1 /* 2 * fs/eventpoll.c (Efficent event polling implementation) 3 * Copyright (C) 2001,...,2007 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <asm/uaccess.h> 37 #include <asm/system.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <asm/atomic.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (spinlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a spinlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL). 66 * It is possible to drop the "ep->mtx" and to use the global 67 * mutex "epmutex" (together with "ep->lock") to have it working, 68 * but having "ep->mtx" will make the interface more scalable. 69 * Events that require holding "epmutex" are very rare, while for 70 * normal operations the epoll private "ep->mtx" will guarantee 71 * a better scalability. 72 */ 73 74 #define DEBUG_EPOLL 0 75 76 #if DEBUG_EPOLL > 0 77 #define DPRINTK(x) printk x 78 #define DNPRINTK(n, x) do { if ((n) <= DEBUG_EPOLL) printk x; } while (0) 79 #else /* #if DEBUG_EPOLL > 0 */ 80 #define DPRINTK(x) (void) 0 81 #define DNPRINTK(n, x) (void) 0 82 #endif /* #if DEBUG_EPOLL > 0 */ 83 84 #define DEBUG_EPI 0 85 86 #if DEBUG_EPI != 0 87 #define EPI_SLAB_DEBUG (SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */) 88 #else /* #if DEBUG_EPI != 0 */ 89 #define EPI_SLAB_DEBUG 0 90 #endif /* #if DEBUG_EPI != 0 */ 91 92 /* Epoll private bits inside the event mask */ 93 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 94 95 /* Maximum number of poll wake up nests we are allowing */ 96 #define EP_MAX_POLLWAKE_NESTS 4 97 98 /* Maximum msec timeout value storeable in a long int */ 99 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ) 100 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 102 103 #define EP_UNACTIVE_PTR ((void *) -1L) 104 105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 106 107 struct epoll_filefd { 108 struct file *file; 109 int fd; 110 }; 111 112 /* 113 * Node that is linked into the "wake_task_list" member of the "struct poll_safewake". 114 * It is used to keep track on all tasks that are currently inside the wake_up() code 115 * to 1) short-circuit the one coming from the same task and same wait queue head 116 * (loop) 2) allow a maximum number of epoll descriptors inclusion nesting 117 * 3) let go the ones coming from other tasks. 118 */ 119 struct wake_task_node { 120 struct list_head llink; 121 struct task_struct *task; 122 wait_queue_head_t *wq; 123 }; 124 125 /* 126 * This is used to implement the safe poll wake up avoiding to reenter 127 * the poll callback from inside wake_up(). 128 */ 129 struct poll_safewake { 130 struct list_head wake_task_list; 131 spinlock_t lock; 132 }; 133 134 /* 135 * Each file descriptor added to the eventpoll interface will 136 * have an entry of this type linked to the "rbr" RB tree. 137 */ 138 struct epitem { 139 /* RB tree node used to link this structure to the eventpoll RB tree */ 140 struct rb_node rbn; 141 142 /* List header used to link this structure to the eventpoll ready list */ 143 struct list_head rdllink; 144 145 /* 146 * Works together "struct eventpoll"->ovflist in keeping the 147 * single linked chain of items. 148 */ 149 struct epitem *next; 150 151 /* The file descriptor information this item refers to */ 152 struct epoll_filefd ffd; 153 154 /* Number of active wait queue attached to poll operations */ 155 int nwait; 156 157 /* List containing poll wait queues */ 158 struct list_head pwqlist; 159 160 /* The "container" of this item */ 161 struct eventpoll *ep; 162 163 /* List header used to link this item to the "struct file" items list */ 164 struct list_head fllink; 165 166 /* The structure that describe the interested events and the source fd */ 167 struct epoll_event event; 168 }; 169 170 /* 171 * This structure is stored inside the "private_data" member of the file 172 * structure and rapresent the main data sructure for the eventpoll 173 * interface. 174 */ 175 struct eventpoll { 176 /* Protect the this structure access */ 177 spinlock_t lock; 178 179 /* 180 * This mutex is used to ensure that files are not removed 181 * while epoll is using them. This is held during the event 182 * collection loop, the file cleanup path, the epoll file exit 183 * code and the ctl operations. 