xref: /linux/fs/eventpoll.c (revision b886d83c5b621abc84ff9616f14c529be3f6b147)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92 
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94 
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97 
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100 
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104 
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 
107 struct epoll_filefd {
108 	struct file *file;
109 	int fd;
110 } __packed;
111 
112 /*
113  * Structure used to track possible nested calls, for too deep recursions
114  * and loop cycles.
115  */
116 struct nested_call_node {
117 	struct list_head llink;
118 	void *cookie;
119 	void *ctx;
120 };
121 
122 /*
123  * This structure is used as collector for nested calls, to check for
124  * maximum recursion dept and loop cycles.
125  */
126 struct nested_calls {
127 	struct list_head tasks_call_list;
128 	spinlock_t lock;
129 };
130 
131 /*
132  * Each file descriptor added to the eventpoll interface will
133  * have an entry of this type linked to the "rbr" RB tree.
134  * Avoid increasing the size of this struct, there can be many thousands
135  * of these on a server and we do not want this to take another cache line.
136  */
137 struct epitem {
138 	union {
139 		/* RB tree node links this structure to the eventpoll RB tree */
140 		struct rb_node rbn;
141 		/* Used to free the struct epitem */
142 		struct rcu_head rcu;
143 	};
144 
145 	/* List header used to link this structure to the eventpoll ready list */
146 	struct list_head rdllink;
147 
148 	/*
149 	 * Works together "struct eventpoll"->ovflist in keeping the
150 	 * single linked chain of items.
151 	 */
152 	struct epitem *next;
153 
154 	/* The file descriptor information this item refers to */
155 	struct epoll_filefd ffd;
156 
157 	/* Number of active wait queue attached to poll operations */
158 	int nwait;
159 
160 	/* List containing poll wait queues */
161 	struct list_head pwqlist;
162 
163 	/* The "container" of this item */
164 	struct eventpoll *ep;
165 
166 	/* List header used to link this item to the "struct file" items list */
167 	struct list_head fllink;
168 
169 	/* wakeup_source used when EPOLLWAKEUP is set */
170 	struct wakeup_source __rcu *ws;
171 
172 	/* The structure that describe the interested events and the source fd */
173 	struct epoll_event event;
174 };
175 
176 /*
177  * This structure is stored inside the "private_data" member of the file
178  * structure and represents the main data structure for the eventpoll
179  * interface.
180  */
181 struct eventpoll {
182 	/*
183 	 * This mutex is used to ensure that files are not removed
184 	 * while epoll is using them. This is held during the event
185 	 * collection loop, the file cleanup path, the epoll file exit
186 	 * code and the ctl operations.
187 	 */
188 	struct mutex mtx;
189 
190 	/* Wait queue used by sys_epoll_wait() */
191 	wait_queue_head_t wq;
192 
193 	/* Wait queue used by file->poll() */
194 	wait_queue_head_t poll_wait;
195 
196 	/* List of ready file descriptors */
197 	struct list_head rdllist;
198 
199 	/* Lock which protects rdllist and ovflist */
200 	rwlock_t lock;
201 
202 	/* RB tree root used to store monitored fd structs */
203 	struct rb_root_cached rbr;
204 
205 	/*
206 	 * This is a single linked list that chains all the "struct epitem" that
207 	 * happened while transferring ready events to userspace w/out
208 	 * holding ->lock.
209 	 */
210 	struct epitem *ovflist;
211 
212 	/* wakeup_source used when ep_scan_ready_list is running */
213 	struct wakeup_source *ws;
214 
215 	/* The user that created the eventpoll descriptor */
216 	struct user_struct *user;
217 
218 	struct file *file;
219 
220 	/* used to optimize loop detection check */
221 	int visited;
222 	struct list_head visited_list_link;
223 
224 #ifdef CONFIG_NET_RX_BUSY_POLL
225 	/* used to track busy poll napi_id */
226 	unsigned int napi_id;
227 #endif
228 };
229 
230 /* Wait structure used by the poll hooks */
231 struct eppoll_entry {
232 	/* List header used to link this structure to the "struct epitem" */
233 	struct list_head llink;
234 
235 	/* The "base" pointer is set to the container "struct epitem" */
236 	struct epitem *base;
237 
238 	/*
239 	 * Wait queue item that will be linked to the target file wait
240 	 * queue head.
241 	 */
242 	wait_queue_entry_t wait;
243 
244 	/* The wait queue head that linked the "wait" wait queue item */
245 	wait_queue_head_t *whead;
246 };
247 
248 /* Wrapper struct used by poll queueing */
249 struct ep_pqueue {
250 	poll_table pt;
251 	struct epitem *epi;
252 };
253 
254 /* Used by the ep_send_events() function as callback private data */
255 struct ep_send_events_data {
256 	int maxevents;
257 	struct epoll_event __user *events;
258 	int res;
259 };
260 
261 /*
262  * Configuration options available inside /proc/sys/fs/epoll/
263  */
264 /* Maximum number of epoll watched descriptors, per user */
265 static long max_user_watches __read_mostly;
266 
267 /*
268  * This mutex is used to serialize ep_free() and eventpoll_release_file().
269  */
270 static DEFINE_MUTEX(epmutex);
271 
272 /* Used to check for epoll file descriptor inclusion loops */
273 static struct nested_calls poll_loop_ncalls;
274 
275 /* Slab cache used to allocate "struct epitem" */
276 static struct kmem_cache *epi_cache __read_mostly;
277 
278 /* Slab cache used to allocate "struct eppoll_entry" */
279 static struct kmem_cache *pwq_cache __read_mostly;
280 
281 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
282 static LIST_HEAD(visited_list);
283 
284 /*
285  * List of files with newly added links, where we may need to limit the number
286  * of emanating paths. Protected by the epmutex.
287  */
288 static LIST_HEAD(tfile_check_list);
289 
290 #ifdef CONFIG_SYSCTL
291 
292 #include <linux/sysctl.h>
293 
294 static long zero;
295 static long long_max = LONG_MAX;
296 
297 struct ctl_table epoll_table[] = {
298 	{
299 		.procname	= "max_user_watches",
300 		.data		= &max_user_watches,
301 		.maxlen		= sizeof(max_user_watches),
302 		.mode		= 0644,
303 		.proc_handler	= proc_doulongvec_minmax,
304 		.extra1		= &zero,
305 		.extra2		= &long_max,
306 	},
307 	{ }
308 };
309 #endif /* CONFIG_SYSCTL */
310 
311 static const struct file_operations eventpoll_fops;
312 
313 static inline int is_file_epoll(struct file *f)
314 {
315 	return f->f_op == &eventpoll_fops;
316 }
317 
318 /* Setup the structure that is used as key for the RB tree */
319 static inline void ep_set_ffd(struct epoll_filefd *ffd,
320 			      struct file *file, int fd)
321 {
322 	ffd->file = file;
323 	ffd->fd = fd;
324 }
325 
326 /* Compare RB tree keys */
327 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
328 			     struct epoll_filefd *p2)
329 {
330 	return (p1->file > p2->file ? +1:
331 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
332 }
333 
334 /* Tells us if the item is currently linked */
335 static inline int ep_is_linked(struct epitem *epi)
336 {
337 	return !list_empty(&epi->rdllink);
338 }
339 
340 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
341 {
342 	return container_of(p, struct eppoll_entry, wait);
343 }
344 
345 /* Get the "struct epitem" from a wait queue pointer */
346 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
347 {
348 	return container_of(p, struct eppoll_entry, wait)->base;
349 }
350 
351 /* Get the "struct epitem" from an epoll queue wrapper */
352 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
353 {
354 	return container_of(p, struct ep_pqueue, pt)->epi;
355 }
356 
357 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
358 static inline int ep_op_has_event(int op)
359 {
360 	return op != EPOLL_CTL_DEL;
361 }
362 
363 /* Initialize the poll safe wake up structure */
364 static void ep_nested_calls_init(struct nested_calls *ncalls)
365 {
366 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
367 	spin_lock_init(&ncalls->lock);
368 }
369 
370 /**
371  * ep_events_available - Checks if ready events might be available.
372  *
373  * @ep: Pointer to the eventpoll context.
374  *
375  * Returns: Returns a value different than zero if ready events are available,
376  *          or zero otherwise.
377  */
378 static inline int ep_events_available(struct eventpoll *ep)
379 {
380 	return !list_empty_careful(&ep->rdllist) ||
381 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
382 }
383 
384 #ifdef CONFIG_NET_RX_BUSY_POLL
385 static bool ep_busy_loop_end(void *p, unsigned long start_time)
386 {
387 	struct eventpoll *ep = p;
388 
389 	return ep_events_available(ep) || busy_loop_timeout(start_time);
390 }
391 
392 /*
393  * Busy poll if globally on and supporting sockets found && no events,
394  * busy loop will return if need_resched or ep_events_available.
395  *
396  * we must do our busy polling with irqs enabled
397  */
398 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
399 {
400 	unsigned int napi_id = READ_ONCE(ep->napi_id);
401 
402 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
403 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
404 }
405 
406 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
407 {
408 	if (ep->napi_id)
409 		ep->napi_id = 0;
410 }
411 
412 /*
413  * Set epoll busy poll NAPI ID from sk.
