1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <linux/capability.h> 41 #include <net/busy_poll.h> 42 43 /* 44 * LOCKING: 45 * There are three level of locking required by epoll : 46 * 47 * 1) epnested_mutex (mutex) 48 * 2) ep->mtx (mutex) 49 * 3) ep->lock (rwlock) 50 * 51 * The acquire order is the one listed above, from 1 to 3. 52 * We need a rwlock (ep->lock) because we manipulate objects 53 * from inside the poll callback, that might be triggered from 54 * a wake_up() that in turn might be called from IRQ context. 55 * So we can't sleep inside the poll callback and hence we need 56 * a spinlock. During the event transfer loop (from kernel to 57 * user space) we could end up sleeping due a copy_to_user(), so 58 * we need a lock that will allow us to sleep. This lock is a 59 * mutex (ep->mtx). It is acquired during the event transfer loop, 60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 61 * The epnested_mutex is acquired when inserting an epoll fd onto another 62 * epoll fd. We do this so that we walk the epoll tree and ensure that this 63 * insertion does not create a cycle of epoll file descriptors, which 64 * could lead to deadlock. We need a global mutex to prevent two 65 * simultaneous inserts (A into B and B into A) from racing and 66 * constructing a cycle without either insert observing that it is 67 * going to. 68 * It is necessary to acquire multiple "ep->mtx"es at once in the 69 * case when one epoll fd is added to another. In this case, we 70 * always acquire the locks in the order of nesting (i.e. after 71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 72 * before e2->mtx). Since we disallow cycles of epoll file 73 * descriptors, this ensures that the mutexes are well-ordered. In 74 * order to communicate this nesting to lockdep, when walking a tree 75 * of epoll file descriptors, we use the current recursion depth as 76 * the lockdep subkey. 77 * It is possible to drop the "ep->mtx" and to use the global 78 * mutex "epnested_mutex" (together with "ep->lock") to have it working, 79 * but having "ep->mtx" will make the interface more scalable. 80 * Events that require holding "epnested_mutex" are very rare, while for 81 * normal operations the epoll private "ep->mtx" will guarantee 82 * a better scalability. 83 */ 84 85 /* Epoll private bits inside the event mask */ 86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 87 88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 89 90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 92 93 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 95 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 98 #define EP_UNACTIVE_PTR ((void *) -1L) 99 100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 102 struct epoll_filefd { 103 struct file *file; 104 int fd; 105 } __packed; 106 107 /* Wait structure used by the poll hooks */ 108 struct eppoll_entry { 109 /* List header used to link this structure to the "struct epitem" */ 110 struct eppoll_entry *next; 111 112 /* The "base" pointer is set to the container "struct epitem" */ 113 struct epitem *base; 114 115 /* 116 * Wait queue item that will be linked to the target file wait 117 * queue head. 118 */ 119 wait_queue_entry_t wait; 120 121 /* The wait queue head that linked the "wait" wait queue item */ 122 wait_queue_head_t *whead; 123 }; 124 125 /* 126 * Each file descriptor added to the eventpoll interface will 127 * have an entry of this type linked to the "rbr" RB tree. 128 * Avoid increasing the size of this struct, there can be many thousands 129 * of these on a server and we do not want this to take another cache line. 130 */ 131 struct epitem { 132 union { 133 /* RB tree node links this structure to the eventpoll RB tree */ 134 struct rb_node rbn; 135 /* Used to free the struct epitem */ 136 struct rcu_head rcu; 137 }; 138 139 /* List header used to link this structure to the eventpoll ready list */ 140 struct list_head rdllink; 141 142 /* 143 * Works together "struct eventpoll"->ovflist in keeping the 144 * single linked chain of items. 145 */ 146 struct epitem *next; 147 148 /* The file descriptor information this item refers to */ 149 struct epoll_filefd ffd; 150 151 /* 152 * Protected by file->f_lock, true for to-be-released epitem already 153 * removed from the "struct file" items list; together with 154 * eventpoll->refcount orchestrates "struct eventpoll" disposal 155 */ 156 bool dying; 157 158 /* List containing poll wait queues */ 159 struct eppoll_entry *pwqlist; 160 161 /* The "container" of this item */ 162 struct eventpoll *ep; 163 164 /* List header used to link this item to the "struct file" items list */ 165 struct hlist_node fllink; 166 167 /* wakeup_source used when EPOLLWAKEUP is set */ 168 struct wakeup_source __rcu *ws; 169 170 /* The structure that describe the interested events and the source fd */ 171 struct epoll_event event; 172 }; 173 174 /* 175 * This structure is stored inside the "private_data" member of the file 176 * structure and represents the main data structure for the eventpoll 177 * interface. 178 */ 179 struct eventpoll { 180 /* 181 * This mutex is used to ensure that files are not removed 182 * while epoll is using them. This is held during the event 183 * collection loop, the file cleanup path, the epoll file exit 184 * code and the ctl operations. 185 */ 186 struct mutex mtx; 187 188 /* Wait queue used by sys_epoll_wait() */ 189 wait_queue_head_t wq; 190 191 /* Wait queue used by file->poll() */ 192 wait_queue_head_t poll_wait; 193 194 /* List of ready file descriptors */ 195 struct list_head rdllist; 196 197 /* Lock which protects rdllist and ovflist */ 198 rwlock_t lock; 199 200 /* RB tree root used to store monitored fd structs */ 201 struct rb_root_cached rbr; 202 203 /* 204 * This is a single linked list that chains all the "struct epitem" that 205 * happened while transferring ready events to userspace w/out 206 * holding ->lock. 207 */ 208 struct epitem *ovflist; 209 210 /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */ 211 struct wakeup_source *ws; 212 213 /* The user that created the eventpoll descriptor */ 214 struct user_struct *user; 215 216 struct file *file; 217 218 /* used to optimize loop detection check */ 219 u64 gen; 220 struct hlist_head refs; 221 222 /* 223 * usage count, used together with epitem->dying to 224 * orchestrate the disposal of this struct 225 */ 226 refcount_t refcount; 227 228 #ifdef CONFIG_NET_RX_BUSY_POLL 229 /* used to track busy poll napi_id */ 230 unsigned int napi_id; 231 /* busy poll timeout */ 232 u32 busy_poll_usecs; 233 /* busy poll packet budget */ 234 u16 busy_poll_budget; 235 bool prefer_busy_poll; 236 #endif 237 238 #ifdef CONFIG_DEBUG_LOCK_ALLOC 239 /* tracks wakeup nests for lockdep validation */ 240 u8 nests; 241 #endif 242 }; 243 244 /* Wrapper struct used by poll queueing */ 245 struct ep_pqueue { 246 poll_table pt; 247 struct epitem *epi; 248 }; 249 250 /* 251 * Configuration options available inside /proc/sys/fs/epoll/ 252 */ 253 /* Maximum number of epoll watched descriptors, per user */ 254 static long max_user_watches __read_mostly; 255 256 /* Used for cycles detection */ 257 static DEFINE_MUTEX(epnested_mutex); 258 259 static u64 loop_check_gen = 0; 260 261 /* Used to check for epoll file descriptor inclusion loops */ 262 static struct eventpoll *inserting_into; 263 264 /* Slab cache used to allocate "struct epitem" */ 265 static struct kmem_cache *epi_cache __ro_after_init; 266 267 /* Slab cache used to allocate "struct eppoll_entry" */ 268 static struct kmem_cache *pwq_cache __ro_after_init; 269 270 /* 271 * List of files with newly added links, where we may need to limit the number 272 * of emanating paths. Protected by the epnested_mutex. 273 */ 274 struct epitems_head { 275 struct hlist_head epitems; 276 struct epitems_head *next; 277 }; 278 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 279 280 static struct kmem_cache *ephead_cache __ro_after_init; 281 282 static inline void free_ephead(struct epitems_head *head) 283 { 284 if (head) 285 kmem_cache_free(ephead_cache, head); 286 } 287 288 static void list_file(struct file *file) 289 { 290 struct epitems_head *head; 291 292 head = container_of(file->f_ep, struct epitems_head, epitems); 293 if (!head->next) { 294 head->next = tfile_check_list; 295 tfile_check_list = head; 296 } 297 } 298 299 static void unlist_file(struct epitems_head *head) 300 { 301 struct epitems_head *to_free = head; 302 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 303 if (p) { 304 struct epitem *epi= container_of(p, struct epitem, fllink); 305 spin_lock(&epi->ffd.file->f_lock); 306 if (!hlist_empty(&head->epitems)) 307 to_free = NULL; 308 head->next = NULL; 309 spin_unlock(&epi->ffd.file->f_lock); 310 } 311 free_ephead(to_free); 312 } 313 314 #ifdef CONFIG_SYSCTL 315 316 #include <linux/sysctl.h> 317 318 static long long_zero; 319 static long long_max = LONG_MAX; 320 321 static const struct ctl_table epoll_table[] = { 322 { 323 .procname = "max_user_watches", 324 .data = &max_user_watches, 325 .maxlen = sizeof(max_user_watches), 326 .mode = 0644, 327 .proc_handler = proc_doulongvec_minmax, 328 .extra1 = &long_zero, 329 .extra2 = &long_max, 330 }, 331 }; 332 333 static void __init epoll_sysctls_init(void) 334 { 335 register_sysctl("fs/epoll", epoll_table); 336 } 337 #else 338 #define epoll_sysctls_init() do { } while (0) 339 #endif /* CONFIG_SYSCTL */ 340 341 static const struct file_operations eventpoll_fops; 342 343 static inline int is_file_epoll(struct file *f) 344 { 345 return f->f_op == &eventpoll_fops; 346 } 347 348 /* Setup the structure that is used as key for the RB tree */ 349 static inline void ep_set_ffd(struct epoll_filefd *ffd, 350 struct file *file, int fd) 351 { 352 ffd->file = file; 353 ffd->fd = fd; 354 } 355 356 /* Compare RB tree keys */ 357 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 358 struct epoll_filefd *p2) 359 { 360 return (p1->file > p2->file ? +1: 361 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 362 } 363 364 /* Tells us if the item is currently linked */ 365 static inline int ep_is_linked(struct epitem *epi) 366 { 367 return !list_empty(&epi->rdllink); 368 } 369 370 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 371 { 372 return container_of(p, struct eppoll_entry, wait); 373 } 374 375 /* Get the "struct epitem" from a wait queue pointer */ 376 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 377 { 378 return container_of(p, struct eppoll_entry, wait)->base; 379 } 380 381 /** 382 * ep_events_available - Checks if ready events might be available. 