1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <asm/uaccess.h> 37 #include <asm/system.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (spinlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a spinlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 74 * case when one epoll fd is added to another. In this case, we 75 * always acquire the locks in the order of nesting (i.e. after 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 77 * before e2->mtx). Since we disallow cycles of epoll file 78 * descriptors, this ensures that the mutexes are well-ordered. In 79 * order to communicate this nesting to lockdep, when walking a tree 80 * of epoll file descriptors, we use the current recursion depth as 81 * the lockdep subkey. 82 * It is possible to drop the "ep->mtx" and to use the global 83 * mutex "epmutex" (together with "ep->lock") to have it working, 84 * but having "ep->mtx" will make the interface more scalable. 85 * Events that require holding "epmutex" are very rare, while for 86 * normal operations the epoll private "ep->mtx" will guarantee 87 * a better scalability. 88 */ 89 90 /* Epoll private bits inside the event mask */ 91 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 92 93 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 95 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 98 #define EP_UNACTIVE_PTR ((void *) -1L) 99 100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 102 struct epoll_filefd { 103 struct file *file; 104 int fd; 105 }; 106 107 /* 108 * Structure used to track possible nested calls, for too deep recursions 109 * and loop cycles. 110 */ 111 struct nested_call_node { 112 struct list_head llink; 113 void *cookie; 114 void *ctx; 115 }; 116 117 /* 118 * This structure is used as collector for nested calls, to check for 119 * maximum recursion dept and loop cycles. 120 */ 121 struct nested_calls { 122 struct list_head tasks_call_list; 123 spinlock_t lock; 124 }; 125 126 /* 127 * Each file descriptor added to the eventpoll interface will 128 * have an entry of this type linked to the "rbr" RB tree. 129 */ 130 struct epitem { 131 /* RB tree node used to link this structure to the eventpoll RB tree */ 132 struct rb_node rbn; 133 134 /* List header used to link this structure to the eventpoll ready list */ 135 struct list_head rdllink; 136 137 /* 138 * Works together "struct eventpoll"->ovflist in keeping the 139 * single linked chain of items. 140 */ 141 struct epitem *next; 142 143 /* The file descriptor information this item refers to */ 144 struct epoll_filefd ffd; 145 146 /* Number of active wait queue attached to poll operations */ 147 int nwait; 148 149 /* List containing poll wait queues */ 150 struct list_head pwqlist; 151 152 /* The "container" of this item */ 153 struct eventpoll *ep; 154 155 /* List header used to link this item to the "struct file" items list */ 156 struct list_head fllink; 157 158 /* The structure that describe the interested events and the source fd */ 159 struct epoll_event event; 160 }; 161 162 /* 163 * This structure is stored inside the "private_data" member of the file 164 * structure and represents the main data structure for the eventpoll 165 * interface. 166 */ 167 struct eventpoll { 168 /* Protect the access to this structure */ 169 spinlock_t lock; 170 171 /* 172 * This mutex is used to ensure that files are not removed 173 * while epoll is using them. This is held during the event 174 * collection loop, the file cleanup path, the epoll file exit 175 * code and the ctl operations. 176 */ 177 struct mutex mtx; 178 179 /* Wait queue used by sys_epoll_wait() */ 180 wait_queue_head_t wq; 181 182 /* Wait queue used by file->poll() */ 183 wait_queue_head_t poll_wait; 184 185 /* List of ready file descriptors */ 186 struct list_head rdllist; 187 188 /* RB tree root used to store monitored fd structs */ 189 struct rb_root rbr; 190 191 /* 192 * This is a single linked list that chains all the "struct epitem" that 193 * happened while transferring ready events to userspace w/out 194 * holding ->lock. 195 */ 196 struct epitem *ovflist; 197 198 /* The user that created the eventpoll descriptor */ 199 struct user_struct *user; 200 201 struct file *file; 202 203 /* used to optimize loop detection check */ 204 int visited; 205 struct list_head visited_list_link; 206 }; 207 208 /* Wait structure used by the poll hooks */ 209 struct eppoll_entry { 210 /* List header used to link this structure to the "struct epitem" */ 211 struct list_head llink; 212 213 /* The "base" pointer is set to the container "struct epitem" */ 214 struct epitem *base; 215 216 /* 217 * Wait queue item that will be linked to the target file wait 218 * queue head. 219 */ 220 wait_queue_t wait; 221 222 /* The wait queue head that linked the "wait" wait queue item */ 223 wait_queue_head_t *whead; 224 }; 225 226 /* Wrapper struct used by poll queueing */ 227 struct ep_pqueue { 228 poll_table pt; 229 struct epitem *epi; 230 }; 231 232 /* Used by the ep_send_events() function as callback private data */ 233 struct ep_send_events_data { 234 int maxevents; 235 struct epoll_event __user *events; 236 }; 237 238 /* 239 * Configuration options available inside /proc/sys/fs/epoll/ 240 */ 241 /* Maximum number of epoll watched descriptors, per user */ 242 static long max_user_watches __read_mostly; 243 244 /* 245 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 246 */ 247 static DEFINE_MUTEX(epmutex); 248 249 /* Used to check for epoll file descriptor inclusion loops */ 250 static struct nested_calls poll_loop_ncalls; 251 252 /* Used for safe wake up implementation */ 253 static struct nested_calls poll_safewake_ncalls; 254 255 /* Used to call file's f_op->poll() under the nested calls boundaries */ 256 static struct nested_calls poll_readywalk_ncalls; 257 258 /* Slab cache used to allocate "struct epitem" */ 259 static struct kmem_cache *epi_cache __read_mostly; 260 261 /* Slab cache used to allocate "struct eppoll_entry" */ 262 static struct kmem_cache *pwq_cache __read_mostly; 263 264 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 265 static LIST_HEAD(visited_list); 266 267 /* 268 * List of files with newly added links, where we may need to limit the number 269 * of emanating paths. Protected by the epmutex. 