_lockless(struct epitem *epi) 1131 { 1132 struct eventpoll *ep = epi->ep; 1133 1134 /* Fast preliminary check */ 1135 if (epi->next != EP_UNACTIVE_PTR) 1136 return false; 1137 1138 /* Check that the same epi has not been just chained from another CPU */ 1139 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1140 return false; 1141 1142 /* Atomically exchange tail */ 1143 epi->next = xchg(&ep->ovflist, epi); 1144 1145 return true; 1146 } 1147 1148 /* 1149 * This is the callback that is passed to the wait queue wakeup 1150 * mechanism. It is called by the stored file descriptors when they 1151 * have events to report. 1152 * 1153 * This callback takes a read lock in order not to contend with concurrent 1154 * events from another file descriptor, thus all modifications to ->rdllist 1155 * or ->ovflist are lockless. Read lock is paired with the write lock from 1156 * ep_scan_ready_list(), which stops all list modifications and guarantees 1157 * that lists state is seen correctly. 1158 * 1159 * Another thing worth to mention is that ep_poll_callback() can be called 1160 * concurrently for the same @epi from different CPUs if poll table was inited 1161 * with several wait queues entries. Plural wakeup from different CPUs of a 1162 * single wait queue is serialized by wq.lock, but the case when multiple wait 1163 * queues are used should be detected accordingly. This is detected using 1164 * cmpxchg() operation. 1165 */ 1166 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1167 { 1168 int pwake = 0; 1169 struct epitem *epi = ep_item_from_wait(wait); 1170 struct eventpoll *ep = epi->ep; 1171 __poll_t pollflags = key_to_poll(key); 1172 unsigned long flags; 1173 int ewake = 0; 1174 1175 read_lock_irqsave(&ep->lock, flags); 1176 1177 ep_set_busy_poll_napi_id(epi); 1178 1179 /* 1180 * If the event mask does not contain any poll(2) event, we consider the 1181 * descriptor to be disabled. This condition is likely the effect of the 1182 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1183 * until the next EPOLL_CTL_MOD will be issued. 1184 */ 1185 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1186 goto out_unlock; 1187 1188 /* 1189 * Check the events coming with the callback. At this stage, not 1190 * every device reports the events in the "key" parameter of the 1191 * callback. We need to be able to handle both cases here, hence the 1192 * test for "key" != NULL before the event match test. 1193 */ 1194 if (pollflags && !(pollflags & epi->event.events)) 1195 goto out_unlock; 1196 1197 /* 1198 * If we are transferring events to userspace, we can hold no locks 1199 * (because we're accessing user memory, and because of linux f_op->poll() 1200 * semantics). All the events that happen during that period of time are 1201 * chained in ep->ovflist and requeued later on. 1202 */ 1203 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1204 if (chain_epi_lockless(epi)) 1205 ep_pm_stay_awake_rcu(epi); 1206 } else if (!ep_is_linked(epi)) { 1207 /* In the usual case, add event to ready list. */ 1208 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1209 ep_pm_stay_awake_rcu(epi); 1210 } 1211 1212 /* 1213 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1214 * wait list. 1215 */ 1216 if (waitqueue_active(&ep->wq)) { 1217 if ((epi->event.events & EPOLLEXCLUSIVE) && 1218 !(pollflags & POLLFREE)) { 1219 switch (pollflags & EPOLLINOUT_BITS) { 1220 case EPOLLIN: 1221 if (epi->event.events & EPOLLIN) 1222 ewake = 1; 1223 break; 1224 case EPOLLOUT: 1225 if (epi->event.events & EPOLLOUT) 1226 ewake = 1; 1227 break; 1228 case 0: 1229 ewake = 1; 1230 break; 1231 } 1232 } 1233 wake_up(&ep->wq); 1234 } 1235 if (waitqueue_active(&ep->poll_wait)) 1236 pwake++; 1237 1238 out_unlock: 1239 read_unlock_irqrestore(&ep->lock, flags); 1240 1241 /* We have to call this outside the lock */ 1242 if (pwake) 1243 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); 1244 1245 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1246 ewake = 1; 1247 1248 if (pollflags & POLLFREE) { 1249 /* 1250 * If we race with ep_remove_wait_queue() it can miss 1251 * ->whead = NULL and do another remove_wait_queue() after 1252 * us, so we can't use __remove_wait_queue(). 1253 */ 1254 list_del_init(&wait->entry); 1255 /* 1256 * ->whead != NULL protects us from the race with 1257 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() 1258 * takes whead->lock held by the caller. Once we nullify it, 1259 * nothing protects ep/epi or even wait. 1260 */ 1261 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1262 } 1263 1264 return ewake; 1265 } 1266 1267 /* 1268 * This is the callback that is used to add our wait queue to the 1269 * target file wakeup lists. 