414  */
415 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
416 {
417 	struct eventpoll *ep;
418 	unsigned int napi_id;
419 	struct socket *sock;
420 	struct sock *sk;
421 	int err;
422 
423 	if (!net_busy_loop_on())
424 		return;
425 
426 	sock = sock_from_file(epi->ffd.file, &err);
427 	if (!sock)
428 		return;
429 
430 	sk = sock->sk;
431 	if (!sk)
432 		return;
433 
434 	napi_id = READ_ONCE(sk->sk_napi_id);
435 	ep = epi->ep;
436 
437 	/* Non-NAPI IDs can be rejected
438 	 *	or
439 	 * Nothing to do if we already have this ID
440 	 */
441 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
442 		return;
443 
444 	/* record NAPI ID for use in next busy poll */
445 	ep->napi_id = napi_id;
446 }
447 
448 #else
449 
450 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
451 {
452 }
453 
454 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
455 {
456 }
457 
458 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
459 {
460 }
461 
462 #endif /* CONFIG_NET_RX_BUSY_POLL */
463 
464 /**
465  * ep_call_nested - Perform a bound (possibly) nested call, by checking
466  *                  that the recursion limit is not exceeded, and that
467  *                  the same nested call (by the meaning of same cookie) is
468  *                  no re-entered.
469  *
470  * @ncalls: Pointer to the nested_calls structure to be used for this call.
471  * @nproc: Nested call core function pointer.
472  * @priv: Opaque data to be passed to the @nproc callback.
473  * @cookie: Cookie to be used to identify this nested call.
474  * @ctx: This instance context.
475  *
476  * Returns: Returns the code returned by the @nproc callback, or -1 if
477  *          the maximum recursion limit has been exceeded.
478  */
479 static int ep_call_nested(struct nested_calls *ncalls,
480 			  int (*nproc)(void *, void *, int), void *priv,
481 			  void *cookie, void *ctx)
482 {
483 	int error, call_nests = 0;
484 	unsigned long flags;
485 	struct list_head *lsthead = &ncalls->tasks_call_list;
486 	struct nested_call_node *tncur;
487 	struct nested_call_node tnode;
488 
489 	spin_lock_irqsave(&ncalls->lock, flags);
490 
491 	/*
492 	 * Try to see if the current task is already inside this wakeup call.
493 	 * We use a list here, since the population inside this set is always
494 	 * very much limited.
495 	 */
496 	list_for_each_entry(tncur, lsthead, llink) {
497 		if (tncur->ctx == ctx &&
498 		    (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
499 			/*
500 			 * Ops ... loop detected or maximum nest level reached.
501 			 * We abort this wake by breaking the cycle itself.
502 			 */
503 			error = -1;
504 			goto out_unlock;
505 		}
506 	}
507 
508 	/* Add the current task and cookie to the list */
509 	tnode.ctx = ctx;
510 	tnode.cookie = cookie;
511 	list_add(&tnode.llink, lsthead);
512 
513 	spin_unlock_irqrestore(&ncalls->lock, flags);
514 
515 	/* Call the nested function */
516 	error = (*nproc)(priv, cookie, call_nests);
517 
518 	/* Remove the current task from the list */
519 	spin_lock_irqsave(&ncalls->lock, flags);
520 	list_del(&tnode.llink);
521 out_unlock:
522 	spin_unlock_irqrestore(&ncalls->lock, flags);
523 
524 	return error;
525 }
526 
527 /*
528  * As described in commit 0ccf831cb lockdep: annotate epoll
529  * the use of wait queues used by epoll is done in a very controlled
530  * manner. Wake ups can nest inside each other, but are never done
531  * with the same locking. For example:
532  *
533  *   dfd = socket(...);
534  *   efd1 = epoll_create();
535  *   efd2 = epoll_create();
536  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
537  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
538  *
539  * When a packet arrives to the device underneath "dfd", the net code will
540  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
541  * callback wakeup entry on that queue, and the wake_up() performed by the
542  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
543  * (efd1) notices that it may have some event ready, so it needs to wake up
544  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
545  * that ends up in another wake_up(), after having checked about the
546  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
547  * avoid stack blasting.
548  *
549  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
550  * this special case of epoll.
551  */
552 #ifdef CONFIG_DEBUG_LOCK_ALLOC
553 
554 static struct nested_calls poll_safewake_ncalls;
555 
556 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
557 {
558 	unsigned long flags;
559 	wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
560 
561 	spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
562 	wake_up_locked_poll(wqueue, EPOLLIN);
563 	spin_unlock_irqrestore(&wqueue->lock, flags);
564 
565 	return 0;
566 }
567 
568 static void ep_poll_safewake(wait_queue_head_t *wq)
569 {
570 	int this_cpu = get_cpu();
571 
572 	ep_call_nested(&poll_safewake_ncalls,
573 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
574 
575 	put_cpu();
576 }
577 
578 #else
579 
580 static void ep_poll_safewake(wait_queue_head_t *wq)
581 {
582 	wake_up_poll(wq, EPOLLIN);
583 }
584 
585 #endif
586 
587 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
588 {
589 	wait_queue_head_t *whead;
590 
591 	rcu_read_lock();
592 	/*
593 	 * If it is cleared by POLLFREE, it should be rcu-safe.
594 	 * If we read NULL we need a barrier paired with
595 	 * smp_store_release() in ep_poll_callback(), otherwise
596 	 * we rely on whead->lock.
597 	 */
598 	whead = smp_load_acquire(&pwq->whead);
599 	if (whead)
600 		remove_wait_queue(whead, &pwq->wait);
601 	rcu_read_unlock();
602 }
603 
604 /*
605  * This function unregisters poll callbacks from the associated file
606  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
607  * ep_free).
608  */
609 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
610 {
611 	struct list_head *lsthead = &epi->pwqlist;
612 	struct eppoll_entry *pwq;
613 
614 	while (!list_empty(lsthead)) {
615 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
616 
617 		list_del(&pwq->llink);
618 		ep_remove_wait_queue(pwq);
619 		kmem_cache_free(pwq_cache, pwq);
620 	}
621 }
622 
623 /* call only when ep->mtx is held */
624 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
625 {
626 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
627 }
628 
629 /* call only when ep->mtx is held */
630 static inline void ep_pm_stay_awake(struct epitem *epi)
631 {
632 	struct wakeup_source *ws = ep_wakeup_source(epi);
633 
634 	if (ws)
635 		__pm_stay_awake(ws);
636 }
637 
638 static inline bool ep_has_wakeup_source(struct epitem *epi)
639 {
640 	return rcu_access_pointer(epi->ws) ? true : false;
641 }
642 
643 /* call when ep->mtx cannot be held (ep_poll_callback) */
644 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
645 {
646 	struct wakeup_source *ws;
647 
648 	rcu_read_lock();
649 	ws = rcu_dereference(epi->ws);
650 	if (ws)
651 		__pm_stay_awake(ws);
652 	rcu_read_unlock();
653 }
654 
655 /**
656  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
657  *                      the scan code, to call f_op->poll(). Also allows for
658  *                      O(NumReady) performance.
659  *
660  * @ep: Pointer to the epoll private data structure.
661  * @sproc: Pointer to the scan callback.
662  * @priv: Private opaque data passed to the @sproc callback.
663  * @depth: The current depth of recursive f_op->poll calls.
664  * @ep_locked: caller already holds ep->mtx
665  *
666  * Returns: The same integer error code returned by the @sproc callback.
667  */
668 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
669 			      __poll_t (*sproc)(struct eventpoll *,
670 					   struct list_head *, void *),
671 			      void *priv, int depth, bool ep_locked)
672 {
673 	__poll_t res;
674 	int pwake = 0;
675 	struct epitem *epi, *nepi;
676 	LIST_HEAD(txlist);
677 
678 	lockdep_assert_irqs_enabled();
679 
680 	/*
681 	 * We need to lock this because we could be hit by
682 	 * eventpoll_release_file() and epoll_ctl().
683 	 */
684 
685 	if (!ep_locked)
686 		mutex_lock_nested(&ep->mtx, depth);
687 
688 	/*
689 	 * Steal the ready list, and re-init the original one to the
690 	 * empty list. Also, set ep->ovflist to NULL so that events
691 	 * happening while looping w/out locks, are not lost. We cannot
692 	 * have the poll callback to queue directly on ep->rdllist,
693 	 * because we want the "sproc" callback to be able to do it
694 	 * in a lockless way.
695 	 */
696 	write_lock_irq(&ep->lock);
697 	list_splice_init(&ep->rdllist, &txlist);
698 	WRITE_ONCE(ep->ovflist, NULL);
699 	write_unlock_irq(&ep->lock);
700 
701 	/*
702 	 * Now call the callback function.
703 	 */
704 	res = (*sproc)(ep, &txlist, priv);
705 
706 	write_lock_irq(&ep->lock);
707 	/*
708 	 * During the time we spent inside the "sproc" callback, some
709 	 * other events might have been queued by the poll callback.
710 	 * We re-insert them inside the main ready-list here.
711 	 */
712 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
713 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
714 		/*
715 		 * We need to check if the item is already in the list.
716 		 * During the "sproc" callback execution time, items are
717 		 * queued into ->ovflist but the "txlist" might already
718 		 * contain them, and the list_splice() below takes care of them.
719 		 */
720 		if (!ep_is_linked(epi)) {
721 			/*
722 			 * ->ovflist is LIFO, so we have to reverse it in order
723 			 * to keep in FIFO.