184 */ 185 struct mutex mtx; 186 187 /* Wait queue used by sys_epoll_wait() */ 188 wait_queue_head_t wq; 189 190 /* Wait queue used by file->poll() */ 191 wait_queue_head_t poll_wait; 192 193 /* List of ready file descriptors */ 194 struct list_head rdllist; 195 196 /* RB tree root used to store monitored fd structs */ 197 struct rb_root rbr; 198 199 /* 200 * This is a single linked list that chains all the "struct epitem" that 201 * happened while transfering ready events to userspace w/out 202 * holding ->lock. 203 */ 204 struct epitem *ovflist; 205 206 /* The user that created the eventpoll descriptor */ 207 struct user_struct *user; 208 }; 209 210 /* Wait structure used by the poll hooks */ 211 struct eppoll_entry { 212 /* List header used to link this structure to the "struct epitem" */ 213 struct list_head llink; 214 215 /* The "base" pointer is set to the container "struct epitem" */ 216 void *base; 217 218 /* 219 * Wait queue item that will be linked to the target file wait 220 * queue head. 221 */ 222 wait_queue_t wait; 223 224 /* The wait queue head that linked the "wait" wait queue item */ 225 wait_queue_head_t *whead; 226 }; 227 228 /* Wrapper struct used by poll queueing */ 229 struct ep_pqueue { 230 poll_table pt; 231 struct epitem *epi; 232 }; 233 234 /* 235 * Configuration options available inside /proc/sys/fs/epoll/ 236 */ 237 /* Maximum number of epoll watched descriptors, per user */ 238 static int max_user_watches __read_mostly; 239 240 /* 241 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 242 */ 243 static DEFINE_MUTEX(epmutex); 244 245 /* Safe wake up implementation */ 246 static struct poll_safewake psw; 247 248 /* Slab cache used to allocate "struct epitem" */ 249 static struct kmem_cache *epi_cache __read_mostly; 250 251 /* Slab cache used to allocate "struct eppoll_entry" */ 252 static struct kmem_cache *pwq_cache __read_mostly; 253 254 #ifdef CONFIG_SYSCTL 255 256 #include <linux/sysctl.h> 257 258 static int zero; 259 260 ctl_table epoll_table[] = { 261 { 262 .procname = "max_user_watches", 263 .data = &max_user_watches, 264 .maxlen = sizeof(int), 265 .mode = 0644, 266 .proc_handler = &proc_dointvec_minmax, 267 .extra1 = &zero, 268 }, 269 { .ctl_name = 0 } 270 }; 271 #endif /* CONFIG_SYSCTL */ 272 273 274 /* Setup the structure that is used as key for the RB tree */ 275 static inline void ep_set_ffd(struct epoll_filefd *ffd, 276 struct file *file, int fd) 277 { 278 ffd->file = file; 279 ffd->fd = fd; 280 } 281 282 /* Compare RB tree keys */ 283 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 284 struct epoll_filefd *p2) 285 { 286 return (p1->file > p2->file ? +1: 287 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 288 } 289 290 /* Tells us if the item is currently linked */ 291 static inline int ep_is_linked(struct list_head *p) 292 { 293 return !list_empty(p); 294 } 295 296 /* Get the "struct epitem" from a wait queue pointer */ 297 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 298 { 299 return container_of(p, struct eppoll_entry, wait)->base; 300 } 301 302 /* Get the "struct epitem" from an epoll queue wrapper */ 303 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 304 { 305 return container_of(p, struct ep_pqueue, pt)->epi; 306 } 307 308 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 309 static inline int ep_op_has_event(int op) 310 { 311 return op != EPOLL_CTL_DEL; 312 } 313 314 /* Initialize the poll safe wake up structure */ 315 static void ep_poll_safewake_init(struct poll_safewake *psw) 316 { 317 318 INIT_LIST_HEAD(&psw->wake_task_list); 319 spin_lock_init(&psw->lock); 320 } 321 322 /* 323 * Perform a safe wake up of the poll wait list. The problem is that 324 * with the new callback'd wake up system, it is possible that the 325 * poll callback is reentered from inside the call to wake_up() done 326 * on the poll wait queue head. The rule is that we cannot reenter the 327 * wake up code from the same task more than EP_MAX_POLLWAKE_NESTS times, 328 * and we cannot reenter the same wait queue head at all. This will 329 * enable to have a hierarchy of epoll file descriptor of no more than 330 * EP_MAX_POLLWAKE_NESTS deep. We need the irq version of the spin lock 331 * because this one gets called by the poll callback, that in turn is called 332 * from inside a wake_up(), that might be called from irq context. 333 */ 334 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq) 335 { 336 int wake_nests = 0; 337 unsigned long flags; 338 struct task_struct *this_task = current; 339 struct list_head *lsthead = &psw->wake_task_list; 340 struct wake_task_node *tncur; 341 struct wake_task_node tnode; 342 343 spin_lock_irqsave(&psw->lock, flags); 344 345 /* Try to see if the current task is already inside this wakeup call */ 346 list_for_each_entry(tncur, lsthead, llink) { 347 348 if (tncur->wq == wq || 349 (tncur->task == this_task && ++wake_nests > EP_MAX_POLLWAKE_NESTS)) { 350 /* 351 * Ops ... loop detected or maximum nest level reached. 352 * We abort this wake by breaking the cycle itself. 353 */ 354 spin_unlock_irqrestore(&psw->lock, flags); 355 return; 356 } 357 } 358 359 /* Add the current task to the list */ 360 tnode.task = this_task; 361 tnode.wq = wq; 362 list_add(&tnode.llink, lsthead); 363 364 spin_unlock_irqrestore(&psw->lock, flags); 365 366 /* Do really wake up now */ 367 wake_up_nested(wq, 1 + wake_nests); 368 369 /* Remove the current task from the list */ 370 spin_lock_irqsave(&psw->lock, flags); 371 list_del(&tnode.llink); 372 spin_unlock_irqrestore(&psw->lock, flags); 373 } 374 375 /* 376 * This function unregister poll callbacks from the associated file descriptor. 