1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/signal.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <linux/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 #include <linux/compat.h> 44 #include <linux/rculist.h> 45 #include <net/busy_poll.h> 46 47 /* 48 * LOCKING: 49 * There are three level of locking required by epoll : 50 * 51 * 1) epmutex (mutex) 52 * 2) ep->mtx (mutex) 53 * 3) ep->lock (spinlock) 54 * 55 * The acquire order is the one listed above, from 1 to 3. 56 * We need a spinlock (ep->lock) because we manipulate objects 57 * from inside the poll callback, that might be triggered from 58 * a wake_up() that in turn might be called from IRQ context. 59 * So we can't sleep inside the poll callback and hence we need 60 * a spinlock. During the event transfer loop (from kernel to 61 * user space) we could end up sleeping due a copy_to_user(), so 62 * we need a lock that will allow us to sleep. This lock is a 63 * mutex (ep->mtx). It is acquired during the event transfer loop, 64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 65 * Then we also need a global mutex to serialize eventpoll_release_file() 66 * and ep_free(). 67 * This mutex is acquired by ep_free() during the epoll file 68 * cleanup path and it is also acquired by eventpoll_release_file() 69 * if a file has been pushed inside an epoll set and it is then 70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 71 * It is also acquired when inserting an epoll fd onto another epoll 72 * fd. We do this so that we walk the epoll tree and ensure that this 73 * insertion does not create a cycle of epoll file descriptors, which 74 * could lead to deadlock. We need a global mutex to prevent two 75 * simultaneous inserts (A into B and B into A) from racing and 76 * constructing a cycle without either insert observing that it is 77 * going to. 78 * It is necessary to acquire multiple "ep->mtx"es at once in the 79 * case when one epoll fd is added to another. In this case, we 80 * always acquire the locks in the order of nesting (i.e. after 81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 82 * before e2->mtx). Since we disallow cycles of epoll file 83 * descriptors, this ensures that the mutexes are well-ordered. In 84 * order to communicate this nesting to lockdep, when walking a tree 85 * of epoll file descriptors, we use the current recursion depth as 86 * the lockdep subkey. 87 * It is possible to drop the "ep->mtx" and to use the global 88 * mutex "epmutex" (together with "ep->lock") to have it working, 89 * but having "ep->mtx" will make the interface more scalable. 90 * Events that require holding "epmutex" are very rare, while for 91 * normal operations the epoll private "ep->mtx" will guarantee 92 * a better scalability. 93 */ 94 95 /* Epoll private bits inside the event mask */ 96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 97 98 #define EPOLLINOUT_BITS (POLLIN | POLLOUT) 99 100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \ 101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 102 103 /* Maximum number of nesting allowed inside epoll sets */ 104 #define EP_MAX_NESTS 4 105 106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 107 108 #define EP_UNACTIVE_PTR ((void *) -1L) 109 110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 111 112 struct epoll_filefd { 113 struct file *file; 114 int fd; 115 } __packed; 116 117 /* 118 * Structure used to track possible nested calls, for too deep recursions 119 * and loop cycles. 120 */ 121 struct nested_call_node { 122 struct list_head llink; 123 void *cookie; 124 void *ctx; 125 }; 126 127 /* 128 * This structure is used as collector for nested calls, to check for 129 * maximum recursion dept and loop cycles. 130 */ 131 struct nested_calls { 132 struct list_head tasks_call_list; 133 spinlock_t lock; 134 }; 135 136 /* 137 * Each file descriptor added to the eventpoll interface will 138 * have an entry of this type linked to the "rbr" RB tree. 139 * Avoid increasing the size of this struct, there can be many thousands 140 * of these on a server and we do not want this to take another cache line. 141 */ 142 struct epitem { 143 union { 144 /* RB tree node links this structure to the eventpoll RB tree */ 145 struct rb_node rbn; 146 /* Used to free the struct epitem */ 147 struct rcu_head rcu; 148 }; 149 150 /* List header used to link this structure to the eventpoll ready list */ 151 struct list_head rdllink; 152 153 /* 154 * Works together "struct eventpoll"->ovflist in keeping the 155 * single linked chain of items. 156 */ 157 struct epitem *next; 158 159 /* The file descriptor information this item refers to */ 160 struct epoll_filefd ffd; 161 162 /* Number of active wait queue attached to poll operations */ 163 int nwait; 164 165 /* List containing poll wait queues */ 166 struct list_head pwqlist; 167 168 /* The "container" of this item */ 169 struct eventpoll *ep; 170 171 /* List header used to link this item to the "struct file" items list */ 172 struct list_head fllink; 173 174 /* wakeup_source used when EPOLLWAKEUP is set */ 175 struct wakeup_source __rcu *ws; 176 177 /* The structure that describe the interested events and the source fd */ 178 struct epoll_event event; 179 }; 180 181 /* 182 * This structure is stored inside the "private_data" member of the file 183 * structure and represents the main data structure for the eventpoll 184 * interface. 185 */ 186 struct eventpoll { 187 /* Protect the access to this structure */ 188 spinlock_t lock; 189 190 /* 191 * This mutex is used to ensure that files are not removed 192 * while epoll is using them. This is held during the event 193 * collection loop, the file cleanup path, the epoll file exit 194 * code and the ctl operations. 