xref: /linux/fs/eventpoll.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (spinlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a spinlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
92 
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
95 
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97 
98 #define EP_UNACTIVE_PTR ((void *) -1L)
99 
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101 
102 struct epoll_filefd {
103 	struct file *file;
104 	int fd;
105 };
106 
107 /*
108  * Structure used to track possible nested calls, for too deep recursions
109  * and loop cycles.
110  */
111 struct nested_call_node {
112 	struct list_head llink;
113 	void *cookie;
114 	void *ctx;
115 };
116 
117 /*
118  * This structure is used as collector for nested calls, to check for
119  * maximum recursion dept and loop cycles.
120  */
121 struct nested_calls {
122 	struct list_head tasks_call_list;
123 	spinlock_t lock;
124 };
125 
126 /*
127  * Each file descriptor added to the eventpoll interface will
128  * have an entry of this type linked to the "rbr" RB tree.
129  */
130 struct epitem {
131 	/* RB tree node used to link this structure to the eventpoll RB tree */
132 	struct rb_node rbn;
133 
134 	/* List header used to link this structure to the eventpoll ready list */
135 	struct list_head rdllink;
136 
137 	/*
138 	 * Works together "struct eventpoll"->ovflist in keeping the
139 	 * single linked chain of items.
140 	 */
141 	struct epitem *next;
142 
143 	/* The file descriptor information this item refers to */
144 	struct epoll_filefd ffd;
145 
146 	/* Number of active wait queue attached to poll operations */
147 	int nwait;
148 
149 	/* List containing poll wait queues */
150 	struct list_head pwqlist;
151 
152 	/* The "container" of this item */
153 	struct eventpoll *ep;
154 
155 	/* List header used to link this item to the "struct file" items list */
156 	struct list_head fllink;
157 
158 	/* The structure that describe the interested events and the source fd */
159 	struct epoll_event event;
160 };
161 
162 /*
163  * This structure is stored inside the "private_data" member of the file
164  * structure and represents the main data structure for the eventpoll
165  * interface.
166  */
167 struct eventpoll {
168 	/* Protect the access to this structure */
169 	spinlock_t lock;
170 
171 	/*
172 	 * This mutex is used to ensure that files are not removed
173 	 * while epoll is using them. This is held during the event
174 	 * collection loop, the file cleanup path, the epoll file exit
175 	 * code and the ctl operations.
176 	 */
177 	struct mutex mtx;
178 
179 	/* Wait queue used by sys_epoll_wait() */
180 	wait_queue_head_t wq;
181 
182 	/* Wait queue used by file->poll() */
183 	wait_queue_head_t poll_wait;
184 
185 	/* List of ready file descriptors */
186 	struct list_head rdllist;
187 
188 	/* RB tree root used to store monitored fd structs */
189 	struct rb_root rbr;
190 
191 	/*
192 	 * This is a single linked list that chains all the "struct epitem" that
193 	 * happened while transferring ready events to userspace w/out
194 	 * holding ->lock.
195 	 */
196 	struct epitem *ovflist;
197 
198 	/* The user that created the eventpoll descriptor */
199 	struct user_struct *user;
200 
201 	struct file *file;
202 
203 	/* used to optimize loop detection check */
204 	int visited;
205 	struct list_head visited_list_link;
206 };
207 
208 /* Wait structure used by the poll hooks */
209 struct eppoll_entry {
210 	/* List header used to link this structure to the "struct epitem" */
211 	struct list_head llink;
212 
213 	/* The "base" pointer is set to the container "struct epitem" */
214 	struct epitem *base;
215 
216 	/*
217 	 * Wait queue item that will be linked to the target file wait
218 	 * queue head.
219 	 */
220 	wait_queue_t wait;
221 
222 	/* The wait queue head that linked the "wait" wait queue item */
223 	wait_queue_head_t *whead;
224 };
225 
226 /* Wrapper struct used by poll queueing */
227 struct ep_pqueue {
228 	poll_table pt;
229 	struct epitem *epi;
230 };
231 
232 /* Used by the ep_send_events() function as callback private data */
233 struct ep_send_events_data {
234 	int maxevents;
235 	struct epoll_event __user *events;
236 };
237 
238 /*
239  * Configuration options available inside /proc/sys/fs/epoll/
240  */
241 /* Maximum number of epoll watched descriptors, per user */
242 static long max_user_watches __read_mostly;
243 
244 /*
245  * This mutex is used to serialize ep_free() and eventpoll_release_file().
246  */
247 static DEFINE_MUTEX(epmutex);
248 
249 /* Used to check for epoll file descriptor inclusion loops */
250 static struct nested_calls poll_loop_ncalls;
251 
252 /* Used for safe wake up implementation */
253 static struct nested_calls poll_safewake_ncalls;
254 
255 /* Used to call file's f_op->poll() under the nested calls boundaries */
256 static struct nested_calls poll_readywalk_ncalls;
257 
258 /* Slab cache used to allocate "struct epitem" */
259 static struct kmem_cache *epi_cache __read_mostly;
260 
261 /* Slab cache used to allocate "struct eppoll_entry" */
262 static struct kmem_cache *pwq_cache __read_mostly;
263 
264 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
265 static LIST_HEAD(visited_list);
266 
267 /*
268  * List of files with newly added links, where we may need to limit the number
269  * of emanating paths. Protected by the epmutex.
270  */
271 static LIST_HEAD(tfile_check_list);
272 
273 #ifdef CONFIG_SYSCTL
274 
275 #include <linux/sysctl.h>
276 
277 static long zero;
278 static long long_max = LONG_MAX;
279 
280 ctl_table epoll_table[] = {
281 	{
282 		.procname	= "max_user_watches",
283 		.data		= &max_user_watches,
284 		.maxlen		= sizeof(max_user_watches),
285 		.mode		= 0644,
286 		.proc_handler	= proc_doulongvec_minmax,
287 		.extra1		= &zero,
288 		.extra2		= &long_max,
289 	},
290 	{ }
291 };
292 #endif /* CONFIG_SYSCTL */
293 
294 static const struct file_operations eventpoll_fops;
295 
296 static inline int is_file_epoll(struct file *f)
297 {
298 	return f->f_op == &eventpoll_fops;
299 }
300 
301 /* Setup the structure that is used as key for the RB tree */
302 static inline void ep_set_ffd(struct epoll_filefd *ffd,
303 			      struct file *file, int fd)
304 {
305 	ffd->file = file;
306 	ffd->fd = fd;
307 }
308 
309 /* Compare RB tree keys */
310 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
311 			     struct epoll_filefd *p2)
312 {
313 	return (p1->file > p2->file ? +1:
314 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
315 }
316 
317 /* Tells us if the item is currently linked */
318 static inline int ep_is_linked(struct list_head *p)
319 {
320 	return !list_empty(p);
321 }
322 
323 /* Get the "struct epitem" from a wait queue pointer */
324 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
325 {
326 	return container_of(p, struct eppoll_entry, wait)->base;
327 }
328 
329 /* Get the "struct epitem" from an epoll queue wrapper */
330 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
331 {
332 	return container_of(p, struct ep_pqueue, pt)->epi;
333 }
334 
335 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
336 static inline int ep_op_has_event(int op)
337 {
338 	return op != EPOLL_CTL_DEL;
339 }
340 
341 /* Initialize the poll safe wake up structure */
342 static void ep_nested_calls_init(struct nested_calls *ncalls)
343 {
344 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
345 	spin_lock_init(&ncalls->lock);
346 }
347 
348 /**
349  * ep_events_available - Checks if ready events might be available.