724 			 */
725 			list_add(&epi->rdllink, &ep->rdllist);
726 			ep_pm_stay_awake(epi);
727 		}
728 	}
729 	/*
730 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
731 	 * releasing the lock, events will be queued in the normal way inside
732 	 * ep->rdllist.
733 	 */
734 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
735 
736 	/*
737 	 * Quickly re-inject items left on "txlist".
738 	 */
739 	list_splice(&txlist, &ep->rdllist);
740 	__pm_relax(ep->ws);
741 
742 	if (!list_empty(&ep->rdllist)) {
743 		/*
744 		 * Wake up (if active) both the eventpoll wait list and
745 		 * the ->poll() wait list (delayed after we release the lock).
746 		 */
747 		if (waitqueue_active(&ep->wq))
748 			wake_up(&ep->wq);
749 		if (waitqueue_active(&ep->poll_wait))
750 			pwake++;
751 	}
752 	write_unlock_irq(&ep->lock);
753 
754 	if (!ep_locked)
755 		mutex_unlock(&ep->mtx);
756 
757 	/* We have to call this outside the lock */
758 	if (pwake)
759 		ep_poll_safewake(&ep->poll_wait);
760 
761 	return res;
762 }
763 
764 static void epi_rcu_free(struct rcu_head *head)
765 {
766 	struct epitem *epi = container_of(head, struct epitem, rcu);
767 	kmem_cache_free(epi_cache, epi);
768 }
769 
770 /*
771  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
772  * all the associated resources. Must be called with "mtx" held.
773  */
774 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
775 {
776 	struct file *file = epi->ffd.file;
777 
778 	lockdep_assert_irqs_enabled();
779 
780 	/*
781 	 * Removes poll wait queue hooks.
782 	 */
783 	ep_unregister_pollwait(ep, epi);
784 
785 	/* Remove the current item from the list of epoll hooks */
786 	spin_lock(&file->f_lock);
787 	list_del_rcu(&epi->fllink);
788 	spin_unlock(&file->f_lock);
789 
790 	rb_erase_cached(&epi->rbn, &ep->rbr);
791 
792 	write_lock_irq(&ep->lock);
793 	if (ep_is_linked(epi))
794 		list_del_init(&epi->rdllink);
795 	write_unlock_irq(&ep->lock);
796 
797 	wakeup_source_unregister(ep_wakeup_source(epi));
798 	/*
799 	 * At this point it is safe to free the eventpoll item. Use the union
800 	 * field epi->rcu, since we are trying to minimize the size of
801 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
802 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
803 	 * use of the rbn field.
804 	 */
805 	call_rcu(&epi->rcu, epi_rcu_free);
806 
807 	atomic_long_dec(&ep->user->epoll_watches);
808 
809 	return 0;
810 }
811 
812 static void ep_free(struct eventpoll *ep)
813 {
814 	struct rb_node *rbp;
815 	struct epitem *epi;
816 
817 	/* We need to release all tasks waiting for these file */
818 	if (waitqueue_active(&ep->poll_wait))
819 		ep_poll_safewake(&ep->poll_wait);
820 
821 	/*
822 	 * We need to lock this because we could be hit by
823 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
824 	 * We do not need to hold "ep->mtx" here because the epoll file
825 	 * is on the way to be removed and no one has references to it
826 	 * anymore. The only hit might come from eventpoll_release_file() but
827 	 * holding "epmutex" is sufficient here.
828 	 */
829 	mutex_lock(&epmutex);
830 
831 	/*
832 	 * Walks through the whole tree by unregistering poll callbacks.
833 	 */
834 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
835 		epi = rb_entry(rbp, struct epitem, rbn);
836 
837 		ep_unregister_pollwait(ep, epi);
838 		cond_resched();
839 	}
840 
841 	/*
842 	 * Walks through the whole tree by freeing each "struct epitem". At this
843 	 * point we are sure no poll callbacks will be lingering around, and also by
844 	 * holding "epmutex" we can be sure that no file cleanup code will hit
845 	 * us during this operation. So we can avoid the lock on "ep->lock".
846 	 * We do not need to lock ep->mtx, either, we only do it to prevent
847 	 * a lockdep warning.
848 	 */
849 	mutex_lock(&ep->mtx);
850 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
851 		epi = rb_entry(rbp, struct epitem, rbn);
852 		ep_remove(ep, epi);
853 		cond_resched();
854 	}
855 	mutex_unlock(&ep->mtx);
856 
857 	mutex_unlock(&epmutex);
858 	mutex_destroy(&ep->mtx);
859 	free_uid(ep->user);
860 	wakeup_source_unregister(ep->ws);
861 	kfree(ep);
862 }
863 
864 static int ep_eventpoll_release(struct inode *inode, struct file *file)
865 {
866 	struct eventpoll *ep = file->private_data;
867 
868 	if (ep)
869 		ep_free(ep);
870 
871 	return 0;
872 }
873 
874 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
875 			       void *priv);
876 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
877 				 poll_table *pt);
878 
879 /*
880  * Differs from ep_eventpoll_poll() in that internal callers already have
881  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
882  * is correctly annotated.
883  */
884 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
885 				 int depth)
886 {
887 	struct eventpoll *ep;
888 	bool locked;
889 
890 	pt->_key = epi->event.events;
891 	if (!is_file_epoll(epi->ffd.file))
892 		return vfs_poll(epi->ffd.file, pt) & epi->event.events;
893 
894 	ep = epi->ffd.file->private_data;
895 	poll_wait(epi->ffd.file, &ep->poll_wait, pt);
896 	locked = pt && (pt->_qproc == ep_ptable_queue_proc);
897 
898 	return ep_scan_ready_list(epi->ffd.file->private_data,
899 				  ep_read_events_proc, &depth, depth,
900 				  locked) & epi->event.events;
901 }
902 
903 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
904 			       void *priv)
905 {
906 	struct epitem *epi, *tmp;
907 	poll_table pt;
908 	int depth = *(int *)priv;
909 
910 	init_poll_funcptr(&pt, NULL);
911 	depth++;
912 
913 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
914 		if (ep_item_poll(epi, &pt, depth)) {
915 			return EPOLLIN | EPOLLRDNORM;
916 		} else {
917 			/*
918 			 * Item has been dropped into the ready list by the poll
919 			 * callback, but it's not actually ready, as far as
920 			 * caller requested events goes. We can remove it here.
921 			 */
922 			__pm_relax(ep_wakeup_source(epi));
923 			list_del_init(&epi->rdllink);
924 		}
925 	}
926 
927 	return 0;
928 }
929 
930 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
931 {
932 	struct eventpoll *ep = file->private_data;
933 	int depth = 0;
934 
935 	/* Insert inside our poll wait queue */
936 	poll_wait(file, &ep->poll_wait, wait);
937 
938 	/*
939 	 * Proceed to find out if wanted events are really available inside
940 	 * the ready list.
941 	 */
942 	return ep_scan_ready_list(ep, ep_read_events_proc,
943 				  &depth, depth, false);
944 }
945 
946 #ifdef CONFIG_PROC_FS
947 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
948 {
949 	struct eventpoll *ep = f->private_data;
950 	struct rb_node *rbp;
951 
952 	mutex_lock(&ep->mtx);
953 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
954 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
955 		struct inode *inode = file_inode(epi->ffd.file);
956 
957 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
958 			   " pos:%lli ino:%lx sdev:%x\n",
959 			   epi->ffd.fd, epi->event.events,
960 			   (long long)epi->event.data,
961 			   (long long)epi->ffd.file->f_pos,
962 			   inode->i_ino, inode->i_sb->s_dev);
963 		if (seq_has_overflowed(m))
964 			break;
965 	}
966 	mutex_unlock(&ep->mtx);
967 }
968 #endif
969 
970 /* File callbacks that implement the eventpoll file behaviour */
971 static const struct file_operations eventpoll_fops = {
972 #ifdef CONFIG_PROC_FS
973 	.show_fdinfo	= ep_show_fdinfo,
974 #endif
975 	.release	= ep_eventpoll_release,
976 	.poll		= ep_eventpoll_poll,
977 	.llseek		= noop_llseek,
978 };
979 
980 /*
981  * This is called from eventpoll_release() to unlink files from the eventpoll
982  * interface. We need to have this facility to cleanup correctly files that are
983  * closed without being removed from the eventpoll interface.
984  */
985 void eventpoll_release_file(struct file *file)
986 {
987 	struct eventpoll *ep;
988 	struct epitem *epi, *next;
989 
990 	/*
991 	 * We don't want to get "file->f_lock" because it is not
992 	 * necessary. It is not necessary because we're in the "struct file"
993 	 * cleanup path, and this means that no one is using this file anymore.
994 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
995 	 * point, the file counter already went to zero and fget() would fail.
996 	 * The only hit might come from ep_free() but by holding the mutex
997 	 * will correctly serialize the operation. We do need to acquire
998 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
999 	 * from anywhere but ep_free().