195 */ 196 struct mutex mtx; 197 198 /* Wait queue used by sys_epoll_wait() */ 199 wait_queue_head_t wq; 200 201 /* Wait queue used by file->poll() */ 202 wait_queue_head_t poll_wait; 203 204 /* List of ready file descriptors */ 205 struct list_head rdllist; 206 207 /* RB tree root used to store monitored fd structs */ 208 struct rb_root rbr; 209 210 /* 211 * This is a single linked list that chains all the "struct epitem" that 212 * happened while transferring ready events to userspace w/out 213 * holding ->lock. 214 */ 215 struct epitem *ovflist; 216 217 /* wakeup_source used when ep_scan_ready_list is running */ 218 struct wakeup_source *ws; 219 220 /* The user that created the eventpoll descriptor */ 221 struct user_struct *user; 222 223 struct file *file; 224 225 /* used to optimize loop detection check */ 226 int visited; 227 struct list_head visited_list_link; 228 229 #ifdef CONFIG_NET_RX_BUSY_POLL 230 /* used to track busy poll napi_id */ 231 unsigned int napi_id; 232 #endif 233 }; 234 235 /* Wait structure used by the poll hooks */ 236 struct eppoll_entry { 237 /* List header used to link this structure to the "struct epitem" */ 238 struct list_head llink; 239 240 /* The "base" pointer is set to the container "struct epitem" */ 241 struct epitem *base; 242 243 /* 244 * Wait queue item that will be linked to the target file wait 245 * queue head. 246 */ 247 wait_queue_t wait; 248 249 /* The wait queue head that linked the "wait" wait queue item */ 250 wait_queue_head_t *whead; 251 }; 252 253 /* Wrapper struct used by poll queueing */ 254 struct ep_pqueue { 255 poll_table pt; 256 struct epitem *epi; 257 }; 258 259 /* Used by the ep_send_events() function as callback private data */ 260 struct ep_send_events_data { 261 int maxevents; 262 struct epoll_event __user *events; 263 }; 264 265 /* 266 * Configuration options available inside /proc/sys/fs/epoll/ 267 */ 268 /* Maximum number of epoll watched descriptors, per user */ 269 static long max_user_watches __read_mostly; 270 271 /* 272 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 273 */ 274 static DEFINE_MUTEX(epmutex); 275 276 /* Used to check for epoll file descriptor inclusion loops */ 277 static struct nested_calls poll_loop_ncalls; 278 279 /* Used for safe wake up implementation */ 280 static struct nested_calls poll_safewake_ncalls; 281 282 /* Used to call file's f_op->poll() under the nested calls boundaries */ 283 static struct nested_calls poll_readywalk_ncalls; 284 285 /* Slab cache used to allocate "struct epitem" */ 286 static struct kmem_cache *epi_cache __read_mostly; 287 288 /* Slab cache used to allocate "struct eppoll_entry" */ 289 static struct kmem_cache *pwq_cache __read_mostly; 290 291 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 292 static LIST_HEAD(visited_list); 293 294 /* 295 * List of files with newly added links, where we may need to limit the number 296 * of emanating paths. Protected by the epmutex. 297 */ 298 static LIST_HEAD(tfile_check_list); 299 300 #ifdef CONFIG_SYSCTL 301 302 #include <linux/sysctl.h> 303 304 static long zero; 305 static long long_max = LONG_MAX; 306 307 struct ctl_table epoll_table[] = { 308 { 309 .procname = "max_user_watches", 310 .data = &max_user_watches, 311 .maxlen = sizeof(max_user_watches), 312 .mode = 0644, 313 .proc_handler = proc_doulongvec_minmax, 314 .extra1 = &zero, 315 .extra2 = &long_max, 316 }, 317 { } 318 }; 319 #endif /* CONFIG_SYSCTL */ 320 321 static const struct file_operations eventpoll_fops; 322 323 static inline int is_file_epoll(struct file *f) 324 { 325 return f->f_op == &eventpoll_fops; 326 } 327 328 /* Setup the structure that is used as key for the RB tree */ 329 static inline void ep_set_ffd(struct epoll_filefd *ffd, 330 struct file *file, int fd) 331 { 332 ffd->file = file; 333 ffd->fd = fd; 334 } 335 336 /* Compare RB tree keys */ 337 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 338 struct epoll_filefd *p2) 339 { 340 return (p1->file > p2->file ? +1: 341 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 342 } 343 344 /* Tells us if the item is currently linked */ 345 static inline int ep_is_linked(struct list_head *p) 346 { 347 return !list_empty(p); 348 } 349 350 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) 351 { 352 return container_of(p, struct eppoll_entry, wait); 353 } 354 355 /* Get the "struct epitem" from a wait queue pointer */ 356 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 357 { 358 return container_of(p, struct eppoll_entry, wait)->base; 359 } 360 361 /* Get the "struct epitem" from an epoll queue wrapper */ 362 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 363 { 364 return container_of(p, struct ep_pqueue, pt)->epi; 365 } 366 367 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 368 static inline int ep_op_has_event(int op) 369 { 370 return op != EPOLL_CTL_DEL; 371 } 372 373 /* Initialize the poll safe wake up structure */ 374 static void ep_nested_calls_init(struct nested_calls *ncalls) 375 { 376 INIT_LIST_HEAD(&ncalls->tasks_call_list); 377 spin_lock_init(&ncalls->lock); 378 } 379 380 /** 381 * ep_events_available - Checks if ready events might be available. 382 * 383 * @ep: Pointer to the eventpoll context. 384 * 385 * Returns: Returns a value different than zero if ready events are available, 386 * or zero otherwise. 387 */ 388 static inline int ep_events_available(struct eventpoll *ep) 389 { 390 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 391 } 392 393 #ifdef CONFIG_NET_RX_BUSY_POLL 394 static bool ep_busy_loop_end(void *p, unsigned long start_time) 395 { 396 struct eventpoll *ep = p; 397 398 return ep_events_available(ep) || busy_loop_timeout(start_time); 399 } 400 #endif /* CONFIG_NET_RX_BUSY_POLL */ 401 402 /* 403 * Busy poll if globally on and supporting sockets found && no events, 404 * busy loop will return if need_resched or ep_events_available. 