383 * 384 * @ep: Pointer to the eventpoll context. 385 * 386 * Return: a value different than %zero if ready events are available, 387 * or %zero otherwise. 388 */ 389 static inline int ep_events_available(struct eventpoll *ep) 390 { 391 return !list_empty_careful(&ep->rdllist) || 392 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 393 } 394 395 #ifdef CONFIG_NET_RX_BUSY_POLL 396 /** 397 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value 398 * from the epoll instance ep is preferred, but if it is not set fallback to 399 * the system-wide global via busy_loop_timeout. 400 * 401 * @start_time: The start time used to compute the remaining time until timeout. 402 * @ep: Pointer to the eventpoll context. 403 * 404 * Return: true if the timeout has expired, false otherwise. 405 */ 406 static bool busy_loop_ep_timeout(unsigned long start_time, 407 struct eventpoll *ep) 408 { 409 unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs); 410 411 if (bp_usec) { 412 unsigned long end_time = start_time + bp_usec; 413 unsigned long now = busy_loop_current_time(); 414 415 return time_after(now, end_time); 416 } else { 417 return busy_loop_timeout(start_time); 418 } 419 } 420 421 static bool ep_busy_loop_on(struct eventpoll *ep) 422 { 423 return !!READ_ONCE(ep->busy_poll_usecs) || 424 READ_ONCE(ep->prefer_busy_poll) || 425 net_busy_loop_on(); 426 } 427 428 static bool ep_busy_loop_end(void *p, unsigned long start_time) 429 { 430 struct eventpoll *ep = p; 431 432 return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep); 433 } 434 435 /* 436 * Busy poll if globally on and supporting sockets found && no events, 437 * busy loop will return if need_resched or ep_events_available. 438 * 439 * we must do our busy polling with irqs enabled 440 */ 441 static bool ep_busy_loop(struct eventpoll *ep) 442 { 443 unsigned int napi_id = READ_ONCE(ep->napi_id); 444 u16 budget = READ_ONCE(ep->busy_poll_budget); 445 bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 446 447 if (!budget) 448 budget = BUSY_POLL_BUDGET; 449 450 if (napi_id_valid(napi_id) && ep_busy_loop_on(ep)) { 451 napi_busy_loop(napi_id, ep_busy_loop_end, 452 ep, prefer_busy_poll, budget); 453 if (ep_events_available(ep)) 454 return true; 455 /* 456 * Busy poll timed out. Drop NAPI ID for now, we can add 457 * it back in when we have moved a socket with a valid NAPI 458 * ID onto the ready list. 459 */ 460 if (prefer_busy_poll) 461 napi_resume_irqs(napi_id); 462 ep->napi_id = 0; 463 return false; 464 } 465 return false; 466 } 467 468 /* 469 * Set epoll busy poll NAPI ID from sk. 470 */ 471 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 472 { 473 struct eventpoll *ep = epi->ep; 474 unsigned int napi_id; 475 struct socket *sock; 476 struct sock *sk; 477 478 if (!ep_busy_loop_on(ep)) 479 return; 480 481 sock = sock_from_file(epi->ffd.file); 482 if (!sock) 483 return; 484 485 sk = sock->sk; 486 if (!sk) 487 return; 488 489 napi_id = READ_ONCE(sk->sk_napi_id); 490 491 /* Non-NAPI IDs can be rejected 492 * or 493 * Nothing to do if we already have this ID 494 */ 495 if (!napi_id_valid(napi_id) || napi_id == ep->napi_id) 496 return; 497 498 /* record NAPI ID for use in next busy poll */ 499 ep->napi_id = napi_id; 500 } 501 502 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 503 unsigned long arg) 504 { 505 struct eventpoll *ep = file->private_data; 506 void __user *uarg = (void __user *)arg; 507 struct epoll_params epoll_params; 508 509 switch (cmd) { 510 case EPIOCSPARAMS: 511 if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params))) 512 return -EFAULT; 513 514 /* pad byte must be zero */ 515 if (epoll_params.__pad) 516 return -EINVAL; 517 518 if (epoll_params.busy_poll_usecs > S32_MAX) 519 return -EINVAL; 520 521 if (epoll_params.prefer_busy_poll > 1) 522 return -EINVAL; 523 524 if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT && 525 !capable(CAP_NET_ADMIN)) 526 return -EPERM; 527 528 WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs); 529 WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget); 530 WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll); 531 return 0; 532 case EPIOCGPARAMS: 533 memset(&epoll_params, 0, sizeof(epoll_params)); 534 epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs); 535 epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget); 536 epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 537 if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params))) 538 return -EFAULT; 539 return 0; 540 default: 541 return -ENOIOCTLCMD; 542 } 543 } 544 545 static void ep_suspend_napi_irqs(struct eventpoll *ep) 546 { 547 unsigned int napi_id = READ_ONCE(ep->napi_id); 548 549 if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll)) 550 napi_suspend_irqs(napi_id); 551 } 552 553 static void ep_resume_napi_irqs(struct eventpoll *ep) 554 { 555 unsigned int napi_id = READ_ONCE(ep->napi_id); 556 557 if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll)) 558 napi_resume_irqs(napi_id); 559 } 560 561 #else 562 563 static inline bool ep_busy_loop(struct eventpoll *ep) 564 { 565 return false; 566 } 567 568 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 569 { 570 } 571 572 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 573 unsigned long arg) 574 { 575 return -EOPNOTSUPP; 576 } 577 578 static void ep_suspend_napi_irqs(struct eventpoll *ep) 579 { 580 } 581 582 static void ep_resume_napi_irqs(struct eventpoll *ep) 583 { 584 } 585 586 #endif /* CONFIG_NET_RX_BUSY_POLL */ 587 588 /* 589 * As described in commit 0ccf831cb lockdep: annotate epoll 590 * the use of wait queues used by epoll is done in a very controlled 591 * manner. Wake ups can nest inside each other, but are never done 592 * with the same locking. For example: 593 * 594 * dfd = socket(...); 595 * efd1 = epoll_create(); 596 * efd2 = epoll_create(); 597 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 598 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 599 * 600 * When a packet arrives to the device underneath "dfd", the net code will 601 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 602 * callback wakeup entry on that queue, and the wake_up() performed by the 603 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 604 * (efd1) notices that it may have some event ready, so it needs to wake up 605 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 606 * that ends up in another wake_up(), after having checked about the 607 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid 608 * stack blasting. 609 * 610 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 611 * this special case of epoll. 612 */ 613 #ifdef CONFIG_DEBUG_LOCK_ALLOC 614 615 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 616 unsigned pollflags) 617 { 618 struct eventpoll *ep_src; 619 unsigned long flags; 620 u8 nests = 0; 621 622 /* 623 * To set the subclass or nesting level for spin_lock_irqsave_nested() 624 * it might be natural to create a per-cpu nest count. However, since 625 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 626 * schedule() in the -rt kernel, the per-cpu variable are no longer 627 * protected. Thus, we are introducing a per eventpoll nest field. 628 * If we are not being call from ep_poll_callback(), epi is NULL and 629 * we are at the first level of nesting, 0. Otherwise, we are being 630 * called from ep_poll_callback() and if a previous wakeup source is 631 * not an epoll file itself, we are at depth 1 since the wakeup source 632 * is depth 0. If the wakeup source is a previous epoll file in the 633 * wakeup chain then we use its nests value and record ours as 634 * nests + 1. The previous epoll file nests value is stable since its 635 * already holding its own poll_wait.lock. 636 */ 637 if (epi) { 638 if ((is_file_epoll(epi->ffd.file))) { 639 ep_src = epi->ffd.file->private_data; 640 nests = ep_src->nests; 641 } else { 642 nests = 1; 643 } 644 } 645 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 646 ep->nests = nests + 1; 647 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); 648 ep->nests = 0; 649 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 650 } 651 652 #else 653 654 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 655 __poll_t pollflags) 656 { 657 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); 658 } 659 660 #endif 661 662 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 663 { 664 wait_queue_head_t *whead; 665 666 rcu_read_lock(); 667 /* 668 * If it is cleared by POLLFREE, it should be rcu-safe. 669 * If we read NULL we need a barrier paired with 670 * smp_store_release() in ep_poll_callback(), otherwise 671 * we rely on whead->lock. 672 */ 673 whead = smp_load_acquire(&pwq->whead); 674 if (whead) 675 remove_wait_queue(whead, &pwq->wait); 676 rcu_read_unlock(); 677 } 678 679 /* 680 * This function unregisters poll callbacks from the associated file 681 * descriptor. Must be called with "mtx" held. 682 */ 683 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 684 { 685 struct eppoll_entry **p = &epi->pwqlist; 686 struct eppoll_entry *pwq; 687 688 while ((pwq = *p) != NULL) { 689 *p = pwq->next; 690 ep_remove_wait_queue(pwq); 691 kmem_cache_free(pwq_cache, pwq); 692 } 693 } 694 695 /* call only when ep->mtx is held */ 696 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 697 { 698 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 699 } 700 701 /* call only when ep->mtx is held */ 702 static inline void ep_pm_stay_awake(struct epitem *epi) 703 { 704 struct wakeup_source *ws = ep_wakeup_source(epi); 705 706 if (ws) 707 __pm_stay_awake(ws); 708 } 709 710 static inline bool ep_has_wakeup_source(struct epitem *epi) 711 { 712 return rcu_access_pointer(epi->ws) ? true : false; 713 } 714 715 /* call when ep->mtx cannot be held (ep_poll_callback) */ 716 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 717 { 718 struct wakeup_source *ws; 719 720 rcu_read_lock(); 721 ws = rcu_dereference(epi->ws); 722 if (ws) 723 __pm_stay_awake(ws); 724 rcu_read_unlock(); 725 } 726 727 728 /* 729 * ep->mutex needs to be held because we could be hit by 730 * eventpoll_release_file() and epoll_ctl(). 