1270 */ 1271 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1272 poll_table *pt) 1273 { 1274 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1275 struct epitem *epi = epq->epi; 1276 struct eppoll_entry *pwq; 1277 1278 if (unlikely(!epi)) // an earlier allocation has failed 1279 return; 1280 1281 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1282 if (unlikely(!pwq)) { 1283 epq->epi = NULL; 1284 return; 1285 } 1286 1287 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1288 pwq->whead = whead; 1289 pwq->base = epi; 1290 if (epi->event.events & EPOLLEXCLUSIVE) 1291 add_wait_queue_exclusive(whead, &pwq->wait); 1292 else 1293 add_wait_queue(whead, &pwq->wait); 1294 pwq->next = epi->pwqlist; 1295 epi->pwqlist = pwq; 1296 } 1297 1298 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1299 { 1300 int kcmp; 1301 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1302 struct epitem *epic; 1303 bool leftmost = true; 1304 1305 while (*p) { 1306 parent = *p; 1307 epic = rb_entry(parent, struct epitem, rbn); 1308 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1309 if (kcmp > 0) { 1310 p = &parent->rb_right; 1311 leftmost = false; 1312 } else 1313 p = &parent->rb_left; 1314 } 1315 rb_link_node(&epi->rbn, parent, p); 1316 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1317 } 1318 1319 1320 1321 #define PATH_ARR_SIZE 5 1322 /* 1323 * These are the number paths of length 1 to 5, that we are allowing to emanate 1324 * from a single file of interest. For example, we allow 1000 paths of length 1325 * 1, to emanate from each file of interest. This essentially represents the 1326 * potential wakeup paths, which need to be limited in order to avoid massive 1327 * uncontrolled wakeup storms. The common use case should be a single ep which 1328 * is connected to n file sources. In this case each file source has 1 path 1329 * of length 1. Thus, the numbers below should be more than sufficient. These 1330 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1331 * and delete can't add additional paths. Protected by the epnested_mutex. 1332 */ 1333 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1334 static int path_count[PATH_ARR_SIZE]; 1335 1336 static int path_count_inc(int nests) 1337 { 1338 /* Allow an arbitrary number of depth 1 paths */ 1339 if (nests == 0) 1340 return 0; 1341 1342 if (++path_count[nests] > path_limits[nests]) 1343 return -1; 1344 return 0; 1345 } 1346 1347 static void path_count_init(void) 1348 { 1349 int i; 1350 1351 for (i = 0; i < PATH_ARR_SIZE; i++) 1352 path_count[i] = 0; 1353 } 1354 1355 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1356 { 1357 int error = 0; 1358 struct epitem *epi; 1359 1360 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1361 return -1; 1362 1363 /* CTL_DEL can remove links here, but that can't increase our count */ 1364 hlist_for_each_entry_rcu(epi, refs, fllink) { 1365 struct hlist_head *refs = &epi->ep->refs; 1366 if (hlist_empty(refs)) 1367 error = path_count_inc(depth); 1368 else 1369 error = reverse_path_check_proc(refs, depth + 1); 1370 if (error != 0) 1371 break; 1372 } 1373 return error; 1374 } 1375 1376 /** 1377 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1378 * links that are proposed to be newly added. We need to 1379 * make sure that those added links don't add too many 1380 * paths such that we will spend all our time waking up 1381 * eventpoll objects. 1382 * 1383 * Return: %zero if the proposed links don't create too many paths, 1384 * %-1 otherwise. 1385 */ 1386 static int reverse_path_check(void) 1387 { 1388 struct epitems_head *p; 1389 1390 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1391 int error; 1392 path_count_init(); 1393 rcu_read_lock(); 1394 error = reverse_path_check_proc(&p->epitems, 0); 1395 rcu_read_unlock(); 1396 if (error) 1397 return error; 1398 } 1399 return 0; 1400 } 1401 1402 static int ep_create_wakeup_source(struct epitem *epi) 1403 { 1404 struct name_snapshot n; 1405 struct wakeup_source *ws; 1406 1407 if (!epi->ep->ws) { 1408 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1409 if (!epi->ep->ws) 1410 return -ENOMEM; 1411 } 1412 1413 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1414 ws = wakeup_source_register(NULL, n.name.name); 1415 release_dentry_name_snapshot(&n); 1416 1417 if (!ws) 1418 return -ENOMEM; 1419 rcu_assign_pointer(epi->ws, ws); 1420 1421 return 0; 1422 } 1423 1424 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1425 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1426 { 1427 struct wakeup_source *ws = ep_wakeup_source(epi); 1428 1429 RCU_INIT_POINTER(epi->ws, NULL); 1430 1431 /* 1432 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1433 * used internally by wakeup_source_remove, too (called by 1434 * wakeup_source_unregister), so we cannot use call_rcu 1435 */ 1436 synchronize_rcu(); 1437 wakeup_source_unregister(ws); 1438 } 1439 1440 static int attach_epitem(struct file *file, struct epitem *epi) 1441 { 1442 struct epitems_head *to_free = NULL; 1443 struct hlist_head *head = NULL; 1444 struct eventpoll *ep = NULL; 1445 1446 if (is_file_epoll(file)) 1447 ep = file->private_data; 1448 1449 if (ep) { 1450 head = &ep->refs; 1451 } else if (!READ_ONCE(file->f_ep)) { 1452 allocate: 1453 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1454 if (!to_free) 1455 return -ENOMEM; 