405 * 406 * we must do our busy polling with irqs enabled 407 */ 408 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 409 { 410 #ifdef CONFIG_NET_RX_BUSY_POLL 411 unsigned int napi_id = READ_ONCE(ep->napi_id); 412 413 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 414 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); 415 #endif 416 } 417 418 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 419 { 420 #ifdef CONFIG_NET_RX_BUSY_POLL 421 if (ep->napi_id) 422 ep->napi_id = 0; 423 #endif 424 } 425 426 /* 427 * Set epoll busy poll NAPI ID from sk. 428 */ 429 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 430 { 431 #ifdef CONFIG_NET_RX_BUSY_POLL 432 struct eventpoll *ep; 433 unsigned int napi_id; 434 struct socket *sock; 435 struct sock *sk; 436 int err; 437 438 if (!net_busy_loop_on()) 439 return; 440 441 sock = sock_from_file(epi->ffd.file, &err); 442 if (!sock) 443 return; 444 445 sk = sock->sk; 446 if (!sk) 447 return; 448 449 napi_id = READ_ONCE(sk->sk_napi_id); 450 ep = epi->ep; 451 452 /* Non-NAPI IDs can be rejected 453 * or 454 * Nothing to do if we already have this ID 455 */ 456 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 457 return; 458 459 /* record NAPI ID for use in next busy poll */ 460 ep->napi_id = napi_id; 461 #endif 462 } 463 464 /** 465 * ep_call_nested - Perform a bound (possibly) nested call, by checking 466 * that the recursion limit is not exceeded, and that 467 * the same nested call (by the meaning of same cookie) is 468 * no re-entered. 469 * 470 * @ncalls: Pointer to the nested_calls structure to be used for this call. 471 * @max_nests: Maximum number of allowed nesting calls. 472 * @nproc: Nested call core function pointer. 473 * @priv: Opaque data to be passed to the @nproc callback. 474 * @cookie: Cookie to be used to identify this nested call. 475 * @ctx: This instance context. 476 * 477 * Returns: Returns the code returned by the @nproc callback, or -1 if 478 * the maximum recursion limit has been exceeded. 479 */ 480 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 481 int (*nproc)(void *, void *, int), void *priv, 482 void *cookie, void *ctx) 483 { 484 int error, call_nests = 0; 485 unsigned long flags; 486 struct list_head *lsthead = &ncalls->tasks_call_list; 487 struct nested_call_node *tncur; 488 struct nested_call_node tnode; 489 490 spin_lock_irqsave(&ncalls->lock, flags); 491 492 /* 493 * Try to see if the current task is already inside this wakeup call. 494 * We use a list here, since the population inside this set is always 495 * very much limited. 496 */ 497 list_for_each_entry(tncur, lsthead, llink) { 498 if (tncur->ctx == ctx && 499 (tncur->cookie == cookie || ++call_nests > max_nests)) { 500 /* 501 * Ops ... loop detected or maximum nest level reached. 502 * We abort this wake by breaking the cycle itself. 503 */ 504 error = -1; 505 goto out_unlock; 506 } 507 } 508 509 /* Add the current task and cookie to the list */ 510 tnode.ctx = ctx; 511 tnode.cookie = cookie; 512 list_add(&tnode.llink, lsthead); 513 514 spin_unlock_irqrestore(&ncalls->lock, flags); 515 516 /* Call the nested function */ 517 error = (*nproc)(priv, cookie, call_nests); 518 519 /* Remove the current task from the list */ 520 spin_lock_irqsave(&ncalls->lock, flags); 521 list_del(&tnode.llink); 522 out_unlock: 523 spin_unlock_irqrestore(&ncalls->lock, flags); 524 525 return error; 526 } 527 528 /* 529 * As described in commit 0ccf831cb lockdep: annotate epoll 530 * the use of wait queues used by epoll is done in a very controlled 531 * manner. Wake ups can nest inside each other, but are never done 532 * with the same locking. For example: 533 * 534 * dfd = socket(...); 535 * efd1 = epoll_create(); 536 * efd2 = epoll_create(); 537 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 538 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 539 * 540 * When a packet arrives to the device underneath "dfd", the net code will 541 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 542 * callback wakeup entry on that queue, and the wake_up() performed by the 543 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 544 * (efd1) notices that it may have some event ready, so it needs to wake up 545 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 546 * that ends up in another wake_up(), after having checked about the 547 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 548 * avoid stack blasting. 549 * 550 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 551 * this special case of epoll. 552 */ 553 #ifdef CONFIG_DEBUG_LOCK_ALLOC 554 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 555 unsigned long events, int subclass) 556 { 557 unsigned long flags; 558 559 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 560 wake_up_locked_poll(wqueue, events); 561 spin_unlock_irqrestore(&wqueue->lock, flags); 562 } 563 #else 564 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 565 unsigned long events, int subclass) 566 { 567 wake_up_poll(wqueue, events); 568 } 569 #endif 570 571 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 572 { 573 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 574 1 + call_nests); 575 return 0; 576 } 577 578 /* 579 * Perform a safe wake up of the poll wait list. The problem is that 580 * with the new callback'd wake up system, it is possible that the 581 * poll callback is reentered from inside the call to wake_up() done 582 * on the poll wait queue head. The rule is that we cannot reenter the 583 * wake up code from the same task more than EP_MAX_NESTS times, 584 * and we cannot reenter the same wait queue head at all. This will 585 * enable to have a hierarchy of epoll file descriptor of no more than 586 * EP_MAX_NESTS deep. 587 */ 588 static void ep_poll_safewake(wait_queue_head_t *wq) 589 { 590 int this_cpu = get_cpu(); 591 592 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 593 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 594 595 put_cpu(); 596 } 597 598 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 599 { 600 wait_queue_head_t *whead; 601 602 rcu_read_lock(); 603 /* If it is cleared by POLLFREE, it should be rcu-safe */ 604 whead = rcu_dereference(pwq->whead); 605 if (whead) 606 remove_wait_queue(whead, &pwq->wait); 607 rcu_read_unlock(); 608 } 609 610 /* 611 * This function unregisters poll callbacks from the associated file 612 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 613 * ep_free). 