731 */ 732 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 733 { 734 /* 735 * Steal the ready list, and re-init the original one to the 736 * empty list. Also, set ep->ovflist to NULL so that events 737 * happening while looping w/out locks, are not lost. We cannot 738 * have the poll callback to queue directly on ep->rdllist, 739 * because we want the "sproc" callback to be able to do it 740 * in a lockless way. 741 */ 742 lockdep_assert_irqs_enabled(); 743 write_lock_irq(&ep->lock); 744 list_splice_init(&ep->rdllist, txlist); 745 WRITE_ONCE(ep->ovflist, NULL); 746 write_unlock_irq(&ep->lock); 747 } 748 749 static void ep_done_scan(struct eventpoll *ep, 750 struct list_head *txlist) 751 { 752 struct epitem *epi, *nepi; 753 754 write_lock_irq(&ep->lock); 755 /* 756 * During the time we spent inside the "sproc" callback, some 757 * other events might have been queued by the poll callback. 758 * We re-insert them inside the main ready-list here. 759 */ 760 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 761 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 762 /* 763 * We need to check if the item is already in the list. 764 * During the "sproc" callback execution time, items are 765 * queued into ->ovflist but the "txlist" might already 766 * contain them, and the list_splice() below takes care of them. 767 */ 768 if (!ep_is_linked(epi)) { 769 /* 770 * ->ovflist is LIFO, so we have to reverse it in order 771 * to keep in FIFO. 772 */ 773 list_add(&epi->rdllink, &ep->rdllist); 774 ep_pm_stay_awake(epi); 775 } 776 } 777 /* 778 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 779 * releasing the lock, events will be queued in the normal way inside 780 * ep->rdllist. 781 */ 782 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 783 784 /* 785 * Quickly re-inject items left on "txlist". 786 */ 787 list_splice(txlist, &ep->rdllist); 788 __pm_relax(ep->ws); 789 790 if (!list_empty(&ep->rdllist)) { 791 if (waitqueue_active(&ep->wq)) 792 wake_up(&ep->wq); 793 } 794 795 write_unlock_irq(&ep->lock); 796 } 797 798 static void ep_get(struct eventpoll *ep) 799 { 800 refcount_inc(&ep->refcount); 801 } 802 803 /* 804 * Returns true if the event poll can be disposed 805 */ 806 static bool ep_refcount_dec_and_test(struct eventpoll *ep) 807 { 808 if (!refcount_dec_and_test(&ep->refcount)) 809 return false; 810 811 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); 812 return true; 813 } 814 815 static void ep_free(struct eventpoll *ep) 816 { 817 ep_resume_napi_irqs(ep); 818 mutex_destroy(&ep->mtx); 819 free_uid(ep->user); 820 wakeup_source_unregister(ep->ws); 821 kfree(ep); 822 } 823 824 /* 825 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 826 * all the associated resources. Must be called with "mtx" held. 827 * If the dying flag is set, do the removal only if force is true. 828 * This prevents ep_clear_and_put() from dropping all the ep references 829 * while running concurrently with eventpoll_release_file(). 830 * Returns true if the eventpoll can be disposed. 831 */ 832 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) 833 { 834 struct file *file = epi->ffd.file; 835 struct epitems_head *to_free; 836 struct hlist_head *head; 837 838 lockdep_assert_irqs_enabled(); 839 840 /* 841 * Removes poll wait queue hooks. 842 */ 843 ep_unregister_pollwait(ep, epi); 844 845 /* Remove the current item from the list of epoll hooks */ 846 spin_lock(&file->f_lock); 847 if (epi->dying && !force) { 848 spin_unlock(&file->f_lock); 849 return false; 850 } 851 852 to_free = NULL; 853 head = file->f_ep; 854 if (head->first == &epi->fllink && !epi->fllink.next) { 855 /* See eventpoll_release() for details. */ 856 WRITE_ONCE(file->f_ep, NULL); 857 if (!is_file_epoll(file)) { 858 struct epitems_head *v; 859 v = container_of(head, struct epitems_head, epitems); 860 if (!smp_load_acquire(&v->next)) 861 to_free = v; 862 } 863 } 864 hlist_del_rcu(&epi->fllink); 865 spin_unlock(&file->f_lock); 866 free_ephead(to_free); 867 868 rb_erase_cached(&epi->rbn, &ep->rbr); 869 870 write_lock_irq(&ep->lock); 871 if (ep_is_linked(epi)) 872 list_del_init(&epi->rdllink); 873 write_unlock_irq(&ep->lock); 874 875 wakeup_source_unregister(ep_wakeup_source(epi)); 876 /* 877 * At this point it is safe to free the eventpoll item. Use the union 878 * field epi->rcu, since we are trying to minimize the size of 879 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 880 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 881 * use of the rbn field. 882 */ 883 kfree_rcu(epi, rcu); 884 885 percpu_counter_dec(&ep->user->epoll_watches); 886 return true; 887 } 888 889 /* 890 * ep_remove variant for callers owing an additional reference to the ep 891 */ 892 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) 893 { 894 if (__ep_remove(ep, epi, false)) 895 WARN_ON_ONCE(ep_refcount_dec_and_test(ep)); 896 } 897 898 static void ep_clear_and_put(struct eventpoll *ep) 899 { 900 struct rb_node *rbp, *next; 901 struct epitem *epi; 902 903 /* We need to release all tasks waiting for these file */ 904 if (waitqueue_active(&ep->poll_wait)) 905 ep_poll_safewake(ep, NULL, 0); 906 907 mutex_lock(&ep->mtx); 908 909 /* 910 * Walks through the whole tree by unregistering poll callbacks. 911 */ 912 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 913 epi = rb_entry(rbp, struct epitem, rbn); 914 915 ep_unregister_pollwait(ep, epi); 916 cond_resched(); 917 } 918 919 /* 920 * Walks through the whole tree and try to free each "struct epitem". 921 * Note that ep_remove_safe() will not remove the epitem in case of a 922 * racing eventpoll_release_file(); the latter will do the removal. 923 * At this point we are sure no poll callbacks will be lingering around. 924 * Since we still own a reference to the eventpoll struct, the loop can't 925 * dispose it. 926 */ 927 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { 928 next = rb_next(rbp); 929 epi = rb_entry(rbp, struct epitem, rbn); 930 ep_remove_safe(ep, epi); 931 cond_resched(); 932 } 933 934 mutex_unlock(&ep->mtx); 935 if (ep_refcount_dec_and_test(ep)) 936 ep_free(ep); 937 } 938 939 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd, 940 unsigned long arg) 941 { 942 int ret; 943 944 if (!is_file_epoll(file)) 945 return -EINVAL; 946 947 switch (cmd) { 948 case EPIOCSPARAMS: 949 case EPIOCGPARAMS: 950 ret = ep_eventpoll_bp_ioctl(file, cmd, arg); 951 break; 952 default: 953 ret = -EINVAL; 954 break; 955 } 956 957 return ret; 958 } 959 960 static int ep_eventpoll_release(struct inode *inode, struct file *file) 961 { 962 struct eventpoll *ep = file->private_data; 963 964 if (ep) 965 ep_clear_and_put(ep); 966 967 return 0; 968 } 969 970 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 971 972 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 973 { 974 struct eventpoll *ep = file->private_data; 975 LIST_HEAD(txlist); 976 struct epitem *epi, *tmp; 977 poll_table pt; 978 __poll_t res = 0; 979 980 init_poll_funcptr(&pt, NULL); 981 982 /* Insert inside our poll wait queue */ 983 poll_wait(file, &ep->poll_wait, wait); 984 985 /* 986 * Proceed to find out if wanted events are really available inside 987 * the ready list. 988 */ 989 mutex_lock_nested(&ep->mtx, depth); 990 ep_start_scan(ep, &txlist); 991 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 992 if (ep_item_poll(epi, &pt, depth + 1)) { 993 res = EPOLLIN | EPOLLRDNORM; 994 break; 995 } else { 996 /* 997 * Item has been dropped into the ready list by the poll 998 * callback, but it's not actually ready, as far as 999 * caller requested events goes. We can remove it here. 1000 */ 1001 __pm_relax(ep_wakeup_source(epi)); 1002 list_del_init(&epi->rdllink); 1003 } 1004 } 1005 ep_done_scan(ep, &txlist); 1006 mutex_unlock(&ep->mtx); 1007 return res; 1008 } 1009 1010 /* 1011 * The ffd.file pointer may be in the process of being torn down due to 1012 * being closed, but we may not have finished eventpoll_release() yet. 1013 * 1014 * Normally, even with the atomic_long_inc_not_zero, the file may have 1015 * been free'd and then gotten re-allocated to something else (since 1016 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU). 1017 * 1018 * But for epoll, users hold the ep->mtx mutex, and as such any file in 1019 * the process of being free'd will block in eventpoll_release_file() 1020 * and thus the underlying file allocation will not be free'd, and the 1021 * file re-use cannot happen. 1022 * 1023 * For the same reason we can avoid a rcu_read_lock() around the 1024 * operation - 'ffd.file' cannot go away even if the refcount has 1025 * reached zero (but we must still not call out to ->poll() functions 1026 * etc). 