1000 	 *
1001 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1002 	 */
1003 	mutex_lock(&epmutex);
1004 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1005 		ep = epi->ep;
1006 		mutex_lock_nested(&ep->mtx, 0);
1007 		ep_remove(ep, epi);
1008 		mutex_unlock(&ep->mtx);
1009 	}
1010 	mutex_unlock(&epmutex);
1011 }
1012 
1013 static int ep_alloc(struct eventpoll **pep)
1014 {
1015 	int error;
1016 	struct user_struct *user;
1017 	struct eventpoll *ep;
1018 
1019 	user = get_current_user();
1020 	error = -ENOMEM;
1021 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1022 	if (unlikely(!ep))
1023 		goto free_uid;
1024 
1025 	mutex_init(&ep->mtx);
1026 	rwlock_init(&ep->lock);
1027 	init_waitqueue_head(&ep->wq);
1028 	init_waitqueue_head(&ep->poll_wait);
1029 	INIT_LIST_HEAD(&ep->rdllist);
1030 	ep->rbr = RB_ROOT_CACHED;
1031 	ep->ovflist = EP_UNACTIVE_PTR;
1032 	ep->user = user;
1033 
1034 	*pep = ep;
1035 
1036 	return 0;
1037 
1038 free_uid:
1039 	free_uid(user);
1040 	return error;
1041 }
1042 
1043 /*
1044  * Search the file inside the eventpoll tree. The RB tree operations
1045  * are protected by the "mtx" mutex, and ep_find() must be called with
1046  * "mtx" held.
1047  */
1048 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1049 {
1050 	int kcmp;
1051 	struct rb_node *rbp;
1052 	struct epitem *epi, *epir = NULL;
1053 	struct epoll_filefd ffd;
1054 
1055 	ep_set_ffd(&ffd, file, fd);
1056 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1057 		epi = rb_entry(rbp, struct epitem, rbn);
1058 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1059 		if (kcmp > 0)
1060 			rbp = rbp->rb_right;
1061 		else if (kcmp < 0)
1062 			rbp = rbp->rb_left;
1063 		else {
1064 			epir = epi;
1065 			break;
1066 		}
1067 	}
1068 
1069 	return epir;
1070 }
1071 
1072 #ifdef CONFIG_CHECKPOINT_RESTORE
1073 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1074 {
1075 	struct rb_node *rbp;
1076 	struct epitem *epi;
1077 
1078 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1079 		epi = rb_entry(rbp, struct epitem, rbn);
1080 		if (epi->ffd.fd == tfd) {
1081 			if (toff == 0)
1082 				return epi;
1083 			else
1084 				toff--;
1085 		}
1086 		cond_resched();
1087 	}
1088 
1089 	return NULL;
1090 }
1091 
1092 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1093 				     unsigned long toff)
1094 {
1095 	struct file *file_raw;
1096 	struct eventpoll *ep;
1097 	struct epitem *epi;
1098 
1099 	if (!is_file_epoll(file))
1100 		return ERR_PTR(-EINVAL);
1101 
1102 	ep = file->private_data;
1103 
1104 	mutex_lock(&ep->mtx);
1105 	epi = ep_find_tfd(ep, tfd, toff);
1106 	if (epi)
1107 		file_raw = epi->ffd.file;
1108 	else
1109 		file_raw = ERR_PTR(-ENOENT);
1110 	mutex_unlock(&ep->mtx);
1111 
1112 	return file_raw;
1113 }
1114 #endif /* CONFIG_CHECKPOINT_RESTORE */
1115 
1116 /**
1117  * Adds a new entry to the tail of the list in a lockless way, i.e.
1118  * multiple CPUs are allowed to call this function concurrently.
1119  *
1120  * Beware: it is necessary to prevent any other modifications of the
1121  *         existing list until all changes are completed, in other words
1122  *         concurrent list_add_tail_lockless() calls should be protected
1123  *         with a read lock, where write lock acts as a barrier which
1124  *         makes sure all list_add_tail_lockless() calls are fully
1125  *         completed.
1126  *
1127  *        Also an element can be locklessly added to the list only in one
1128  *        direction i.e. either to the tail either to the head, otherwise
1129  *        concurrent access will corrupt the list.
1130  *
1131  * Returns %false if element has been already added to the list, %true
1132  * otherwise.
1133  */
1134 static inline bool list_add_tail_lockless(struct list_head *new,
1135 					  struct list_head *head)
1136 {
1137 	struct list_head *prev;
1138 
1139 	/*
1140 	 * This is simple 'new->next = head' operation, but cmpxchg()
1141 	 * is used in order to detect that same element has been just
1142 	 * added to the list from another CPU: the winner observes
1143 	 * new->next == new.
1144 	 */
1145 	if (cmpxchg(&new->next, new, head) != new)
1146 		return false;
1147 
1148 	/*
1149 	 * Initially ->next of a new element must be updated with the head
1150 	 * (we are inserting to the tail) and only then pointers are atomically
1151 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1152 	 * updated before pointers are actually swapped and pointers are
1153 	 * swapped before prev->next is updated.
1154 	 */
1155 
1156 	prev = xchg(&head->prev, new);
1157 
1158 	/*
1159 	 * It is safe to modify prev->next and new->prev, because a new element
1160 	 * is added only to the tail and new->next is updated before XCHG.
1161 	 */
1162 
1163 	prev->next = new;
1164 	new->prev = prev;
1165 
1166 	return true;
1167 }
1168 
1169 /**
1170  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1171  * i.e. multiple CPUs are allowed to call this function concurrently.
1172  *
1173  * Returns %false if epi element has been already chained, %true otherwise.
1174  */
1175 static inline bool chain_epi_lockless(struct epitem *epi)
1176 {
1177 	struct eventpoll *ep = epi->ep;
1178 
1179 	/* Check that the same epi has not been just chained from another CPU */
1180 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1181 		return false;
1182 
1183 	/* Atomically exchange tail */
1184 	epi->next = xchg(&ep->ovflist, epi);
1185 
1186 	return true;
1187 }
1188 
1189 /*
1190  * This is the callback that is passed to the wait queue wakeup
1191  * mechanism. It is called by the stored file descriptors when they
1192  * have events to report.
1193  *
1194  * This callback takes a read lock in order not to content with concurrent
1195  * events from another file descriptors, thus all modifications to ->rdllist
1196  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1197  * ep_scan_ready_list(), which stops all list modifications and guarantees
1198  * that lists state is seen correctly.
1199  *
1200  * Another thing worth to mention is that ep_poll_callback() can be called
1201  * concurrently for the same @epi from different CPUs if poll table was inited
1202  * with several wait queues entries.  Plural wakeup from different CPUs of a
1203  * single wait queue is serialized by wq.lock, but the case when multiple wait
1204  * queues are used should be detected accordingly.  This is detected using
1205  * cmpxchg() operation.
1206  */
1207 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1208 {
1209 	int pwake = 0;
1210 	struct epitem *epi = ep_item_from_wait(wait);
1211 	struct eventpoll *ep = epi->ep;
1212 	__poll_t pollflags = key_to_poll(key);
1213 	unsigned long flags;
1214 	int ewake = 0;
1215 
1216 	read_lock_irqsave(&ep->lock, flags);
1217 
1218 	ep_set_busy_poll_napi_id(epi);
1219 
1220 	/*
1221 	 * If the event mask does not contain any poll(2) event, we consider the
1222 	 * descriptor to be disabled. This condition is likely the effect of the
1223 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1224 	 * until the next EPOLL_CTL_MOD will be issued.
1225 	 */
1226 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1227 		goto out_unlock;
1228 
1229 	/*
1230 	 * Check the events coming with the callback. At this stage, not
1231 	 * every device reports the events in the "key" parameter of the
1232 	 * callback. We need to be able to handle both cases here, hence the
1233 	 * test for "key" != NULL before the event match test.
1234 	 */
1235 	if (pollflags && !(pollflags & epi->event.events))
1236 		goto out_unlock;
1237 
1238 	/*
1239 	 * If we are transferring events to userspace, we can hold no locks
1240 	 * (because we're accessing user memory, and because of linux f_op->poll()
1241 	 * semantics). All the events that happen during that period of time are
1242 	 * chained in ep->ovflist and requeued later on.
1243 	 */
1244 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1245 		if (epi->next == EP_UNACTIVE_PTR &&
1246 		    chain_epi_lockless(epi))
1247 			ep_pm_stay_awake_rcu(epi);
1248 		goto out_unlock;
1249 	}
1250 
1251 	/* If this file is already in the ready list we exit soon */
1252 	if (!ep_is_linked(epi) &&
1253 	    list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) {
1254 		ep_pm_stay_awake_rcu(epi);
1255 	}
1256 
1257 	/*
1258 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1259 	 * wait list.
1260 	 */
1261 	if (waitqueue_active(&ep->wq)) {
1262 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1263 					!(pollflags & POLLFREE)) {
1264 			switch (pollflags & EPOLLINOUT_BITS) {
1265 			case EPOLLIN:
1266 				if (epi->event.events & EPOLLIN)
1267 					ewake = 1;
1268 				break;
1269 			case EPOLLOUT:
1270 				if (epi->event.events & EPOLLOUT)
1271 					ewake = 1;
1272 				break;
1273 			case 0:
1274 				ewake = 1;
1275 				break;
1276 			}
1277 		}
1278 		wake_up(&ep->wq);
1279 	}
1280 	if (waitqueue_active(&ep->poll_wait))
1281 		pwake++;
1282 
1283 out_unlock:
1284 	read_unlock_irqrestore(&ep->lock, flags);
1285 
1286 	/* We have to call this outside the lock */
1287 	if (pwake)
1288 		ep_poll_safewake(&ep->poll_wait);
1289 
1290 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1291 		ewake = 1;
1292 
1293 	if (pollflags & POLLFREE) {
1294 		/*
1295 		 * If we race with ep_remove_wait_queue() it can miss
1296 		 * ->whead = NULL and do another remove_wait_queue() after
1297 		 * us, so we can't use __remove_wait_queue().