614 */ 615 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 616 { 617 struct list_head *lsthead = &epi->pwqlist; 618 struct eppoll_entry *pwq; 619 620 while (!list_empty(lsthead)) { 621 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 622 623 list_del(&pwq->llink); 624 ep_remove_wait_queue(pwq); 625 kmem_cache_free(pwq_cache, pwq); 626 } 627 } 628 629 /* call only when ep->mtx is held */ 630 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 631 { 632 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 633 } 634 635 /* call only when ep->mtx is held */ 636 static inline void ep_pm_stay_awake(struct epitem *epi) 637 { 638 struct wakeup_source *ws = ep_wakeup_source(epi); 639 640 if (ws) 641 __pm_stay_awake(ws); 642 } 643 644 static inline bool ep_has_wakeup_source(struct epitem *epi) 645 { 646 return rcu_access_pointer(epi->ws) ? true : false; 647 } 648 649 /* call when ep->mtx cannot be held (ep_poll_callback) */ 650 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 651 { 652 struct wakeup_source *ws; 653 654 rcu_read_lock(); 655 ws = rcu_dereference(epi->ws); 656 if (ws) 657 __pm_stay_awake(ws); 658 rcu_read_unlock(); 659 } 660 661 /** 662 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 663 * the scan code, to call f_op->poll(). Also allows for 664 * O(NumReady) performance. 665 * 666 * @ep: Pointer to the epoll private data structure. 667 * @sproc: Pointer to the scan callback. 668 * @priv: Private opaque data passed to the @sproc callback. 669 * @depth: The current depth of recursive f_op->poll calls. 670 * @ep_locked: caller already holds ep->mtx 671 * 672 * Returns: The same integer error code returned by the @sproc callback. 673 */ 674 static int ep_scan_ready_list(struct eventpoll *ep, 675 int (*sproc)(struct eventpoll *, 676 struct list_head *, void *), 677 void *priv, int depth, bool ep_locked) 678 { 679 int error, pwake = 0; 680 unsigned long flags; 681 struct epitem *epi, *nepi; 682 LIST_HEAD(txlist); 683 684 /* 685 * We need to lock this because we could be hit by 686 * eventpoll_release_file() and epoll_ctl(). 687 */ 688 689 if (!ep_locked) 690 mutex_lock_nested(&ep->mtx, depth); 691 692 /* 693 * Steal the ready list, and re-init the original one to the 694 * empty list. Also, set ep->ovflist to NULL so that events 695 * happening while looping w/out locks, are not lost. We cannot 696 * have the poll callback to queue directly on ep->rdllist, 697 * because we want the "sproc" callback to be able to do it 698 * in a lockless way. 699 */ 700 spin_lock_irqsave(&ep->lock, flags); 701 list_splice_init(&ep->rdllist, &txlist); 702 ep->ovflist = NULL; 703 spin_unlock_irqrestore(&ep->lock, flags); 704 705 /* 706 * Now call the callback function. 707 */ 708 error = (*sproc)(ep, &txlist, priv); 709 710 spin_lock_irqsave(&ep->lock, flags); 711 /* 712 * During the time we spent inside the "sproc" callback, some 713 * other events might have been queued by the poll callback. 714 * We re-insert them inside the main ready-list here. 715 */ 716 for (nepi = ep->ovflist; (epi = nepi) != NULL; 717 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 718 /* 719 * We need to check if the item is already in the list. 720 * During the "sproc" callback execution time, items are 721 * queued into ->ovflist but the "txlist" might already 722 * contain them, and the list_splice() below takes care of them. 723 */ 724 if (!ep_is_linked(&epi->rdllink)) { 725 list_add_tail(&epi->rdllink, &ep->rdllist); 726 ep_pm_stay_awake(epi); 727 } 728 } 729 /* 730 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 731 * releasing the lock, events will be queued in the normal way inside 732 * ep->rdllist. 733 */ 734 ep->ovflist = EP_UNACTIVE_PTR; 735 736 /* 737 * Quickly re-inject items left on "txlist". 738 */ 739 list_splice(&txlist, &ep->rdllist); 740 __pm_relax(ep->ws); 741 742 if (!list_empty(&ep->rdllist)) { 743 /* 744 * Wake up (if active) both the eventpoll wait list and 745 * the ->poll() wait list (delayed after we release the lock). 746 */ 747 if (waitqueue_active(&ep->wq)) 748 wake_up_locked(&ep->wq); 749 if (waitqueue_active(&ep->poll_wait)) 750 pwake++; 751 } 752 spin_unlock_irqrestore(&ep->lock, flags); 753 754 if (!ep_locked) 755 mutex_unlock(&ep->mtx); 756 757 /* We have to call this outside the lock */ 758 if (pwake) 759 ep_poll_safewake(&ep->poll_wait); 760 761 return error; 762 } 763 764 static void epi_rcu_free(struct rcu_head *head) 765 { 766 struct epitem *epi = container_of(head, struct epitem, rcu); 767 kmem_cache_free(epi_cache, epi); 768 } 769 770 /* 771 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 772 * all the associated resources. Must be called with "mtx" held. 773 */ 774 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 775 { 776 unsigned long flags; 777 struct file *file = epi->ffd.file; 778 779 /* 780 * Removes poll wait queue hooks. We _have_ to do this without holding 781 * the "ep->lock" otherwise a deadlock might occur. This because of the 782 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 783 * queue head lock when unregistering the wait queue. The wakeup callback 784 * will run by holding the wait queue head lock and will call our callback 785 * that will try to get "ep->lock". 786 */ 787 ep_unregister_pollwait(ep, epi); 788 789 /* Remove the current item from the list of epoll hooks */ 790 spin_lock(&file->f_lock); 791 list_del_rcu(&epi->fllink); 792 spin_unlock(&file->f_lock); 793 794 rb_erase(&epi->rbn, &ep->rbr); 795 796 spin_lock_irqsave(&ep->lock, flags); 797 if (ep_is_linked(&epi->rdllink)) 798 list_del_init(&epi->rdllink); 799 spin_unlock_irqrestore(&ep->lock, flags); 800 801 wakeup_source_unregister(ep_wakeup_source(epi)); 802 /* 803 * At this point it is safe to free the eventpoll item. Use the union 804 * field epi->rcu, since we are trying to minimize the size of 805 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 806 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 807 * use of the rbn field. 808 */ 809 call_rcu(&epi->rcu, epi_rcu_free); 810 811 atomic_long_dec(&ep->user->epoll_watches); 812 813 return 0; 814 } 815 816 static void ep_free(struct eventpoll *ep) 817 { 818 struct rb_node *rbp; 819 struct epitem *epi; 820 821 /* We need to release all tasks waiting for these file */ 822 if (waitqueue_active(&ep->poll_wait)) 823 ep_poll_safewake(&ep->poll_wait); 824 825 /* 826 * We need to lock this because we could be hit by 827 * eventpoll_release_file() while we're freeing the "struct eventpoll". 