377 * Since this must be called without holding "ep->lock" the atomic exchange trick 378 * will protect us from multiple unregister. 379 */ 380 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 381 { 382 int nwait; 383 struct list_head *lsthead = &epi->pwqlist; 384 struct eppoll_entry *pwq; 385 386 /* This is called without locks, so we need the atomic exchange */ 387 nwait = xchg(&epi->nwait, 0); 388 389 if (nwait) { 390 while (!list_empty(lsthead)) { 391 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 392 393 list_del_init(&pwq->llink); 394 remove_wait_queue(pwq->whead, &pwq->wait); 395 kmem_cache_free(pwq_cache, pwq); 396 } 397 } 398 } 399 400 /* 401 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 402 * all the associated resources. Must be called with "mtx" held. 403 */ 404 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 405 { 406 unsigned long flags; 407 struct file *file = epi->ffd.file; 408 409 /* 410 * Removes poll wait queue hooks. We _have_ to do this without holding 411 * the "ep->lock" otherwise a deadlock might occur. This because of the 412 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 413 * queue head lock when unregistering the wait queue. The wakeup callback 414 * will run by holding the wait queue head lock and will call our callback 415 * that will try to get "ep->lock". 416 */ 417 ep_unregister_pollwait(ep, epi); 418 419 /* Remove the current item from the list of epoll hooks */ 420 spin_lock(&file->f_ep_lock); 421 if (ep_is_linked(&epi->fllink)) 422 list_del_init(&epi->fllink); 423 spin_unlock(&file->f_ep_lock); 424 425 rb_erase(&epi->rbn, &ep->rbr); 426 427 spin_lock_irqsave(&ep->lock, flags); 428 if (ep_is_linked(&epi->rdllink)) 429 list_del_init(&epi->rdllink); 430 spin_unlock_irqrestore(&ep->lock, flags); 431 432 /* At this point it is safe to free the eventpoll item */ 433 kmem_cache_free(epi_cache, epi); 434 435 atomic_dec(&ep->user->epoll_watches); 436 437 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_remove(%p, %p)\n", 438 current, ep, file)); 439 440 return 0; 441 } 442 443 static void ep_free(struct eventpoll *ep) 444 { 445 struct rb_node *rbp; 446 struct epitem *epi; 447 448 /* We need to release all tasks waiting for these file */ 449 if (waitqueue_active(&ep->poll_wait)) 450 ep_poll_safewake(&psw, &ep->poll_wait); 451 452 /* 453 * We need to lock this because we could be hit by 454 * eventpoll_release_file() while we're freeing the "struct eventpoll". 455 * We do not need to hold "ep->mtx" here because the epoll file 456 * is on the way to be removed and no one has references to it 457 * anymore. The only hit might come from eventpoll_release_file() but 458 * holding "epmutex" is sufficent here. 459 */ 460 mutex_lock(&epmutex); 461 462 /* 463 * Walks through the whole tree by unregistering poll callbacks. 464 */ 465 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 466 epi = rb_entry(rbp, struct epitem, rbn); 467 468 ep_unregister_pollwait(ep, epi); 469 } 470 471 /* 472 * Walks through the whole tree by freeing each "struct epitem". At this 473 * point we are sure no poll callbacks will be lingering around, and also by 474 * holding "epmutex" we can be sure that no file cleanup code will hit 475 * us during this operation. So we can avoid the lock on "ep->lock". 476 */ 477 while ((rbp = rb_first(&ep->rbr)) != NULL) { 478 epi = rb_entry(rbp, struct epitem, rbn); 479 ep_remove(ep, epi); 480 } 481 482 mutex_unlock(&epmutex); 483 mutex_destroy(&ep->mtx); 484 free_uid(ep->user); 485 kfree(ep); 486 } 487 488 static int ep_eventpoll_release(struct inode *inode, struct file *file) 489 { 490 struct eventpoll *ep = file->private_data; 491 492 if (ep) 493 ep_free(ep); 494 495 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: close() ep=%p\n", current, ep)); 496 return 0; 497 } 498 499 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 500 { 501 unsigned int pollflags = 0; 502 unsigned long flags; 503 struct eventpoll *ep = file->private_data; 504 505 /* Insert inside our poll wait queue */ 506 poll_wait(file, &ep->poll_wait, wait); 507 508 /* Check our condition */ 509 spin_lock_irqsave(&ep->lock, flags); 510 if (!list_empty(&ep->rdllist)) 511 pollflags = POLLIN | POLLRDNORM; 512 spin_unlock_irqrestore(&ep->lock, flags); 513 514 return pollflags; 515 } 516 517 /* File callbacks that implement the eventpoll file behaviour */ 518 static const struct file_operations eventpoll_fops = { 519 .release = ep_eventpoll_release, 520 .poll = ep_eventpoll_poll 521 }; 522 523 /* Fast test to see if the file is an evenpoll file */ 524 static inline int is_file_epoll(struct file *f) 525 { 526 return f->f_op == &eventpoll_fops; 527 } 528 529 /* 530 * This is called from eventpoll_release() to unlink files from the eventpoll 531 * interface. We need to have this facility to cleanup correctly files that are 532 * closed without being removed from the eventpoll interface. 