270 */ 271 static LIST_HEAD(tfile_check_list); 272 273 #ifdef CONFIG_SYSCTL 274 275 #include <linux/sysctl.h> 276 277 static long zero; 278 static long long_max = LONG_MAX; 279 280 ctl_table epoll_table[] = { 281 { 282 .procname = "max_user_watches", 283 .data = &max_user_watches, 284 .maxlen = sizeof(max_user_watches), 285 .mode = 0644, 286 .proc_handler = proc_doulongvec_minmax, 287 .extra1 = &zero, 288 .extra2 = &long_max, 289 }, 290 { } 291 }; 292 #endif /* CONFIG_SYSCTL */ 293 294 static const struct file_operations eventpoll_fops; 295 296 static inline int is_file_epoll(struct file *f) 297 { 298 return f->f_op == &eventpoll_fops; 299 } 300 301 /* Setup the structure that is used as key for the RB tree */ 302 static inline void ep_set_ffd(struct epoll_filefd *ffd, 303 struct file *file, int fd) 304 { 305 ffd->file = file; 306 ffd->fd = fd; 307 } 308 309 /* Compare RB tree keys */ 310 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 311 struct epoll_filefd *p2) 312 { 313 return (p1->file > p2->file ? +1: 314 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 315 } 316 317 /* Tells us if the item is currently linked */ 318 static inline int ep_is_linked(struct list_head *p) 319 { 320 return !list_empty(p); 321 } 322 323 /* Get the "struct epitem" from a wait queue pointer */ 324 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 325 { 326 return container_of(p, struct eppoll_entry, wait)->base; 327 } 328 329 /* Get the "struct epitem" from an epoll queue wrapper */ 330 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 331 { 332 return container_of(p, struct ep_pqueue, pt)->epi; 333 } 334 335 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 336 static inline int ep_op_has_event(int op) 337 { 338 return op != EPOLL_CTL_DEL; 339 } 340 341 /* Initialize the poll safe wake up structure */ 342 static void ep_nested_calls_init(struct nested_calls *ncalls) 343 { 344 INIT_LIST_HEAD(&ncalls->tasks_call_list); 345 spin_lock_init(&ncalls->lock); 346 } 347 348 /** 349 * ep_events_available - Checks if ready events might be available. 350 * 351 * @ep: Pointer to the eventpoll context. 352 * 353 * Returns: Returns a value different than zero if ready events are available, 354 * or zero otherwise. 355 */ 356 static inline int ep_events_available(struct eventpoll *ep) 357 { 358 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 359 } 360 361 /** 362 * ep_call_nested - Perform a bound (possibly) nested call, by checking 363 * that the recursion limit is not exceeded, and that 364 * the same nested call (by the meaning of same cookie) is 365 * no re-entered. 366 * 367 * @ncalls: Pointer to the nested_calls structure to be used for this call. 368 * @max_nests: Maximum number of allowed nesting calls. 369 * @nproc: Nested call core function pointer. 370 * @priv: Opaque data to be passed to the @nproc callback. 371 * @cookie: Cookie to be used to identify this nested call. 372 * @ctx: This instance context. 373 * 374 * Returns: Returns the code returned by the @nproc callback, or -1 if 375 * the maximum recursion limit has been exceeded. 376 */ 377 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 378 int (*nproc)(void *, void *, int), void *priv, 379 void *cookie, void *ctx) 380 { 381 int error, call_nests = 0; 382 unsigned long flags; 383 struct list_head *lsthead = &ncalls->tasks_call_list; 384 struct nested_call_node *tncur; 385 struct nested_call_node tnode; 386 387 spin_lock_irqsave(&ncalls->lock, flags); 388 389 /* 390 * Try to see if the current task is already inside this wakeup call. 391 * We use a list here, since the population inside this set is always 392 * very much limited. 393 */ 394 list_for_each_entry(tncur, lsthead, llink) { 395 if (tncur->ctx == ctx && 396 (tncur->cookie == cookie || ++call_nests > max_nests)) { 397 /* 398 * Ops ... loop detected or maximum nest level reached. 399 * We abort this wake by breaking the cycle itself. 400 */ 401 error = -1; 402 goto out_unlock; 403 } 404 } 405 406 /* Add the current task and cookie to the list */ 407 tnode.ctx = ctx; 408 tnode.cookie = cookie; 409 list_add(&tnode.llink, lsthead); 410 411 spin_unlock_irqrestore(&ncalls->lock, flags); 412 413 /* Call the nested function */ 414 error = (*nproc)(priv, cookie, call_nests); 415 416 /* Remove the current task from the list */ 417 spin_lock_irqsave(&ncalls->lock, flags); 418 list_del(&tnode.llink); 419 out_unlock: 420 spin_unlock_irqrestore(&ncalls->lock, flags); 421 422 return error; 423 } 424 425 #ifdef CONFIG_DEBUG_LOCK_ALLOC 426 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 427 unsigned long events, int subclass) 428 { 429 unsigned long flags; 430 431 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 432 wake_up_locked_poll(wqueue, events); 433 spin_unlock_irqrestore(&wqueue->lock, flags); 434 } 435 #else 436 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 437 unsigned long events, int subclass) 438 { 439 wake_up_poll(wqueue, events); 440 } 441 #endif 442 443 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 444 { 445 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 446 1 + call_nests); 447 return 0; 448 } 449 450 /* 451 * Perform a safe wake up of the poll wait list. The problem is that 452 * with the new callback'd wake up system, it is possible that the 453 * poll callback is reentered from inside the call to wake_up() done 454 * on the poll wait queue head. The rule is that we cannot reenter the 455 * wake up code from the same task more than EP_MAX_NESTS times, 456 * and we cannot reenter the same wait queue head at all. This will 457 * enable to have a hierarchy of epoll file descriptor of no more than 458 * EP_MAX_NESTS deep. 459 */ 460 static void ep_poll_safewake(wait_queue_head_t *wq) 461 { 462 int this_cpu = get_cpu(); 463 464 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 465 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 466 467 put_cpu(); 468 } 469 470 /* 471 * This function unregisters poll callbacks from the associated file 472 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 473 * ep_free). 474 */ 475 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 476 { 477 struct list_head *lsthead = &epi->pwqlist; 478 struct eppoll_entry *pwq; 479 480 while (!list_empty(lsthead)) { 481 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 482 483 list_del(&pwq->llink); 484 remove_wait_queue(pwq->whead, &pwq->wait); 485 kmem_cache_free(pwq_cache, pwq); 486 } 487 } 488 489 /** 490 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 491 * the scan code, to call f_op->poll(). Also allows for 492 * O(NumReady) performance. 493 * 494 * @ep: Pointer to the epoll private data structure. 