828 * We do not need to hold "ep->mtx" here because the epoll file 829 * is on the way to be removed and no one has references to it 830 * anymore. The only hit might come from eventpoll_release_file() but 831 * holding "epmutex" is sufficient here. 832 */ 833 mutex_lock(&epmutex); 834 835 /* 836 * Walks through the whole tree by unregistering poll callbacks. 837 */ 838 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 839 epi = rb_entry(rbp, struct epitem, rbn); 840 841 ep_unregister_pollwait(ep, epi); 842 cond_resched(); 843 } 844 845 /* 846 * Walks through the whole tree by freeing each "struct epitem". At this 847 * point we are sure no poll callbacks will be lingering around, and also by 848 * holding "epmutex" we can be sure that no file cleanup code will hit 849 * us during this operation. So we can avoid the lock on "ep->lock". 850 * We do not need to lock ep->mtx, either, we only do it to prevent 851 * a lockdep warning. 852 */ 853 mutex_lock(&ep->mtx); 854 while ((rbp = rb_first(&ep->rbr)) != NULL) { 855 epi = rb_entry(rbp, struct epitem, rbn); 856 ep_remove(ep, epi); 857 cond_resched(); 858 } 859 mutex_unlock(&ep->mtx); 860 861 mutex_unlock(&epmutex); 862 mutex_destroy(&ep->mtx); 863 free_uid(ep->user); 864 wakeup_source_unregister(ep->ws); 865 kfree(ep); 866 } 867 868 static int ep_eventpoll_release(struct inode *inode, struct file *file) 869 { 870 struct eventpoll *ep = file->private_data; 871 872 if (ep) 873 ep_free(ep); 874 875 return 0; 876 } 877 878 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt) 879 { 880 pt->_key = epi->event.events; 881 882 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events; 883 } 884 885 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 886 void *priv) 887 { 888 struct epitem *epi, *tmp; 889 poll_table pt; 890 891 init_poll_funcptr(&pt, NULL); 892 893 list_for_each_entry_safe(epi, tmp, head, rdllink) { 894 if (ep_item_poll(epi, &pt)) 895 return POLLIN | POLLRDNORM; 896 else { 897 /* 898 * Item has been dropped into the ready list by the poll 899 * callback, but it's not actually ready, as far as 900 * caller requested events goes. We can remove it here. 901 */ 902 __pm_relax(ep_wakeup_source(epi)); 903 list_del_init(&epi->rdllink); 904 } 905 } 906 907 return 0; 908 } 909 910 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 911 poll_table *pt); 912 913 struct readyevents_arg { 914 struct eventpoll *ep; 915 bool locked; 916 }; 917 918 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 919 { 920 struct readyevents_arg *arg = priv; 921 922 return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL, 923 call_nests + 1, arg->locked); 924 } 925 926 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 927 { 928 int pollflags; 929 struct eventpoll *ep = file->private_data; 930 struct readyevents_arg arg; 931 932 /* 933 * During ep_insert() we already hold the ep->mtx for the tfile. 934 * Prevent re-aquisition. 935 */ 936 arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc); 937 arg.ep = ep; 938 939 /* Insert inside our poll wait queue */ 940 poll_wait(file, &ep->poll_wait, wait); 941 942 /* 943 * Proceed to find out if wanted events are really available inside 944 * the ready list. This need to be done under ep_call_nested() 945 * supervision, since the call to f_op->poll() done on listed files 946 * could re-enter here. 947 */ 948 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 949 ep_poll_readyevents_proc, &arg, ep, current); 950 951 return pollflags != -1 ? pollflags : 0; 952 } 953 954 #ifdef CONFIG_PROC_FS 955 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 956 { 957 struct eventpoll *ep = f->private_data; 958 struct rb_node *rbp; 959 960 mutex_lock(&ep->mtx); 961 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 962 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 963 964 seq_printf(m, "tfd: %8d events: %8x data: %16llx\n", 965 epi->ffd.fd, epi->event.events, 966 (long long)epi->event.data); 967 if (seq_has_overflowed(m)) 968 break; 969 } 970 mutex_unlock(&ep->mtx); 971 } 972 #endif 973 974 /* File callbacks that implement the eventpoll file behaviour */ 975 static const struct file_operations eventpoll_fops = { 976 #ifdef CONFIG_PROC_FS 977 .show_fdinfo = ep_show_fdinfo, 978 #endif 979 .release = ep_eventpoll_release, 980 .poll = ep_eventpoll_poll, 981 .llseek = noop_llseek, 982 }; 983 984 /* 985 * This is called from eventpoll_release() to unlink files from the eventpoll 986 * interface. We need to have this facility to cleanup correctly files that are 987 * closed without being removed from the eventpoll interface. 988 */ 989 void eventpoll_release_file(struct file *file) 990 { 991 struct eventpoll *ep; 992 struct epitem *epi, *next; 993 994 /* 995 * We don't want to get "file->f_lock" because it is not 996 * necessary. It is not necessary because we're in the "struct file" 997 * cleanup path, and this means that no one is using this file anymore. 998 * So, for example, epoll_ctl() cannot hit here since if we reach this 999 * point, the file counter already went to zero and fget() would fail. 1000 * The only hit might come from ep_free() but by holding the mutex 1001 * will correctly serialize the operation. We do need to acquire 1002 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 1003 * from anywhere but ep_free(). 1004 * 1005 * Besides, ep_remove() acquires the lock, so we can't hold it here. 1006 */ 1007 mutex_lock(&epmutex); 1008 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 1009 ep = epi->ep; 1010 mutex_lock_nested(&ep->mtx, 0); 1011 ep_remove(ep, epi); 1012 mutex_unlock(&ep->mtx); 1013 } 1014 mutex_unlock(&epmutex); 1015 } 1016 1017 static int ep_alloc(struct eventpoll **pep) 1018 { 1019 int error; 1020 struct user_struct *user; 1021 struct eventpoll *ep; 1022 1023 user = get_current_user(); 1024 error = -ENOMEM; 1025 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1026 if (unlikely(!ep)) 1027 goto free_uid; 1028 1029 spin_lock_init(&ep->lock); 1030 mutex_init(&ep->mtx); 1031 init_waitqueue_head(&ep->wq); 1032 init_waitqueue_head(&ep->poll_wait); 1033 INIT_LIST_HEAD(&ep->rdllist); 1034 ep->rbr = RB_ROOT; 1035 ep->ovflist = EP_UNACTIVE_PTR; 1036 ep->user = user; 1037 1038 *pep = ep; 1039 1040 return 0; 1041 1042 free_uid: 1043 free_uid(user); 1044 return error; 1045 } 1046 1047 /* 1048 * Search the file inside the eventpoll tree. The RB tree operations 1049 * are protected by the "mtx" mutex, and ep_find() must be called with 1050 * "mtx" held. 1051 */ 1052 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1053 { 1054 int kcmp; 1055 struct rb_node *rbp; 1056 struct epitem *epi, *epir = NULL; 1057 struct epoll_filefd ffd; 1058 1059 ep_set_ffd(&ffd, file, fd); 1060 for (rbp = ep->rbr.rb_node; rbp; ) { 1061 epi = rb_entry(rbp, struct epitem, rbn); 1062 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1063 if (kcmp > 0) 1064 rbp = rbp->rb_right; 1065 else if (kcmp < 0) 1066 rbp = rbp->rb_left; 1067 else { 1068 epir = epi; 1069 break; 1070 } 1071 } 1072 1073 return epir; 1074 } 1075 1076 /* 1077 * This is the callback that is passed to the wait queue wakeup 1078 * mechanism. It is called by the stored file descriptors when they 1079 * have events to report. 