350  *
351  * @ep: Pointer to the eventpoll context.
352  *
353  * Returns: Returns a value different than zero if ready events are available,
354  *          or zero otherwise.
355  */
356 static inline int ep_events_available(struct eventpoll *ep)
357 {
358 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
359 }
360 
361 /**
362  * ep_call_nested - Perform a bound (possibly) nested call, by checking
363  *                  that the recursion limit is not exceeded, and that
364  *                  the same nested call (by the meaning of same cookie) is
365  *                  no re-entered.
366  *
367  * @ncalls: Pointer to the nested_calls structure to be used for this call.
368  * @max_nests: Maximum number of allowed nesting calls.
369  * @nproc: Nested call core function pointer.
370  * @priv: Opaque data to be passed to the @nproc callback.
371  * @cookie: Cookie to be used to identify this nested call.
372  * @ctx: This instance context.
373  *
374  * Returns: Returns the code returned by the @nproc callback, or -1 if
375  *          the maximum recursion limit has been exceeded.
376  */
377 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
378 			  int (*nproc)(void *, void *, int), void *priv,
379 			  void *cookie, void *ctx)
380 {
381 	int error, call_nests = 0;
382 	unsigned long flags;
383 	struct list_head *lsthead = &ncalls->tasks_call_list;
384 	struct nested_call_node *tncur;
385 	struct nested_call_node tnode;
386 
387 	spin_lock_irqsave(&ncalls->lock, flags);
388 
389 	/*
390 	 * Try to see if the current task is already inside this wakeup call.
391 	 * We use a list here, since the population inside this set is always
392 	 * very much limited.
393 	 */
394 	list_for_each_entry(tncur, lsthead, llink) {
395 		if (tncur->ctx == ctx &&
396 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
397 			/*
398 			 * Ops ... loop detected or maximum nest level reached.
399 			 * We abort this wake by breaking the cycle itself.
400 			 */
401 			error = -1;
402 			goto out_unlock;
403 		}
404 	}
405 
406 	/* Add the current task and cookie to the list */
407 	tnode.ctx = ctx;
408 	tnode.cookie = cookie;
409 	list_add(&tnode.llink, lsthead);
410 
411 	spin_unlock_irqrestore(&ncalls->lock, flags);
412 
413 	/* Call the nested function */
414 	error = (*nproc)(priv, cookie, call_nests);
415 
416 	/* Remove the current task from the list */
417 	spin_lock_irqsave(&ncalls->lock, flags);
418 	list_del(&tnode.llink);
419 out_unlock:
420 	spin_unlock_irqrestore(&ncalls->lock, flags);
421 
422 	return error;
423 }
424 
425 #ifdef CONFIG_DEBUG_LOCK_ALLOC
426 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
427 				     unsigned long events, int subclass)
428 {
429 	unsigned long flags;
430 
431 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
432 	wake_up_locked_poll(wqueue, events);
433 	spin_unlock_irqrestore(&wqueue->lock, flags);
434 }
435 #else
436 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
437 				     unsigned long events, int subclass)
438 {
439 	wake_up_poll(wqueue, events);
440 }
441 #endif
442 
443 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
444 {
445 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
446 			  1 + call_nests);
447 	return 0;
448 }
449 
450 /*
451  * Perform a safe wake up of the poll wait list. The problem is that
452  * with the new callback'd wake up system, it is possible that the
453  * poll callback is reentered from inside the call to wake_up() done
454  * on the poll wait queue head. The rule is that we cannot reenter the
455  * wake up code from the same task more than EP_MAX_NESTS times,
456  * and we cannot reenter the same wait queue head at all. This will
457  * enable to have a hierarchy of epoll file descriptor of no more than
458  * EP_MAX_NESTS deep.
459  */
460 static void ep_poll_safewake(wait_queue_head_t *wq)
461 {
462 	int this_cpu = get_cpu();
463 
464 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
465 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
466 
467 	put_cpu();
468 }
469 
470 /*
471  * This function unregisters poll callbacks from the associated file
472  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
473  * ep_free).
474  */
475 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
476 {
477 	struct list_head *lsthead = &epi->pwqlist;
478 	struct eppoll_entry *pwq;
479 
480 	while (!list_empty(lsthead)) {
481 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
482 
483 		list_del(&pwq->llink);
484 		remove_wait_queue(pwq->whead, &pwq->wait);
485 		kmem_cache_free(pwq_cache, pwq);
486 	}
487 }
488 
489 /**
490  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
491  *                      the scan code, to call f_op->poll(). Also allows for
492  *                      O(NumReady) performance.
493  *
494  * @ep: Pointer to the epoll private data structure.
495  * @sproc: Pointer to the scan callback.
496  * @priv: Private opaque data passed to the @sproc callback.
497  * @depth: The current depth of recursive f_op->poll calls.
498  *
499  * Returns: The same integer error code returned by the @sproc callback.
500  */
501 static int ep_scan_ready_list(struct eventpoll *ep,
502 			      int (*sproc)(struct eventpoll *,
503 					   struct list_head *, void *),
504 			      void *priv,
505 			      int depth)
506 {
507 	int error, pwake = 0;
508 	unsigned long flags;
509 	struct epitem *epi, *nepi;
510 	LIST_HEAD(txlist);
511 
512 	/*
513 	 * We need to lock this because we could be hit by
514 	 * eventpoll_release_file() and epoll_ctl().
515 	 */
516 	mutex_lock_nested(&ep->mtx, depth);
517 
518 	/*
519 	 * Steal the ready list, and re-init the original one to the
520 	 * empty list. Also, set ep->ovflist to NULL so that events
521 	 * happening while looping w/out locks, are not lost. We cannot
522 	 * have the poll callback to queue directly on ep->rdllist,
523 	 * because we want the "sproc" callback to be able to do it
524 	 * in a lockless way.
525 	 */
526 	spin_lock_irqsave(&ep->lock, flags);
527 	list_splice_init(&ep->rdllist, &txlist);
528 	ep->ovflist = NULL;
529 	spin_unlock_irqrestore(&ep->lock, flags);
530 
531 	/*
532 	 * Now call the callback function.