533 */ 534 void eventpoll_release_file(struct file *file) 535 { 536 struct list_head *lsthead = &file->f_ep_links; 537 struct eventpoll *ep; 538 struct epitem *epi; 539 540 /* 541 * We don't want to get "file->f_ep_lock" because it is not 542 * necessary. It is not necessary because we're in the "struct file" 543 * cleanup path, and this means that noone is using this file anymore. 544 * So, for example, epoll_ctl() cannot hit here sicne if we reach this 545 * point, the file counter already went to zero and fget() would fail. 546 * The only hit might come from ep_free() but by holding the mutex 547 * will correctly serialize the operation. We do need to acquire 548 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 549 * from anywhere but ep_free(). 550 */ 551 mutex_lock(&epmutex); 552 553 while (!list_empty(lsthead)) { 554 epi = list_first_entry(lsthead, struct epitem, fllink); 555 556 ep = epi->ep; 557 list_del_init(&epi->fllink); 558 mutex_lock(&ep->mtx); 559 ep_remove(ep, epi); 560 mutex_unlock(&ep->mtx); 561 } 562 563 mutex_unlock(&epmutex); 564 } 565 566 static int ep_alloc(struct eventpoll **pep) 567 { 568 int error; 569 struct user_struct *user; 570 struct eventpoll *ep; 571 572 user = get_current_user(); 573 error = -ENOMEM; 574 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 575 if (unlikely(!ep)) 576 goto free_uid; 577 578 spin_lock_init(&ep->lock); 579 mutex_init(&ep->mtx); 580 init_waitqueue_head(&ep->wq); 581 init_waitqueue_head(&ep->poll_wait); 582 INIT_LIST_HEAD(&ep->rdllist); 583 ep->rbr = RB_ROOT; 584 ep->ovflist = EP_UNACTIVE_PTR; 585 ep->user = user; 586 587 *pep = ep; 588 589 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_alloc() ep=%p\n", 590 current, ep)); 591 return 0; 592 593 free_uid: 594 free_uid(user); 595 return error; 596 } 597 598 /* 599 * Search the file inside the eventpoll tree. The RB tree operations 600 * are protected by the "mtx" mutex, and ep_find() must be called with 601 * "mtx" held. 602 */ 603 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 604 { 605 int kcmp; 606 struct rb_node *rbp; 607 struct epitem *epi, *epir = NULL; 608 struct epoll_filefd ffd; 609 610 ep_set_ffd(&ffd, file, fd); 611 for (rbp = ep->rbr.rb_node; rbp; ) { 612 epi = rb_entry(rbp, struct epitem, rbn); 613 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 614 if (kcmp > 0) 615 rbp = rbp->rb_right; 616 else if (kcmp < 0) 617 rbp = rbp->rb_left; 618 else { 619 epir = epi; 620 break; 621 } 622 } 623 624 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_find(%p) -> %p\n", 625 current, file, epir)); 626 627 return epir; 628 } 629 630 /* 631 * This is the callback that is passed to the wait queue wakeup 632 * machanism. It is called by the stored file descriptors when they 633 * have events to report. 634 */ 635 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 636 { 637 int pwake = 0; 638 unsigned long flags; 639 struct epitem *epi = ep_item_from_wait(wait); 640 struct eventpoll *ep = epi->ep; 641 642 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n", 643 current, epi->ffd.file, epi, ep)); 644 645 spin_lock_irqsave(&ep->lock, flags); 646 647 /* 648 * If the event mask does not contain any poll(2) event, we consider the 649 * descriptor to be disabled. This condition is likely the effect of the 650 * EPOLLONESHOT bit that disables the descriptor when an event is received, 651 * until the next EPOLL_CTL_MOD will be issued. 652 */ 653 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 654 goto out_unlock; 655 656 /* 657 * If we are trasfering events to userspace, we can hold no locks 658 * (because we're accessing user memory, and because of linux f_op->poll() 659 * semantics). All the events that happens during that period of time are 660 * chained in ep->ovflist and requeued later on. 661 */ 662 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 663 if (epi->next == EP_UNACTIVE_PTR) { 664 epi->next = ep->ovflist; 665 ep->ovflist = epi; 666 } 667 goto out_unlock; 668 } 669 670 /* If this file is already in the ready list we exit soon */ 671 if (ep_is_linked(&epi->rdllink)) 672 goto is_linked; 673 674 list_add_tail(&epi->rdllink, &ep->rdllist); 675 676 is_linked: 677 /* 678 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 679 * wait list. 680 */ 681 if (waitqueue_active(&ep->wq)) 682 wake_up_locked(&ep->wq); 683 if (waitqueue_active(&ep->poll_wait)) 684 pwake++; 685 686 out_unlock: 687 spin_unlock_irqrestore(&ep->lock, flags); 688 689 /* We have to call this outside the lock */ 690 if (pwake) 691 ep_poll_safewake(&psw, &ep->poll_wait); 692 693 return 1; 694 } 695 696 /* 697 * This is the callback that is used to add our wait queue to the 698 * target file wakeup lists. 