1080 */ 1081 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 1082 { 1083 int pwake = 0; 1084 unsigned long flags; 1085 struct epitem *epi = ep_item_from_wait(wait); 1086 struct eventpoll *ep = epi->ep; 1087 int ewake = 0; 1088 1089 if ((unsigned long)key & POLLFREE) { 1090 ep_pwq_from_wait(wait)->whead = NULL; 1091 /* 1092 * whead = NULL above can race with ep_remove_wait_queue() 1093 * which can do another remove_wait_queue() after us, so we 1094 * can't use __remove_wait_queue(). whead->lock is held by 1095 * the caller. 1096 */ 1097 list_del_init(&wait->task_list); 1098 } 1099 1100 spin_lock_irqsave(&ep->lock, flags); 1101 1102 ep_set_busy_poll_napi_id(epi); 1103 1104 /* 1105 * If the event mask does not contain any poll(2) event, we consider the 1106 * descriptor to be disabled. This condition is likely the effect of the 1107 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1108 * until the next EPOLL_CTL_MOD will be issued. 1109 */ 1110 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1111 goto out_unlock; 1112 1113 /* 1114 * Check the events coming with the callback. At this stage, not 1115 * every device reports the events in the "key" parameter of the 1116 * callback. We need to be able to handle both cases here, hence the 1117 * test for "key" != NULL before the event match test. 1118 */ 1119 if (key && !((unsigned long) key & epi->event.events)) 1120 goto out_unlock; 1121 1122 /* 1123 * If we are transferring events to userspace, we can hold no locks 1124 * (because we're accessing user memory, and because of linux f_op->poll() 1125 * semantics). All the events that happen during that period of time are 1126 * chained in ep->ovflist and requeued later on. 1127 */ 1128 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 1129 if (epi->next == EP_UNACTIVE_PTR) { 1130 epi->next = ep->ovflist; 1131 ep->ovflist = epi; 1132 if (epi->ws) { 1133 /* 1134 * Activate ep->ws since epi->ws may get 1135 * deactivated at any time. 1136 */ 1137 __pm_stay_awake(ep->ws); 1138 } 1139 1140 } 1141 goto out_unlock; 1142 } 1143 1144 /* If this file is already in the ready list we exit soon */ 1145 if (!ep_is_linked(&epi->rdllink)) { 1146 list_add_tail(&epi->rdllink, &ep->rdllist); 1147 ep_pm_stay_awake_rcu(epi); 1148 } 1149 1150 /* 1151 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1152 * wait list. 1153 */ 1154 if (waitqueue_active(&ep->wq)) { 1155 if ((epi->event.events & EPOLLEXCLUSIVE) && 1156 !((unsigned long)key & POLLFREE)) { 1157 switch ((unsigned long)key & EPOLLINOUT_BITS) { 1158 case POLLIN: 1159 if (epi->event.events & POLLIN) 1160 ewake = 1; 1161 break; 1162 case POLLOUT: 1163 if (epi->event.events & POLLOUT) 1164 ewake = 1; 1165 break; 1166 case 0: 1167 ewake = 1; 1168 break; 1169 } 1170 } 1171 wake_up_locked(&ep->wq); 1172 } 1173 if (waitqueue_active(&ep->poll_wait)) 1174 pwake++; 1175 1176 out_unlock: 1177 spin_unlock_irqrestore(&ep->lock, flags); 1178 1179 /* We have to call this outside the lock */ 1180 if (pwake) 1181 ep_poll_safewake(&ep->poll_wait); 1182 1183 if (epi->event.events & EPOLLEXCLUSIVE) 1184 return ewake; 1185 1186 return 1; 1187 } 1188 1189 /* 1190 * This is the callback that is used to add our wait queue to the 1191 * target file wakeup lists. 1192 */ 1193 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1194 poll_table *pt) 1195 { 1196 struct epitem *epi = ep_item_from_epqueue(pt); 1197 struct eppoll_entry *pwq; 1198 1199 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1200 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1201 pwq->whead = whead; 1202 pwq->base = epi; 1203 if (epi->event.events & EPOLLEXCLUSIVE) 1204 add_wait_queue_exclusive(whead, &pwq->wait); 1205 else 1206 add_wait_queue(whead, &pwq->wait); 1207 list_add_tail(&pwq->llink, &epi->pwqlist); 1208 epi->nwait++; 1209 } else { 1210 /* We have to signal that an error occurred */ 1211 epi->nwait = -1; 1212 } 1213 } 1214 1215 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1216 { 1217 int kcmp; 1218 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 1219 struct epitem *epic; 1220 1221 while (*p) { 1222 parent = *p; 1223 epic = rb_entry(parent, struct epitem, rbn); 1224 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1225 if (kcmp > 0) 1226 p = &parent->rb_right; 1227 else 1228 p = &parent->rb_left; 1229 } 1230 rb_link_node(&epi->rbn, parent, p); 1231 rb_insert_color(&epi->rbn, &ep->rbr); 1232 } 1233 1234 1235 1236 #define PATH_ARR_SIZE 5 1237 /* 1238 * These are the number paths of length 1 to 5, that we are allowing to emanate 1239 * from a single file of interest. For example, we allow 1000 paths of length 1240 * 1, to emanate from each file of interest. This essentially represents the 1241 * potential wakeup paths, which need to be limited in order to avoid massive 1242 * uncontrolled wakeup storms. The common use case should be a single ep which 1243 * is connected to n file sources. In this case each file source has 1 path 1244 * of length 1. Thus, the numbers below should be more than sufficient. These 1245 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1246 * and delete can't add additional paths. Protected by the epmutex. 