1298 		 */
1299 		list_del_init(&wait->entry);
1300 		/*
1301 		 * ->whead != NULL protects us from the race with ep_free()
1302 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1303 		 * held by the caller. Once we nullify it, nothing protects
1304 		 * ep/epi or even wait.
1305 		 */
1306 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1307 	}
1308 
1309 	return ewake;
1310 }
1311 
1312 /*
1313  * This is the callback that is used to add our wait queue to the
1314  * target file wakeup lists.
1315  */
1316 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1317 				 poll_table *pt)
1318 {
1319 	struct epitem *epi = ep_item_from_epqueue(pt);
1320 	struct eppoll_entry *pwq;
1321 
1322 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1323 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1324 		pwq->whead = whead;
1325 		pwq->base = epi;
1326 		if (epi->event.events & EPOLLEXCLUSIVE)
1327 			add_wait_queue_exclusive(whead, &pwq->wait);
1328 		else
1329 			add_wait_queue(whead, &pwq->wait);
1330 		list_add_tail(&pwq->llink, &epi->pwqlist);
1331 		epi->nwait++;
1332 	} else {
1333 		/* We have to signal that an error occurred */
1334 		epi->nwait = -1;
1335 	}
1336 }
1337 
1338 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1339 {
1340 	int kcmp;
1341 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1342 	struct epitem *epic;
1343 	bool leftmost = true;
1344 
1345 	while (*p) {
1346 		parent = *p;
1347 		epic = rb_entry(parent, struct epitem, rbn);
1348 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1349 		if (kcmp > 0) {
1350 			p = &parent->rb_right;
1351 			leftmost = false;
1352 		} else
1353 			p = &parent->rb_left;
1354 	}
1355 	rb_link_node(&epi->rbn, parent, p);
1356 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1357 }
1358 
1359 
1360 
1361 #define PATH_ARR_SIZE 5
1362 /*
1363  * These are the number paths of length 1 to 5, that we are allowing to emanate
1364  * from a single file of interest. For example, we allow 1000 paths of length
1365  * 1, to emanate from each file of interest. This essentially represents the
1366  * potential wakeup paths, which need to be limited in order to avoid massive
1367  * uncontrolled wakeup storms. The common use case should be a single ep which
1368  * is connected to n file sources. In this case each file source has 1 path
1369  * of length 1. Thus, the numbers below should be more than sufficient. These
1370  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1371  * and delete can't add additional paths. Protected by the epmutex.
1372  */
1373 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1374 static int path_count[PATH_ARR_SIZE];
1375 
1376 static int path_count_inc(int nests)
1377 {
1378 	/* Allow an arbitrary number of depth 1 paths */
1379 	if (nests == 0)
1380 		return 0;
1381 
1382 	if (++path_count[nests] > path_limits[nests])
1383 		return -1;
1384 	return 0;
1385 }
1386 
1387 static void path_count_init(void)
1388 {
1389 	int i;
1390 
1391 	for (i = 0; i < PATH_ARR_SIZE; i++)
1392 		path_count[i] = 0;
1393 }
1394 
1395 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1396 {
1397 	int error = 0;
1398 	struct file *file = priv;
1399 	struct file *child_file;
1400 	struct epitem *epi;
1401 
1402 	/* CTL_DEL can remove links here, but that can't increase our count */
1403 	rcu_read_lock();
1404 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1405 		child_file = epi->ep->file;
1406 		if (is_file_epoll(child_file)) {
1407 			if (list_empty(&child_file->f_ep_links)) {
1408 				if (path_count_inc(call_nests)) {
1409 					error = -1;
1410 					break;
1411 				}
1412 			} else {
1413 				error = ep_call_nested(&poll_loop_ncalls,
1414 							reverse_path_check_proc,
1415 							child_file, child_file,
1416 							current);
1417 			}
1418 			if (error != 0)
1419 				break;
1420 		} else {
1421 			printk(KERN_ERR "reverse_path_check_proc: "
1422 				"file is not an ep!\n");
1423 		}
1424 	}
1425 	rcu_read_unlock();
1426 	return error;
1427 }
1428 
1429 /**
1430  * reverse_path_check - The tfile_check_list is list of file *, which have
1431  *                      links that are proposed to be newly added. We need to
1432  *                      make sure that those added links don't add too many
1433  *                      paths such that we will spend all our time waking up
1434  *                      eventpoll objects.
1435  *
1436  * Returns: Returns zero if the proposed links don't create too many paths,
1437  *	    -1 otherwise.
1438  */
1439 static int reverse_path_check(void)
1440 {
1441 	int error = 0;
1442 	struct file *current_file;
1443 
1444 	/* let's call this for all tfiles */
1445 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1446 		path_count_init();
1447 		error = ep_call_nested(&poll_loop_ncalls,
1448 					reverse_path_check_proc, current_file,
1449 					current_file, current);
1450 		if (error)
1451 			break;
1452 	}
1453 	return error;
1454 }
1455 
1456 static int ep_create_wakeup_source(struct epitem *epi)
1457 {
1458 	const char *name;
1459 	struct wakeup_source *ws;
1460 
1461 	if (!epi->ep->ws) {
1462 		epi->ep->ws = wakeup_source_register("eventpoll");
1463 		if (!epi->ep->ws)
1464 			return -ENOMEM;
1465 	}
1466 
1467 	name = epi->ffd.file->f_path.dentry->d_name.name;
1468 	ws = wakeup_source_register(name);
1469 
1470 	if (!ws)
1471 		return -ENOMEM;
1472 	rcu_assign_pointer(epi->ws, ws);
1473 
1474 	return 0;
1475 }
1476 
1477 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1478 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1479 {
1480 	struct wakeup_source *ws = ep_wakeup_source(epi);
1481 
1482 	RCU_INIT_POINTER(epi->ws, NULL);
1483 
1484 	/*
1485 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1486 	 * used internally by wakeup_source_remove, too (called by
1487 	 * wakeup_source_unregister), so we cannot use call_rcu
1488 	 */
1489 	synchronize_rcu();
1490 	wakeup_source_unregister(ws);
1491 }
1492 
1493 /*
1494  * Must be called with "mtx" held.
1495  */
1496 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1497 		     struct file *tfile, int fd, int full_check)
1498 {
1499 	int error, pwake = 0;
1500 	__poll_t revents;
1501 	long user_watches;
1502 	struct epitem *epi;
1503 	struct ep_pqueue epq;
1504 
1505 	lockdep_assert_irqs_enabled();
1506 
1507 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1508 	if (unlikely(user_watches >= max_user_watches))
1509 		return -ENOSPC;
1510 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1511 		return -ENOMEM;
1512 
1513 	/* Item initialization follow here ... */
1514 	INIT_LIST_HEAD(&epi->rdllink);
1515 	INIT_LIST_HEAD(&epi->fllink);
1516 	INIT_LIST_HEAD(&epi->pwqlist);
1517 	epi->ep = ep;
1518 	ep_set_ffd(&epi->ffd, tfile, fd);
1519 	epi->event = *event;
1520 	epi->nwait = 0;
1521 	epi->next = EP_UNACTIVE_PTR;
1522 	if (epi->event.events & EPOLLWAKEUP) {
1523 		error = ep_create_wakeup_source(epi);
1524 		if (error)
1525 			goto error_create_wakeup_source;
1526 	} else {
1527 		RCU_INIT_POINTER(epi->ws, NULL);
1528 	}
1529 
1530 	/* Initialize the poll table using the queue callback */
1531 	epq.epi = epi;
1532 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1533 
1534 	/*
1535 	 * Attach the item to the poll hooks and get current event bits.
1536 	 * We can safely use the file* here because its usage count has
1537 	 * been increased by the caller of this function. Note that after
1538 	 * this operation completes, the poll callback can start hitting
1539 	 * the new item.
1540 	 */
1541 	revents = ep_item_poll(epi, &epq.pt, 1);
1542 
1543 	/*
1544 	 * We have to check if something went wrong during the poll wait queue
1545 	 * install process. Namely an allocation for a wait queue failed due
1546 	 * high memory pressure.