533 	 */
534 	error = (*sproc)(ep, &txlist, priv);
535 
536 	spin_lock_irqsave(&ep->lock, flags);
537 	/*
538 	 * During the time we spent inside the "sproc" callback, some
539 	 * other events might have been queued by the poll callback.
540 	 * We re-insert them inside the main ready-list here.
541 	 */
542 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
543 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
544 		/*
545 		 * We need to check if the item is already in the list.
546 		 * During the "sproc" callback execution time, items are
547 		 * queued into ->ovflist but the "txlist" might already
548 		 * contain them, and the list_splice() below takes care of them.
549 		 */
550 		if (!ep_is_linked(&epi->rdllink))
551 			list_add_tail(&epi->rdllink, &ep->rdllist);
552 	}
553 	/*
554 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
555 	 * releasing the lock, events will be queued in the normal way inside
556 	 * ep->rdllist.
557 	 */
558 	ep->ovflist = EP_UNACTIVE_PTR;
559 
560 	/*
561 	 * Quickly re-inject items left on "txlist".
562 	 */
563 	list_splice(&txlist, &ep->rdllist);
564 
565 	if (!list_empty(&ep->rdllist)) {
566 		/*
567 		 * Wake up (if active) both the eventpoll wait list and
568 		 * the ->poll() wait list (delayed after we release the lock).
569 		 */
570 		if (waitqueue_active(&ep->wq))
571 			wake_up_locked(&ep->wq);
572 		if (waitqueue_active(&ep->poll_wait))
573 			pwake++;
574 	}
575 	spin_unlock_irqrestore(&ep->lock, flags);
576 
577 	mutex_unlock(&ep->mtx);
578 
579 	/* We have to call this outside the lock */
580 	if (pwake)
581 		ep_poll_safewake(&ep->poll_wait);
582 
583 	return error;
584 }
585 
586 /*
587  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
588  * all the associated resources. Must be called with "mtx" held.
589  */
590 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
591 {
592 	unsigned long flags;
593 	struct file *file = epi->ffd.file;
594 
595 	/*
596 	 * Removes poll wait queue hooks. We _have_ to do this without holding
597 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
598 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
599 	 * queue head lock when unregistering the wait queue. The wakeup callback
600 	 * will run by holding the wait queue head lock and will call our callback
601 	 * that will try to get "ep->lock".
602 	 */
603 	ep_unregister_pollwait(ep, epi);
604 
605 	/* Remove the current item from the list of epoll hooks */
606 	spin_lock(&file->f_lock);
607 	if (ep_is_linked(&epi->fllink))
608 		list_del_init(&epi->fllink);
609 	spin_unlock(&file->f_lock);
610 
611 	rb_erase(&epi->rbn, &ep->rbr);
612 
613 	spin_lock_irqsave(&ep->lock, flags);
614 	if (ep_is_linked(&epi->rdllink))
615 		list_del_init(&epi->rdllink);
616 	spin_unlock_irqrestore(&ep->lock, flags);
617 
618 	/* At this point it is safe to free the eventpoll item */
619 	kmem_cache_free(epi_cache, epi);
620 
621 	atomic_long_dec(&ep->user->epoll_watches);
622 
623 	return 0;
624 }
625 
626 static void ep_free(struct eventpoll *ep)
627 {
628 	struct rb_node *rbp;
629 	struct epitem *epi;
630 
631 	/* We need to release all tasks waiting for these file */
632 	if (waitqueue_active(&ep->poll_wait))
633 		ep_poll_safewake(&ep->poll_wait);
634 
635 	/*
636 	 * We need to lock this because we could be hit by
637 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
638 	 * We do not need to hold "ep->mtx" here because the epoll file
639 	 * is on the way to be removed and no one has references to it
640 	 * anymore. The only hit might come from eventpoll_release_file() but
641 	 * holding "epmutex" is sufficient here.
642 	 */
643 	mutex_lock(&epmutex);
644 
645 	/*
646 	 * Walks through the whole tree by unregistering poll callbacks.
647 	 */
648 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
649 		epi = rb_entry(rbp, struct epitem, rbn);
650 
651 		ep_unregister_pollwait(ep, epi);
652 	}
653 
654 	/*
655 	 * Walks through the whole tree by freeing each "struct epitem". At this
656 	 * point we are sure no poll callbacks will be lingering around, and also by
657 	 * holding "epmutex" we can be sure that no file cleanup code will hit
658 	 * us during this operation. So we can avoid the lock on "ep->lock".
659 	 */
660 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
661 		epi = rb_entry(rbp, struct epitem, rbn);
662 		ep_remove(ep, epi);
663 	}
664 
665 	mutex_unlock(&epmutex);
666 	mutex_destroy(&ep->mtx);
667 	free_uid(ep->user);
668 	kfree(ep);
669 }
670 
671 static int ep_eventpoll_release(struct inode *inode, struct file *file)
672 {
673 	struct eventpoll *ep = file->private_data;
674 
675 	if (ep)
676 		ep_free(ep);
677 
678 	return 0;
679 }
680 
681 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
682 			       void *priv)
683 {
684 	struct epitem *epi, *tmp;
685 
686 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
687 		if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
688 		    epi->event.events)
689 			return POLLIN | POLLRDNORM;
690 		else {
691 			/*
692 			 * Item has been dropped into the ready list by the poll
693 			 * callback, but it's not actually ready, as far as
694 			 * caller requested events goes. We can remove it here.
695 			 */
696 			list_del_init(&epi->rdllink);
697 		}
698 	}
699 
700 	return 0;
701 }
702 
703 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
704 {
705 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
706 }
707 
708 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
709 {
710 	int pollflags;
711 	struct eventpoll *ep = file->private_data;
712 
713 	/* Insert inside our poll wait queue */
714 	poll_wait(file, &ep->poll_wait, wait);
715 
716 	/*
717 	 * Proceed to find out if wanted events are really available inside
718 	 * the ready list. This need to be done under ep_call_nested()
719 	 * supervision, since the call to f_op->poll() done on listed files
720 	 * could re-enter here.
721 	 */
722 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
723 				   ep_poll_readyevents_proc, ep, ep, current);
724 
725 	return pollflags != -1 ? pollflags : 0;
726 }
727 
728 /* File callbacks that implement the eventpoll file behaviour */
729 static const struct file_operations eventpoll_fops = {
730 	.release	= ep_eventpoll_release,
731 	.poll		= ep_eventpoll_poll,
732 	.llseek		= noop_llseek,
733 };
734 
735 /*
736  * This is called from eventpoll_release() to unlink files from the eventpoll
737  * interface. We need to have this facility to cleanup correctly files that are
738  * closed without being removed from the eventpoll interface.