495 * @sproc: Pointer to the scan callback. 496 * @priv: Private opaque data passed to the @sproc callback. 497 * @depth: The current depth of recursive f_op->poll calls. 498 * 499 * Returns: The same integer error code returned by the @sproc callback. 500 */ 501 static int ep_scan_ready_list(struct eventpoll *ep, 502 int (*sproc)(struct eventpoll *, 503 struct list_head *, void *), 504 void *priv, 505 int depth) 506 { 507 int error, pwake = 0; 508 unsigned long flags; 509 struct epitem *epi, *nepi; 510 LIST_HEAD(txlist); 511 512 /* 513 * We need to lock this because we could be hit by 514 * eventpoll_release_file() and epoll_ctl(). 515 */ 516 mutex_lock_nested(&ep->mtx, depth); 517 518 /* 519 * Steal the ready list, and re-init the original one to the 520 * empty list. Also, set ep->ovflist to NULL so that events 521 * happening while looping w/out locks, are not lost. We cannot 522 * have the poll callback to queue directly on ep->rdllist, 523 * because we want the "sproc" callback to be able to do it 524 * in a lockless way. 525 */ 526 spin_lock_irqsave(&ep->lock, flags); 527 list_splice_init(&ep->rdllist, &txlist); 528 ep->ovflist = NULL; 529 spin_unlock_irqrestore(&ep->lock, flags); 530 531 /* 532 * Now call the callback function. 533 */ 534 error = (*sproc)(ep, &txlist, priv); 535 536 spin_lock_irqsave(&ep->lock, flags); 537 /* 538 * During the time we spent inside the "sproc" callback, some 539 * other events might have been queued by the poll callback. 540 * We re-insert them inside the main ready-list here. 541 */ 542 for (nepi = ep->ovflist; (epi = nepi) != NULL; 543 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 544 /* 545 * We need to check if the item is already in the list. 546 * During the "sproc" callback execution time, items are 547 * queued into ->ovflist but the "txlist" might already 548 * contain them, and the list_splice() below takes care of them. 549 */ 550 if (!ep_is_linked(&epi->rdllink)) 551 list_add_tail(&epi->rdllink, &ep->rdllist); 552 } 553 /* 554 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 555 * releasing the lock, events will be queued in the normal way inside 556 * ep->rdllist. 557 */ 558 ep->ovflist = EP_UNACTIVE_PTR; 559 560 /* 561 * Quickly re-inject items left on "txlist". 562 */ 563 list_splice(&txlist, &ep->rdllist); 564 565 if (!list_empty(&ep->rdllist)) { 566 /* 567 * Wake up (if active) both the eventpoll wait list and 568 * the ->poll() wait list (delayed after we release the lock). 569 */ 570 if (waitqueue_active(&ep->wq)) 571 wake_up_locked(&ep->wq); 572 if (waitqueue_active(&ep->poll_wait)) 573 pwake++; 574 } 575 spin_unlock_irqrestore(&ep->lock, flags); 576 577 mutex_unlock(&ep->mtx); 578 579 /* We have to call this outside the lock */ 580 if (pwake) 581 ep_poll_safewake(&ep->poll_wait); 582 583 return error; 584 } 585 586 /* 587 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 588 * all the associated resources. Must be called with "mtx" held. 589 */ 590 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 591 { 592 unsigned long flags; 593 struct file *file = epi->ffd.file; 594 595 /* 596 * Removes poll wait queue hooks. We _have_ to do this without holding 597 * the "ep->lock" otherwise a deadlock might occur. This because of the 598 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 599 * queue head lock when unregistering the wait queue. The wakeup callback 600 * will run by holding the wait queue head lock and will call our callback 601 * that will try to get "ep->lock". 602 */ 603 ep_unregister_pollwait(ep, epi); 604 605 /* Remove the current item from the list of epoll hooks */ 606 spin_lock(&file->f_lock); 607 if (ep_is_linked(&epi->fllink)) 608 list_del_init(&epi->fllink); 609 spin_unlock(&file->f_lock); 610 611 rb_erase(&epi->rbn, &ep->rbr); 612 613 spin_lock_irqsave(&ep->lock, flags); 614 if (ep_is_linked(&epi->rdllink)) 615 list_del_init(&epi->rdllink); 616 spin_unlock_irqrestore(&ep->lock, flags); 617 618 /* At this point it is safe to free the eventpoll item */ 619 kmem_cache_free(epi_cache, epi); 620 621 atomic_long_dec(&ep->user->epoll_watches); 622 623 return 0; 624 } 625 626 static void ep_free(struct eventpoll *ep) 627 { 628 struct rb_node *rbp; 629 struct epitem *epi; 630 631 /* We need to release all tasks waiting for these file */ 632 if (waitqueue_active(&ep->poll_wait)) 633 ep_poll_safewake(&ep->poll_wait); 634 635 /* 636 * We need to lock this because we could be hit by 637 * eventpoll_release_file() while we're freeing the "struct eventpoll". 638 * We do not need to hold "ep->mtx" here because the epoll file 639 * is on the way to be removed and no one has references to it 640 * anymore. The only hit might come from eventpoll_release_file() but 641 * holding "epmutex" is sufficient here. 642 */ 643 mutex_lock(&epmutex); 644 645 /* 646 * Walks through the whole tree by unregistering poll callbacks. 647 */ 648 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 649 epi = rb_entry(rbp, struct epitem, rbn); 650 651 ep_unregister_pollwait(ep, epi); 652 } 653 654 /* 655 * Walks through the whole tree by freeing each "struct epitem". At this 656 * point we are sure no poll callbacks will be lingering around, and also by 657 * holding "epmutex" we can be sure that no file cleanup code will hit 658 * us during this operation. So we can avoid the lock on "ep->lock". 659 */ 660 while ((rbp = rb_first(&ep->rbr)) != NULL) { 661 epi = rb_entry(rbp, struct epitem, rbn); 662 ep_remove(ep, epi); 663 } 664 665 mutex_unlock(&epmutex); 666 mutex_destroy(&ep->mtx); 667 free_uid(ep->user); 668 kfree(ep); 669 } 670 671 static int ep_eventpoll_release(struct inode *inode, struct file *file) 672 { 673 struct eventpoll *ep = file->private_data; 674 675 if (ep) 676 ep_free(ep); 677 678 return 0; 679 } 680 681 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 682 void *priv) 683 { 684 struct epitem *epi, *tmp; 685 686 list_for_each_entry_safe(epi, tmp, head, rdllink) { 687 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 688 epi->event.events) 689 return POLLIN | POLLRDNORM; 690 else { 691 /* 692 * Item has been dropped into the ready list by the poll 693 * callback, but it's not actually ready, as far as 694 * caller requested events goes. We can remove it here. 695 */ 696 list_del_init(&epi->rdllink); 697 } 698 } 699 700 return 0; 701 } 702 703 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 704 { 705 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1); 706 } 