699 */ 700 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 701 poll_table *pt) 702 { 703 struct epitem *epi = ep_item_from_epqueue(pt); 704 struct eppoll_entry *pwq; 705 706 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 707 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 708 pwq->whead = whead; 709 pwq->base = epi; 710 add_wait_queue(whead, &pwq->wait); 711 list_add_tail(&pwq->llink, &epi->pwqlist); 712 epi->nwait++; 713 } else { 714 /* We have to signal that an error occurred */ 715 epi->nwait = -1; 716 } 717 } 718 719 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 720 { 721 int kcmp; 722 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 723 struct epitem *epic; 724 725 while (*p) { 726 parent = *p; 727 epic = rb_entry(parent, struct epitem, rbn); 728 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 729 if (kcmp > 0) 730 p = &parent->rb_right; 731 else 732 p = &parent->rb_left; 733 } 734 rb_link_node(&epi->rbn, parent, p); 735 rb_insert_color(&epi->rbn, &ep->rbr); 736 } 737 738 /* 739 * Must be called with "mtx" held. 740 */ 741 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 742 struct file *tfile, int fd) 743 { 744 int error, revents, pwake = 0; 745 unsigned long flags; 746 struct epitem *epi; 747 struct ep_pqueue epq; 748 749 if (unlikely(atomic_read(&ep->user->epoll_watches) >= 750 max_user_watches)) 751 return -ENOSPC; 752 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 753 return -ENOMEM; 754 755 /* Item initialization follow here ... */ 756 INIT_LIST_HEAD(&epi->rdllink); 757 INIT_LIST_HEAD(&epi->fllink); 758 INIT_LIST_HEAD(&epi->pwqlist); 759 epi->ep = ep; 760 ep_set_ffd(&epi->ffd, tfile, fd); 761 epi->event = *event; 762 epi->nwait = 0; 763 epi->next = EP_UNACTIVE_PTR; 764 765 /* Initialize the poll table using the queue callback */ 766 epq.epi = epi; 767 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 768 769 /* 770 * Attach the item to the poll hooks and get current event bits. 771 * We can safely use the file* here because its usage count has 772 * been increased by the caller of this function. Note that after 773 * this operation completes, the poll callback can start hitting 774 * the new item. 775 */ 776 revents = tfile->f_op->poll(tfile, &epq.pt); 777 778 /* 779 * We have to check if something went wrong during the poll wait queue 780 * install process. Namely an allocation for a wait queue failed due 781 * high memory pressure. 782 */ 783 error = -ENOMEM; 784 if (epi->nwait < 0) 785 goto error_unregister; 786 787 /* Add the current item to the list of active epoll hook for this file */ 788 spin_lock(&tfile->f_ep_lock); 789 list_add_tail(&epi->fllink, &tfile->f_ep_links); 790 spin_unlock(&tfile->f_ep_lock); 791 792 /* 793 * Add the current item to the RB tree. All RB tree operations are 794 * protected by "mtx", and ep_insert() is called with "mtx" held. 795 */ 796 ep_rbtree_insert(ep, epi); 797 798 /* We have to drop the new item inside our item list to keep track of it */ 799 spin_lock_irqsave(&ep->lock, flags); 800 801 /* If the file is already "ready" we drop it inside the ready list */ 802 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 803 list_add_tail(&epi->rdllink, &ep->rdllist); 804 805 /* Notify waiting tasks that events are available */ 806 if (waitqueue_active(&ep->wq)) 807 wake_up_locked(&ep->wq); 808 if (waitqueue_active(&ep->poll_wait)) 809 pwake++; 810 } 811 812 spin_unlock_irqrestore(&ep->lock, flags); 813 814 atomic_inc(&ep->user->epoll_watches); 815 816 /* We have to call this outside the lock */ 817 if (pwake) 818 ep_poll_safewake(&psw, &ep->poll_wait); 819 820 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n", 821 current, ep, tfile, fd)); 822 823 return 0; 824 825 error_unregister: 826 ep_unregister_pollwait(ep, epi); 827 828 /* 829 * We need to do this because an event could have been arrived on some 830 * allocated wait queue. Note that we don't care about the ep->ovflist 831 * list, since that is used/cleaned only inside a section bound by "mtx". 832 * And ep_insert() is called with "mtx" held. 833 */ 834 spin_lock_irqsave(&ep->lock, flags); 835 if (ep_is_linked(&epi->rdllink)) 836 list_del_init(&epi->rdllink); 837 spin_unlock_irqrestore(&ep->lock, flags); 838 839 kmem_cache_free(epi_cache, epi); 840 841 return error; 842 } 843 844 /* 845 * Modify the interest event mask by dropping an event if the new mask 846 * has a match in the current file status. Must be called with "mtx" held. 847 */ 848 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 849 { 850 int pwake = 0; 851 unsigned int revents; 852 unsigned long flags; 853 854 /* 855 * Set the new event interest mask before calling f_op->poll(), otherwise 856 * a potential race might occur. In fact if we do this operation inside 857 * the lock, an event might happen between the f_op->poll() call and the 858 * new event set registering. 859 */ 860 epi->event.events = event->events; 861 862 /* 863 * Get current event bits. We can safely use the file* here because 864 * its usage count has been increased by the caller of this function. 