739  */
740 void eventpoll_release_file(struct file *file)
741 {
742 	struct list_head *lsthead = &file->f_ep_links;
743 	struct eventpoll *ep;
744 	struct epitem *epi;
745 
746 	/*
747 	 * We don't want to get "file->f_lock" because it is not
748 	 * necessary. It is not necessary because we're in the "struct file"
749 	 * cleanup path, and this means that no one is using this file anymore.
750 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
751 	 * point, the file counter already went to zero and fget() would fail.
752 	 * The only hit might come from ep_free() but by holding the mutex
753 	 * will correctly serialize the operation. We do need to acquire
754 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
755 	 * from anywhere but ep_free().
756 	 *
757 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
758 	 */
759 	mutex_lock(&epmutex);
760 
761 	while (!list_empty(lsthead)) {
762 		epi = list_first_entry(lsthead, struct epitem, fllink);
763 
764 		ep = epi->ep;
765 		list_del_init(&epi->fllink);
766 		mutex_lock_nested(&ep->mtx, 0);
767 		ep_remove(ep, epi);
768 		mutex_unlock(&ep->mtx);
769 	}
770 
771 	mutex_unlock(&epmutex);
772 }
773 
774 static int ep_alloc(struct eventpoll **pep)
775 {
776 	int error;
777 	struct user_struct *user;
778 	struct eventpoll *ep;
779 
780 	user = get_current_user();
781 	error = -ENOMEM;
782 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
783 	if (unlikely(!ep))
784 		goto free_uid;
785 
786 	spin_lock_init(&ep->lock);
787 	mutex_init(&ep->mtx);
788 	init_waitqueue_head(&ep->wq);
789 	init_waitqueue_head(&ep->poll_wait);
790 	INIT_LIST_HEAD(&ep->rdllist);
791 	ep->rbr = RB_ROOT;
792 	ep->ovflist = EP_UNACTIVE_PTR;
793 	ep->user = user;
794 
795 	*pep = ep;
796 
797 	return 0;
798 
799 free_uid:
800 	free_uid(user);
801 	return error;
802 }
803 
804 /*
805  * Search the file inside the eventpoll tree. The RB tree operations
806  * are protected by the "mtx" mutex, and ep_find() must be called with
807  * "mtx" held.
808  */
809 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
810 {
811 	int kcmp;
812 	struct rb_node *rbp;
813 	struct epitem *epi, *epir = NULL;
814 	struct epoll_filefd ffd;
815 
816 	ep_set_ffd(&ffd, file, fd);
817 	for (rbp = ep->rbr.rb_node; rbp; ) {
818 		epi = rb_entry(rbp, struct epitem, rbn);
819 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
820 		if (kcmp > 0)
821 			rbp = rbp->rb_right;
822 		else if (kcmp < 0)
823 			rbp = rbp->rb_left;
824 		else {
825 			epir = epi;
826 			break;
827 		}
828 	}
829 
830 	return epir;
831 }
832 
833 /*
834  * This is the callback that is passed to the wait queue wakeup
835  * mechanism. It is called by the stored file descriptors when they
836  * have events to report.
837  */
838 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
839 {
840 	int pwake = 0;
841 	unsigned long flags;
842 	struct epitem *epi = ep_item_from_wait(wait);
843 	struct eventpoll *ep = epi->ep;
844 
845 	spin_lock_irqsave(&ep->lock, flags);
846 
847 	/*
848 	 * If the event mask does not contain any poll(2) event, we consider the
849 	 * descriptor to be disabled. This condition is likely the effect of the
850 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
851 	 * until the next EPOLL_CTL_MOD will be issued.
852 	 */
853 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
854 		goto out_unlock;
855 
856 	/*
857 	 * Check the events coming with the callback. At this stage, not
858 	 * every device reports the events in the "key" parameter of the
859 	 * callback. We need to be able to handle both cases here, hence the
860 	 * test for "key" != NULL before the event match test.
861 	 */
862 	if (key && !((unsigned long) key & epi->event.events))
863 		goto out_unlock;
864 
865 	/*
866 	 * If we are transferring events to userspace, we can hold no locks
867 	 * (because we're accessing user memory, and because of linux f_op->poll()
868 	 * semantics). All the events that happen during that period of time are
869 	 * chained in ep->ovflist and requeued later on.
870 	 */
871 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
872 		if (epi->next == EP_UNACTIVE_PTR) {
873 			epi->next = ep->ovflist;
874 			ep->ovflist = epi;
875 		}
876 		goto out_unlock;
877 	}
878 
879 	/* If this file is already in the ready list we exit soon */
880 	if (!ep_is_linked(&epi->rdllink))
881 		list_add_tail(&epi->rdllink, &ep->rdllist);
882 
883 	/*
884 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
885 	 * wait list.
886 	 */
887 	if (waitqueue_active(&ep->wq))
888 		wake_up_locked(&ep->wq);
889 	if (waitqueue_active(&ep->poll_wait))
890 		pwake++;
891 
892 out_unlock:
893 	spin_unlock_irqrestore(&ep->lock, flags);
894 
895 	/* We have to call this outside the lock */
896 	if (pwake)
897 		ep_poll_safewake(&ep->poll_wait);
898 
899 	return 1;
900 }
901 
902 /*
903  * This is the callback that is used to add our wait queue to the
904  * target file wakeup lists.
905  */
906 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
907 				 poll_table *pt)
908 {
909 	struct epitem *epi = ep_item_from_epqueue(pt);
910 	struct eppoll_entry *pwq;
911 
912 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
913 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
914 		pwq->whead = whead;
915 		pwq->base = epi;
916 		add_wait_queue(whead, &pwq->wait);
917 		list_add_tail(&pwq->llink, &epi->pwqlist);
918 		epi->nwait++;
919 	} else {
920 		/* We have to signal that an error occurred */
921 		epi->nwait = -1;
922 	}
923 }
924 
925 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
926 {
927 	int kcmp;
928 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
929 	struct epitem *epic;
930 
931 	while (*p) {
932 		parent = *p;
933 		epic = rb_entry(parent, struct epitem, rbn);
934 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
935 		if (kcmp > 0)
936 			p = &parent->rb_right;
937 		else
938 			p = &parent->rb_left;
939 	}
940 	rb_link_node(&epi->rbn, parent, p);
941 	rb_insert_color(&epi->rbn, &ep->rbr);
942 }
943 
944 
945 
946 #define PATH_ARR_SIZE 5
947 /*
948  * These are the number paths of length 1 to 5, that we are allowing to emanate
949  * from a single file of interest. For example, we allow 1000 paths of length
950  * 1, to emanate from each file of interest. This essentially represents the
951  * potential wakeup paths, which need to be limited in order to avoid massive
952  * uncontrolled wakeup storms. The common use case should be a single ep which
953  * is connected to n file sources. In this case each file source has 1 path
954  * of length 1. Thus, the numbers below should be more than sufficient. These
955  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
956  * and delete can't add additional paths. Protected by the epmutex.