1027 */ 1028 static struct file *epi_fget(const struct epitem *epi) 1029 { 1030 struct file *file; 1031 1032 file = epi->ffd.file; 1033 if (!file_ref_get(&file->f_ref)) 1034 file = NULL; 1035 return file; 1036 } 1037 1038 /* 1039 * Differs from ep_eventpoll_poll() in that internal callers already have 1040 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 1041 * is correctly annotated. 1042 */ 1043 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 1044 int depth) 1045 { 1046 struct file *file = epi_fget(epi); 1047 __poll_t res; 1048 1049 /* 1050 * We could return EPOLLERR | EPOLLHUP or something, but let's 1051 * treat this more as "file doesn't exist, poll didn't happen". 1052 */ 1053 if (!file) 1054 return 0; 1055 1056 pt->_key = epi->event.events; 1057 if (!is_file_epoll(file)) 1058 res = vfs_poll(file, pt); 1059 else 1060 res = __ep_eventpoll_poll(file, pt, depth); 1061 fput(file); 1062 return res & epi->event.events; 1063 } 1064 1065 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 1066 { 1067 return __ep_eventpoll_poll(file, wait, 0); 1068 } 1069 1070 #ifdef CONFIG_PROC_FS 1071 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 1072 { 1073 struct eventpoll *ep = f->private_data; 1074 struct rb_node *rbp; 1075 1076 mutex_lock(&ep->mtx); 1077 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1078 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 1079 struct inode *inode = file_inode(epi->ffd.file); 1080 1081 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 1082 " pos:%lli ino:%lx sdev:%x\n", 1083 epi->ffd.fd, epi->event.events, 1084 (long long)epi->event.data, 1085 (long long)epi->ffd.file->f_pos, 1086 inode->i_ino, inode->i_sb->s_dev); 1087 if (seq_has_overflowed(m)) 1088 break; 1089 } 1090 mutex_unlock(&ep->mtx); 1091 } 1092 #endif 1093 1094 /* File callbacks that implement the eventpoll file behaviour */ 1095 static const struct file_operations eventpoll_fops = { 1096 #ifdef CONFIG_PROC_FS 1097 .show_fdinfo = ep_show_fdinfo, 1098 #endif 1099 .release = ep_eventpoll_release, 1100 .poll = ep_eventpoll_poll, 1101 .llseek = noop_llseek, 1102 .unlocked_ioctl = ep_eventpoll_ioctl, 1103 .compat_ioctl = compat_ptr_ioctl, 1104 }; 1105 1106 /* 1107 * This is called from eventpoll_release() to unlink files from the eventpoll 1108 * interface. We need to have this facility to cleanup correctly files that are 1109 * closed without being removed from the eventpoll interface. 1110 */ 1111 void eventpoll_release_file(struct file *file) 1112 { 1113 struct eventpoll *ep; 1114 struct epitem *epi; 1115 bool dispose; 1116 1117 /* 1118 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from 1119 * touching the epitems list before eventpoll_release_file() can access 1120 * the ep->mtx. 1121 */ 1122 again: 1123 spin_lock(&file->f_lock); 1124 if (file->f_ep && file->f_ep->first) { 1125 epi = hlist_entry(file->f_ep->first, struct epitem, fllink); 1126 epi->dying = true; 1127 spin_unlock(&file->f_lock); 1128 1129 /* 1130 * ep access is safe as we still own a reference to the ep 1131 * struct 1132 */ 1133 ep = epi->ep; 1134 mutex_lock(&ep->mtx); 1135 dispose = __ep_remove(ep, epi, true); 1136 mutex_unlock(&ep->mtx); 1137 1138 if (dispose && ep_refcount_dec_and_test(ep)) 1139 ep_free(ep); 1140 goto again; 1141 } 1142 spin_unlock(&file->f_lock); 1143 } 1144 1145 static int ep_alloc(struct eventpoll **pep) 1146 { 1147 struct eventpoll *ep; 1148 1149 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1150 if (unlikely(!ep)) 1151 return -ENOMEM; 1152 1153 mutex_init(&ep->mtx); 1154 rwlock_init(&ep->lock); 1155 init_waitqueue_head(&ep->wq); 1156 init_waitqueue_head(&ep->poll_wait); 1157 INIT_LIST_HEAD(&ep->rdllist); 1158 ep->rbr = RB_ROOT_CACHED; 1159 ep->ovflist = EP_UNACTIVE_PTR; 1160 ep->user = get_current_user(); 1161 refcount_set(&ep->refcount, 1); 1162 1163 *pep = ep; 1164 1165 return 0; 1166 } 1167 1168 /* 1169 * Search the file inside the eventpoll tree. The RB tree operations 1170 * are protected by the "mtx" mutex, and ep_find() must be called with 1171 * "mtx" held. 1172 */ 1173 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1174 { 1175 int kcmp; 1176 struct rb_node *rbp; 1177 struct epitem *epi, *epir = NULL; 1178 struct epoll_filefd ffd; 1179 1180 ep_set_ffd(&ffd, file, fd); 1181 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1182 epi = rb_entry(rbp, struct epitem, rbn); 1183 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1184 if (kcmp > 0) 1185 rbp = rbp->rb_right; 1186 else if (kcmp < 0) 1187 rbp = rbp->rb_left; 1188 else { 1189 epir = epi; 1190 break; 1191 } 1192 } 1193 1194 return epir; 1195 } 1196 1197 #ifdef CONFIG_KCMP 1198 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1199 { 1200 struct rb_node *rbp; 1201 struct epitem *epi; 1202 1203 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1204 epi = rb_entry(rbp, struct epitem, rbn); 1205 if (epi->ffd.fd == tfd) { 1206 if (toff == 0) 1207 return epi; 1208 else 1209 toff--; 1210 } 1211 cond_resched(); 1212 } 1213 1214 return NULL; 1215 } 1216 1217 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1218 unsigned long toff) 1219 { 1220 struct file *file_raw; 1221 struct eventpoll *ep; 1222 struct epitem *epi; 1223 1224 if (!is_file_epoll(file)) 1225 return ERR_PTR(-EINVAL); 1226 1227 ep = file->private_data; 1228 1229 mutex_lock(&ep->mtx); 1230 epi = ep_find_tfd(ep, tfd, toff); 1231 if (epi) 1232 file_raw = epi->ffd.file; 1233 else 1234 file_raw = ERR_PTR(-ENOENT); 1235 mutex_unlock(&ep->mtx); 1236 1237 return file_raw; 1238 } 1239 #endif /* CONFIG_KCMP */ 1240 1241 /* 1242 * Adds a new entry to the tail of the list in a lockless way, i.e. 1243 * multiple CPUs are allowed to call this function concurrently. 1244 * 1245 * Beware: it is necessary to prevent any other modifications of the 1246 * existing list until all changes are completed, in other words 1247 * concurrent list_add_tail_lockless() calls should be protected 1248 * with a read lock, where write lock acts as a barrier which 1249 * makes sure all list_add_tail_lockless() calls are fully 1250 * completed. 1251 * 1252 * Also an element can be locklessly added to the list only in one 1253 * direction i.e. either to the tail or to the head, otherwise 1254 * concurrent access will corrupt the list. 1255 * 1256 * Return: %false if element has been already added to the list, %true 1257 * otherwise. 1258 */ 1259 static inline bool list_add_tail_lockless(struct list_head *new, 1260 struct list_head *head) 1261 { 1262 struct list_head *prev; 1263 1264 /* 1265 * This is simple 'new->next = head' operation, but cmpxchg() 1266 * is used in order to detect that same element has been just 1267 * added to the list from another CPU: the winner observes 1268 * new->next == new. 1269 */ 1270 if (!try_cmpxchg(&new->next, &new, head)) 1271 return false; 1272 1273 /* 1274 * Initially ->next of a new element must be updated with the head 1275 * (we are inserting to the tail) and only then pointers are atomically 1276 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1277 * updated before pointers are actually swapped and pointers are 1278 * swapped before prev->next is updated. 1279 */ 1280 1281 prev = xchg(&head->prev, new); 1282 1283 /* 1284 * It is safe to modify prev->next and new->prev, because a new element 1285 * is added only to the tail and new->next is updated before XCHG. 1286 */ 1287 1288 prev->next = new; 1289 new->prev = prev; 1290 1291 return true; 1292 } 1293 1294 /* 1295 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1296 * i.e. multiple CPUs are allowed to call this function concurrently. 1297 * 1298 * Return: %false if epi element has been already chained, %true otherwise. 1299 */ 1300 static inline bool chain_epi_lockless(struct epitem *epi) 1301 { 1302 struct eventpoll *ep = epi->ep; 1303 1304 /* Fast preliminary check */ 1305 if (epi->next != EP_UNACTIVE_PTR) 1306 return false; 1307 1308 /* Check that the same epi has not been just chained from another CPU */ 1309 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1310 return false; 1311 1312 /* Atomically exchange tail */ 1313 epi->next = xchg(&ep->ovflist, epi); 1314 1315 return true; 1316 } 1317 1318 /* 1319 * This is the callback that is passed to the wait queue wakeup 1320 * mechanism. It is called by the stored file descriptors when they 1321 * have events to report. 1322 * 1323 * This callback takes a read lock in order not to contend with concurrent 1324 * events from another file descriptor, thus all modifications to ->rdllist 1325 * or ->ovflist are lockless. Read lock is paired with the write lock from 1326 * ep_start/done_scan(), which stops all list modifications and guarantees 1327 * that lists state is seen correctly. 1328 * 1329 * Another thing worth to mention is that ep_poll_callback() can be called 1330 * concurrently for the same @epi from different CPUs if poll table was inited 1331 * with several wait queues entries. Plural wakeup from different CPUs of a 1332 * single wait queue is serialized by wq.lock, but the case when multiple wait 1333 * queues are used should be detected accordingly. This is detected using 1334 * cmpxchg() operation. 1335 */ 1336 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1337 { 1338 int pwake = 0; 1339 struct epitem *epi = ep_item_from_wait(wait); 1340 struct eventpoll *ep = epi->ep; 1341 __poll_t pollflags = key_to_poll(key); 1342 unsigned long flags; 1343 int ewake = 0; 1344 1345 read_lock_irqsave(&ep->lock, flags); 1346 1347 ep_set_busy_poll_napi_id(epi); 1348 1349 /* 1350 * If the event mask does not contain any poll(2) event, we consider the 1351 * descriptor to be disabled. This condition is likely the effect of the 1352 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1353 * until the next EPOLL_CTL_MOD will be issued. 