1456 head = &to_free->epitems; 1457 } 1458 spin_lock(&file->f_lock); 1459 if (!file->f_ep) { 1460 if (unlikely(!head)) { 1461 spin_unlock(&file->f_lock); 1462 goto allocate; 1463 } 1464 file->f_ep = head; 1465 to_free = NULL; 1466 } 1467 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1468 spin_unlock(&file->f_lock); 1469 free_ephead(to_free); 1470 return 0; 1471 } 1472 1473 /* 1474 * Must be called with "mtx" held. 1475 */ 1476 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1477 struct file *tfile, int fd, int full_check) 1478 { 1479 int error, pwake = 0; 1480 __poll_t revents; 1481 struct epitem *epi; 1482 struct ep_pqueue epq; 1483 struct eventpoll *tep = NULL; 1484 1485 if (is_file_epoll(tfile)) 1486 tep = tfile->private_data; 1487 1488 lockdep_assert_irqs_enabled(); 1489 1490 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1491 max_user_watches) >= 0)) 1492 return -ENOSPC; 1493 percpu_counter_inc(&ep->user->epoll_watches); 1494 1495 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1496 percpu_counter_dec(&ep->user->epoll_watches); 1497 return -ENOMEM; 1498 } 1499 1500 /* Item initialization follow here ... */ 1501 INIT_LIST_HEAD(&epi->rdllink); 1502 epi->ep = ep; 1503 ep_set_ffd(&epi->ffd, tfile, fd); 1504 epi->event = *event; 1505 epi->next = EP_UNACTIVE_PTR; 1506 1507 if (tep) 1508 mutex_lock_nested(&tep->mtx, 1); 1509 /* Add the current item to the list of active epoll hook for this file */ 1510 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1511 if (tep) 1512 mutex_unlock(&tep->mtx); 1513 kmem_cache_free(epi_cache, epi); 1514 percpu_counter_dec(&ep->user->epoll_watches); 1515 return -ENOMEM; 1516 } 1517 1518 if (full_check && !tep) 1519 list_file(tfile); 1520 1521 /* 1522 * Add the current item to the RB tree. All RB tree operations are 1523 * protected by "mtx", and ep_insert() is called with "mtx" held. 1524 */ 1525 ep_rbtree_insert(ep, epi); 1526 if (tep) 1527 mutex_unlock(&tep->mtx); 1528 1529 /* 1530 * ep_remove_safe() calls in the later error paths can't lead to 1531 * ep_free() as the ep file itself still holds an ep reference. 1532 */ 1533 ep_get(ep); 1534 1535 /* now check if we've created too many backpaths */ 1536 if (unlikely(full_check && reverse_path_check())) { 1537 ep_remove_safe(ep, epi); 1538 return -EINVAL; 1539 } 1540 1541 if (epi->event.events & EPOLLWAKEUP) { 1542 error = ep_create_wakeup_source(epi); 1543 if (error) { 1544 ep_remove_safe(ep, epi); 1545 return error; 1546 } 1547 } 1548 1549 /* Initialize the poll table using the queue callback */ 1550 epq.epi = epi; 1551 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1552 1553 /* 1554 * Attach the item to the poll hooks and get current event bits. 1555 * We can safely use the file* here because its usage count has 1556 * been increased by the caller of this function. Note that after 1557 * this operation completes, the poll callback can start hitting 1558 * the new item. 1559 */ 1560 revents = ep_item_poll(epi, &epq.pt, 1); 1561 1562 /* 1563 * We have to check if something went wrong during the poll wait queue 1564 * install process. Namely an allocation for a wait queue failed due 1565 * high memory pressure. 1566 */ 1567 if (unlikely(!epq.epi)) { 1568 ep_remove_safe(ep, epi); 1569 return -ENOMEM; 1570 } 1571 1572 /* We have to drop the new item inside our item list to keep track of it */ 1573 write_lock_irq(&ep->lock); 1574 1575 /* record NAPI ID of new item if present */ 1576 ep_set_busy_poll_napi_id(epi); 1577 1578 /* If the file is already "ready" we drop it inside the ready list */ 1579 if (revents && !ep_is_linked(epi)) { 1580 list_add_tail(&epi->rdllink, &ep->rdllist); 1581 ep_pm_stay_awake(epi); 1582 1583 /* Notify waiting tasks that events are available */ 1584 if (waitqueue_active(&ep->wq)) 1585 wake_up(&ep->wq); 1586 if (waitqueue_active(&ep->poll_wait)) 1587 pwake++; 1588 } 1589 1590 write_unlock_irq(&ep->lock); 1591 1592 /* We have to call this outside the lock */ 1593 if (pwake) 1594 ep_poll_safewake(ep, NULL, 0); 1595 1596 return 0; 1597 } 1598 1599 /* 1600 * Modify the interest event mask by dropping an event if the new mask 1601 * has a match in the current file status. Must be called with "mtx" held. 1602 */ 1603 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1604 const struct epoll_event *event) 1605 { 1606 int pwake = 0; 1607 poll_table pt; 1608 1609 lockdep_assert_irqs_enabled(); 1610 1611 init_poll_funcptr(&pt, NULL); 1612 1613 /* 1614 * Set the new event interest mask before calling f_op->poll(); 1615 * otherwise we might miss an event that happens between the 1616 * f_op->poll() call and the new event set registering. 1617 */ 1618 epi->event.events = event->events; /* need barrier below */ 1619 epi->event.data = event->data; /* protected by mtx */ 1620 if (epi->event.events & EPOLLWAKEUP) { 1621 if (!ep_has_wakeup_source(epi)) 1622 ep_create_wakeup_source(epi); 1623 } else if (ep_has_wakeup_source(epi)) { 1624 ep_destroy_wakeup_source(epi); 1625 } 1626 1627 /* 1628 * The following barrier has two effects: 1629 * 1630 * 1) Flush epi changes above to other CPUs. This ensures 1631 * we do not miss events from ep_poll_callback if an 1632 * event occurs immediately after we call f_op->poll(). 