957  */
958 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
959 static int path_count[PATH_ARR_SIZE];
960 
961 static int path_count_inc(int nests)
962 {
963 	if (++path_count[nests] > path_limits[nests])
964 		return -1;
965 	return 0;
966 }
967 
968 static void path_count_init(void)
969 {
970 	int i;
971 
972 	for (i = 0; i < PATH_ARR_SIZE; i++)
973 		path_count[i] = 0;
974 }
975 
976 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
977 {
978 	int error = 0;
979 	struct file *file = priv;
980 	struct file *child_file;
981 	struct epitem *epi;
982 
983 	list_for_each_entry(epi, &file->f_ep_links, fllink) {
984 		child_file = epi->ep->file;
985 		if (is_file_epoll(child_file)) {
986 			if (list_empty(&child_file->f_ep_links)) {
987 				if (path_count_inc(call_nests)) {
988 					error = -1;
989 					break;
990 				}
991 			} else {
992 				error = ep_call_nested(&poll_loop_ncalls,
993 							EP_MAX_NESTS,
994 							reverse_path_check_proc,
995 							child_file, child_file,
996 							current);
997 			}
998 			if (error != 0)
999 				break;
1000 		} else {
1001 			printk(KERN_ERR "reverse_path_check_proc: "
1002 				"file is not an ep!\n");
1003 		}
1004 	}
1005 	return error;
1006 }
1007 
1008 /**
1009  * reverse_path_check - The tfile_check_list is list of file *, which have
1010  *                      links that are proposed to be newly added. We need to
1011  *                      make sure that those added links don't add too many
1012  *                      paths such that we will spend all our time waking up
1013  *                      eventpoll objects.
1014  *
1015  * Returns: Returns zero if the proposed links don't create too many paths,
1016  *	    -1 otherwise.
1017  */
1018 static int reverse_path_check(void)
1019 {
1020 	int length = 0;
1021 	int error = 0;
1022 	struct file *current_file;
1023 
1024 	/* let's call this for all tfiles */
1025 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1026 		length++;
1027 		path_count_init();
1028 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1029 					reverse_path_check_proc, current_file,
1030 					current_file, current);
1031 		if (error)
1032 			break;
1033 	}
1034 	return error;
1035 }
1036 
1037 /*
1038  * Must be called with "mtx" held.
1039  */
1040 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1041 		     struct file *tfile, int fd)
1042 {
1043 	int error, revents, pwake = 0;
1044 	unsigned long flags;
1045 	long user_watches;
1046 	struct epitem *epi;
1047 	struct ep_pqueue epq;
1048 
1049 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1050 	if (unlikely(user_watches >= max_user_watches))
1051 		return -ENOSPC;
1052 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1053 		return -ENOMEM;
1054 
1055 	/* Item initialization follow here ... */
1056 	INIT_LIST_HEAD(&epi->rdllink);
1057 	INIT_LIST_HEAD(&epi->fllink);
1058 	INIT_LIST_HEAD(&epi->pwqlist);
1059 	epi->ep = ep;
1060 	ep_set_ffd(&epi->ffd, tfile, fd);
1061 	epi->event = *event;
1062 	epi->nwait = 0;
1063 	epi->next = EP_UNACTIVE_PTR;
1064 
1065 	/* Initialize the poll table using the queue callback */
1066 	epq.epi = epi;
1067 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1068 
1069 	/*
1070 	 * Attach the item to the poll hooks and get current event bits.
1071 	 * We can safely use the file* here because its usage count has
1072 	 * been increased by the caller of this function. Note that after
1073 	 * this operation completes, the poll callback can start hitting
1074 	 * the new item.
1075 	 */
1076 	revents = tfile->f_op->poll(tfile, &epq.pt);
1077 
1078 	/*
1079 	 * We have to check if something went wrong during the poll wait queue
1080 	 * install process. Namely an allocation for a wait queue failed due
1081 	 * high memory pressure.
1082 	 */
1083 	error = -ENOMEM;
1084 	if (epi->nwait < 0)
1085 		goto error_unregister;
1086 
1087 	/* Add the current item to the list of active epoll hook for this file */
1088 	spin_lock(&tfile->f_lock);
1089 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
1090 	spin_unlock(&tfile->f_lock);
1091 
1092 	/*
1093 	 * Add the current item to the RB tree. All RB tree operations are
1094 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1095 	 */
1096 	ep_rbtree_insert(ep, epi);
1097 
1098 	/* now check if we've created too many backpaths */
1099 	error = -EINVAL;
1100 	if (reverse_path_check())
1101 		goto error_remove_epi;
1102 
1103 	/* We have to drop the new item inside our item list to keep track of it */
1104 	spin_lock_irqsave(&ep->lock, flags);
1105 
1106 	/* If the file is already "ready" we drop it inside the ready list */
1107 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1108 		list_add_tail(&epi->rdllink, &ep->rdllist);
1109 
1110 		/* Notify waiting tasks that events are available */
1111 		if (waitqueue_active(&ep->wq))
1112 			wake_up_locked(&ep->wq);
1113 		if (waitqueue_active(&ep->poll_wait))
1114 			pwake++;
1115 	}
1116 
1117 	spin_unlock_irqrestore(&ep->lock, flags);
1118 
1119 	atomic_long_inc(&ep->user->epoll_watches);
1120 
1121 	/* We have to call this outside the lock */
1122 	if (pwake)
1123 		ep_poll_safewake(&ep->poll_wait);
1124 
1125 	return 0;
1126 
1127 error_remove_epi:
1128 	spin_lock(&tfile->f_lock);
1129 	if (ep_is_linked(&epi->fllink))
1130 		list_del_init(&epi->fllink);
1131 	spin_unlock(&tfile->f_lock);
1132 
1133 	rb_erase(&epi->rbn, &ep->rbr);
1134 
1135 error_unregister:
1136 	ep_unregister_pollwait(ep, epi);
1137 
1138 	/*
1139 	 * We need to do this because an event could have been arrived on some
1140 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1141 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1142 	 * And ep_insert() is called with "mtx" held.
1143 	 */
1144 	spin_lock_irqsave(&ep->lock, flags);
1145 	if (ep_is_linked(&epi->rdllink))
1146 		list_del_init(&epi->rdllink);
1147 	spin_unlock_irqrestore(&ep->lock, flags);
1148 
1149 	kmem_cache_free(epi_cache, epi);
1150 
1151 	return error;
1152 }
1153 
1154 /*
1155  * Modify the interest event mask by dropping an event if the new mask
1156  * has a match in the current file status. Must be called with "mtx" held.
1157  */
1158 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1159 {
1160 	int pwake = 0;
1161 	unsigned int revents;
1162 
1163 	/*
1164 	 * Set the new event interest mask before calling f_op->poll();
1165 	 * otherwise we might miss an event that happens between the
1166 	 * f_op->poll() call and the new event set registering.