1354 */ 1355 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1356 goto out_unlock; 1357 1358 /* 1359 * Check the events coming with the callback. At this stage, not 1360 * every device reports the events in the "key" parameter of the 1361 * callback. We need to be able to handle both cases here, hence the 1362 * test for "key" != NULL before the event match test. 1363 */ 1364 if (pollflags && !(pollflags & epi->event.events)) 1365 goto out_unlock; 1366 1367 /* 1368 * If we are transferring events to userspace, we can hold no locks 1369 * (because we're accessing user memory, and because of linux f_op->poll() 1370 * semantics). All the events that happen during that period of time are 1371 * chained in ep->ovflist and requeued later on. 1372 */ 1373 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1374 if (chain_epi_lockless(epi)) 1375 ep_pm_stay_awake_rcu(epi); 1376 } else if (!ep_is_linked(epi)) { 1377 /* In the usual case, add event to ready list. */ 1378 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1379 ep_pm_stay_awake_rcu(epi); 1380 } 1381 1382 /* 1383 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1384 * wait list. 1385 */ 1386 if (waitqueue_active(&ep->wq)) { 1387 if ((epi->event.events & EPOLLEXCLUSIVE) && 1388 !(pollflags & POLLFREE)) { 1389 switch (pollflags & EPOLLINOUT_BITS) { 1390 case EPOLLIN: 1391 if (epi->event.events & EPOLLIN) 1392 ewake = 1; 1393 break; 1394 case EPOLLOUT: 1395 if (epi->event.events & EPOLLOUT) 1396 ewake = 1; 1397 break; 1398 case 0: 1399 ewake = 1; 1400 break; 1401 } 1402 } 1403 if (sync) 1404 wake_up_sync(&ep->wq); 1405 else 1406 wake_up(&ep->wq); 1407 } 1408 if (waitqueue_active(&ep->poll_wait)) 1409 pwake++; 1410 1411 out_unlock: 1412 read_unlock_irqrestore(&ep->lock, flags); 1413 1414 /* We have to call this outside the lock */ 1415 if (pwake) 1416 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); 1417 1418 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1419 ewake = 1; 1420 1421 if (pollflags & POLLFREE) { 1422 /* 1423 * If we race with ep_remove_wait_queue() it can miss 1424 * ->whead = NULL and do another remove_wait_queue() after 1425 * us, so we can't use __remove_wait_queue(). 1426 */ 1427 list_del_init(&wait->entry); 1428 /* 1429 * ->whead != NULL protects us from the race with 1430 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() 1431 * takes whead->lock held by the caller. Once we nullify it, 1432 * nothing protects ep/epi or even wait. 1433 */ 1434 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1435 } 1436 1437 return ewake; 1438 } 1439 1440 /* 1441 * This is the callback that is used to add our wait queue to the 1442 * target file wakeup lists. 1443 */ 1444 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1445 poll_table *pt) 1446 { 1447 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1448 struct epitem *epi = epq->epi; 1449 struct eppoll_entry *pwq; 1450 1451 if (unlikely(!epi)) // an earlier allocation has failed 1452 return; 1453 1454 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1455 if (unlikely(!pwq)) { 1456 epq->epi = NULL; 1457 return; 1458 } 1459 1460 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1461 pwq->whead = whead; 1462 pwq->base = epi; 1463 if (epi->event.events & EPOLLEXCLUSIVE) 1464 add_wait_queue_exclusive(whead, &pwq->wait); 1465 else 1466 add_wait_queue(whead, &pwq->wait); 1467 pwq->next = epi->pwqlist; 1468 epi->pwqlist = pwq; 1469 } 1470 1471 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1472 { 1473 int kcmp; 1474 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1475 struct epitem *epic; 1476 bool leftmost = true; 1477 1478 while (*p) { 1479 parent = *p; 1480 epic = rb_entry(parent, struct epitem, rbn); 1481 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1482 if (kcmp > 0) { 1483 p = &parent->rb_right; 1484 leftmost = false; 1485 } else 1486 p = &parent->rb_left; 1487 } 1488 rb_link_node(&epi->rbn, parent, p); 1489 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1490 } 1491 1492 1493 1494 #define PATH_ARR_SIZE 5 1495 /* 1496 * These are the number paths of length 1 to 5, that we are allowing to emanate 1497 * from a single file of interest. For example, we allow 1000 paths of length 1498 * 1, to emanate from each file of interest. This essentially represents the 1499 * potential wakeup paths, which need to be limited in order to avoid massive 1500 * uncontrolled wakeup storms. The common use case should be a single ep which 1501 * is connected to n file sources. In this case each file source has 1 path 1502 * of length 1. Thus, the numbers below should be more than sufficient. These 1503 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1504 * and delete can't add additional paths. Protected by the epnested_mutex. 1505 */ 1506 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1507 static int path_count[PATH_ARR_SIZE]; 1508 1509 static int path_count_inc(int nests) 1510 { 1511 /* Allow an arbitrary number of depth 1 paths */ 1512 if (nests == 0) 1513 return 0; 1514 1515 if (++path_count[nests] > path_limits[nests]) 1516 return -1; 1517 return 0; 1518 } 1519 1520 static void path_count_init(void) 1521 { 1522 int i; 1523 1524 for (i = 0; i < PATH_ARR_SIZE; i++) 1525 path_count[i] = 0; 1526 } 1527 1528 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1529 { 1530 int error = 0; 1531 struct epitem *epi; 1532 1533 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1534 return -1; 1535 1536 /* CTL_DEL can remove links here, but that can't increase our count */ 1537 hlist_for_each_entry_rcu(epi, refs, fllink) { 1538 struct hlist_head *refs = &epi->ep->refs; 1539 if (hlist_empty(refs)) 1540 error = path_count_inc(depth); 1541 else 1542 error = reverse_path_check_proc(refs, depth + 1); 1543 if (error != 0) 1544 break; 1545 } 1546 return error; 1547 } 1548 1549 /** 1550 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1551 * links that are proposed to be newly added. We need to 1552 * make sure that those added links don't add too many 1553 * paths such that we will spend all our time waking up 1554 * eventpoll objects. 1555 * 1556 * Return: %zero if the proposed links don't create too many paths, 1557 * %-1 otherwise. 1558 */ 1559 static int reverse_path_check(void) 1560 { 1561 struct epitems_head *p; 1562 1563 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1564 int error; 1565 path_count_init(); 1566 rcu_read_lock(); 1567 error = reverse_path_check_proc(&p->epitems, 0); 1568 rcu_read_unlock(); 1569 if (error) 1570 return error; 1571 } 1572 return 0; 1573 } 1574 1575 static int ep_create_wakeup_source(struct epitem *epi) 1576 { 1577 struct name_snapshot n; 1578 struct wakeup_source *ws; 1579 1580 if (!epi->ep->ws) { 1581 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1582 if (!epi->ep->ws) 1583 return -ENOMEM; 1584 } 1585 1586 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1587 ws = wakeup_source_register(NULL, n.name.name); 1588 release_dentry_name_snapshot(&n); 1589 1590 if (!ws) 1591 return -ENOMEM; 1592 rcu_assign_pointer(epi->ws, ws); 1593 1594 return 0; 1595 } 1596 1597 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1598 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1599 { 1600 struct wakeup_source *ws = ep_wakeup_source(epi); 1601 1602 RCU_INIT_POINTER(epi->ws, NULL); 1603 1604 /* 1605 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1606 * used internally by wakeup_source_remove, too (called by 1607 * wakeup_source_unregister), so we cannot use call_rcu 1608 */ 1609 synchronize_rcu(); 1610 wakeup_source_unregister(ws); 1611 } 1612 1613 static int attach_epitem(struct file *file, struct epitem *epi) 1614 { 1615 struct epitems_head *to_free = NULL; 1616 struct hlist_head *head = NULL; 1617 struct eventpoll *ep = NULL; 1618 1619 if (is_file_epoll(file)) 1620 ep = file->private_data; 1621 1622 if (ep) { 1623 head = &ep->refs; 1624 } else if (!READ_ONCE(file->f_ep)) { 1625 allocate: 1626 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1627 if (!to_free) 1628 return -ENOMEM; 1629 head = &to_free->epitems; 1630 } 1631 spin_lock(&file->f_lock); 1632 if (!file->f_ep) { 1633 if (unlikely(!head)) { 1634 spin_unlock(&file->f_lock); 1635 goto allocate; 1636 } 1637 /* See eventpoll_release() for details. */ 1638 WRITE_ONCE(file->f_ep, head); 1639 to_free = NULL; 1640 } 1641 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1642 spin_unlock(&file->f_lock); 1643 free_ephead(to_free); 1644 return 0; 1645 } 1646 1647 /* 1648 * Must be called with "mtx" held. 1649 */ 1650 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1651 struct file *tfile, int fd, int full_check) 1652 { 1653 int error, pwake = 0; 1654 __poll_t revents; 1655 struct epitem *epi; 1656 struct ep_pqueue epq; 1657 struct eventpoll *tep = NULL; 1658 1659 if (is_file_epoll(tfile)) 1660 tep = tfile->private_data; 1661 1662 lockdep_assert_irqs_enabled(); 1663 1664 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1665 max_user_watches) >= 0)) 1666 return -ENOSPC; 1667 percpu_counter_inc(&ep->user->epoll_watches); 1668 1669 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1670 percpu_counter_dec(&ep->user->epoll_watches); 1671 return -ENOMEM; 1672 } 1673 1674 /* Item initialization follow here ... */ 1675 INIT_LIST_HEAD(&epi->rdllink); 1676 epi->ep = ep; 1677 ep_set_ffd(&epi->ffd, tfile, fd); 1678 epi->event = *event; 1679 epi->next = EP_UNACTIVE_PTR; 1680 1681 if (tep) 1682 mutex_lock_nested(&tep->mtx, 1); 1683 /* Add the current item to the list of active epoll hook for this file */ 1684 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1685 if (tep) 1686 mutex_unlock(&tep->mtx); 1687 kmem_cache_free(epi_cache, epi); 1688 percpu_counter_dec(&ep->user->epoll_watches); 1689 return -ENOMEM; 1690 } 1691 1692 if (full_check && !tep) 1693 list_file(tfile); 1694 1695 /* 1696 * Add the current item to the RB tree. All RB tree operations are 1697 * protected by "mtx", and ep_insert() is called with "mtx" held. 1698 */ 1699 ep_rbtree_insert(ep, epi); 1700 if (tep) 1701 mutex_unlock(&tep->mtx); 1702 1703 /* 1704 * ep_remove_safe() calls in the later error paths can't lead to 1705 * ep_free() as the ep file itself still holds an ep reference. 