1247 */ 1248 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1249 static int path_count[PATH_ARR_SIZE]; 1250 1251 static int path_count_inc(int nests) 1252 { 1253 /* Allow an arbitrary number of depth 1 paths */ 1254 if (nests == 0) 1255 return 0; 1256 1257 if (++path_count[nests] > path_limits[nests]) 1258 return -1; 1259 return 0; 1260 } 1261 1262 static void path_count_init(void) 1263 { 1264 int i; 1265 1266 for (i = 0; i < PATH_ARR_SIZE; i++) 1267 path_count[i] = 0; 1268 } 1269 1270 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1271 { 1272 int error = 0; 1273 struct file *file = priv; 1274 struct file *child_file; 1275 struct epitem *epi; 1276 1277 /* CTL_DEL can remove links here, but that can't increase our count */ 1278 rcu_read_lock(); 1279 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1280 child_file = epi->ep->file; 1281 if (is_file_epoll(child_file)) { 1282 if (list_empty(&child_file->f_ep_links)) { 1283 if (path_count_inc(call_nests)) { 1284 error = -1; 1285 break; 1286 } 1287 } else { 1288 error = ep_call_nested(&poll_loop_ncalls, 1289 EP_MAX_NESTS, 1290 reverse_path_check_proc, 1291 child_file, child_file, 1292 current); 1293 } 1294 if (error != 0) 1295 break; 1296 } else { 1297 printk(KERN_ERR "reverse_path_check_proc: " 1298 "file is not an ep!\n"); 1299 } 1300 } 1301 rcu_read_unlock(); 1302 return error; 1303 } 1304 1305 /** 1306 * reverse_path_check - The tfile_check_list is list of file *, which have 1307 * links that are proposed to be newly added. We need to 1308 * make sure that those added links don't add too many 1309 * paths such that we will spend all our time waking up 1310 * eventpoll objects. 1311 * 1312 * Returns: Returns zero if the proposed links don't create too many paths, 1313 * -1 otherwise. 1314 */ 1315 static int reverse_path_check(void) 1316 { 1317 int error = 0; 1318 struct file *current_file; 1319 1320 /* let's call this for all tfiles */ 1321 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1322 path_count_init(); 1323 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1324 reverse_path_check_proc, current_file, 1325 current_file, current); 1326 if (error) 1327 break; 1328 } 1329 return error; 1330 } 1331 1332 static int ep_create_wakeup_source(struct epitem *epi) 1333 { 1334 const char *name; 1335 struct wakeup_source *ws; 1336 1337 if (!epi->ep->ws) { 1338 epi->ep->ws = wakeup_source_register("eventpoll"); 1339 if (!epi->ep->ws) 1340 return -ENOMEM; 1341 } 1342 1343 name = epi->ffd.file->f_path.dentry->d_name.name; 1344 ws = wakeup_source_register(name); 1345 1346 if (!ws) 1347 return -ENOMEM; 1348 rcu_assign_pointer(epi->ws, ws); 1349 1350 return 0; 1351 } 1352 1353 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1354 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1355 { 1356 struct wakeup_source *ws = ep_wakeup_source(epi); 1357 1358 RCU_INIT_POINTER(epi->ws, NULL); 1359 1360 /* 1361 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1362 * used internally by wakeup_source_remove, too (called by 1363 * wakeup_source_unregister), so we cannot use call_rcu 1364 */ 1365 synchronize_rcu(); 1366 wakeup_source_unregister(ws); 1367 } 1368 1369 /* 1370 * Must be called with "mtx" held. 1371 */ 1372 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1373 struct file *tfile, int fd, int full_check) 1374 { 1375 int error, revents, pwake = 0; 1376 unsigned long flags; 1377 long user_watches; 1378 struct epitem *epi; 1379 struct ep_pqueue epq; 1380 1381 user_watches = atomic_long_read(&ep->user->epoll_watches); 1382 if (unlikely(user_watches >= max_user_watches)) 1383 return -ENOSPC; 1384 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1385 return -ENOMEM; 1386 1387 /* Item initialization follow here ... */ 1388 INIT_LIST_HEAD(&epi->rdllink); 1389 INIT_LIST_HEAD(&epi->fllink); 1390 INIT_LIST_HEAD(&epi->pwqlist); 1391 epi->ep = ep; 1392 ep_set_ffd(&epi->ffd, tfile, fd); 1393 epi->event = *event; 1394 epi->nwait = 0; 1395 epi->next = EP_UNACTIVE_PTR; 1396 if (epi->event.events & EPOLLWAKEUP) { 1397 error = ep_create_wakeup_source(epi); 1398 if (error) 1399 goto error_create_wakeup_source; 1400 } else { 1401 RCU_INIT_POINTER(epi->ws, NULL); 1402 } 1403 1404 /* Initialize the poll table using the queue callback */ 1405 epq.epi = epi; 1406 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1407 1408 /* 1409 * Attach the item to the poll hooks and get current event bits. 1410 * We can safely use the file* here because its usage count has 1411 * been increased by the caller of this function. Note that after 1412 * this operation completes, the poll callback can start hitting 1413 * the new item. 1414 */ 1415 revents = ep_item_poll(epi, &epq.pt); 1416 1417 /* 1418 * We have to check if something went wrong during the poll wait queue 1419 * install process. Namely an allocation for a wait queue failed due 1420 * high memory pressure. 1421 */ 1422 error = -ENOMEM; 1423 if (epi->nwait < 0) 1424 goto error_unregister; 1425 1426 /* Add the current item to the list of active epoll hook for this file */ 1427 spin_lock(&tfile->f_lock); 1428 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1429 spin_unlock(&tfile->f_lock); 1430 1431 /* 1432 * Add the current item to the RB tree. All RB tree operations are 1433 * protected by "mtx", and ep_insert() is called with "mtx" held. 1434 */ 1435 ep_rbtree_insert(ep, epi); 1436 1437 /* now check if we've created too many backpaths */ 1438 error = -EINVAL; 1439 if (full_check && reverse_path_check()) 1440 goto error_remove_epi; 1441 1442 /* We have to drop the new item inside our item list to keep track of it */ 1443 spin_lock_irqsave(&ep->lock, flags); 1444 1445 /* record NAPI ID of new item if present */ 1446 ep_set_busy_poll_napi_id(epi); 1447 1448 /* If the file is already "ready" we drop it inside the ready list */ 1449 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1450 list_add_tail(&epi->rdllink, &ep->rdllist); 1451 ep_pm_stay_awake(epi); 1452 1453 /* Notify waiting tasks that events are available */ 1454 if (waitqueue_active(&ep->wq)) 1455 wake_up_locked(&ep->wq); 1456 if (waitqueue_active(&ep->poll_wait)) 1457 pwake++; 1458 } 1459 1460 spin_unlock_irqrestore(&ep->lock, flags); 1461 1462 atomic_long_inc(&ep->user->epoll_watches); 1463 1464 /* We have to call this outside the lock */ 1465 if (pwake) 1466 ep_poll_safewake(&ep->poll_wait); 1467 1468 return 0; 1469 1470 error_remove_epi: 1471 spin_lock(&tfile->f_lock); 1472 list_del_rcu(&epi->fllink); 1473 spin_unlock(&tfile->f_lock); 1474 1475 rb_erase(&epi->rbn, &ep->rbr); 1476 1477 error_unregister: 1478 ep_unregister_pollwait(ep, epi); 1479 1480 /* 1481 * We need to do this because an event could have been arrived on some 1482 * allocated wait queue. Note that we don't care about the ep->ovflist 1483 * list, since that is used/cleaned only inside a section bound by "mtx". 