1547 	 */
1548 	error = -ENOMEM;
1549 	if (epi->nwait < 0)
1550 		goto error_unregister;
1551 
1552 	/* Add the current item to the list of active epoll hook for this file */
1553 	spin_lock(&tfile->f_lock);
1554 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1555 	spin_unlock(&tfile->f_lock);
1556 
1557 	/*
1558 	 * Add the current item to the RB tree. All RB tree operations are
1559 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1560 	 */
1561 	ep_rbtree_insert(ep, epi);
1562 
1563 	/* now check if we've created too many backpaths */
1564 	error = -EINVAL;
1565 	if (full_check && reverse_path_check())
1566 		goto error_remove_epi;
1567 
1568 	/* We have to drop the new item inside our item list to keep track of it */
1569 	write_lock_irq(&ep->lock);
1570 
1571 	/* record NAPI ID of new item if present */
1572 	ep_set_busy_poll_napi_id(epi);
1573 
1574 	/* If the file is already "ready" we drop it inside the ready list */
1575 	if (revents && !ep_is_linked(epi)) {
1576 		list_add_tail(&epi->rdllink, &ep->rdllist);
1577 		ep_pm_stay_awake(epi);
1578 
1579 		/* Notify waiting tasks that events are available */
1580 		if (waitqueue_active(&ep->wq))
1581 			wake_up(&ep->wq);
1582 		if (waitqueue_active(&ep->poll_wait))
1583 			pwake++;
1584 	}
1585 
1586 	write_unlock_irq(&ep->lock);
1587 
1588 	atomic_long_inc(&ep->user->epoll_watches);
1589 
1590 	/* We have to call this outside the lock */
1591 	if (pwake)
1592 		ep_poll_safewake(&ep->poll_wait);
1593 
1594 	return 0;
1595 
1596 error_remove_epi:
1597 	spin_lock(&tfile->f_lock);
1598 	list_del_rcu(&epi->fllink);
1599 	spin_unlock(&tfile->f_lock);
1600 
1601 	rb_erase_cached(&epi->rbn, &ep->rbr);
1602 
1603 error_unregister:
1604 	ep_unregister_pollwait(ep, epi);
1605 
1606 	/*
1607 	 * We need to do this because an event could have been arrived on some
1608 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1609 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1610 	 * And ep_insert() is called with "mtx" held.
1611 	 */
1612 	write_lock_irq(&ep->lock);
1613 	if (ep_is_linked(epi))
1614 		list_del_init(&epi->rdllink);
1615 	write_unlock_irq(&ep->lock);
1616 
1617 	wakeup_source_unregister(ep_wakeup_source(epi));
1618 
1619 error_create_wakeup_source:
1620 	kmem_cache_free(epi_cache, epi);
1621 
1622 	return error;
1623 }
1624 
1625 /*
1626  * Modify the interest event mask by dropping an event if the new mask
1627  * has a match in the current file status. Must be called with "mtx" held.
1628  */
1629 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1630 		     const struct epoll_event *event)
1631 {
1632 	int pwake = 0;
1633 	poll_table pt;
1634 
1635 	lockdep_assert_irqs_enabled();
1636 
1637 	init_poll_funcptr(&pt, NULL);
1638 
1639 	/*
1640 	 * Set the new event interest mask before calling f_op->poll();
1641 	 * otherwise we might miss an event that happens between the
1642 	 * f_op->poll() call and the new event set registering.
1643 	 */
1644 	epi->event.events = event->events; /* need barrier below */
1645 	epi->event.data = event->data; /* protected by mtx */
1646 	if (epi->event.events & EPOLLWAKEUP) {
1647 		if (!ep_has_wakeup_source(epi))
1648 			ep_create_wakeup_source(epi);
1649 	} else if (ep_has_wakeup_source(epi)) {
1650 		ep_destroy_wakeup_source(epi);
1651 	}
1652 
1653 	/*
1654 	 * The following barrier has two effects:
1655 	 *
1656 	 * 1) Flush epi changes above to other CPUs.  This ensures
1657 	 *    we do not miss events from ep_poll_callback if an
1658 	 *    event occurs immediately after we call f_op->poll().
1659 	 *    We need this because we did not take ep->lock while
1660 	 *    changing epi above (but ep_poll_callback does take
1661 	 *    ep->lock).
1662 	 *
1663 	 * 2) We also need to ensure we do not miss _past_ events
1664 	 *    when calling f_op->poll().  This barrier also
1665 	 *    pairs with the barrier in wq_has_sleeper (see
1666 	 *    comments for wq_has_sleeper).
1667 	 *
1668 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1669 	 * (or both) will notice the readiness of an item.
1670 	 */
1671 	smp_mb();
1672 
1673 	/*
1674 	 * Get current event bits. We can safely use the file* here because
1675 	 * its usage count has been increased by the caller of this function.
1676 	 * If the item is "hot" and it is not registered inside the ready
1677 	 * list, push it inside.
1678 	 */
1679 	if (ep_item_poll(epi, &pt, 1)) {
1680 		write_lock_irq(&ep->lock);
1681 		if (!ep_is_linked(epi)) {
1682 			list_add_tail(&epi->rdllink, &ep->rdllist);
1683 			ep_pm_stay_awake(epi);
1684 
1685 			/* Notify waiting tasks that events are available */
1686 			if (waitqueue_active(&ep->wq))
1687 				wake_up(&ep->wq);
1688 			if (waitqueue_active(&ep->poll_wait))
1689 				pwake++;
1690 		}
1691 		write_unlock_irq(&ep->lock);
1692 	}
1693 
1694 	/* We have to call this outside the lock */
1695 	if (pwake)
1696 		ep_poll_safewake(&ep->poll_wait);
1697 
1698 	return 0;
1699 }
1700 
1701 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1702 			       void *priv)
1703 {
1704 	struct ep_send_events_data *esed = priv;
1705 	__poll_t revents;
1706 	struct epitem *epi, *tmp;
1707 	struct epoll_event __user *uevent = esed->events;
1708 	struct wakeup_source *ws;
1709 	poll_table pt;
1710 
1711 	init_poll_funcptr(&pt, NULL);
1712 	esed->res = 0;
1713 
1714 	/*
1715 	 * We can loop without lock because we are passed a task private list.
1716 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1717 	 * holding "mtx" during this call.
1718 	 */
1719 	lockdep_assert_held(&ep->mtx);
1720 
1721 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
1722 		if (esed->res >= esed->maxevents)
1723 			break;
1724 
1725 		/*
1726 		 * Activate ep->ws before deactivating epi->ws to prevent
1727 		 * triggering auto-suspend here (in case we reactive epi->ws
1728 		 * below).
1729 		 *
1730 		 * This could be rearranged to delay the deactivation of epi->ws
1731 		 * instead, but then epi->ws would temporarily be out of sync
1732 		 * with ep_is_linked().
1733 		 */
1734 		ws = ep_wakeup_source(epi);
1735 		if (ws) {
1736 			if (ws->active)
1737 				__pm_stay_awake(ep->ws);
1738 			__pm_relax(ws);
1739 		}
1740 
1741 		list_del_init(&epi->rdllink);
1742 
1743 		/*
1744 		 * If the event mask intersect the caller-requested one,
1745 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1746 		 * is holding ep->mtx, so no operations coming from userspace
1747 		 * can change the item.
1748 		 */
1749 		revents = ep_item_poll(epi, &pt, 1);
1750 		if (!revents)
1751 			continue;
1752 
1753 		if (__put_user(revents, &uevent->events) ||
1754 		    __put_user(epi->event.data, &uevent->data)) {
1755 			list_add(&epi->rdllink, head);
1756 			ep_pm_stay_awake(epi);
1757 			if (!esed->res)
1758 				esed->res = -EFAULT;
1759 			return 0;
1760 		}
1761 		esed->res++;
1762 		uevent++;
1763 		if (epi->event.events & EPOLLONESHOT)
1764 			epi->event.events &= EP_PRIVATE_BITS;
1765 		else if (!(epi->event.events & EPOLLET)) {
1766 			/*
1767 			 * If this file has been added with Level
1768 			 * Trigger mode, we need to insert back inside
1769 			 * the ready list, so that the next call to
1770 			 * epoll_wait() will check again the events
1771 			 * availability. At this point, no one can insert
1772 			 * into ep->rdllist besides us. The epoll_ctl()
1773 			 * callers are locked out by
1774 			 * ep_scan_ready_list() holding "mtx" and the
1775 			 * poll callback will queue them in ep->ovflist.
1776 			 */
1777 			list_add_tail(&epi->rdllink, &ep->rdllist);
1778 			ep_pm_stay_awake(epi);
1779 		}
1780 	}
1781 
1782 	return 0;
1783 }
1784 
1785 static int ep_send_events(struct eventpoll *ep,
1786 			  struct epoll_event __user *events, int maxevents)
1787 {
1788 	struct ep_send_events_data esed;
1789 
1790 	esed.maxevents = maxevents;
1791 	esed.events = events;
1792 
1793 	ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1794 	return esed.res;
1795 }
1796 
1797 static inline struct timespec64 ep_set_mstimeout(long ms)
1798 {
1799 	struct timespec64 now, ts = {
1800 		.tv_sec = ms / MSEC_PER_SEC,
1801 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1802 	};
1803 
1804 	ktime_get_ts64(&now);
1805 	return timespec64_add_safe(now, ts);
1806 }
1807 
1808 /**
1809  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1810  *           event buffer.
1811  *
1812  * @ep: Pointer to the eventpoll context.
1813  * @events: Pointer to the userspace buffer where the ready events should be
1814  *          stored.
1815  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1816  * @timeout: Maximum timeout for the ready events fetch operation, in
1817  *           milliseconds. If the @timeout is zero, the function will not block,
1818  *           while if the @timeout is less than zero, the function will block
1819  *           until at least one event has been retrieved (or an error
1820  *           occurred).
1821  *
1822  * Returns: Returns the number of ready events which have been fetched, or an
1823  *          error code, in case of error.