707 708 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 709 { 710 int pollflags; 711 struct eventpoll *ep = file->private_data; 712 713 /* Insert inside our poll wait queue */ 714 poll_wait(file, &ep->poll_wait, wait); 715 716 /* 717 * Proceed to find out if wanted events are really available inside 718 * the ready list. This need to be done under ep_call_nested() 719 * supervision, since the call to f_op->poll() done on listed files 720 * could re-enter here. 721 */ 722 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 723 ep_poll_readyevents_proc, ep, ep, current); 724 725 return pollflags != -1 ? pollflags : 0; 726 } 727 728 /* File callbacks that implement the eventpoll file behaviour */ 729 static const struct file_operations eventpoll_fops = { 730 .release = ep_eventpoll_release, 731 .poll = ep_eventpoll_poll, 732 .llseek = noop_llseek, 733 }; 734 735 /* 736 * This is called from eventpoll_release() to unlink files from the eventpoll 737 * interface. We need to have this facility to cleanup correctly files that are 738 * closed without being removed from the eventpoll interface. 739 */ 740 void eventpoll_release_file(struct file *file) 741 { 742 struct list_head *lsthead = &file->f_ep_links; 743 struct eventpoll *ep; 744 struct epitem *epi; 745 746 /* 747 * We don't want to get "file->f_lock" because it is not 748 * necessary. It is not necessary because we're in the "struct file" 749 * cleanup path, and this means that no one is using this file anymore. 750 * So, for example, epoll_ctl() cannot hit here since if we reach this 751 * point, the file counter already went to zero and fget() would fail. 752 * The only hit might come from ep_free() but by holding the mutex 753 * will correctly serialize the operation. We do need to acquire 754 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 755 * from anywhere but ep_free(). 756 * 757 * Besides, ep_remove() acquires the lock, so we can't hold it here. 758 */ 759 mutex_lock(&epmutex); 760 761 while (!list_empty(lsthead)) { 762 epi = list_first_entry(lsthead, struct epitem, fllink); 763 764 ep = epi->ep; 765 list_del_init(&epi->fllink); 766 mutex_lock_nested(&ep->mtx, 0); 767 ep_remove(ep, epi); 768 mutex_unlock(&ep->mtx); 769 } 770 771 mutex_unlock(&epmutex); 772 } 773 774 static int ep_alloc(struct eventpoll **pep) 775 { 776 int error; 777 struct user_struct *user; 778 struct eventpoll *ep; 779 780 user = get_current_user(); 781 error = -ENOMEM; 782 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 783 if (unlikely(!ep)) 784 goto free_uid; 785 786 spin_lock_init(&ep->lock); 787 mutex_init(&ep->mtx); 788 init_waitqueue_head(&ep->wq); 789 init_waitqueue_head(&ep->poll_wait); 790 INIT_LIST_HEAD(&ep->rdllist); 791 ep->rbr = RB_ROOT; 792 ep->ovflist = EP_UNACTIVE_PTR; 793 ep->user = user; 794 795 *pep = ep; 796 797 return 0; 798 799 free_uid: 800 free_uid(user); 801 return error; 802 } 803 804 /* 805 * Search the file inside the eventpoll tree. The RB tree operations 806 * are protected by the "mtx" mutex, and ep_find() must be called with 807 * "mtx" held. 808 */ 809 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 810 { 811 int kcmp; 812 struct rb_node *rbp; 813 struct epitem *epi, *epir = NULL; 814 struct epoll_filefd ffd; 815 816 ep_set_ffd(&ffd, file, fd); 817 for (rbp = ep->rbr.rb_node; rbp; ) { 818 epi = rb_entry(rbp, struct epitem, rbn); 819 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 820 if (kcmp > 0) 821 rbp = rbp->rb_right; 822 else if (kcmp < 0) 823 rbp = rbp->rb_left; 824 else { 825 epir = epi; 826 break; 827 } 828 } 829 830 return epir; 831 } 832 833 /* 834 * This is the callback that is passed to the wait queue wakeup 835 * mechanism. It is called by the stored file descriptors when they 836 * have events to report. 837 */ 838 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 839 { 840 int pwake = 0; 841 unsigned long flags; 842 struct epitem *epi = ep_item_from_wait(wait); 843 struct eventpoll *ep = epi->ep; 844 845 spin_lock_irqsave(&ep->lock, flags); 846 847 /* 848 * If the event mask does not contain any poll(2) event, we consider the 849 * descriptor to be disabled. This condition is likely the effect of the 850 * EPOLLONESHOT bit that disables the descriptor when an event is received, 851 * until the next EPOLL_CTL_MOD will be issued. 852 */ 853 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 854 goto out_unlock; 855 856 /* 857 * Check the events coming with the callback. At this stage, not 858 * every device reports the events in the "key" parameter of the 859 * callback. We need to be able to handle both cases here, hence the 860 * test for "key" != NULL before the event match test. 861 */ 862 if (key && !((unsigned long) key & epi->event.events)) 863 goto out_unlock; 864 865 /* 866 * If we are transferring events to userspace, we can hold no locks 867 * (because we're accessing user memory, and because of linux f_op->poll() 868 * semantics). All the events that happen during that period of time are 869 * chained in ep->ovflist and requeued later on. 870 */ 871 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 872 if (epi->next == EP_UNACTIVE_PTR) { 873 epi->next = ep->ovflist; 874 ep->ovflist = epi; 875 } 876 goto out_unlock; 877 } 878 879 /* If this file is already in the ready list we exit soon */ 880 if (!ep_is_linked(&epi->rdllink)) 881 list_add_tail(&epi->rdllink, &ep->rdllist); 882 883 /* 884 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 885 * wait list. 886 */ 887 if (waitqueue_active(&ep->wq)) 888 wake_up_locked(&ep->wq); 889 if (waitqueue_active(&ep->poll_wait)) 890 pwake++; 891 892 out_unlock: 893 spin_unlock_irqrestore(&ep->lock, flags); 894 895 /* We have to call this outside the lock */ 896 if (pwake) 897 ep_poll_safewake(&ep->poll_wait); 898 899 return 1; 900 } 901 902 /* 903 * This is the callback that is used to add our wait queue to the 904 * target file wakeup lists. 