1167 	 */
1168 	epi->event.events = event->events;
1169 	epi->event.data = event->data; /* protected by mtx */
1170 
1171 	/*
1172 	 * Get current event bits. We can safely use the file* here because
1173 	 * its usage count has been increased by the caller of this function.
1174 	 */
1175 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1176 
1177 	/*
1178 	 * If the item is "hot" and it is not registered inside the ready
1179 	 * list, push it inside.
1180 	 */
1181 	if (revents & event->events) {
1182 		spin_lock_irq(&ep->lock);
1183 		if (!ep_is_linked(&epi->rdllink)) {
1184 			list_add_tail(&epi->rdllink, &ep->rdllist);
1185 
1186 			/* Notify waiting tasks that events are available */
1187 			if (waitqueue_active(&ep->wq))
1188 				wake_up_locked(&ep->wq);
1189 			if (waitqueue_active(&ep->poll_wait))
1190 				pwake++;
1191 		}
1192 		spin_unlock_irq(&ep->lock);
1193 	}
1194 
1195 	/* We have to call this outside the lock */
1196 	if (pwake)
1197 		ep_poll_safewake(&ep->poll_wait);
1198 
1199 	return 0;
1200 }
1201 
1202 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1203 			       void *priv)
1204 {
1205 	struct ep_send_events_data *esed = priv;
1206 	int eventcnt;
1207 	unsigned int revents;
1208 	struct epitem *epi;
1209 	struct epoll_event __user *uevent;
1210 
1211 	/*
1212 	 * We can loop without lock because we are passed a task private list.
1213 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1214 	 * holding "mtx" during this call.
1215 	 */
1216 	for (eventcnt = 0, uevent = esed->events;
1217 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1218 		epi = list_first_entry(head, struct epitem, rdllink);
1219 
1220 		list_del_init(&epi->rdllink);
1221 
1222 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1223 			epi->event.events;
1224 
1225 		/*
1226 		 * If the event mask intersect the caller-requested one,
1227 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1228 		 * is holding "mtx", so no operations coming from userspace
1229 		 * can change the item.
1230 		 */
1231 		if (revents) {
1232 			if (__put_user(revents, &uevent->events) ||
1233 			    __put_user(epi->event.data, &uevent->data)) {
1234 				list_add(&epi->rdllink, head);
1235 				return eventcnt ? eventcnt : -EFAULT;
1236 			}
1237 			eventcnt++;
1238 			uevent++;
1239 			if (epi->event.events & EPOLLONESHOT)
1240 				epi->event.events &= EP_PRIVATE_BITS;
1241 			else if (!(epi->event.events & EPOLLET)) {
1242 				/*
1243 				 * If this file has been added with Level
1244 				 * Trigger mode, we need to insert back inside
1245 				 * the ready list, so that the next call to
1246 				 * epoll_wait() will check again the events
1247 				 * availability. At this point, no one can insert
1248 				 * into ep->rdllist besides us. The epoll_ctl()
1249 				 * callers are locked out by
1250 				 * ep_scan_ready_list() holding "mtx" and the
1251 				 * poll callback will queue them in ep->ovflist.
1252 				 */
1253 				list_add_tail(&epi->rdllink, &ep->rdllist);
1254 			}
1255 		}
1256 	}
1257 
1258 	return eventcnt;
1259 }
1260 
1261 static int ep_send_events(struct eventpoll *ep,
1262 			  struct epoll_event __user *events, int maxevents)
1263 {
1264 	struct ep_send_events_data esed;
1265 
1266 	esed.maxevents = maxevents;
1267 	esed.events = events;
1268 
1269 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1270 }
1271 
1272 static inline struct timespec ep_set_mstimeout(long ms)
1273 {
1274 	struct timespec now, ts = {
1275 		.tv_sec = ms / MSEC_PER_SEC,
1276 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1277 	};
1278 
1279 	ktime_get_ts(&now);
1280 	return timespec_add_safe(now, ts);
1281 }
1282 
1283 /**
1284  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1285  *           event buffer.
1286  *
1287  * @ep: Pointer to the eventpoll context.
1288  * @events: Pointer to the userspace buffer where the ready events should be
1289  *          stored.
1290  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1291  * @timeout: Maximum timeout for the ready events fetch operation, in
1292  *           milliseconds. If the @timeout is zero, the function will not block,
1293  *           while if the @timeout is less than zero, the function will block
1294  *           until at least one event has been retrieved (or an error
1295  *           occurred).
1296  *
1297  * Returns: Returns the number of ready events which have been fetched, or an
1298  *          error code, in case of error.
1299  */
1300 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1301 		   int maxevents, long timeout)
1302 {
1303 	int res = 0, eavail, timed_out = 0;
1304 	unsigned long flags;
1305 	long slack = 0;
1306 	wait_queue_t wait;
1307 	ktime_t expires, *to = NULL;
1308 
1309 	if (timeout > 0) {
1310 		struct timespec end_time = ep_set_mstimeout(timeout);
1311 
1312 		slack = select_estimate_accuracy(&end_time);
1313 		to = &expires;
1314 		*to = timespec_to_ktime(end_time);
1315 	} else if (timeout == 0) {
1316 		/*
1317 		 * Avoid the unnecessary trip to the wait queue loop, if the
1318 		 * caller specified a non blocking operation.
1319 		 */
1320 		timed_out = 1;
1321 		spin_lock_irqsave(&ep->lock, flags);
1322 		goto check_events;
1323 	}
1324 
1325 fetch_events:
1326 	spin_lock_irqsave(&ep->lock, flags);
1327 
1328 	if (!ep_events_available(ep)) {
1329 		/*
1330 		 * We don't have any available event to return to the caller.
1331 		 * We need to sleep here, and we will be wake up by
1332 		 * ep_poll_callback() when events will become available.
1333 		 */
1334 		init_waitqueue_entry(&wait, current);
1335 		__add_wait_queue_exclusive(&ep->wq, &wait);
1336 
1337 		for (;;) {
1338 			/*
1339 			 * We don't want to sleep if the ep_poll_callback() sends us
1340 			 * a wakeup in between. That's why we set the task state
1341 			 * to TASK_INTERRUPTIBLE before doing the checks.
1342 			 */
1343 			set_current_state(TASK_INTERRUPTIBLE);
1344 			if (ep_events_available(ep) || timed_out)
1345 				break;
1346 			if (signal_pending(current)) {
1347 				res = -EINTR;
1348 				break;
1349 			}
1350 
1351 			spin_unlock_irqrestore(&ep->lock, flags);
1352 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1353 				timed_out = 1;
1354 
1355 			spin_lock_irqsave(&ep->lock, flags);
1356 		}
1357 		__remove_wait_queue(&ep->wq, &wait);
1358 
1359 		set_current_state(TASK_RUNNING);
1360 	}
1361 check_events:
1362 	/* Is it worth to try to dig for events ? */
1363 	eavail = ep_events_available(ep);
1364 
1365 	spin_unlock_irqrestore(&ep->lock, flags);
1366 
1367 	/*
1368 	 * Try to transfer events to user space. In case we get 0 events and
1369 	 * there's still timeout left over, we go trying again in search of
1370 	 * more luck.