1633 * We need this because we did not take ep->lock while 1634 * changing epi above (but ep_poll_callback does take 1635 * ep->lock). 1636 * 1637 * 2) We also need to ensure we do not miss _past_ events 1638 * when calling f_op->poll(). This barrier also 1639 * pairs with the barrier in wq_has_sleeper (see 1640 * comments for wq_has_sleeper). 1641 * 1642 * This barrier will now guarantee ep_poll_callback or f_op->poll 1643 * (or both) will notice the readiness of an item. 1644 */ 1645 smp_mb(); 1646 1647 /* 1648 * Get current event bits. We can safely use the file* here because 1649 * its usage count has been increased by the caller of this function. 1650 * If the item is "hot" and it is not registered inside the ready 1651 * list, push it inside. 1652 */ 1653 if (ep_item_poll(epi, &pt, 1)) { 1654 write_lock_irq(&ep->lock); 1655 if (!ep_is_linked(epi)) { 1656 list_add_tail(&epi->rdllink, &ep->rdllist); 1657 ep_pm_stay_awake(epi); 1658 1659 /* Notify waiting tasks that events are available */ 1660 if (waitqueue_active(&ep->wq)) 1661 wake_up(&ep->wq); 1662 if (waitqueue_active(&ep->poll_wait)) 1663 pwake++; 1664 } 1665 write_unlock_irq(&ep->lock); 1666 } 1667 1668 /* We have to call this outside the lock */ 1669 if (pwake) 1670 ep_poll_safewake(ep, NULL, 0); 1671 1672 return 0; 1673 } 1674 1675 static int ep_send_events(struct eventpoll *ep, 1676 struct epoll_event __user *events, int maxevents) 1677 { 1678 struct epitem *epi, *tmp; 1679 LIST_HEAD(txlist); 1680 poll_table pt; 1681 int res = 0; 1682 1683 /* 1684 * Always short-circuit for fatal signals to allow threads to make a 1685 * timely exit without the chance of finding more events available and 1686 * fetching repeatedly. 1687 */ 1688 if (fatal_signal_pending(current)) 1689 return -EINTR; 1690 1691 init_poll_funcptr(&pt, NULL); 1692 1693 mutex_lock(&ep->mtx); 1694 ep_start_scan(ep, &txlist); 1695 1696 /* 1697 * We can loop without lock because we are passed a task private list. 1698 * Items cannot vanish during the loop we are holding ep->mtx. 1699 */ 1700 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1701 struct wakeup_source *ws; 1702 __poll_t revents; 1703 1704 if (res >= maxevents) 1705 break; 1706 1707 /* 1708 * Activate ep->ws before deactivating epi->ws to prevent 1709 * triggering auto-suspend here (in case we reactive epi->ws 1710 * below). 1711 * 1712 * This could be rearranged to delay the deactivation of epi->ws 1713 * instead, but then epi->ws would temporarily be out of sync 1714 * with ep_is_linked(). 1715 */ 1716 ws = ep_wakeup_source(epi); 1717 if (ws) { 1718 if (ws->active) 1719 __pm_stay_awake(ep->ws); 1720 __pm_relax(ws); 1721 } 1722 1723 list_del_init(&epi->rdllink); 1724 1725 /* 1726 * If the event mask intersect the caller-requested one, 1727 * deliver the event to userspace. Again, we are holding ep->mtx, 1728 * so no operations coming from userspace can change the item. 1729 */ 1730 revents = ep_item_poll(epi, &pt, 1); 1731 if (!revents) 1732 continue; 1733 1734 events = epoll_put_uevent(revents, epi->event.data, events); 1735 if (!events) { 1736 list_add(&epi->rdllink, &txlist); 1737 ep_pm_stay_awake(epi); 1738 if (!res) 1739 res = -EFAULT; 1740 break; 1741 } 1742 res++; 1743 if (epi->event.events & EPOLLONESHOT) 1744 epi->event.events &= EP_PRIVATE_BITS; 1745 else if (!(epi->event.events & EPOLLET)) { 1746 /* 1747 * If this file has been added with Level 1748 * Trigger mode, we need to insert back inside 1749 * the ready list, so that the next call to 1750 * epoll_wait() will check again the events 1751 * availability. At this point, no one can insert 1752 * into ep->rdllist besides us. The epoll_ctl() 1753 * callers are locked out by 1754 * ep_scan_ready_list() holding "mtx" and the 1755 * poll callback will queue them in ep->ovflist. 1756 */ 1757 list_add_tail(&epi->rdllink, &ep->rdllist); 1758 ep_pm_stay_awake(epi); 1759 } 1760 } 1761 ep_done_scan(ep, &txlist); 1762 mutex_unlock(&ep->mtx); 1763 1764 return res; 1765 } 1766 1767 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1768 { 1769 struct timespec64 now; 1770 1771 if (ms < 0) 1772 return NULL; 1773 1774 if (!ms) { 1775 to->tv_sec = 0; 1776 to->tv_nsec = 0; 1777 return to; 1778 } 1779 1780 to->tv_sec = ms / MSEC_PER_SEC; 1781 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1782 1783 ktime_get_ts64(&now); 1784 *to = timespec64_add_safe(now, *to); 1785 return to; 1786 } 1787 1788 /* 1789 * autoremove_wake_function, but remove even on failure to wake up, because we 1790 * know that default_wake_function/ttwu will only fail if the thread is already 1791 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1792 * try to reuse it. 1793 */ 1794 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1795 unsigned int mode, int sync, void *key) 1796 { 1797 int ret = default_wake_function(wq_entry, mode, sync, key); 1798 1799 /* 1800 * Pairs with list_empty_careful in ep_poll, and ensures future loop 1801 * iterations see the cause of this wakeup. 