1706 */ 1707 ep_get(ep); 1708 1709 /* now check if we've created too many backpaths */ 1710 if (unlikely(full_check && reverse_path_check())) { 1711 ep_remove_safe(ep, epi); 1712 return -EINVAL; 1713 } 1714 1715 if (epi->event.events & EPOLLWAKEUP) { 1716 error = ep_create_wakeup_source(epi); 1717 if (error) { 1718 ep_remove_safe(ep, epi); 1719 return error; 1720 } 1721 } 1722 1723 /* Initialize the poll table using the queue callback */ 1724 epq.epi = epi; 1725 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1726 1727 /* 1728 * Attach the item to the poll hooks and get current event bits. 1729 * We can safely use the file* here because its usage count has 1730 * been increased by the caller of this function. Note that after 1731 * this operation completes, the poll callback can start hitting 1732 * the new item. 1733 */ 1734 revents = ep_item_poll(epi, &epq.pt, 1); 1735 1736 /* 1737 * We have to check if something went wrong during the poll wait queue 1738 * install process. Namely an allocation for a wait queue failed due 1739 * high memory pressure. 1740 */ 1741 if (unlikely(!epq.epi)) { 1742 ep_remove_safe(ep, epi); 1743 return -ENOMEM; 1744 } 1745 1746 /* We have to drop the new item inside our item list to keep track of it */ 1747 write_lock_irq(&ep->lock); 1748 1749 /* record NAPI ID of new item if present */ 1750 ep_set_busy_poll_napi_id(epi); 1751 1752 /* If the file is already "ready" we drop it inside the ready list */ 1753 if (revents && !ep_is_linked(epi)) { 1754 list_add_tail(&epi->rdllink, &ep->rdllist); 1755 ep_pm_stay_awake(epi); 1756 1757 /* Notify waiting tasks that events are available */ 1758 if (waitqueue_active(&ep->wq)) 1759 wake_up(&ep->wq); 1760 if (waitqueue_active(&ep->poll_wait)) 1761 pwake++; 1762 } 1763 1764 write_unlock_irq(&ep->lock); 1765 1766 /* We have to call this outside the lock */ 1767 if (pwake) 1768 ep_poll_safewake(ep, NULL, 0); 1769 1770 return 0; 1771 } 1772 1773 /* 1774 * Modify the interest event mask by dropping an event if the new mask 1775 * has a match in the current file status. Must be called with "mtx" held. 1776 */ 1777 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1778 const struct epoll_event *event) 1779 { 1780 int pwake = 0; 1781 poll_table pt; 1782 1783 lockdep_assert_irqs_enabled(); 1784 1785 init_poll_funcptr(&pt, NULL); 1786 1787 /* 1788 * Set the new event interest mask before calling f_op->poll(); 1789 * otherwise we might miss an event that happens between the 1790 * f_op->poll() call and the new event set registering. 1791 */ 1792 epi->event.events = event->events; /* need barrier below */ 1793 epi->event.data = event->data; /* protected by mtx */ 1794 if (epi->event.events & EPOLLWAKEUP) { 1795 if (!ep_has_wakeup_source(epi)) 1796 ep_create_wakeup_source(epi); 1797 } else if (ep_has_wakeup_source(epi)) { 1798 ep_destroy_wakeup_source(epi); 1799 } 1800 1801 /* 1802 * The following barrier has two effects: 1803 * 1804 * 1) Flush epi changes above to other CPUs. This ensures 1805 * we do not miss events from ep_poll_callback if an 1806 * event occurs immediately after we call f_op->poll(). 1807 * We need this because we did not take ep->lock while 1808 * changing epi above (but ep_poll_callback does take 1809 * ep->lock). 1810 * 1811 * 2) We also need to ensure we do not miss _past_ events 1812 * when calling f_op->poll(). This barrier also 1813 * pairs with the barrier in wq_has_sleeper (see 1814 * comments for wq_has_sleeper). 1815 * 1816 * This barrier will now guarantee ep_poll_callback or f_op->poll 1817 * (or both) will notice the readiness of an item. 1818 */ 1819 smp_mb(); 1820 1821 /* 1822 * Get current event bits. We can safely use the file* here because 1823 * its usage count has been increased by the caller of this function. 1824 * If the item is "hot" and it is not registered inside the ready 1825 * list, push it inside. 1826 */ 1827 if (ep_item_poll(epi, &pt, 1)) { 1828 write_lock_irq(&ep->lock); 1829 if (!ep_is_linked(epi)) { 1830 list_add_tail(&epi->rdllink, &ep->rdllist); 1831 ep_pm_stay_awake(epi); 1832 1833 /* Notify waiting tasks that events are available */ 1834 if (waitqueue_active(&ep->wq)) 1835 wake_up(&ep->wq); 1836 if (waitqueue_active(&ep->poll_wait)) 1837 pwake++; 1838 } 1839 write_unlock_irq(&ep->lock); 1840 } 1841 1842 /* We have to call this outside the lock */ 1843 if (pwake) 1844 ep_poll_safewake(ep, NULL, 0); 1845 1846 return 0; 1847 } 1848 1849 static int ep_send_events(struct eventpoll *ep, 1850 struct epoll_event __user *events, int maxevents) 1851 { 1852 struct epitem *epi, *tmp; 1853 LIST_HEAD(txlist); 1854 poll_table pt; 1855 int res = 0; 1856 1857 /* 1858 * Always short-circuit for fatal signals to allow threads to make a 1859 * timely exit without the chance of finding more events available and 1860 * fetching repeatedly. 1861 */ 1862 if (fatal_signal_pending(current)) 1863 return -EINTR; 1864 1865 init_poll_funcptr(&pt, NULL); 1866 1867 mutex_lock(&ep->mtx); 1868 ep_start_scan(ep, &txlist); 1869 1870 /* 1871 * We can loop without lock because we are passed a task private list. 1872 * Items cannot vanish during the loop we are holding ep->mtx. 1873 */ 1874 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1875 struct wakeup_source *ws; 1876 __poll_t revents; 1877 1878 if (res >= maxevents) 1879 break; 1880 1881 /* 1882 * Activate ep->ws before deactivating epi->ws to prevent 1883 * triggering auto-suspend here (in case we reactive epi->ws 1884 * below). 1885 * 1886 * This could be rearranged to delay the deactivation of epi->ws 1887 * instead, but then epi->ws would temporarily be out of sync 1888 * with ep_is_linked(). 1889 */ 1890 ws = ep_wakeup_source(epi); 1891 if (ws) { 1892 if (ws->active) 1893 __pm_stay_awake(ep->ws); 1894 __pm_relax(ws); 1895 } 1896 1897 list_del_init(&epi->rdllink); 1898 1899 /* 1900 * If the event mask intersect the caller-requested one, 1901 * deliver the event to userspace. Again, we are holding ep->mtx, 1902 * so no operations coming from userspace can change the item. 1903 */ 1904 revents = ep_item_poll(epi, &pt, 1); 1905 if (!revents) 1906 continue; 1907 1908 events = epoll_put_uevent(revents, epi->event.data, events); 1909 if (!events) { 1910 list_add(&epi->rdllink, &txlist); 1911 ep_pm_stay_awake(epi); 1912 if (!res) 1913 res = -EFAULT; 1914 break; 1915 } 1916 res++; 1917 if (epi->event.events & EPOLLONESHOT) 1918 epi->event.events &= EP_PRIVATE_BITS; 1919 else if (!(epi->event.events & EPOLLET)) { 1920 /* 1921 * If this file has been added with Level 1922 * Trigger mode, we need to insert back inside 1923 * the ready list, so that the next call to 1924 * epoll_wait() will check again the events 1925 * availability. At this point, no one can insert 1926 * into ep->rdllist besides us. The epoll_ctl() 1927 * callers are locked out by 1928 * ep_send_events() holding "mtx" and the 1929 * poll callback will queue them in ep->ovflist. 1930 */ 1931 list_add_tail(&epi->rdllink, &ep->rdllist); 1932 ep_pm_stay_awake(epi); 1933 } 1934 } 1935 ep_done_scan(ep, &txlist); 1936 mutex_unlock(&ep->mtx); 1937 1938 return res; 1939 } 1940 1941 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1942 { 1943 struct timespec64 now; 1944 1945 if (ms < 0) 1946 return NULL; 1947 1948 if (!ms) { 1949 to->tv_sec = 0; 1950 to->tv_nsec = 0; 1951 return to; 1952 } 1953 1954 to->tv_sec = ms / MSEC_PER_SEC; 1955 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1956 1957 ktime_get_ts64(&now); 1958 *to = timespec64_add_safe(now, *to); 1959 return to; 1960 } 1961 1962 /* 1963 * autoremove_wake_function, but remove even on failure to wake up, because we 1964 * know that default_wake_function/ttwu will only fail if the thread is already 1965 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1966 * try to reuse it. 1967 */ 1968 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1969 unsigned int mode, int sync, void *key) 1970 { 1971 int ret = default_wake_function(wq_entry, mode, sync, key); 1972 1973 /* 1974 * Pairs with list_empty_careful in ep_poll, and ensures future loop 1975 * iterations see the cause of this wakeup. 1976 */ 1977 list_del_init_careful(&wq_entry->entry); 1978 return ret; 1979 } 1980 1981 static int ep_try_send_events(struct eventpoll *ep, 1982 struct epoll_event __user *events, int maxevents) 1983 { 1984 int res; 1985 1986 /* 1987 * Try to transfer events to user space. In case we get 0 events and 1988 * there's still timeout left over, we go trying again in search of 1989 * more luck. 1990 */ 1991 res = ep_send_events(ep, events, maxevents); 1992 if (res > 0) 1993 ep_suspend_napi_irqs(ep); 1994 return res; 1995 } 1996 1997 static int ep_schedule_timeout(ktime_t *to) 1998 { 1999 if (to) 2000 return ktime_after(*to, ktime_get()); 2001 else 2002 return 1; 2003 } 2004 2005 /** 2006 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 2007 * event buffer. 2008 * 2009 * @ep: Pointer to the eventpoll context. 2010 * @events: Pointer to the userspace buffer where the ready events should be 2011 * stored. 2012 * @maxevents: Size (in terms of number of events) of the caller event buffer. 2013 * @timeout: Maximum timeout for the ready events fetch operation, in 2014 * timespec. If the timeout is zero, the function will not block, 2015 * while if the @timeout ptr is NULL, the function will block 2016 * until at least one event has been retrieved (or an error 2017 * occurred). 2018 * 2019 * Return: the number of ready events which have been fetched, or an 2020 * error code, in case of error. 