905 */ 906 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 907 poll_table *pt) 908 { 909 struct epitem *epi = ep_item_from_epqueue(pt); 910 struct eppoll_entry *pwq; 911 912 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 913 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 914 pwq->whead = whead; 915 pwq->base = epi; 916 add_wait_queue(whead, &pwq->wait); 917 list_add_tail(&pwq->llink, &epi->pwqlist); 918 epi->nwait++; 919 } else { 920 /* We have to signal that an error occurred */ 921 epi->nwait = -1; 922 } 923 } 924 925 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 926 { 927 int kcmp; 928 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 929 struct epitem *epic; 930 931 while (*p) { 932 parent = *p; 933 epic = rb_entry(parent, struct epitem, rbn); 934 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 935 if (kcmp > 0) 936 p = &parent->rb_right; 937 else 938 p = &parent->rb_left; 939 } 940 rb_link_node(&epi->rbn, parent, p); 941 rb_insert_color(&epi->rbn, &ep->rbr); 942 } 943 944 945 946 #define PATH_ARR_SIZE 5 947 /* 948 * These are the number paths of length 1 to 5, that we are allowing to emanate 949 * from a single file of interest. For example, we allow 1000 paths of length 950 * 1, to emanate from each file of interest. This essentially represents the 951 * potential wakeup paths, which need to be limited in order to avoid massive 952 * uncontrolled wakeup storms. The common use case should be a single ep which 953 * is connected to n file sources. In this case each file source has 1 path 954 * of length 1. Thus, the numbers below should be more than sufficient. These 955 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 956 * and delete can't add additional paths. Protected by the epmutex. 957 */ 958 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 959 static int path_count[PATH_ARR_SIZE]; 960 961 static int path_count_inc(int nests) 962 { 963 if (++path_count[nests] > path_limits[nests]) 964 return -1; 965 return 0; 966 } 967 968 static void path_count_init(void) 969 { 970 int i; 971 972 for (i = 0; i < PATH_ARR_SIZE; i++) 973 path_count[i] = 0; 974 } 975 976 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 977 { 978 int error = 0; 979 struct file *file = priv; 980 struct file *child_file; 981 struct epitem *epi; 982 983 list_for_each_entry(epi, &file->f_ep_links, fllink) { 984 child_file = epi->ep->file; 985 if (is_file_epoll(child_file)) { 986 if (list_empty(&child_file->f_ep_links)) { 987 if (path_count_inc(call_nests)) { 988 error = -1; 989 break; 990 } 991 } else { 992 error = ep_call_nested(&poll_loop_ncalls, 993 EP_MAX_NESTS, 994 reverse_path_check_proc, 995 child_file, child_file, 996 current); 997 } 998 if (error != 0) 999 break; 1000 } else { 1001 printk(KERN_ERR "reverse_path_check_proc: " 1002 "file is not an ep!\n"); 1003 } 1004 } 1005 return error; 1006 } 1007 1008 /** 1009 * reverse_path_check - The tfile_check_list is list of file *, which have 1010 * links that are proposed to be newly added. We need to 1011 * make sure that those added links don't add too many 1012 * paths such that we will spend all our time waking up 1013 * eventpoll objects. 1014 * 1015 * Returns: Returns zero if the proposed links don't create too many paths, 1016 * -1 otherwise. 1017 */ 1018 static int reverse_path_check(void) 1019 { 1020 int length = 0; 1021 int error = 0; 1022 struct file *current_file; 1023 1024 /* let's call this for all tfiles */ 1025 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1026 length++; 1027 path_count_init(); 1028 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1029 reverse_path_check_proc, current_file, 1030 current_file, current); 1031 if (error) 1032 break; 1033 } 1034 return error; 1035 } 1036 1037 /* 1038 * Must be called with "mtx" held. 1039 */ 1040 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1041 struct file *tfile, int fd) 1042 { 1043 int error, revents, pwake = 0; 1044 unsigned long flags; 1045 long user_watches; 1046 struct epitem *epi; 1047 struct ep_pqueue epq; 1048 1049 user_watches = atomic_long_read(&ep->user->epoll_watches); 1050 if (unlikely(user_watches >= max_user_watches)) 1051 return -ENOSPC; 1052 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1053 return -ENOMEM; 1054 1055 /* Item initialization follow here ... */ 1056 INIT_LIST_HEAD(&epi->rdllink); 1057 INIT_LIST_HEAD(&epi->fllink); 1058 INIT_LIST_HEAD(&epi->pwqlist); 1059 epi->ep = ep; 1060 ep_set_ffd(&epi->ffd, tfile, fd); 1061 epi->event = *event; 1062 epi->nwait = 0; 1063 epi->next = EP_UNACTIVE_PTR; 1064 1065 /* Initialize the poll table using the queue callback */ 1066 epq.epi = epi; 1067 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1068 1069 /* 1070 * Attach the item to the poll hooks and get current event bits. 1071 * We can safely use the file* here because its usage count has 1072 * been increased by the caller of this function. Note that after 1073 * this operation completes, the poll callback can start hitting 1074 * the new item. 1075 */ 1076 revents = tfile->f_op->poll(tfile, &epq.pt); 1077 1078 /* 1079 * We have to check if something went wrong during the poll wait queue 1080 * install process. Namely an allocation for a wait queue failed due 1081 * high memory pressure. 1082 */ 1083 error = -ENOMEM; 1084 if (epi->nwait < 0) 1085 goto error_unregister; 1086 1087 /* Add the current item to the list of active epoll hook for this file */ 1088 spin_lock(&tfile->f_lock); 1089 list_add_tail(&epi->fllink, &tfile->f_ep_links); 1090 spin_unlock(&tfile->f_lock); 1091 1092 /* 1093 * Add the current item to the RB tree. All RB tree operations are 1094 * protected by "mtx", and ep_insert() is called with "mtx" held. 1095 */ 1096 ep_rbtree_insert(ep, epi); 1097 1098 /* now check if we've created too many backpaths */ 1099 error = -EINVAL; 1100 if (reverse_path_check()) 1101 goto error_remove_epi; 1102 1103 /* We have to drop the new item inside our item list to keep track of it */ 1104 spin_lock_irqsave(&ep->lock, flags); 1105 1106 /* If the file is already "ready" we drop it inside the ready list */ 1107 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1108 list_add_tail(&epi->rdllink, &ep->rdllist); 1109 1110 /* Notify waiting tasks that events are available */ 1111 if (waitqueue_active(&ep->wq)) 1112 wake_up_locked(&ep->wq); 1113 if (waitqueue_active(&ep->poll_wait)) 1114 pwake++; 1115 } 1116 1117 spin_unlock_irqrestore(&ep->lock, flags); 1118 1119 atomic_long_inc(&ep->user->epoll_watches); 1120 1121 /* We have to call this outside the lock */ 1122 if (pwake) 1123 ep_poll_safewake(&ep->poll_wait); 1124 1125 return 0; 1126 1127 error_remove_epi: 1128 spin_lock(&tfile->f_lock); 1129 if (ep_is_linked(&epi->fllink)) 1130 list_del_init(&epi->fllink); 1131 spin_unlock(&tfile->f_lock); 1132 1133 rb_erase(&epi->rbn, &ep->rbr); 1134 1135 error_unregister: 1136 ep_unregister_pollwait(ep, epi); 1137 1138 /* 1139 * We need to do this because an event could have been arrived on some 1140 * allocated wait queue. Note that we don't care about the ep->ovflist 1141 * list, since that is used/cleaned only inside a section bound by "mtx". 