1824  */
1825 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1826 		   int maxevents, long timeout)
1827 {
1828 	int res = 0, eavail, timed_out = 0;
1829 	u64 slack = 0;
1830 	bool waiter = false;
1831 	wait_queue_entry_t wait;
1832 	ktime_t expires, *to = NULL;
1833 
1834 	lockdep_assert_irqs_enabled();
1835 
1836 	if (timeout > 0) {
1837 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1838 
1839 		slack = select_estimate_accuracy(&end_time);
1840 		to = &expires;
1841 		*to = timespec64_to_ktime(end_time);
1842 	} else if (timeout == 0) {
1843 		/*
1844 		 * Avoid the unnecessary trip to the wait queue loop, if the
1845 		 * caller specified a non blocking operation. We still need
1846 		 * lock because we could race and not see an epi being added
1847 		 * to the ready list while in irq callback. Thus incorrectly
1848 		 * returning 0 back to userspace.
1849 		 */
1850 		timed_out = 1;
1851 
1852 		write_lock_irq(&ep->lock);
1853 		eavail = ep_events_available(ep);
1854 		write_unlock_irq(&ep->lock);
1855 
1856 		goto send_events;
1857 	}
1858 
1859 fetch_events:
1860 
1861 	if (!ep_events_available(ep))
1862 		ep_busy_loop(ep, timed_out);
1863 
1864 	eavail = ep_events_available(ep);
1865 	if (eavail)
1866 		goto send_events;
1867 
1868 	/*
1869 	 * Busy poll timed out.  Drop NAPI ID for now, we can add
1870 	 * it back in when we have moved a socket with a valid NAPI
1871 	 * ID onto the ready list.
1872 	 */
1873 	ep_reset_busy_poll_napi_id(ep);
1874 
1875 	/*
1876 	 * We don't have any available event to return to the caller.  We need
1877 	 * to sleep here, and we will be woken by ep_poll_callback() when events
1878 	 * become available.
1879 	 */
1880 	if (!waiter) {
1881 		waiter = true;
1882 		init_waitqueue_entry(&wait, current);
1883 
1884 		spin_lock_irq(&ep->wq.lock);
1885 		__add_wait_queue_exclusive(&ep->wq, &wait);
1886 		spin_unlock_irq(&ep->wq.lock);
1887 	}
1888 
1889 	for (;;) {
1890 		/*
1891 		 * We don't want to sleep if the ep_poll_callback() sends us
1892 		 * a wakeup in between. That's why we set the task state
1893 		 * to TASK_INTERRUPTIBLE before doing the checks.
1894 		 */
1895 		set_current_state(TASK_INTERRUPTIBLE);
1896 		/*
1897 		 * Always short-circuit for fatal signals to allow
1898 		 * threads to make a timely exit without the chance of
1899 		 * finding more events available and fetching
1900 		 * repeatedly.
1901 		 */
1902 		if (fatal_signal_pending(current)) {
1903 			res = -EINTR;
1904 			break;
1905 		}
1906 
1907 		eavail = ep_events_available(ep);
1908 		if (eavail)
1909 			break;
1910 		if (signal_pending(current)) {
1911 			res = -EINTR;
1912 			break;
1913 		}
1914 
1915 		if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1916 			timed_out = 1;
1917 			break;
1918 		}
1919 	}
1920 
1921 	__set_current_state(TASK_RUNNING);
1922 
1923 send_events:
1924 	/*
1925 	 * Try to transfer events to user space. In case we get 0 events and
1926 	 * there's still timeout left over, we go trying again in search of
1927 	 * more luck.
1928 	 */
1929 	if (!res && eavail &&
1930 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1931 		goto fetch_events;
1932 
1933 	if (waiter) {
1934 		spin_lock_irq(&ep->wq.lock);
1935 		__remove_wait_queue(&ep->wq, &wait);
1936 		spin_unlock_irq(&ep->wq.lock);
1937 	}
1938 
1939 	return res;
1940 }
1941 
1942 /**
1943  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1944  *                      API, to verify that adding an epoll file inside another
1945  *                      epoll structure, does not violate the constraints, in
1946  *                      terms of closed loops, or too deep chains (which can
1947  *                      result in excessive stack usage).
1948  *
1949  * @priv: Pointer to the epoll file to be currently checked.
1950  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1951  *          data structure pointer.
1952  * @call_nests: Current dept of the @ep_call_nested() call stack.
1953  *
1954  * Returns: Returns zero if adding the epoll @file inside current epoll
1955  *          structure @ep does not violate the constraints, or -1 otherwise.
1956  */
1957 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1958 {
1959 	int error = 0;
1960 	struct file *file = priv;
1961 	struct eventpoll *ep = file->private_data;
1962 	struct eventpoll *ep_tovisit;
1963 	struct rb_node *rbp;
1964 	struct epitem *epi;
1965 
1966 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1967 	ep->visited = 1;
1968 	list_add(&ep->visited_list_link, &visited_list);
1969 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1970 		epi = rb_entry(rbp, struct epitem, rbn);
1971 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1972 			ep_tovisit = epi->ffd.file->private_data;
1973 			if (ep_tovisit->visited)
1974 				continue;
1975 			error = ep_call_nested(&poll_loop_ncalls,
1976 					ep_loop_check_proc, epi->ffd.file,
1977 					ep_tovisit, current);
1978 			if (error != 0)
1979 				break;
1980 		} else {
1981 			/*
1982 			 * If we've reached a file that is not associated with
1983 			 * an ep, then we need to check if the newly added
1984 			 * links are going to add too many wakeup paths. We do
1985 			 * this by adding it to the tfile_check_list, if it's
1986 			 * not already there, and calling reverse_path_check()
1987 			 * during ep_insert().
1988 			 */
1989 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1990 				list_add(&epi->ffd.file->f_tfile_llink,
1991 					 &tfile_check_list);
1992 		}
1993 	}
1994 	mutex_unlock(&ep->mtx);
1995 
1996 	return error;
1997 }
1998 
1999 /**
2000  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2001  *                 another epoll file (represented by @ep) does not create
2002  *                 closed loops or too deep chains.
2003  *
2004  * @ep: Pointer to the epoll private data structure.
2005  * @file: Pointer to the epoll file to be checked.
2006  *
2007  * Returns: Returns zero if adding the epoll @file inside current epoll
2008  *          structure @ep does not violate the constraints, or -1 otherwise.
2009  */
2010 static int ep_loop_check(struct eventpoll *ep, struct file *file)
2011 {
2012 	int ret;
2013 	struct eventpoll *ep_cur, *ep_next;
2014 
2015 	ret = ep_call_nested(&poll_loop_ncalls,
2016 			      ep_loop_check_proc, file, ep, current);
2017 	/* clear visited list */
2018 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
2019 							visited_list_link) {
2020 		ep_cur->visited = 0;
2021 		list_del(&ep_cur->visited_list_link);
2022 	}
2023 	return ret;
2024 }
2025 
2026 static void clear_tfile_check_list(void)
2027 {
2028 	struct file *file;
2029 
2030 	/* first clear the tfile_check_list */
2031 	while (!list_empty(&tfile_check_list)) {
2032 		file = list_first_entry(&tfile_check_list, struct file,
2033 					f_tfile_llink);
2034 		list_del_init(&file->f_tfile_llink);
2035 	}
2036 	INIT_LIST_HEAD(&tfile_check_list);
2037 }
2038 
2039 /*
2040  * Open an eventpoll file descriptor.
2041  */
2042 static int do_epoll_create(int flags)
2043 {
2044 	int error, fd;
2045 	struct eventpoll *ep = NULL;
2046 	struct file *file;
2047 
2048 	/* Check the EPOLL_* constant for consistency.  */
2049 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2050 
2051 	if (flags & ~EPOLL_CLOEXEC)
2052 		return -EINVAL;
2053 	/*
2054 	 * Create the internal data structure ("struct eventpoll").
2055 	 */
2056 	error = ep_alloc(&ep);
2057 	if (error < 0)
2058 		return error;
2059 	/*
2060 	 * Creates all the items needed to setup an eventpoll file. That is,
2061 	 * a file structure and a free file descriptor.
2062 	 */
2063 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2064 	if (fd < 0) {
2065 		error = fd;
2066 		goto out_free_ep;
2067 	}
2068 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2069 				 O_RDWR | (flags & O_CLOEXEC));
2070 	if (IS_ERR(file)) {
2071 		error = PTR_ERR(file);
2072 		goto out_free_fd;
2073 	}
2074 	ep->file = file;
2075 	fd_install(fd, file);
2076 	return fd;
2077 
2078 out_free_fd:
2079 	put_unused_fd(fd);
2080 out_free_ep:
2081 	ep_free(ep);
2082 	return error;
2083 }
2084 
2085 SYSCALL_DEFINE1(epoll_create1, int, flags)
2086 {
2087 	return do_epoll_create(flags);
2088 }
2089 
2090 SYSCALL_DEFINE1(epoll_create, int, size)
2091 {
2092 	if (size <= 0)
2093 		return -EINVAL;
2094 
2095 	return do_epoll_create(0);
2096 }
2097 
2098 /*
2099  * The following function implements the controller interface for
2100  * the eventpoll file that enables the insertion/removal/change of
2101  * file descriptors inside the interest set.