1371 	 */
1372 	if (!res && eavail &&
1373 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1374 		goto fetch_events;
1375 
1376 	return res;
1377 }
1378 
1379 /**
1380  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1381  *                      API, to verify that adding an epoll file inside another
1382  *                      epoll structure, does not violate the constraints, in
1383  *                      terms of closed loops, or too deep chains (which can
1384  *                      result in excessive stack usage).
1385  *
1386  * @priv: Pointer to the epoll file to be currently checked.
1387  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1388  *          data structure pointer.
1389  * @call_nests: Current dept of the @ep_call_nested() call stack.
1390  *
1391  * Returns: Returns zero if adding the epoll @file inside current epoll
1392  *          structure @ep does not violate the constraints, or -1 otherwise.
1393  */
1394 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1395 {
1396 	int error = 0;
1397 	struct file *file = priv;
1398 	struct eventpoll *ep = file->private_data;
1399 	struct eventpoll *ep_tovisit;
1400 	struct rb_node *rbp;
1401 	struct epitem *epi;
1402 
1403 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1404 	ep->visited = 1;
1405 	list_add(&ep->visited_list_link, &visited_list);
1406 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1407 		epi = rb_entry(rbp, struct epitem, rbn);
1408 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1409 			ep_tovisit = epi->ffd.file->private_data;
1410 			if (ep_tovisit->visited)
1411 				continue;
1412 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1413 					ep_loop_check_proc, epi->ffd.file,
1414 					ep_tovisit, current);
1415 			if (error != 0)
1416 				break;
1417 		} else {
1418 			/*
1419 			 * If we've reached a file that is not associated with
1420 			 * an ep, then we need to check if the newly added
1421 			 * links are going to add too many wakeup paths. We do
1422 			 * this by adding it to the tfile_check_list, if it's
1423 			 * not already there, and calling reverse_path_check()
1424 			 * during ep_insert().
1425 			 */
1426 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1427 				list_add(&epi->ffd.file->f_tfile_llink,
1428 					 &tfile_check_list);
1429 		}
1430 	}
1431 	mutex_unlock(&ep->mtx);
1432 
1433 	return error;
1434 }
1435 
1436 /**
1437  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1438  *                 another epoll file (represented by @ep) does not create
1439  *                 closed loops or too deep chains.
1440  *
1441  * @ep: Pointer to the epoll private data structure.
1442  * @file: Pointer to the epoll file to be checked.
1443  *
1444  * Returns: Returns zero if adding the epoll @file inside current epoll
1445  *          structure @ep does not violate the constraints, or -1 otherwise.
1446  */
1447 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1448 {
1449 	int ret;
1450 	struct eventpoll *ep_cur, *ep_next;
1451 
1452 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1453 			      ep_loop_check_proc, file, ep, current);
1454 	/* clear visited list */
1455 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1456 							visited_list_link) {
1457 		ep_cur->visited = 0;
1458 		list_del(&ep_cur->visited_list_link);
1459 	}
1460 	return ret;
1461 }
1462 
1463 static void clear_tfile_check_list(void)
1464 {
1465 	struct file *file;
1466 
1467 	/* first clear the tfile_check_list */
1468 	while (!list_empty(&tfile_check_list)) {
1469 		file = list_first_entry(&tfile_check_list, struct file,
1470 					f_tfile_llink);
1471 		list_del_init(&file->f_tfile_llink);
1472 	}
1473 	INIT_LIST_HEAD(&tfile_check_list);
1474 }
1475 
1476 /*
1477  * Open an eventpoll file descriptor.
1478  */
1479 SYSCALL_DEFINE1(epoll_create1, int, flags)
1480 {
1481 	int error, fd;
1482 	struct eventpoll *ep = NULL;
1483 	struct file *file;
1484 
1485 	/* Check the EPOLL_* constant for consistency.  */
1486 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1487 
1488 	if (flags & ~EPOLL_CLOEXEC)
1489 		return -EINVAL;
1490 	/*
1491 	 * Create the internal data structure ("struct eventpoll").
1492 	 */
1493 	error = ep_alloc(&ep);
1494 	if (error < 0)
1495 		return error;
1496 	/*
1497 	 * Creates all the items needed to setup an eventpoll file. That is,
1498 	 * a file structure and a free file descriptor.
1499 	 */
1500 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1501 	if (fd < 0) {
1502 		error = fd;
1503 		goto out_free_ep;
1504 	}
1505 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1506 				 O_RDWR | (flags & O_CLOEXEC));
1507 	if (IS_ERR(file)) {
1508 		error = PTR_ERR(file);
1509 		goto out_free_fd;
1510 	}
1511 	fd_install(fd, file);
1512 	ep->file = file;
1513 	return fd;
1514 
1515 out_free_fd:
1516 	put_unused_fd(fd);
1517 out_free_ep:
1518 	ep_free(ep);
1519 	return error;
1520 }
1521 
1522 SYSCALL_DEFINE1(epoll_create, int, size)
1523 {
1524 	if (size <= 0)
1525 		return -EINVAL;
1526 
1527 	return sys_epoll_create1(0);
1528 }
1529 
1530 /*
1531  * The following function implements the controller interface for
1532  * the eventpoll file that enables the insertion/removal/change of
1533  * file descriptors inside the interest set.
1534  */
1535 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1536 		struct epoll_event __user *, event)
1537 {
1538 	int error;
1539 	int did_lock_epmutex = 0;
1540 	struct file *file, *tfile;
1541 	struct eventpoll *ep;
1542 	struct epitem *epi;
1543 	struct epoll_event epds;
1544 
1545 	error = -EFAULT;
1546 	if (ep_op_has_event(op) &&
1547 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1548 		goto error_return;
1549 
1550 	/* Get the "struct file *" for the eventpoll file */
1551 	error = -EBADF;
1552 	file = fget(epfd);
1553 	if (!file)
1554 		goto error_return;
1555 
1556 	/* Get the "struct file *" for the target file */
1557 	tfile = fget(fd);
1558 	if (!tfile)
1559 		goto error_fput;
1560 
1561 	/* The target file descriptor must support poll */
1562 	error = -EPERM;
1563 	if (!tfile->f_op || !tfile->f_op->poll)
1564 		goto error_tgt_fput;
1565 
1566 	/*
1567 	 * We have to check that the file structure underneath the file descriptor
1568 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1569 	 * adding an epoll file descriptor inside itself.