865 */ 866 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 867 868 spin_lock_irqsave(&ep->lock, flags); 869 870 /* Copy the data member from inside the lock */ 871 epi->event.data = event->data; 872 873 /* 874 * If the item is "hot" and it is not registered inside the ready 875 * list, push it inside. 876 */ 877 if (revents & event->events) { 878 if (!ep_is_linked(&epi->rdllink)) { 879 list_add_tail(&epi->rdllink, &ep->rdllist); 880 881 /* Notify waiting tasks that events are available */ 882 if (waitqueue_active(&ep->wq)) 883 wake_up_locked(&ep->wq); 884 if (waitqueue_active(&ep->poll_wait)) 885 pwake++; 886 } 887 } 888 spin_unlock_irqrestore(&ep->lock, flags); 889 890 /* We have to call this outside the lock */ 891 if (pwake) 892 ep_poll_safewake(&psw, &ep->poll_wait); 893 894 return 0; 895 } 896 897 static int ep_send_events(struct eventpoll *ep, struct epoll_event __user *events, 898 int maxevents) 899 { 900 int eventcnt, error = -EFAULT, pwake = 0; 901 unsigned int revents; 902 unsigned long flags; 903 struct epitem *epi, *nepi; 904 struct list_head txlist; 905 906 INIT_LIST_HEAD(&txlist); 907 908 /* 909 * We need to lock this because we could be hit by 910 * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL). 911 */ 912 mutex_lock(&ep->mtx); 913 914 /* 915 * Steal the ready list, and re-init the original one to the 916 * empty list. Also, set ep->ovflist to NULL so that events 917 * happening while looping w/out locks, are not lost. We cannot 918 * have the poll callback to queue directly on ep->rdllist, 919 * because we are doing it in the loop below, in a lockless way. 920 */ 921 spin_lock_irqsave(&ep->lock, flags); 922 list_splice(&ep->rdllist, &txlist); 923 INIT_LIST_HEAD(&ep->rdllist); 924 ep->ovflist = NULL; 925 spin_unlock_irqrestore(&ep->lock, flags); 926 927 /* 928 * We can loop without lock because this is a task private list. 929 * We just splice'd out the ep->rdllist in ep_collect_ready_items(). 930 * Items cannot vanish during the loop because we are holding "mtx". 931 */ 932 for (eventcnt = 0; !list_empty(&txlist) && eventcnt < maxevents;) { 933 epi = list_first_entry(&txlist, struct epitem, rdllink); 934 935 list_del_init(&epi->rdllink); 936 937 /* 938 * Get the ready file event set. We can safely use the file 939 * because we are holding the "mtx" and this will guarantee 940 * that both the file and the item will not vanish. 941 */ 942 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 943 revents &= epi->event.events; 944 945 /* 946 * Is the event mask intersect the caller-requested one, 947 * deliver the event to userspace. Again, we are holding 948 * "mtx", so no operations coming from userspace can change 949 * the item. 950 */ 951 if (revents) { 952 if (__put_user(revents, 953 &events[eventcnt].events) || 954 __put_user(epi->event.data, 955 &events[eventcnt].data)) 956 goto errxit; 957 if (epi->event.events & EPOLLONESHOT) 958 epi->event.events &= EP_PRIVATE_BITS; 959 eventcnt++; 960 } 961 /* 962 * At this point, noone can insert into ep->rdllist besides 963 * us. The epoll_ctl() callers are locked out by us holding 964 * "mtx" and the poll callback will queue them in ep->ovflist. 965 */ 966 if (!(epi->event.events & EPOLLET) && 967 (revents & epi->event.events)) 968 list_add_tail(&epi->rdllink, &ep->rdllist); 969 } 970 error = 0; 971 972 errxit: 973 974 spin_lock_irqsave(&ep->lock, flags); 975 /* 976 * During the time we spent in the loop above, some other events 977 * might have been queued by the poll callback. We re-insert them 978 * inside the main ready-list here. 979 */ 980 for (nepi = ep->ovflist; (epi = nepi) != NULL; 981 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 982 /* 983 * If the above loop quit with errors, the epoll item might still 984 * be linked to "txlist", and the list_splice() done below will 985 * take care of those cases. 986 */ 987 if (!ep_is_linked(&epi->rdllink)) 988 list_add_tail(&epi->rdllink, &ep->rdllist); 989 } 990 /* 991 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 992 * releasing the lock, events will be queued in the normal way inside 993 * ep->rdllist. 994 */ 995 ep->ovflist = EP_UNACTIVE_PTR; 996 997 /* 998 * In case of error in the event-send loop, or in case the number of 999 * ready events exceeds the userspace limit, we need to splice the 1000 * "txlist" back inside ep->rdllist. 1001 */ 1002 list_splice(&txlist, &ep->rdllist); 1003 1004 if (!list_empty(&ep->rdllist)) { 1005 /* 1006 * Wake up (if active) both the eventpoll wait list and the ->poll() 1007 * wait list (delayed after we release the lock). 