1802 */ 1803 list_del_init_careful(&wq_entry->entry); 1804 return ret; 1805 } 1806 1807 /** 1808 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1809 * event buffer. 1810 * 1811 * @ep: Pointer to the eventpoll context. 1812 * @events: Pointer to the userspace buffer where the ready events should be 1813 * stored. 1814 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1815 * @timeout: Maximum timeout for the ready events fetch operation, in 1816 * timespec. If the timeout is zero, the function will not block, 1817 * while if the @timeout ptr is NULL, the function will block 1818 * until at least one event has been retrieved (or an error 1819 * occurred). 1820 * 1821 * Return: the number of ready events which have been fetched, or an 1822 * error code, in case of error. 1823 */ 1824 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1825 int maxevents, struct timespec64 *timeout) 1826 { 1827 int res, eavail, timed_out = 0; 1828 u64 slack = 0; 1829 wait_queue_entry_t wait; 1830 ktime_t expires, *to = NULL; 1831 1832 lockdep_assert_irqs_enabled(); 1833 1834 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 1835 slack = select_estimate_accuracy(timeout); 1836 to = &expires; 1837 *to = timespec64_to_ktime(*timeout); 1838 } else if (timeout) { 1839 /* 1840 * Avoid the unnecessary trip to the wait queue loop, if the 1841 * caller specified a non blocking operation. 1842 */ 1843 timed_out = 1; 1844 } 1845 1846 /* 1847 * This call is racy: We may or may not see events that are being added 1848 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 1849 * with a non-zero timeout, this thread will check the ready list under 1850 * lock and will add to the wait queue. For cases with a zero 1851 * timeout, the user by definition should not care and will have to 1852 * recheck again. 1853 */ 1854 eavail = ep_events_available(ep); 1855 1856 while (1) { 1857 if (eavail) { 1858 /* 1859 * Try to transfer events to user space. In case we get 1860 * 0 events and there's still timeout left over, we go 1861 * trying again in search of more luck. 1862 */ 1863 res = ep_send_events(ep, events, maxevents); 1864 if (res) 1865 return res; 1866 } 1867 1868 if (timed_out) 1869 return 0; 1870 1871 eavail = ep_busy_loop(ep, timed_out); 1872 if (eavail) 1873 continue; 1874 1875 if (signal_pending(current)) 1876 return -EINTR; 1877 1878 /* 1879 * Internally init_wait() uses autoremove_wake_function(), 1880 * thus wait entry is removed from the wait queue on each 1881 * wakeup. Why it is important? In case of several waiters 1882 * each new wakeup will hit the next waiter, giving it the 1883 * chance to harvest new event. Otherwise wakeup can be 1884 * lost. This is also good performance-wise, because on 1885 * normal wakeup path no need to call __remove_wait_queue() 1886 * explicitly, thus ep->lock is not taken, which halts the 1887 * event delivery. 1888 * 1889 * In fact, we now use an even more aggressive function that 1890 * unconditionally removes, because we don't reuse the wait 1891 * entry between loop iterations. This lets us also avoid the 1892 * performance issue if a process is killed, causing all of its 1893 * threads to wake up without being removed normally. 1894 */ 1895 init_wait(&wait); 1896 wait.func = ep_autoremove_wake_function; 1897 1898 write_lock_irq(&ep->lock); 1899 /* 1900 * Barrierless variant, waitqueue_active() is called under 1901 * the same lock on wakeup ep_poll_callback() side, so it 1902 * is safe to avoid an explicit barrier. 1903 */ 1904 __set_current_state(TASK_INTERRUPTIBLE); 1905 1906 /* 1907 * Do the final check under the lock. ep_scan_ready_list() 1908 * plays with two lists (->rdllist and ->ovflist) and there 1909 * is always a race when both lists are empty for short 1910 * period of time although events are pending, so lock is 1911 * important. 1912 */ 1913 eavail = ep_events_available(ep); 1914 if (!eavail) 1915 __add_wait_queue_exclusive(&ep->wq, &wait); 1916 1917 write_unlock_irq(&ep->lock); 1918 1919 if (!eavail) 1920 timed_out = !schedule_hrtimeout_range(to, slack, 1921 HRTIMER_MODE_ABS); 1922 __set_current_state(TASK_RUNNING); 1923 1924 /* 1925 * We were woken up, thus go and try to harvest some events. 1926 * If timed out and still on the wait queue, recheck eavail 1927 * carefully under lock, below. 1928 */ 1929 eavail = 1; 1930 1931 if (!list_empty_careful(&wait.entry)) { 1932 write_lock_irq(&ep->lock); 1933 /* 1934 * If the thread timed out and is not on the wait queue, 1935 * it means that the thread was woken up after its 1936 * timeout expired before it could reacquire the lock. 1937 * Thus, when wait.entry is empty, it needs to harvest 1938 * events. 