2102  */
2103 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2104 		struct epoll_event __user *, event)
2105 {
2106 	int error;
2107 	int full_check = 0;
2108 	struct fd f, tf;
2109 	struct eventpoll *ep;
2110 	struct epitem *epi;
2111 	struct epoll_event epds;
2112 	struct eventpoll *tep = NULL;
2113 
2114 	error = -EFAULT;
2115 	if (ep_op_has_event(op) &&
2116 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2117 		goto error_return;
2118 
2119 	error = -EBADF;
2120 	f = fdget(epfd);
2121 	if (!f.file)
2122 		goto error_return;
2123 
2124 	/* Get the "struct file *" for the target file */
2125 	tf = fdget(fd);
2126 	if (!tf.file)
2127 		goto error_fput;
2128 
2129 	/* The target file descriptor must support poll */
2130 	error = -EPERM;
2131 	if (!file_can_poll(tf.file))
2132 		goto error_tgt_fput;
2133 
2134 	/* Check if EPOLLWAKEUP is allowed */
2135 	if (ep_op_has_event(op))
2136 		ep_take_care_of_epollwakeup(&epds);
2137 
2138 	/*
2139 	 * We have to check that the file structure underneath the file descriptor
2140 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2141 	 * adding an epoll file descriptor inside itself.
2142 	 */
2143 	error = -EINVAL;
2144 	if (f.file == tf.file || !is_file_epoll(f.file))
2145 		goto error_tgt_fput;
2146 
2147 	/*
2148 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2149 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2150 	 * Also, we do not currently supported nested exclusive wakeups.
2151 	 */
2152 	if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2153 		if (op == EPOLL_CTL_MOD)
2154 			goto error_tgt_fput;
2155 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2156 				(epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2157 			goto error_tgt_fput;
2158 	}
2159 
2160 	/*
2161 	 * At this point it is safe to assume that the "private_data" contains
2162 	 * our own data structure.
2163 	 */
2164 	ep = f.file->private_data;
2165 
2166 	/*
2167 	 * When we insert an epoll file descriptor, inside another epoll file
2168 	 * descriptor, there is the change of creating closed loops, which are
2169 	 * better be handled here, than in more critical paths. While we are
2170 	 * checking for loops we also determine the list of files reachable
2171 	 * and hang them on the tfile_check_list, so we can check that we
2172 	 * haven't created too many possible wakeup paths.
2173 	 *
2174 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2175 	 * the epoll file descriptor is attaching directly to a wakeup source,
2176 	 * unless the epoll file descriptor is nested. The purpose of taking the
2177 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2178 	 * deep wakeup paths from forming in parallel through multiple
2179 	 * EPOLL_CTL_ADD operations.
2180 	 */
2181 	mutex_lock_nested(&ep->mtx, 0);
2182 	if (op == EPOLL_CTL_ADD) {
2183 		if (!list_empty(&f.file->f_ep_links) ||
2184 						is_file_epoll(tf.file)) {
2185 			full_check = 1;
2186 			mutex_unlock(&ep->mtx);
2187 			mutex_lock(&epmutex);
2188 			if (is_file_epoll(tf.file)) {
2189 				error = -ELOOP;
2190 				if (ep_loop_check(ep, tf.file) != 0) {
2191 					clear_tfile_check_list();
2192 					goto error_tgt_fput;
2193 				}
2194 			} else
2195 				list_add(&tf.file->f_tfile_llink,
2196 							&tfile_check_list);
2197 			mutex_lock_nested(&ep->mtx, 0);
2198 			if (is_file_epoll(tf.file)) {
2199 				tep = tf.file->private_data;
2200 				mutex_lock_nested(&tep->mtx, 1);
2201 			}
2202 		}
2203 	}
2204 
2205 	/*
2206 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2207 	 * above, we can be sure to be able to use the item looked up by
2208 	 * ep_find() till we release the mutex.
2209 	 */
2210 	epi = ep_find(ep, tf.file, fd);
2211 
2212 	error = -EINVAL;
2213 	switch (op) {
2214 	case EPOLL_CTL_ADD:
2215 		if (!epi) {
2216 			epds.events |= EPOLLERR | EPOLLHUP;
2217 			error = ep_insert(ep, &epds, tf.file, fd, full_check);
2218 		} else
2219 			error = -EEXIST;
2220 		if (full_check)
2221 			clear_tfile_check_list();
2222 		break;
2223 	case EPOLL_CTL_DEL:
2224 		if (epi)
2225 			error = ep_remove(ep, epi);
2226 		else
2227 			error = -ENOENT;
2228 		break;
2229 	case EPOLL_CTL_MOD:
2230 		if (epi) {
2231 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2232 				epds.events |= EPOLLERR | EPOLLHUP;
2233 				error = ep_modify(ep, epi, &epds);
2234 			}
2235 		} else
2236 			error = -ENOENT;
2237 		break;
2238 	}
2239 	if (tep != NULL)
2240 		mutex_unlock(&tep->mtx);
2241 	mutex_unlock(&ep->mtx);
2242 
2243 error_tgt_fput:
2244 	if (full_check)
2245 		mutex_unlock(&epmutex);
2246 
2247 	fdput(tf);
2248 error_fput:
2249 	fdput(f);
2250 error_return:
2251 
2252 	return error;
2253 }
2254 
2255 /*
2256  * Implement the event wait interface for the eventpoll file. It is the kernel
2257  * part of the user space epoll_wait(2).
2258  */
2259 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2260 			 int maxevents, int timeout)
2261 {
2262 	int error;
2263 	struct fd f;
2264 	struct eventpoll *ep;
2265 
2266 	/* The maximum number of event must be greater than zero */
2267 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2268 		return -EINVAL;
2269 
2270 	/* Verify that the area passed by the user is writeable */
2271 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2272 		return -EFAULT;
2273 
2274 	/* Get the "struct file *" for the eventpoll file */
2275 	f = fdget(epfd);
2276 	if (!f.file)
2277 		return -EBADF;
2278 
2279 	/*
2280 	 * We have to check that the file structure underneath the fd
2281 	 * the user passed to us _is_ an eventpoll file.
2282 	 */
2283 	error = -EINVAL;
2284 	if (!is_file_epoll(f.file))
2285 		goto error_fput;
2286 
2287 	/*
2288 	 * At this point it is safe to assume that the "private_data" contains
2289 	 * our own data structure.
2290 	 */
2291 	ep = f.file->private_data;
2292 
2293 	/* Time to fish for events ... */
2294 	error = ep_poll(ep, events, maxevents, timeout);
2295 
2296 error_fput:
2297 	fdput(f);
2298 	return error;
2299 }
2300 
2301 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2302 		int, maxevents, int, timeout)
2303 {
2304 	return do_epoll_wait(epfd, events, maxevents, timeout);
2305 }
2306 
2307 /*
2308  * Implement the event wait interface for the eventpoll file. It is the kernel
2309  * part of the user space epoll_pwait(2).
2310  */
2311 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2312 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2313 		size_t, sigsetsize)
2314 {
2315 	int error;
2316 	sigset_t ksigmask, sigsaved;
2317 
2318 	/*
2319 	 * If the caller wants a certain signal mask to be set during the wait,
2320 	 * we apply it here.
2321 	 */
2322 	error = set_user_sigmask(sigmask, &ksigmask, &sigsaved, sigsetsize);
2323 	if (error)
2324 		return error;
2325 
2326 	error = do_epoll_wait(epfd, events, maxevents, timeout);
2327 
2328 	restore_user_sigmask(sigmask, &sigsaved);
2329 
2330 	return error;
2331 }
2332 
2333 #ifdef CONFIG_COMPAT
2334 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2335 			struct epoll_event __user *, events,
2336 			int, maxevents, int, timeout,
2337 			const compat_sigset_t __user *, sigmask,
2338 			compat_size_t, sigsetsize)
2339 {
2340 	long err;
2341 	sigset_t ksigmask, sigsaved;
2342 
2343 	/*
2344 	 * If the caller wants a certain signal mask to be set during the wait,
2345 	 * we apply it here.
2346 	 */
2347 	err = set_compat_user_sigmask(sigmask, &ksigmask, &sigsaved, sigsetsize);
2348 	if (err)
2349 		return err;
2350 
2351 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2352 
2353 	restore_user_sigmask(sigmask, &sigsaved);
2354 
2355 	return err;
2356 }
2357 #endif
2358 
2359 static int __init eventpoll_init(void)
2360 {
2361 	struct sysinfo si;
2362 
2363 	si_meminfo(&si);
2364 	/*
2365 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2366 	 */
2367 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2368 		EP_ITEM_COST;
2369 	BUG_ON(max_user_watches < 0);
2370 
2371 	/*
2372 	 * Initialize the structure used to perform epoll file descriptor
2373 	 * inclusion loops checks.
2374 	 */
2375 	ep_nested_calls_init(&poll_loop_ncalls);
2376 
2377 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2378 	/* Initialize the structure used to perform safe poll wait head wake ups */
2379 	ep_nested_calls_init(&poll_safewake_ncalls);
2380 #endif
2381 
2382 	/*
2383 	 * We can have many thousands of epitems, so prevent this from
2384 	 * using an extra cache line on 64-bit (and smaller) CPUs
2385 	 */
2386 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2387 
2388 	/* Allocates slab cache used to allocate "struct epitem" items */
2389 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2390 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2391 
2392 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2393 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2394 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2395 
2396 	return 0;
2397 }
2398 fs_initcall(eventpoll_init);
2399