1008 */ 1009 if (waitqueue_active(&ep->wq)) 1010 wake_up_locked(&ep->wq); 1011 if (waitqueue_active(&ep->poll_wait)) 1012 pwake++; 1013 } 1014 spin_unlock_irqrestore(&ep->lock, flags); 1015 1016 mutex_unlock(&ep->mtx); 1017 1018 /* We have to call this outside the lock */ 1019 if (pwake) 1020 ep_poll_safewake(&psw, &ep->poll_wait); 1021 1022 return eventcnt == 0 ? error: eventcnt; 1023 } 1024 1025 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1026 int maxevents, long timeout) 1027 { 1028 int res, eavail; 1029 unsigned long flags; 1030 long jtimeout; 1031 wait_queue_t wait; 1032 1033 /* 1034 * Calculate the timeout by checking for the "infinite" value ( -1 ) 1035 * and the overflow condition. The passed timeout is in milliseconds, 1036 * that why (t * HZ) / 1000. 1037 */ 1038 jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ? 1039 MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000; 1040 1041 retry: 1042 spin_lock_irqsave(&ep->lock, flags); 1043 1044 res = 0; 1045 if (list_empty(&ep->rdllist)) { 1046 /* 1047 * We don't have any available event to return to the caller. 1048 * We need to sleep here, and we will be wake up by 1049 * ep_poll_callback() when events will become available. 1050 */ 1051 init_waitqueue_entry(&wait, current); 1052 wait.flags |= WQ_FLAG_EXCLUSIVE; 1053 __add_wait_queue(&ep->wq, &wait); 1054 1055 for (;;) { 1056 /* 1057 * We don't want to sleep if the ep_poll_callback() sends us 1058 * a wakeup in between. That's why we set the task state 1059 * to TASK_INTERRUPTIBLE before doing the checks. 1060 */ 1061 set_current_state(TASK_INTERRUPTIBLE); 1062 if (!list_empty(&ep->rdllist) || !jtimeout) 1063 break; 1064 if (signal_pending(current)) { 1065 res = -EINTR; 1066 break; 1067 } 1068 1069 spin_unlock_irqrestore(&ep->lock, flags); 1070 jtimeout = schedule_timeout(jtimeout); 1071 spin_lock_irqsave(&ep->lock, flags); 1072 } 1073 __remove_wait_queue(&ep->wq, &wait); 1074 1075 set_current_state(TASK_RUNNING); 1076 } 1077 1078 /* Is it worth to try to dig for events ? */ 1079 eavail = !list_empty(&ep->rdllist); 1080 1081 spin_unlock_irqrestore(&ep->lock, flags); 1082 1083 /* 1084 * Try to transfer events to user space. In case we get 0 events and 1085 * there's still timeout left over, we go trying again in search of 1086 * more luck. 1087 */ 1088 if (!res && eavail && 1089 !(res = ep_send_events(ep, events, maxevents)) && jtimeout) 1090 goto retry; 1091 1092 return res; 1093 } 1094 1095 /* 1096 * Open an eventpoll file descriptor. 1097 */ 1098 SYSCALL_DEFINE1(epoll_create1, int, flags) 1099 { 1100 int error, fd = -1; 1101 struct eventpoll *ep; 1102 1103 /* Check the EPOLL_* constant for consistency. */ 1104 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1105 1106 if (flags & ~EPOLL_CLOEXEC) 1107 return -EINVAL; 1108 1109 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n", 1110 current, flags)); 1111 1112 /* 1113 * Create the internal data structure ( "struct eventpoll" ). 1114 */ 1115 error = ep_alloc(&ep); 1116 if (error < 0) { 1117 fd = error; 1118 goto error_return; 1119 } 1120 1121 /* 1122 * Creates all the items needed to setup an eventpoll file. That is, 1123 * a file structure and a free file descriptor. 1124 */ 1125 fd = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep, 1126 flags & O_CLOEXEC); 1127 if (fd < 0) 1128 ep_free(ep); 1129 1130 error_return: 1131 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n", 1132 current, flags, fd)); 1133 1134 return fd; 1135 } 1136 1137 SYSCALL_DEFINE1(epoll_create, int, size) 1138 { 1139 if (size < 0) 1140 return -EINVAL; 1141 1142 return sys_epoll_create1(0); 1143 } 1144 1145 /* 1146 * The following function implements the controller interface for 1147 * the eventpoll file that enables the insertion/removal/change of 1148 * file descriptors inside the interest set. 1149 */ 1150 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1151 struct epoll_event __user *, event) 1152 { 1153 int error; 1154 struct file *file, *tfile; 1155 struct eventpoll *ep; 1156 struct epitem *epi; 1157 struct epoll_event epds; 1158 1159 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n", 1160 current, epfd, op, fd, event)); 1161 1162 error = -EFAULT; 1163 if (ep_op_has_event(op) && 1164 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1165 goto error_return; 1166 1167 /* Get the "struct file *" for the eventpoll file */ 1168 error = -EBADF; 1169 file = fget(epfd); 1170 if (!file) 1171 goto error_return; 1172 1173 /* Get the "struct file *" for the target file */ 1174 tfile = fget(fd); 1175 if (!tfile) 1176 goto error_fput; 1177 1178 /* The target file descriptor must support poll */ 1179 error = -EPERM; 1180 if (!tfile->f_op || !tfile->f_op->poll) 1181 goto error_tgt_fput; 1182 1183 /* 1184 * We have to check that the file structure underneath the file descriptor 1185 * the user passed to us _is_ an eventpoll file. And also we do not permit 1186 * adding an epoll file descriptor inside itself. 1187 */ 1188 error = -EINVAL; 1189 if (file == tfile || !is_file_epoll(file)) 1190 goto error_tgt_fput; 1191 1192 /* 1193 * At this point it is safe to assume that the "private_data" contains 1194 * our own data structure. 