1142 * And ep_insert() is called with "mtx" held. 1143 */ 1144 spin_lock_irqsave(&ep->lock, flags); 1145 if (ep_is_linked(&epi->rdllink)) 1146 list_del_init(&epi->rdllink); 1147 spin_unlock_irqrestore(&ep->lock, flags); 1148 1149 kmem_cache_free(epi_cache, epi); 1150 1151 return error; 1152 } 1153 1154 /* 1155 * Modify the interest event mask by dropping an event if the new mask 1156 * has a match in the current file status. Must be called with "mtx" held. 1157 */ 1158 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1159 { 1160 int pwake = 0; 1161 unsigned int revents; 1162 1163 /* 1164 * Set the new event interest mask before calling f_op->poll(); 1165 * otherwise we might miss an event that happens between the 1166 * f_op->poll() call and the new event set registering. 1167 */ 1168 epi->event.events = event->events; 1169 epi->event.data = event->data; /* protected by mtx */ 1170 1171 /* 1172 * Get current event bits. We can safely use the file* here because 1173 * its usage count has been increased by the caller of this function. 1174 */ 1175 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 1176 1177 /* 1178 * If the item is "hot" and it is not registered inside the ready 1179 * list, push it inside. 1180 */ 1181 if (revents & event->events) { 1182 spin_lock_irq(&ep->lock); 1183 if (!ep_is_linked(&epi->rdllink)) { 1184 list_add_tail(&epi->rdllink, &ep->rdllist); 1185 1186 /* Notify waiting tasks that events are available */ 1187 if (waitqueue_active(&ep->wq)) 1188 wake_up_locked(&ep->wq); 1189 if (waitqueue_active(&ep->poll_wait)) 1190 pwake++; 1191 } 1192 spin_unlock_irq(&ep->lock); 1193 } 1194 1195 /* We have to call this outside the lock */ 1196 if (pwake) 1197 ep_poll_safewake(&ep->poll_wait); 1198 1199 return 0; 1200 } 1201 1202 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1203 void *priv) 1204 { 1205 struct ep_send_events_data *esed = priv; 1206 int eventcnt; 1207 unsigned int revents; 1208 struct epitem *epi; 1209 struct epoll_event __user *uevent; 1210 1211 /* 1212 * We can loop without lock because we are passed a task private list. 1213 * Items cannot vanish during the loop because ep_scan_ready_list() is 1214 * holding "mtx" during this call. 1215 */ 1216 for (eventcnt = 0, uevent = esed->events; 1217 !list_empty(head) && eventcnt < esed->maxevents;) { 1218 epi = list_first_entry(head, struct epitem, rdllink); 1219 1220 list_del_init(&epi->rdllink); 1221 1222 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 1223 epi->event.events; 1224 1225 /* 1226 * If the event mask intersect the caller-requested one, 1227 * deliver the event to userspace. Again, ep_scan_ready_list() 1228 * is holding "mtx", so no operations coming from userspace 1229 * can change the item. 1230 */ 1231 if (revents) { 1232 if (__put_user(revents, &uevent->events) || 1233 __put_user(epi->event.data, &uevent->data)) { 1234 list_add(&epi->rdllink, head); 1235 return eventcnt ? eventcnt : -EFAULT; 1236 } 1237 eventcnt++; 1238 uevent++; 1239 if (epi->event.events & EPOLLONESHOT) 1240 epi->event.events &= EP_PRIVATE_BITS; 1241 else if (!(epi->event.events & EPOLLET)) { 1242 /* 1243 * If this file has been added with Level 1244 * Trigger mode, we need to insert back inside 1245 * the ready list, so that the next call to 1246 * epoll_wait() will check again the events 1247 * availability. At this point, no one can insert 1248 * into ep->rdllist besides us. The epoll_ctl() 1249 * callers are locked out by 1250 * ep_scan_ready_list() holding "mtx" and the 1251 * poll callback will queue them in ep->ovflist. 1252 */ 1253 list_add_tail(&epi->rdllink, &ep->rdllist); 1254 } 1255 } 1256 } 1257 1258 return eventcnt; 1259 } 1260 1261 static int ep_send_events(struct eventpoll *ep, 1262 struct epoll_event __user *events, int maxevents) 1263 { 1264 struct ep_send_events_data esed; 1265 1266 esed.maxevents = maxevents; 1267 esed.events = events; 1268 1269 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0); 1270 } 1271 1272 static inline struct timespec ep_set_mstimeout(long ms) 1273 { 1274 struct timespec now, ts = { 1275 .tv_sec = ms / MSEC_PER_SEC, 1276 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1277 }; 1278 1279 ktime_get_ts(&now); 1280 return timespec_add_safe(now, ts); 1281 } 1282 1283 /** 1284 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1285 * event buffer. 1286 * 1287 * @ep: Pointer to the eventpoll context. 1288 * @events: Pointer to the userspace buffer where the ready events should be 1289 * stored. 1290 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1291 * @timeout: Maximum timeout for the ready events fetch operation, in 1292 * milliseconds. If the @timeout is zero, the function will not block, 1293 * while if the @timeout is less than zero, the function will block 1294 * until at least one event has been retrieved (or an error 1295 * occurred). 1296 * 1297 * Returns: Returns the number of ready events which have been fetched, or an 1298 * error code, in case of error. 1299 */ 1300 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1301 int maxevents, long timeout) 1302 { 1303 int res = 0, eavail, timed_out = 0; 1304 unsigned long flags; 1305 long slack = 0; 1306 wait_queue_t wait; 1307 ktime_t expires, *to = NULL; 1308 1309 if (timeout > 0) { 1310 struct timespec end_time = ep_set_mstimeout(timeout); 1311 1312 slack = select_estimate_accuracy(&end_time); 1313 to = &expires; 1314 *to = timespec_to_ktime(end_time); 1315 } else if (timeout == 0) { 1316 /* 1317 * Avoid the unnecessary trip to the wait queue loop, if the 1318 * caller specified a non blocking operation. 1319 */ 1320 timed_out = 1; 1321 spin_lock_irqsave(&ep->lock, flags); 1322 goto check_events; 1323 } 1324 1325 fetch_events: 1326 spin_lock_irqsave(&ep->lock, flags); 1327 1328 if (!ep_events_available(ep)) { 1329 /* 1330 * We don't have any available event to return to the caller. 1331 * We need to sleep here, and we will be wake up by 1332 * ep_poll_callback() when events will become available. 1333 */ 1334 init_waitqueue_entry(&wait, current); 1335 __add_wait_queue_exclusive(&ep->wq, &wait); 1336 1337 for (;;) { 1338 /* 1339 * We don't want to sleep if the ep_poll_callback() sends us 1340 * a wakeup in between. That's why we set the task state 1341 * to TASK_INTERRUPTIBLE before doing the checks. 