2021 */ 2022 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 2023 int maxevents, struct timespec64 *timeout) 2024 { 2025 int res, eavail, timed_out = 0; 2026 u64 slack = 0; 2027 wait_queue_entry_t wait; 2028 ktime_t expires, *to = NULL; 2029 2030 lockdep_assert_irqs_enabled(); 2031 2032 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 2033 slack = select_estimate_accuracy(timeout); 2034 to = &expires; 2035 *to = timespec64_to_ktime(*timeout); 2036 } else if (timeout) { 2037 /* 2038 * Avoid the unnecessary trip to the wait queue loop, if the 2039 * caller specified a non blocking operation. 2040 */ 2041 timed_out = 1; 2042 } 2043 2044 /* 2045 * This call is racy: We may or may not see events that are being added 2046 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 2047 * with a non-zero timeout, this thread will check the ready list under 2048 * lock and will add to the wait queue. For cases with a zero 2049 * timeout, the user by definition should not care and will have to 2050 * recheck again. 2051 */ 2052 eavail = ep_events_available(ep); 2053 2054 while (1) { 2055 if (eavail) { 2056 res = ep_try_send_events(ep, events, maxevents); 2057 if (res) 2058 return res; 2059 } 2060 2061 if (timed_out) 2062 return 0; 2063 2064 eavail = ep_busy_loop(ep); 2065 if (eavail) 2066 continue; 2067 2068 if (signal_pending(current)) 2069 return -EINTR; 2070 2071 /* 2072 * Internally init_wait() uses autoremove_wake_function(), 2073 * thus wait entry is removed from the wait queue on each 2074 * wakeup. Why it is important? In case of several waiters 2075 * each new wakeup will hit the next waiter, giving it the 2076 * chance to harvest new event. Otherwise wakeup can be 2077 * lost. This is also good performance-wise, because on 2078 * normal wakeup path no need to call __remove_wait_queue() 2079 * explicitly, thus ep->lock is not taken, which halts the 2080 * event delivery. 2081 * 2082 * In fact, we now use an even more aggressive function that 2083 * unconditionally removes, because we don't reuse the wait 2084 * entry between loop iterations. This lets us also avoid the 2085 * performance issue if a process is killed, causing all of its 2086 * threads to wake up without being removed normally. 2087 */ 2088 init_wait(&wait); 2089 wait.func = ep_autoremove_wake_function; 2090 2091 write_lock_irq(&ep->lock); 2092 /* 2093 * Barrierless variant, waitqueue_active() is called under 2094 * the same lock on wakeup ep_poll_callback() side, so it 2095 * is safe to avoid an explicit barrier. 2096 */ 2097 __set_current_state(TASK_INTERRUPTIBLE); 2098 2099 /* 2100 * Do the final check under the lock. ep_start/done_scan() 2101 * plays with two lists (->rdllist and ->ovflist) and there 2102 * is always a race when both lists are empty for short 2103 * period of time although events are pending, so lock is 2104 * important. 2105 */ 2106 eavail = ep_events_available(ep); 2107 if (!eavail) 2108 __add_wait_queue_exclusive(&ep->wq, &wait); 2109 2110 write_unlock_irq(&ep->lock); 2111 2112 if (!eavail) 2113 timed_out = !ep_schedule_timeout(to) || 2114 !schedule_hrtimeout_range(to, slack, 2115 HRTIMER_MODE_ABS); 2116 __set_current_state(TASK_RUNNING); 2117 2118 /* 2119 * We were woken up, thus go and try to harvest some events. 2120 * If timed out and still on the wait queue, recheck eavail 2121 * carefully under lock, below. 2122 */ 2123 eavail = 1; 2124 2125 if (!list_empty_careful(&wait.entry)) { 2126 write_lock_irq(&ep->lock); 2127 /* 2128 * If the thread timed out and is not on the wait queue, 2129 * it means that the thread was woken up after its 2130 * timeout expired before it could reacquire the lock. 2131 * Thus, when wait.entry is empty, it needs to harvest 2132 * events. 2133 */ 2134 if (timed_out) 2135 eavail = list_empty(&wait.entry); 2136 __remove_wait_queue(&ep->wq, &wait); 2137 write_unlock_irq(&ep->lock); 2138 } 2139 } 2140 } 2141 2142 /** 2143 * ep_loop_check_proc - verify that adding an epoll file inside another 2144 * epoll structure does not violate the constraints, in 2145 * terms of closed loops, or too deep chains (which can 2146 * result in excessive stack usage). 2147 * 2148 * @ep: the &struct eventpoll to be currently checked. 2149 * @depth: Current depth of the path being checked. 2150 * 2151 * Return: %zero if adding the epoll @file inside current epoll 2152 * structure @ep does not violate the constraints, or %-1 otherwise. 2153 */ 2154 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 2155 { 2156 int error = 0; 2157 struct rb_node *rbp; 2158 struct epitem *epi; 2159 2160 mutex_lock_nested(&ep->mtx, depth + 1); 2161 ep->gen = loop_check_gen; 2162 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 2163 epi = rb_entry(rbp, struct epitem, rbn); 2164 if (unlikely(is_file_epoll(epi->ffd.file))) { 2165 struct eventpoll *ep_tovisit; 2166 ep_tovisit = epi->ffd.file->private_data; 2167 if (ep_tovisit->gen == loop_check_gen) 2168 continue; 2169 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 2170 error = -1; 2171 else 2172 error = ep_loop_check_proc(ep_tovisit, depth + 1); 2173 if (error != 0) 2174 break; 2175 } else { 2176 /* 2177 * If we've reached a file that is not associated with 2178 * an ep, then we need to check if the newly added 2179 * links are going to add too many wakeup paths. We do 2180 * this by adding it to the tfile_check_list, if it's 2181 * not already there, and calling reverse_path_check() 2182 * during ep_insert(). 2183 */ 2184 list_file(epi->ffd.file); 2185 } 2186 } 2187 mutex_unlock(&ep->mtx); 2188 2189 return error; 2190 } 2191 2192 /** 2193 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 2194 * into another epoll file (represented by @ep) does not create 2195 * closed loops or too deep chains. 2196 * 2197 * @ep: Pointer to the epoll we are inserting into. 2198 * @to: Pointer to the epoll to be inserted. 2199 * 2200 * Return: %zero if adding the epoll @to inside the epoll @from 2201 * does not violate the constraints, or %-1 otherwise. 2202 */ 2203 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 2204 { 2205 inserting_into = ep; 2206 return ep_loop_check_proc(to, 0); 2207 } 2208 2209 static void clear_tfile_check_list(void) 2210 { 2211 rcu_read_lock(); 2212 while (tfile_check_list != EP_UNACTIVE_PTR) { 2213 struct epitems_head *head = tfile_check_list; 2214 tfile_check_list = head->next; 2215 unlist_file(head); 2216 } 2217 rcu_read_unlock(); 2218 } 2219 2220 /* 2221 * Open an eventpoll file descriptor. 2222 */ 2223 static int do_epoll_create(int flags) 2224 { 2225 int error, fd; 2226 struct eventpoll *ep = NULL; 2227 struct file *file; 2228 2229 /* Check the EPOLL_* constant for consistency. */ 2230 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2231 2232 if (flags & ~EPOLL_CLOEXEC) 2233 return -EINVAL; 2234 /* 2235 * Create the internal data structure ("struct eventpoll"). 2236 */ 2237 error = ep_alloc(&ep); 2238 if (error < 0) 2239 return error; 2240 /* 2241 * Creates all the items needed to setup an eventpoll file. That is, 2242 * a file structure and a free file descriptor. 2243 */ 2244 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2245 if (fd < 0) { 2246 error = fd; 2247 goto out_free_ep; 2248 } 2249 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2250 O_RDWR | (flags & O_CLOEXEC)); 2251 if (IS_ERR(file)) { 2252 error = PTR_ERR(file); 2253 goto out_free_fd; 2254 } 2255 ep->file = file; 2256 fd_install(fd, file); 2257 return fd; 2258 2259 out_free_fd: 2260 put_unused_fd(fd); 2261 out_free_ep: 2262 ep_clear_and_put(ep); 2263 return error; 2264 } 2265 2266 SYSCALL_DEFINE1(epoll_create1, int, flags) 2267 { 2268 return do_epoll_create(flags); 2269 } 2270 2271 SYSCALL_DEFINE1(epoll_create, int, size) 2272 { 2273 if (size <= 0) 2274 return -EINVAL; 2275 2276 return do_epoll_create(0); 2277 } 2278 2279 #ifdef CONFIG_PM_SLEEP 2280 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2281 { 2282 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 2283 epev->events &= ~EPOLLWAKEUP; 2284 } 2285 #else 2286 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2287 { 2288 epev->events &= ~EPOLLWAKEUP; 2289 } 2290 #endif 2291 2292 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2293 bool nonblock) 2294 { 2295 if (!nonblock) { 2296 mutex_lock_nested(mutex, depth); 2297 return 0; 2298 } 2299 if (mutex_trylock(mutex)) 2300 return 0; 2301 return -EAGAIN; 2302 } 2303 2304 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2305 bool nonblock) 2306 { 2307 int error; 2308 int full_check = 0; 2309 struct eventpoll *ep; 2310 struct epitem *epi; 2311 struct eventpoll *tep = NULL; 2312 2313 CLASS(fd, f)(epfd); 2314 if (fd_empty(f)) 2315 return -EBADF; 2316 2317 /* Get the "struct file *" for the target file */ 2318 CLASS(fd, tf)(fd); 2319 if (fd_empty(tf)) 2320 return -EBADF; 2321 2322 /* The target file descriptor must support poll */ 2323 if (!file_can_poll(fd_file(tf))) 2324 return -EPERM; 2325 2326 /* Check if EPOLLWAKEUP is allowed */ 2327 if (ep_op_has_event(op)) 2328 ep_take_care_of_epollwakeup(epds); 2329 2330 /* 2331 * We have to check that the file structure underneath the file descriptor 2332 * the user passed to us _is_ an eventpoll file. And also we do not permit 2333 * adding an epoll file descriptor inside itself. 2334 */ 2335 error = -EINVAL; 2336 if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f))) 2337 goto error_tgt_fput; 2338 2339 /* 2340 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2341 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2342 * Also, we do not currently supported nested exclusive wakeups. 