1195 */ 1196 ep = file->private_data; 1197 1198 mutex_lock(&ep->mtx); 1199 1200 /* 1201 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1202 * above, we can be sure to be able to use the item looked up by 1203 * ep_find() till we release the mutex. 1204 */ 1205 epi = ep_find(ep, tfile, fd); 1206 1207 error = -EINVAL; 1208 switch (op) { 1209 case EPOLL_CTL_ADD: 1210 if (!epi) { 1211 epds.events |= POLLERR | POLLHUP; 1212 1213 error = ep_insert(ep, &epds, tfile, fd); 1214 } else 1215 error = -EEXIST; 1216 break; 1217 case EPOLL_CTL_DEL: 1218 if (epi) 1219 error = ep_remove(ep, epi); 1220 else 1221 error = -ENOENT; 1222 break; 1223 case EPOLL_CTL_MOD: 1224 if (epi) { 1225 epds.events |= POLLERR | POLLHUP; 1226 error = ep_modify(ep, epi, &epds); 1227 } else 1228 error = -ENOENT; 1229 break; 1230 } 1231 mutex_unlock(&ep->mtx); 1232 1233 error_tgt_fput: 1234 fput(tfile); 1235 error_fput: 1236 fput(file); 1237 error_return: 1238 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n", 1239 current, epfd, op, fd, event, error)); 1240 1241 return error; 1242 } 1243 1244 /* 1245 * Implement the event wait interface for the eventpoll file. It is the kernel 1246 * part of the user space epoll_wait(2). 1247 */ 1248 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1249 int, maxevents, int, timeout) 1250 { 1251 int error; 1252 struct file *file; 1253 struct eventpoll *ep; 1254 1255 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n", 1256 current, epfd, events, maxevents, timeout)); 1257 1258 /* The maximum number of event must be greater than zero */ 1259 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1260 return -EINVAL; 1261 1262 /* Verify that the area passed by the user is writeable */ 1263 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 1264 error = -EFAULT; 1265 goto error_return; 1266 } 1267 1268 /* Get the "struct file *" for the eventpoll file */ 1269 error = -EBADF; 1270 file = fget(epfd); 1271 if (!file) 1272 goto error_return; 1273 1274 /* 1275 * We have to check that the file structure underneath the fd 1276 * the user passed to us _is_ an eventpoll file. 1277 */ 1278 error = -EINVAL; 1279 if (!is_file_epoll(file)) 1280 goto error_fput; 1281 1282 /* 1283 * At this point it is safe to assume that the "private_data" contains 1284 * our own data structure. 1285 */ 1286 ep = file->private_data; 1287 1288 /* Time to fish for events ... */ 1289 error = ep_poll(ep, events, maxevents, timeout); 1290 1291 error_fput: 1292 fput(file); 1293 error_return: 1294 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n", 1295 current, epfd, events, maxevents, timeout, error)); 1296 1297 return error; 1298 } 1299 1300 #ifdef HAVE_SET_RESTORE_SIGMASK 1301 1302 /* 1303 * Implement the event wait interface for the eventpoll file. It is the kernel 1304 * part of the user space epoll_pwait(2). 1305 */ 1306 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1307 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1308 size_t, sigsetsize) 1309 { 1310 int error; 1311 sigset_t ksigmask, sigsaved; 1312 1313 /* 1314 * If the caller wants a certain signal mask to be set during the wait, 1315 * we apply it here. 1316 */ 1317 if (sigmask) { 1318 if (sigsetsize != sizeof(sigset_t)) 1319 return -EINVAL; 1320 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1321 return -EFAULT; 1322 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1323 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1324 } 1325 1326 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1327 1328 /* 1329 * If we changed the signal mask, we need to restore the original one. 1330 * In case we've got a signal while waiting, we do not restore the 1331 * signal mask yet, and we allow do_signal() to deliver the signal on 1332 * the way back to userspace, before the signal mask is restored. 1333 */ 1334 if (sigmask) { 1335 if (error == -EINTR) { 1336 memcpy(¤t->saved_sigmask, &sigsaved, 1337 sizeof(sigsaved)); 1338 set_restore_sigmask(); 1339 } else 1340 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1341 } 1342 1343 return error; 1344 } 1345 1346 #endif /* HAVE_SET_RESTORE_SIGMASK */ 1347 1348 static int __init eventpoll_init(void) 1349 { 1350 struct sysinfo si; 1351 1352 si_meminfo(&si); 1353 /* 1354 * Allows top 4% of lomem to be allocated for epoll watches (per user). 1355 */ 1356 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 1357 EP_ITEM_COST; 1358 1359 /* Initialize the structure used to perform safe poll wait head wake ups */ 1360 ep_poll_safewake_init(&psw); 1361 1362 /* Allocates slab cache used to allocate "struct epitem" items */ 1363 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1364 0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC, 1365 NULL); 1366 1367 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1368 pwq_cache = kmem_cache_create("eventpoll_pwq", 1369 sizeof(struct eppoll_entry), 0, 1370 EPI_SLAB_DEBUG|SLAB_PANIC, NULL); 1371 1372 return 0; 1373 } 1374 fs_initcall(eventpoll_init); 1375