1939 */ 1940 if (timed_out) 1941 eavail = list_empty(&wait.entry); 1942 __remove_wait_queue(&ep->wq, &wait); 1943 write_unlock_irq(&ep->lock); 1944 } 1945 } 1946 } 1947 1948 /** 1949 * ep_loop_check_proc - verify that adding an epoll file inside another 1950 * epoll structure does not violate the constraints, in 1951 * terms of closed loops, or too deep chains (which can 1952 * result in excessive stack usage). 1953 * 1954 * @ep: the &struct eventpoll to be currently checked. 1955 * @depth: Current depth of the path being checked. 1956 * 1957 * Return: %zero if adding the epoll @file inside current epoll 1958 * structure @ep does not violate the constraints, or %-1 otherwise. 1959 */ 1960 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 1961 { 1962 int error = 0; 1963 struct rb_node *rbp; 1964 struct epitem *epi; 1965 1966 mutex_lock_nested(&ep->mtx, depth + 1); 1967 ep->gen = loop_check_gen; 1968 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1969 epi = rb_entry(rbp, struct epitem, rbn); 1970 if (unlikely(is_file_epoll(epi->ffd.file))) { 1971 struct eventpoll *ep_tovisit; 1972 ep_tovisit = epi->ffd.file->private_data; 1973 if (ep_tovisit->gen == loop_check_gen) 1974 continue; 1975 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 1976 error = -1; 1977 else 1978 error = ep_loop_check_proc(ep_tovisit, depth + 1); 1979 if (error != 0) 1980 break; 1981 } else { 1982 /* 1983 * If we've reached a file that is not associated with 1984 * an ep, then we need to check if the newly added 1985 * links are going to add too many wakeup paths. We do 1986 * this by adding it to the tfile_check_list, if it's 1987 * not already there, and calling reverse_path_check() 1988 * during ep_insert(). 1989 */ 1990 list_file(epi->ffd.file); 1991 } 1992 } 1993 mutex_unlock(&ep->mtx); 1994 1995 return error; 1996 } 1997 1998 /** 1999 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 2000 * into another epoll file (represented by @ep) does not create 2001 * closed loops or too deep chains. 2002 * 2003 * @ep: Pointer to the epoll we are inserting into. 2004 * @to: Pointer to the epoll to be inserted. 2005 * 2006 * Return: %zero if adding the epoll @to inside the epoll @from 2007 * does not violate the constraints, or %-1 otherwise. 2008 */ 2009 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 2010 { 2011 inserting_into = ep; 2012 return ep_loop_check_proc(to, 0); 2013 } 2014 2015 static void clear_tfile_check_list(void) 2016 { 2017 rcu_read_lock(); 2018 while (tfile_check_list != EP_UNACTIVE_PTR) { 2019 struct epitems_head *head = tfile_check_list; 2020 tfile_check_list = head->next; 2021 unlist_file(head); 2022 } 2023 rcu_read_unlock(); 2024 } 2025 2026 /* 2027 * Open an eventpoll file descriptor. 2028 */ 2029 static int do_epoll_create(int flags) 2030 { 2031 int error, fd; 2032 struct eventpoll *ep = NULL; 2033 struct file *file; 2034 2035 /* Check the EPOLL_* constant for consistency. */ 2036 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2037 2038 if (flags & ~EPOLL_CLOEXEC) 2039 return -EINVAL; 2040 /* 2041 * Create the internal data structure ("struct eventpoll"). 2042 */ 2043 error = ep_alloc(&ep); 2044 if (error < 0) 2045 return error; 2046 /* 2047 * Creates all the items needed to setup an eventpoll file. That is, 2048 * a file structure and a free file descriptor. 2049 */ 2050 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2051 if (fd < 0) { 2052 error = fd; 2053 goto out_free_ep; 2054 } 2055 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2056 O_RDWR | (flags & O_CLOEXEC)); 2057 if (IS_ERR(file)) { 2058 error = PTR_ERR(file); 2059 goto out_free_fd; 2060 } 2061 ep->file = file; 2062 fd_install(fd, file); 2063 return fd; 2064 2065 out_free_fd: 2066 put_unused_fd(fd); 2067 out_free_ep: 2068 ep_clear_and_put(ep); 2069 return error; 2070 } 2071 2072 SYSCALL_DEFINE1(epoll_create1, int, flags) 2073 { 2074 return do_epoll_create(flags); 2075 } 2076 2077 SYSCALL_DEFINE1(epoll_create, int, size) 2078 { 2079 if (size <= 0) 2080 return -EINVAL; 2081 2082 return do_epoll_create(0); 2083 } 2084 2085 #ifdef CONFIG_PM_SLEEP 2086 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2087 { 2088 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 2089 epev->events &= ~EPOLLWAKEUP; 2090 } 2091 #else 2092 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2093 { 2094 epev->events &= ~EPOLLWAKEUP; 2095 } 2096 #endif 2097 2098 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2099 bool nonblock) 2100 { 2101 if (!nonblock) { 2102 mutex_lock_nested(mutex, depth); 2103 return 0; 2104 } 2105 if (mutex_trylock(mutex)) 2106 return 0; 2107 return -EAGAIN; 2108 } 2109 2110 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2111 bool nonblock) 2112 { 2113 int error; 2114 int full_check = 0; 2115 struct fd f, tf; 2116 struct eventpoll *ep; 2117 struct epitem *epi; 2118 struct eventpoll *tep = NULL; 2119 2120 error = -EBADF; 2121 f = fdget(epfd); 2122 if (!f.file) 2123 goto error_return; 2124 2125 /* Get the "struct file *" for the target file */ 2126 tf = fdget(fd); 2127 if (!tf.file) 2128 goto error_fput; 2129 2130 /* The target file descriptor must support poll */ 2131 error = -EPERM; 2132 if (!file_can_poll(tf.file)) 2133 goto error_tgt_fput; 2134 2135 /* Check if EPOLLWAKEUP is allowed */ 2136 if (ep_op_has_event(op)) 2137 ep_take_care_of_epollwakeup(epds); 2138 2139 /* 2140 * We have to check that the file structure underneath the file descriptor 2141 * the user passed to us _is_ an eventpoll file. And also we do not permit 2142 * adding an epoll file descriptor inside itself. 