1342 */ 1343 set_current_state(TASK_INTERRUPTIBLE); 1344 if (ep_events_available(ep) || timed_out) 1345 break; 1346 if (signal_pending(current)) { 1347 res = -EINTR; 1348 break; 1349 } 1350 1351 spin_unlock_irqrestore(&ep->lock, flags); 1352 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1353 timed_out = 1; 1354 1355 spin_lock_irqsave(&ep->lock, flags); 1356 } 1357 __remove_wait_queue(&ep->wq, &wait); 1358 1359 set_current_state(TASK_RUNNING); 1360 } 1361 check_events: 1362 /* Is it worth to try to dig for events ? */ 1363 eavail = ep_events_available(ep); 1364 1365 spin_unlock_irqrestore(&ep->lock, flags); 1366 1367 /* 1368 * Try to transfer events to user space. In case we get 0 events and 1369 * there's still timeout left over, we go trying again in search of 1370 * more luck. 1371 */ 1372 if (!res && eavail && 1373 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1374 goto fetch_events; 1375 1376 return res; 1377 } 1378 1379 /** 1380 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1381 * API, to verify that adding an epoll file inside another 1382 * epoll structure, does not violate the constraints, in 1383 * terms of closed loops, or too deep chains (which can 1384 * result in excessive stack usage). 1385 * 1386 * @priv: Pointer to the epoll file to be currently checked. 1387 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1388 * data structure pointer. 1389 * @call_nests: Current dept of the @ep_call_nested() call stack. 1390 * 1391 * Returns: Returns zero if adding the epoll @file inside current epoll 1392 * structure @ep does not violate the constraints, or -1 otherwise. 1393 */ 1394 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1395 { 1396 int error = 0; 1397 struct file *file = priv; 1398 struct eventpoll *ep = file->private_data; 1399 struct eventpoll *ep_tovisit; 1400 struct rb_node *rbp; 1401 struct epitem *epi; 1402 1403 mutex_lock_nested(&ep->mtx, call_nests + 1); 1404 ep->visited = 1; 1405 list_add(&ep->visited_list_link, &visited_list); 1406 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1407 epi = rb_entry(rbp, struct epitem, rbn); 1408 if (unlikely(is_file_epoll(epi->ffd.file))) { 1409 ep_tovisit = epi->ffd.file->private_data; 1410 if (ep_tovisit->visited) 1411 continue; 1412 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1413 ep_loop_check_proc, epi->ffd.file, 1414 ep_tovisit, current); 1415 if (error != 0) 1416 break; 1417 } else { 1418 /* 1419 * If we've reached a file that is not associated with 1420 * an ep, then we need to check if the newly added 1421 * links are going to add too many wakeup paths. We do 1422 * this by adding it to the tfile_check_list, if it's 1423 * not already there, and calling reverse_path_check() 1424 * during ep_insert(). 1425 */ 1426 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1427 list_add(&epi->ffd.file->f_tfile_llink, 1428 &tfile_check_list); 1429 } 1430 } 1431 mutex_unlock(&ep->mtx); 1432 1433 return error; 1434 } 1435 1436 /** 1437 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1438 * another epoll file (represented by @ep) does not create 1439 * closed loops or too deep chains. 1440 * 1441 * @ep: Pointer to the epoll private data structure. 1442 * @file: Pointer to the epoll file to be checked. 1443 * 1444 * Returns: Returns zero if adding the epoll @file inside current epoll 1445 * structure @ep does not violate the constraints, or -1 otherwise. 1446 */ 1447 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1448 { 1449 int ret; 1450 struct eventpoll *ep_cur, *ep_next; 1451 1452 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1453 ep_loop_check_proc, file, ep, current); 1454 /* clear visited list */ 1455 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1456 visited_list_link) { 1457 ep_cur->visited = 0; 1458 list_del(&ep_cur->visited_list_link); 1459 } 1460 return ret; 1461 } 1462 1463 static void clear_tfile_check_list(void) 1464 { 1465 struct file *file; 1466 1467 /* first clear the tfile_check_list */ 1468 while (!list_empty(&tfile_check_list)) { 1469 file = list_first_entry(&tfile_check_list, struct file, 1470 f_tfile_llink); 1471 list_del_init(&file->f_tfile_llink); 1472 } 1473 INIT_LIST_HEAD(&tfile_check_list); 1474 } 1475 1476 /* 1477 * Open an eventpoll file descriptor. 1478 */ 1479 SYSCALL_DEFINE1(epoll_create1, int, flags) 1480 { 1481 int error, fd; 1482 struct eventpoll *ep = NULL; 1483 struct file *file; 1484 1485 /* Check the EPOLL_* constant for consistency. */ 1486 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1487 1488 if (flags & ~EPOLL_CLOEXEC) 1489 return -EINVAL; 1490 /* 1491 * Create the internal data structure ("struct eventpoll"). 1492 */ 1493 error = ep_alloc(&ep); 1494 if (error < 0) 1495 return error; 1496 /* 1497 * Creates all the items needed to setup an eventpoll file. That is, 1498 * a file structure and a free file descriptor. 1499 */ 1500 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1501 if (fd < 0) { 1502 error = fd; 1503 goto out_free_ep; 1504 } 1505 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1506 O_RDWR | (flags & O_CLOEXEC)); 1507 if (IS_ERR(file)) { 1508 error = PTR_ERR(file); 1509 goto out_free_fd; 1510 } 1511 fd_install(fd, file); 1512 ep->file = file; 1513 return fd; 1514 1515 out_free_fd: 1516 put_unused_fd(fd); 1517 out_free_ep: 1518 ep_free(ep); 1519 return error; 1520 } 1521 1522 SYSCALL_DEFINE1(epoll_create, int, size) 1523 { 1524 if (size <= 0) 1525 return -EINVAL; 1526 1527 return sys_epoll_create1(0); 1528 } 1529 1530 /* 1531 * The following function implements the controller interface for 1532 * the eventpoll file that enables the insertion/removal/change of 1533 * file descriptors inside the interest set. 1534 */ 1535 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1536 struct epoll_event __user *, event) 1537 { 1538 int error; 1539 int did_lock_epmutex = 0; 1540 struct file *file, *tfile; 1541 struct eventpoll *ep; 1542 struct epitem *epi; 1543 struct epoll_event epds; 1544 1545 error = -EFAULT; 1546 if (ep_op_has_event(op) && 1547 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1548 goto error_return; 1549 1550 /* Get the "struct file *" for the eventpoll file */ 1551 error = -EBADF; 1552 file = fget(epfd); 1553 if (!file) 1554 goto error_return; 1555 1556 /* Get the "struct file *" for the target file */ 1557 tfile = fget(fd); 1558 if (!tfile) 1559 goto error_fput; 1560 1561 /* The target file descriptor must support poll */ 1562 error = -EPERM; 1563 if (!tfile->f_op || !tfile->f_op->poll) 1564 goto error_tgt_fput; 1565 1566 /* 1567 * We have to check that the file structure underneath the file descriptor 1568 * the user passed to us _is_ an eventpoll file. And also we do not permit 1569 * adding an epoll file descriptor inside itself. 