1570 	 */
1571 	error = -EINVAL;
1572 	if (file == tfile || !is_file_epoll(file))
1573 		goto error_tgt_fput;
1574 
1575 	/*
1576 	 * At this point it is safe to assume that the "private_data" contains
1577 	 * our own data structure.
1578 	 */
1579 	ep = file->private_data;
1580 
1581 	/*
1582 	 * When we insert an epoll file descriptor, inside another epoll file
1583 	 * descriptor, there is the change of creating closed loops, which are
1584 	 * better be handled here, than in more critical paths. While we are
1585 	 * checking for loops we also determine the list of files reachable
1586 	 * and hang them on the tfile_check_list, so we can check that we
1587 	 * haven't created too many possible wakeup paths.
1588 	 *
1589 	 * We need to hold the epmutex across both ep_insert and ep_remove
1590 	 * b/c we want to make sure we are looking at a coherent view of
1591 	 * epoll network.
1592 	 */
1593 	if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1594 		mutex_lock(&epmutex);
1595 		did_lock_epmutex = 1;
1596 	}
1597 	if (op == EPOLL_CTL_ADD) {
1598 		if (is_file_epoll(tfile)) {
1599 			error = -ELOOP;
1600 			if (ep_loop_check(ep, tfile) != 0)
1601 				goto error_tgt_fput;
1602 		} else
1603 			list_add(&tfile->f_tfile_llink, &tfile_check_list);
1604 	}
1605 
1606 	mutex_lock_nested(&ep->mtx, 0);
1607 
1608 	/*
1609 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1610 	 * above, we can be sure to be able to use the item looked up by
1611 	 * ep_find() till we release the mutex.
1612 	 */
1613 	epi = ep_find(ep, tfile, fd);
1614 
1615 	error = -EINVAL;
1616 	switch (op) {
1617 	case EPOLL_CTL_ADD:
1618 		if (!epi) {
1619 			epds.events |= POLLERR | POLLHUP;
1620 			error = ep_insert(ep, &epds, tfile, fd);
1621 		} else
1622 			error = -EEXIST;
1623 		clear_tfile_check_list();
1624 		break;
1625 	case EPOLL_CTL_DEL:
1626 		if (epi)
1627 			error = ep_remove(ep, epi);
1628 		else
1629 			error = -ENOENT;
1630 		break;
1631 	case EPOLL_CTL_MOD:
1632 		if (epi) {
1633 			epds.events |= POLLERR | POLLHUP;
1634 			error = ep_modify(ep, epi, &epds);
1635 		} else
1636 			error = -ENOENT;
1637 		break;
1638 	}
1639 	mutex_unlock(&ep->mtx);
1640 
1641 error_tgt_fput:
1642 	if (did_lock_epmutex)
1643 		mutex_unlock(&epmutex);
1644 
1645 	fput(tfile);
1646 error_fput:
1647 	fput(file);
1648 error_return:
1649 
1650 	return error;
1651 }
1652 
1653 /*
1654  * Implement the event wait interface for the eventpoll file. It is the kernel
1655  * part of the user space epoll_wait(2).
1656  */
1657 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1658 		int, maxevents, int, timeout)
1659 {
1660 	int error;
1661 	struct file *file;
1662 	struct eventpoll *ep;
1663 
1664 	/* The maximum number of event must be greater than zero */
1665 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1666 		return -EINVAL;
1667 
1668 	/* Verify that the area passed by the user is writeable */
1669 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1670 		error = -EFAULT;
1671 		goto error_return;
1672 	}
1673 
1674 	/* Get the "struct file *" for the eventpoll file */
1675 	error = -EBADF;
1676 	file = fget(epfd);
1677 	if (!file)
1678 		goto error_return;
1679 
1680 	/*
1681 	 * We have to check that the file structure underneath the fd
1682 	 * the user passed to us _is_ an eventpoll file.
1683 	 */
1684 	error = -EINVAL;
1685 	if (!is_file_epoll(file))
1686 		goto error_fput;
1687 
1688 	/*
1689 	 * At this point it is safe to assume that the "private_data" contains
1690 	 * our own data structure.
1691 	 */
1692 	ep = file->private_data;
1693 
1694 	/* Time to fish for events ... */
1695 	error = ep_poll(ep, events, maxevents, timeout);
1696 
1697 error_fput:
1698 	fput(file);
1699 error_return:
1700 
1701 	return error;
1702 }
1703 
1704 #ifdef HAVE_SET_RESTORE_SIGMASK
1705 
1706 /*
1707  * Implement the event wait interface for the eventpoll file. It is the kernel
1708  * part of the user space epoll_pwait(2).
1709  */
1710 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1711 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1712 		size_t, sigsetsize)
1713 {
1714 	int error;
1715 	sigset_t ksigmask, sigsaved;
1716 
1717 	/*
1718 	 * If the caller wants a certain signal mask to be set during the wait,
1719 	 * we apply it here.
1720 	 */
1721 	if (sigmask) {
1722 		if (sigsetsize != sizeof(sigset_t))
1723 			return -EINVAL;
1724 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1725 			return -EFAULT;
1726 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1727 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1728 	}
1729 
1730 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1731 
1732 	/*
1733 	 * If we changed the signal mask, we need to restore the original one.
1734 	 * In case we've got a signal while waiting, we do not restore the
1735 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1736 	 * the way back to userspace, before the signal mask is restored.
1737 	 */
1738 	if (sigmask) {
1739 		if (error == -EINTR) {
1740 			memcpy(&current->saved_sigmask, &sigsaved,
1741 			       sizeof(sigsaved));
1742 			set_restore_sigmask();
1743 		} else
1744 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1745 	}
1746 
1747 	return error;
1748 }
1749 
1750 #endif /* HAVE_SET_RESTORE_SIGMASK */
1751 
1752 static int __init eventpoll_init(void)
1753 {
1754 	struct sysinfo si;
1755 
1756 	si_meminfo(&si);
1757 	/*
1758 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1759 	 */
1760 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1761 		EP_ITEM_COST;
1762 	BUG_ON(max_user_watches < 0);
1763 
1764 	/*
1765 	 * Initialize the structure used to perform epoll file descriptor
1766 	 * inclusion loops checks.
1767 	 */
1768 	ep_nested_calls_init(&poll_loop_ncalls);
1769 
1770 	/* Initialize the structure used to perform safe poll wait head wake ups */
1771 	ep_nested_calls_init(&poll_safewake_ncalls);
1772 
1773 	/* Initialize the structure used to perform file's f_op->poll() calls */
1774 	ep_nested_calls_init(&poll_readywalk_ncalls);
1775 
1776 	/* Allocates slab cache used to allocate "struct epitem" items */
1777 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1778 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1779 
1780 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1781 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1782 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1783 
1784 	return 0;
1785 }
1786 fs_initcall(eventpoll_init);
1787