2143 */ 2144 error = -EINVAL; 2145 if (f.file == tf.file || !is_file_epoll(f.file)) 2146 goto error_tgt_fput; 2147 2148 /* 2149 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2150 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2151 * Also, we do not currently supported nested exclusive wakeups. 2152 */ 2153 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2154 if (op == EPOLL_CTL_MOD) 2155 goto error_tgt_fput; 2156 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2157 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2158 goto error_tgt_fput; 2159 } 2160 2161 /* 2162 * At this point it is safe to assume that the "private_data" contains 2163 * our own data structure. 2164 */ 2165 ep = f.file->private_data; 2166 2167 /* 2168 * When we insert an epoll file descriptor inside another epoll file 2169 * descriptor, there is the chance of creating closed loops, which are 2170 * better be handled here, than in more critical paths. While we are 2171 * checking for loops we also determine the list of files reachable 2172 * and hang them on the tfile_check_list, so we can check that we 2173 * haven't created too many possible wakeup paths. 2174 * 2175 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2176 * the epoll file descriptor is attaching directly to a wakeup source, 2177 * unless the epoll file descriptor is nested. The purpose of taking the 2178 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and 2179 * deep wakeup paths from forming in parallel through multiple 2180 * EPOLL_CTL_ADD operations. 2181 */ 2182 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2183 if (error) 2184 goto error_tgt_fput; 2185 if (op == EPOLL_CTL_ADD) { 2186 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || 2187 is_file_epoll(tf.file)) { 2188 mutex_unlock(&ep->mtx); 2189 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); 2190 if (error) 2191 goto error_tgt_fput; 2192 loop_check_gen++; 2193 full_check = 1; 2194 if (is_file_epoll(tf.file)) { 2195 tep = tf.file->private_data; 2196 error = -ELOOP; 2197 if (ep_loop_check(ep, tep) != 0) 2198 goto error_tgt_fput; 2199 } 2200 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2201 if (error) 2202 goto error_tgt_fput; 2203 } 2204 } 2205 2206 /* 2207 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2208 * above, we can be sure to be able to use the item looked up by 2209 * ep_find() till we release the mutex. 2210 */ 2211 epi = ep_find(ep, tf.file, fd); 2212 2213 error = -EINVAL; 2214 switch (op) { 2215 case EPOLL_CTL_ADD: 2216 if (!epi) { 2217 epds->events |= EPOLLERR | EPOLLHUP; 2218 error = ep_insert(ep, epds, tf.file, fd, full_check); 2219 } else 2220 error = -EEXIST; 2221 break; 2222 case EPOLL_CTL_DEL: 2223 if (epi) { 2224 /* 2225 * The eventpoll itself is still alive: the refcount 2226 * can't go to zero here. 2227 */ 2228 ep_remove_safe(ep, epi); 2229 error = 0; 2230 } else { 2231 error = -ENOENT; 2232 } 2233 break; 2234 case EPOLL_CTL_MOD: 2235 if (epi) { 2236 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2237 epds->events |= EPOLLERR | EPOLLHUP; 2238 error = ep_modify(ep, epi, epds); 2239 } 2240 } else 2241 error = -ENOENT; 2242 break; 2243 } 2244 mutex_unlock(&ep->mtx); 2245 2246 error_tgt_fput: 2247 if (full_check) { 2248 clear_tfile_check_list(); 2249 loop_check_gen++; 2250 mutex_unlock(&epnested_mutex); 2251 } 2252 2253 fdput(tf); 2254 error_fput: 2255 fdput(f); 2256 error_return: 2257 2258 return error; 2259 } 2260 2261 /* 2262 * The following function implements the controller interface for 2263 * the eventpoll file that enables the insertion/removal/change of 2264 * file descriptors inside the interest set. 2265 */ 2266 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2267 struct epoll_event __user *, event) 2268 { 2269 struct epoll_event epds; 2270 2271 if (ep_op_has_event(op) && 2272 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2273 return -EFAULT; 2274 2275 return do_epoll_ctl(epfd, op, fd, &epds, false); 2276 } 2277 2278 /* 2279 * Implement the event wait interface for the eventpoll file. It is the kernel 2280 * part of the user space epoll_wait(2). 2281 */ 2282 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2283 int maxevents, struct timespec64 *to) 2284 { 2285 int error; 2286 struct fd f; 2287 struct eventpoll *ep; 2288 2289 /* The maximum number of event must be greater than zero */ 2290 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2291 return -EINVAL; 2292 2293 /* Verify that the area passed by the user is writeable */ 2294 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2295 return -EFAULT; 2296 2297 /* Get the "struct file *" for the eventpoll file */ 2298 f = fdget(epfd); 2299 if (!f.file) 2300 return -EBADF; 2301 2302 /* 2303 * We have to check that the file structure underneath the fd 2304 * the user passed to us _is_ an eventpoll file. 2305 */ 2306 error = -EINVAL; 2307 if (!is_file_epoll(f.file)) 2308 goto error_fput; 2309 2310 /* 2311 * At this point it is safe to assume that the "private_data" contains 2312 * our own data structure. 