1570 */ 1571 error = -EINVAL; 1572 if (file == tfile || !is_file_epoll(file)) 1573 goto error_tgt_fput; 1574 1575 /* 1576 * At this point it is safe to assume that the "private_data" contains 1577 * our own data structure. 1578 */ 1579 ep = file->private_data; 1580 1581 /* 1582 * When we insert an epoll file descriptor, inside another epoll file 1583 * descriptor, there is the change of creating closed loops, which are 1584 * better be handled here, than in more critical paths. While we are 1585 * checking for loops we also determine the list of files reachable 1586 * and hang them on the tfile_check_list, so we can check that we 1587 * haven't created too many possible wakeup paths. 1588 * 1589 * We need to hold the epmutex across both ep_insert and ep_remove 1590 * b/c we want to make sure we are looking at a coherent view of 1591 * epoll network. 1592 */ 1593 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) { 1594 mutex_lock(&epmutex); 1595 did_lock_epmutex = 1; 1596 } 1597 if (op == EPOLL_CTL_ADD) { 1598 if (is_file_epoll(tfile)) { 1599 error = -ELOOP; 1600 if (ep_loop_check(ep, tfile) != 0) 1601 goto error_tgt_fput; 1602 } else 1603 list_add(&tfile->f_tfile_llink, &tfile_check_list); 1604 } 1605 1606 mutex_lock_nested(&ep->mtx, 0); 1607 1608 /* 1609 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1610 * above, we can be sure to be able to use the item looked up by 1611 * ep_find() till we release the mutex. 1612 */ 1613 epi = ep_find(ep, tfile, fd); 1614 1615 error = -EINVAL; 1616 switch (op) { 1617 case EPOLL_CTL_ADD: 1618 if (!epi) { 1619 epds.events |= POLLERR | POLLHUP; 1620 error = ep_insert(ep, &epds, tfile, fd); 1621 } else 1622 error = -EEXIST; 1623 clear_tfile_check_list(); 1624 break; 1625 case EPOLL_CTL_DEL: 1626 if (epi) 1627 error = ep_remove(ep, epi); 1628 else 1629 error = -ENOENT; 1630 break; 1631 case EPOLL_CTL_MOD: 1632 if (epi) { 1633 epds.events |= POLLERR | POLLHUP; 1634 error = ep_modify(ep, epi, &epds); 1635 } else 1636 error = -ENOENT; 1637 break; 1638 } 1639 mutex_unlock(&ep->mtx); 1640 1641 error_tgt_fput: 1642 if (did_lock_epmutex) 1643 mutex_unlock(&epmutex); 1644 1645 fput(tfile); 1646 error_fput: 1647 fput(file); 1648 error_return: 1649 1650 return error; 1651 } 1652 1653 /* 1654 * Implement the event wait interface for the eventpoll file. It is the kernel 1655 * part of the user space epoll_wait(2). 1656 */ 1657 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1658 int, maxevents, int, timeout) 1659 { 1660 int error; 1661 struct file *file; 1662 struct eventpoll *ep; 1663 1664 /* The maximum number of event must be greater than zero */ 1665 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1666 return -EINVAL; 1667 1668 /* Verify that the area passed by the user is writeable */ 1669 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 1670 error = -EFAULT; 1671 goto error_return; 1672 } 1673 1674 /* Get the "struct file *" for the eventpoll file */ 1675 error = -EBADF; 1676 file = fget(epfd); 1677 if (!file) 1678 goto error_return; 1679 1680 /* 1681 * We have to check that the file structure underneath the fd 1682 * the user passed to us _is_ an eventpoll file. 1683 */ 1684 error = -EINVAL; 1685 if (!is_file_epoll(file)) 1686 goto error_fput; 1687 1688 /* 1689 * At this point it is safe to assume that the "private_data" contains 1690 * our own data structure. 1691 */ 1692 ep = file->private_data; 1693 1694 /* Time to fish for events ... */ 1695 error = ep_poll(ep, events, maxevents, timeout); 1696 1697 error_fput: 1698 fput(file); 1699 error_return: 1700 1701 return error; 1702 } 1703 1704 #ifdef HAVE_SET_RESTORE_SIGMASK 1705 1706 /* 1707 * Implement the event wait interface for the eventpoll file. It is the kernel 1708 * part of the user space epoll_pwait(2). 1709 */ 1710 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1711 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1712 size_t, sigsetsize) 1713 { 1714 int error; 1715 sigset_t ksigmask, sigsaved; 1716 1717 /* 1718 * If the caller wants a certain signal mask to be set during the wait, 1719 * we apply it here. 1720 */ 1721 if (sigmask) { 1722 if (sigsetsize != sizeof(sigset_t)) 1723 return -EINVAL; 1724 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1725 return -EFAULT; 1726 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1727 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1728 } 1729 1730 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1731 1732 /* 1733 * If we changed the signal mask, we need to restore the original one. 1734 * In case we've got a signal while waiting, we do not restore the 1735 * signal mask yet, and we allow do_signal() to deliver the signal on 1736 * the way back to userspace, before the signal mask is restored. 1737 */ 1738 if (sigmask) { 1739 if (error == -EINTR) { 1740 memcpy(¤t->saved_sigmask, &sigsaved, 1741 sizeof(sigsaved)); 1742 set_restore_sigmask(); 1743 } else 1744 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1745 } 1746 1747 return error; 1748 } 1749 1750 #endif /* HAVE_SET_RESTORE_SIGMASK */ 1751 1752 static int __init eventpoll_init(void) 1753 { 1754 struct sysinfo si; 1755 1756 si_meminfo(&si); 1757 /* 1758 * Allows top 4% of lomem to be allocated for epoll watches (per user). 1759 */ 1760 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 1761 EP_ITEM_COST; 1762 BUG_ON(max_user_watches < 0); 1763 1764 /* 1765 * Initialize the structure used to perform epoll file descriptor 1766 * inclusion loops checks. 1767 */ 1768 ep_nested_calls_init(&poll_loop_ncalls); 1769 1770 /* Initialize the structure used to perform safe poll wait head wake ups */ 1771 ep_nested_calls_init(&poll_safewake_ncalls); 1772 1773 /* Initialize the structure used to perform file's f_op->poll() calls */ 1774 ep_nested_calls_init(&poll_readywalk_ncalls); 1775 1776 /* Allocates slab cache used to allocate "struct epitem" items */ 1777 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1778 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1779 1780 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1781 pwq_cache = kmem_cache_create("eventpoll_pwq", 1782 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 1783 1784 return 0; 1785 } 1786 fs_initcall(eventpoll_init); 1787