2343 */ 2344 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2345 if (op == EPOLL_CTL_MOD) 2346 goto error_tgt_fput; 2347 if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) || 2348 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2349 goto error_tgt_fput; 2350 } 2351 2352 /* 2353 * At this point it is safe to assume that the "private_data" contains 2354 * our own data structure. 2355 */ 2356 ep = fd_file(f)->private_data; 2357 2358 /* 2359 * When we insert an epoll file descriptor inside another epoll file 2360 * descriptor, there is the chance of creating closed loops, which are 2361 * better be handled here, than in more critical paths. While we are 2362 * checking for loops we also determine the list of files reachable 2363 * and hang them on the tfile_check_list, so we can check that we 2364 * haven't created too many possible wakeup paths. 2365 * 2366 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2367 * the epoll file descriptor is attaching directly to a wakeup source, 2368 * unless the epoll file descriptor is nested. The purpose of taking the 2369 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and 2370 * deep wakeup paths from forming in parallel through multiple 2371 * EPOLL_CTL_ADD operations. 2372 */ 2373 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2374 if (error) 2375 goto error_tgt_fput; 2376 if (op == EPOLL_CTL_ADD) { 2377 if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen || 2378 is_file_epoll(fd_file(tf))) { 2379 mutex_unlock(&ep->mtx); 2380 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); 2381 if (error) 2382 goto error_tgt_fput; 2383 loop_check_gen++; 2384 full_check = 1; 2385 if (is_file_epoll(fd_file(tf))) { 2386 tep = fd_file(tf)->private_data; 2387 error = -ELOOP; 2388 if (ep_loop_check(ep, tep) != 0) 2389 goto error_tgt_fput; 2390 } 2391 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2392 if (error) 2393 goto error_tgt_fput; 2394 } 2395 } 2396 2397 /* 2398 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2399 * above, we can be sure to be able to use the item looked up by 2400 * ep_find() till we release the mutex. 2401 */ 2402 epi = ep_find(ep, fd_file(tf), fd); 2403 2404 error = -EINVAL; 2405 switch (op) { 2406 case EPOLL_CTL_ADD: 2407 if (!epi) { 2408 epds->events |= EPOLLERR | EPOLLHUP; 2409 error = ep_insert(ep, epds, fd_file(tf), fd, full_check); 2410 } else 2411 error = -EEXIST; 2412 break; 2413 case EPOLL_CTL_DEL: 2414 if (epi) { 2415 /* 2416 * The eventpoll itself is still alive: the refcount 2417 * can't go to zero here. 2418 */ 2419 ep_remove_safe(ep, epi); 2420 error = 0; 2421 } else { 2422 error = -ENOENT; 2423 } 2424 break; 2425 case EPOLL_CTL_MOD: 2426 if (epi) { 2427 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2428 epds->events |= EPOLLERR | EPOLLHUP; 2429 error = ep_modify(ep, epi, epds); 2430 } 2431 } else 2432 error = -ENOENT; 2433 break; 2434 } 2435 mutex_unlock(&ep->mtx); 2436 2437 error_tgt_fput: 2438 if (full_check) { 2439 clear_tfile_check_list(); 2440 loop_check_gen++; 2441 mutex_unlock(&epnested_mutex); 2442 } 2443 return error; 2444 } 2445 2446 /* 2447 * The following function implements the controller interface for 2448 * the eventpoll file that enables the insertion/removal/change of 2449 * file descriptors inside the interest set. 2450 */ 2451 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2452 struct epoll_event __user *, event) 2453 { 2454 struct epoll_event epds; 2455 2456 if (ep_op_has_event(op) && 2457 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2458 return -EFAULT; 2459 2460 return do_epoll_ctl(epfd, op, fd, &epds, false); 2461 } 2462 2463 static int ep_check_params(struct file *file, struct epoll_event __user *evs, 2464 int maxevents) 2465 { 2466 /* The maximum number of event must be greater than zero */ 2467 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2468 return -EINVAL; 2469 2470 /* Verify that the area passed by the user is writeable */ 2471 if (!access_ok(evs, maxevents * sizeof(struct epoll_event))) 2472 return -EFAULT; 2473 2474 /* 2475 * We have to check that the file structure underneath the fd 2476 * the user passed to us _is_ an eventpoll file. 2477 */ 2478 if (!is_file_epoll(file)) 2479 return -EINVAL; 2480 2481 return 0; 2482 } 2483 2484 int epoll_sendevents(struct file *file, struct epoll_event __user *events, 2485 int maxevents) 2486 { 2487 struct eventpoll *ep; 2488 int ret; 2489 2490 ret = ep_check_params(file, events, maxevents); 2491 if (unlikely(ret)) 2492 return ret; 2493 2494 ep = file->private_data; 2495 /* 2496 * Racy call, but that's ok - it should get retried based on 2497 * poll readiness anyway. 2498 */ 2499 if (ep_events_available(ep)) 2500 return ep_try_send_events(ep, events, maxevents); 2501 return 0; 2502 } 2503 2504 /* 2505 * Implement the event wait interface for the eventpoll file. It is the kernel 2506 * part of the user space epoll_wait(2). 2507 */ 2508 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2509 int maxevents, struct timespec64 *to) 2510 { 2511 struct eventpoll *ep; 2512 int ret; 2513 2514 /* Get the "struct file *" for the eventpoll file */ 2515 CLASS(fd, f)(epfd); 2516 if (fd_empty(f)) 2517 return -EBADF; 2518 2519 ret = ep_check_params(fd_file(f), events, maxevents); 2520 if (unlikely(ret)) 2521 return ret; 2522 2523 /* 2524 * At this point it is safe to assume that the "private_data" contains 2525 * our own data structure. 2526 */ 2527 ep = fd_file(f)->private_data; 2528 2529 /* Time to fish for events ... */ 2530 return ep_poll(ep, events, maxevents, to); 2531 } 2532 2533 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2534 int, maxevents, int, timeout) 2535 { 2536 struct timespec64 to; 2537 2538 return do_epoll_wait(epfd, events, maxevents, 2539 ep_timeout_to_timespec(&to, timeout)); 2540 } 2541 2542 /* 2543 * Implement the event wait interface for the eventpoll file. It is the kernel 2544 * part of the user space epoll_pwait(2). 2545 */ 2546 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2547 int maxevents, struct timespec64 *to, 2548 const sigset_t __user *sigmask, size_t sigsetsize) 2549 { 2550 int error; 2551 2552 /* 2553 * If the caller wants a certain signal mask to be set during the wait, 2554 * we apply it here. 2555 */ 2556 error = set_user_sigmask(sigmask, sigsetsize); 2557 if (error) 2558 return error; 2559 2560 error = do_epoll_wait(epfd, events, maxevents, to); 2561 2562 restore_saved_sigmask_unless(error == -EINTR); 2563 2564 return error; 2565 } 2566 2567 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2568 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2569 size_t, sigsetsize) 2570 { 2571 struct timespec64 to; 2572 2573 return do_epoll_pwait(epfd, events, maxevents, 2574 ep_timeout_to_timespec(&to, timeout), 2575 sigmask, sigsetsize); 2576 } 2577 2578 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2579 int, maxevents, const struct __kernel_timespec __user *, timeout, 2580 const sigset_t __user *, sigmask, size_t, sigsetsize) 2581 { 2582 struct timespec64 ts, *to = NULL; 2583 2584 if (timeout) { 2585 if (get_timespec64(&ts, timeout)) 2586 return -EFAULT; 2587 to = &ts; 2588 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2589 return -EINVAL; 2590 } 2591 2592 return do_epoll_pwait(epfd, events, maxevents, to, 2593 sigmask, sigsetsize); 2594 } 2595 2596 #ifdef CONFIG_COMPAT 2597 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2598 int maxevents, struct timespec64 *timeout, 2599 const compat_sigset_t __user *sigmask, 2600 compat_size_t sigsetsize) 2601 { 2602 long err; 2603 2604 /* 2605 * If the caller wants a certain signal mask to be set during the wait, 2606 * we apply it here. 2607 */ 2608 err = set_compat_user_sigmask(sigmask, sigsetsize); 2609 if (err) 2610 return err; 2611 2612 err = do_epoll_wait(epfd, events, maxevents, timeout); 2613 2614 restore_saved_sigmask_unless(err == -EINTR); 2615 2616 return err; 2617 } 2618 2619 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2620 struct epoll_event __user *, events, 2621 int, maxevents, int, timeout, 2622 const compat_sigset_t __user *, sigmask, 2623 compat_size_t, sigsetsize) 2624 { 2625 struct timespec64 to; 2626 2627 return do_compat_epoll_pwait(epfd, events, maxevents, 2628 ep_timeout_to_timespec(&to, timeout), 2629 sigmask, sigsetsize); 2630 } 2631 2632 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2633 struct epoll_event __user *, events, 2634 int, maxevents, 2635 const struct __kernel_timespec __user *, timeout, 2636 const compat_sigset_t __user *, sigmask, 2637 compat_size_t, sigsetsize) 2638 { 2639 struct timespec64 ts, *to = NULL; 2640 2641 if (timeout) { 2642 if (get_timespec64(&ts, timeout)) 2643 return -EFAULT; 2644 to = &ts; 2645 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2646 return -EINVAL; 2647 } 2648 2649 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2650 sigmask, sigsetsize); 2651 } 2652 2653 #endif 2654 2655 static int __init eventpoll_init(void) 2656 { 2657 struct sysinfo si; 2658 2659 si_meminfo(&si); 2660 /* 2661 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2662 */ 2663 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2664 EP_ITEM_COST; 2665 BUG_ON(max_user_watches < 0); 2666 2667 /* 2668 * We can have many thousands of epitems, so prevent this from 2669 * using an extra cache line on 64-bit (and smaller) CPUs 2670 */ 2671 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2672 2673 /* Allocates slab cache used to allocate "struct epitem" items */ 2674 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2675 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2676 2677 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2678 pwq_cache = kmem_cache_create("eventpoll_pwq", 2679 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2680 epoll_sysctls_init(); 2681 2682 ephead_cache = kmem_cache_create("ep_head", 2683 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2684 2685 return 0; 2686 } 2687 fs_initcall(eventpoll_init); 2688