2313 */ 2314 ep = f.file->private_data; 2315 2316 /* Time to fish for events ... */ 2317 error = ep_poll(ep, events, maxevents, to); 2318 2319 error_fput: 2320 fdput(f); 2321 return error; 2322 } 2323 2324 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2325 int, maxevents, int, timeout) 2326 { 2327 struct timespec64 to; 2328 2329 return do_epoll_wait(epfd, events, maxevents, 2330 ep_timeout_to_timespec(&to, timeout)); 2331 } 2332 2333 /* 2334 * Implement the event wait interface for the eventpoll file. It is the kernel 2335 * part of the user space epoll_pwait(2). 2336 */ 2337 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2338 int maxevents, struct timespec64 *to, 2339 const sigset_t __user *sigmask, size_t sigsetsize) 2340 { 2341 int error; 2342 2343 /* 2344 * If the caller wants a certain signal mask to be set during the wait, 2345 * we apply it here. 2346 */ 2347 error = set_user_sigmask(sigmask, sigsetsize); 2348 if (error) 2349 return error; 2350 2351 error = do_epoll_wait(epfd, events, maxevents, to); 2352 2353 restore_saved_sigmask_unless(error == -EINTR); 2354 2355 return error; 2356 } 2357 2358 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2359 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2360 size_t, sigsetsize) 2361 { 2362 struct timespec64 to; 2363 2364 return do_epoll_pwait(epfd, events, maxevents, 2365 ep_timeout_to_timespec(&to, timeout), 2366 sigmask, sigsetsize); 2367 } 2368 2369 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2370 int, maxevents, const struct __kernel_timespec __user *, timeout, 2371 const sigset_t __user *, sigmask, size_t, sigsetsize) 2372 { 2373 struct timespec64 ts, *to = NULL; 2374 2375 if (timeout) { 2376 if (get_timespec64(&ts, timeout)) 2377 return -EFAULT; 2378 to = &ts; 2379 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2380 return -EINVAL; 2381 } 2382 2383 return do_epoll_pwait(epfd, events, maxevents, to, 2384 sigmask, sigsetsize); 2385 } 2386 2387 #ifdef CONFIG_COMPAT 2388 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2389 int maxevents, struct timespec64 *timeout, 2390 const compat_sigset_t __user *sigmask, 2391 compat_size_t sigsetsize) 2392 { 2393 long err; 2394 2395 /* 2396 * If the caller wants a certain signal mask to be set during the wait, 2397 * we apply it here. 2398 */ 2399 err = set_compat_user_sigmask(sigmask, sigsetsize); 2400 if (err) 2401 return err; 2402 2403 err = do_epoll_wait(epfd, events, maxevents, timeout); 2404 2405 restore_saved_sigmask_unless(err == -EINTR); 2406 2407 return err; 2408 } 2409 2410 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2411 struct epoll_event __user *, events, 2412 int, maxevents, int, timeout, 2413 const compat_sigset_t __user *, sigmask, 2414 compat_size_t, sigsetsize) 2415 { 2416 struct timespec64 to; 2417 2418 return do_compat_epoll_pwait(epfd, events, maxevents, 2419 ep_timeout_to_timespec(&to, timeout), 2420 sigmask, sigsetsize); 2421 } 2422 2423 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2424 struct epoll_event __user *, events, 2425 int, maxevents, 2426 const struct __kernel_timespec __user *, timeout, 2427 const compat_sigset_t __user *, sigmask, 2428 compat_size_t, sigsetsize) 2429 { 2430 struct timespec64 ts, *to = NULL; 2431 2432 if (timeout) { 2433 if (get_timespec64(&ts, timeout)) 2434 return -EFAULT; 2435 to = &ts; 2436 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2437 return -EINVAL; 2438 } 2439 2440 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2441 sigmask, sigsetsize); 2442 } 2443 2444 #endif 2445 2446 static int __init eventpoll_init(void) 2447 { 2448 struct sysinfo si; 2449 2450 si_meminfo(&si); 2451 /* 2452 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2453 */ 2454 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2455 EP_ITEM_COST; 2456 BUG_ON(max_user_watches < 0); 2457 2458 /* 2459 * We can have many thousands of epitems, so prevent this from 2460 * using an extra cache line on 64-bit (and smaller) CPUs 2461 */ 2462 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2463 2464 /* Allocates slab cache used to allocate "struct epitem" items */ 2465 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2466 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2467 2468 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2469 pwq_cache = kmem_cache_create("eventpoll_pwq", 2470 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2471 epoll_sysctls_init(); 2472 2473 ephead_cache = kmem_cache_create("ep_head", 2474 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2475 2476 return 0; 2477 } 2478 fs_initcall(eventpoll_init); 2479