1484 * And ep_insert() is called with "mtx" held. 1485 */ 1486 spin_lock_irqsave(&ep->lock, flags); 1487 if (ep_is_linked(&epi->rdllink)) 1488 list_del_init(&epi->rdllink); 1489 spin_unlock_irqrestore(&ep->lock, flags); 1490 1491 wakeup_source_unregister(ep_wakeup_source(epi)); 1492 1493 error_create_wakeup_source: 1494 kmem_cache_free(epi_cache, epi); 1495 1496 return error; 1497 } 1498 1499 /* 1500 * Modify the interest event mask by dropping an event if the new mask 1501 * has a match in the current file status. Must be called with "mtx" held. 1502 */ 1503 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1504 { 1505 int pwake = 0; 1506 unsigned int revents; 1507 poll_table pt; 1508 1509 init_poll_funcptr(&pt, NULL); 1510 1511 /* 1512 * Set the new event interest mask before calling f_op->poll(); 1513 * otherwise we might miss an event that happens between the 1514 * f_op->poll() call and the new event set registering. 1515 */ 1516 epi->event.events = event->events; /* need barrier below */ 1517 epi->event.data = event->data; /* protected by mtx */ 1518 if (epi->event.events & EPOLLWAKEUP) { 1519 if (!ep_has_wakeup_source(epi)) 1520 ep_create_wakeup_source(epi); 1521 } else if (ep_has_wakeup_source(epi)) { 1522 ep_destroy_wakeup_source(epi); 1523 } 1524 1525 /* 1526 * The following barrier has two effects: 1527 * 1528 * 1) Flush epi changes above to other CPUs. This ensures 1529 * we do not miss events from ep_poll_callback if an 1530 * event occurs immediately after we call f_op->poll(). 1531 * We need this because we did not take ep->lock while 1532 * changing epi above (but ep_poll_callback does take 1533 * ep->lock). 1534 * 1535 * 2) We also need to ensure we do not miss _past_ events 1536 * when calling f_op->poll(). This barrier also 1537 * pairs with the barrier in wq_has_sleeper (see 1538 * comments for wq_has_sleeper). 1539 * 1540 * This barrier will now guarantee ep_poll_callback or f_op->poll 1541 * (or both) will notice the readiness of an item. 1542 */ 1543 smp_mb(); 1544 1545 /* 1546 * Get current event bits. We can safely use the file* here because 1547 * its usage count has been increased by the caller of this function. 1548 */ 1549 revents = ep_item_poll(epi, &pt); 1550 1551 /* 1552 * If the item is "hot" and it is not registered inside the ready 1553 * list, push it inside. 1554 */ 1555 if (revents & event->events) { 1556 spin_lock_irq(&ep->lock); 1557 if (!ep_is_linked(&epi->rdllink)) { 1558 list_add_tail(&epi->rdllink, &ep->rdllist); 1559 ep_pm_stay_awake(epi); 1560 1561 /* Notify waiting tasks that events are available */ 1562 if (waitqueue_active(&ep->wq)) 1563 wake_up_locked(&ep->wq); 1564 if (waitqueue_active(&ep->poll_wait)) 1565 pwake++; 1566 } 1567 spin_unlock_irq(&ep->lock); 1568 } 1569 1570 /* We have to call this outside the lock */ 1571 if (pwake) 1572 ep_poll_safewake(&ep->poll_wait); 1573 1574 return 0; 1575 } 1576 1577 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1578 void *priv) 1579 { 1580 struct ep_send_events_data *esed = priv; 1581 int eventcnt; 1582 unsigned int revents; 1583 struct epitem *epi; 1584 struct epoll_event __user *uevent; 1585 struct wakeup_source *ws; 1586 poll_table pt; 1587 1588 init_poll_funcptr(&pt, NULL); 1589 1590 /* 1591 * We can loop without lock because we are passed a task private list. 1592 * Items cannot vanish during the loop because ep_scan_ready_list() is 1593 * holding "mtx" during this call. 1594 */ 1595 for (eventcnt = 0, uevent = esed->events; 1596 !list_empty(head) && eventcnt < esed->maxevents;) { 1597 epi = list_first_entry(head, struct epitem, rdllink); 1598 1599 /* 1600 * Activate ep->ws before deactivating epi->ws to prevent 1601 * triggering auto-suspend here (in case we reactive epi->ws 1602 * below). 1603 * 1604 * This could be rearranged to delay the deactivation of epi->ws 1605 * instead, but then epi->ws would temporarily be out of sync 1606 * with ep_is_linked(). 1607 */ 1608 ws = ep_wakeup_source(epi); 1609 if (ws) { 1610 if (ws->active) 1611 __pm_stay_awake(ep->ws); 1612 __pm_relax(ws); 1613 } 1614 1615 list_del_init(&epi->rdllink); 1616 1617 revents = ep_item_poll(epi, &pt); 1618 1619 /* 1620 * If the event mask intersect the caller-requested one, 1621 * deliver the event to userspace. Again, ep_scan_ready_list() 1622 * is holding "mtx", so no operations coming from userspace 1623 * can change the item. 1624 */ 1625 if (revents) { 1626 if (__put_user(revents, &uevent->events) || 1627 __put_user(epi->event.data, &uevent->data)) { 1628 list_add(&epi->rdllink, head); 1629 ep_pm_stay_awake(epi); 1630 return eventcnt ? eventcnt : -EFAULT; 1631 } 1632 eventcnt++; 1633 uevent++; 1634 if (epi->event.events & EPOLLONESHOT) 1635 epi->event.events &= EP_PRIVATE_BITS; 1636 else if (!(epi->event.events & EPOLLET)) { 1637 /* 1638 * If this file has been added with Level 1639 * Trigger mode, we need to insert back inside 1640 * the ready list, so that the next call to 1641 * epoll_wait() will check again the events 1642 * availability. At this point, no one can insert 1643 * into ep->rdllist besides us. The epoll_ctl() 1644 * callers are locked out by 1645 * ep_scan_ready_list() holding "mtx" and the 1646 * poll callback will queue them in ep->ovflist. 1647 */ 1648 list_add_tail(&epi->rdllink, &ep->rdllist); 1649 ep_pm_stay_awake(epi); 1650 } 1651 } 1652 } 1653 1654 return eventcnt; 1655 } 1656 1657 static int ep_send_events(struct eventpoll *ep, 1658 struct epoll_event __user *events, int maxevents) 1659 { 1660 struct ep_send_events_data esed; 1661 1662 esed.maxevents = maxevents; 1663 esed.events = events; 1664 1665 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1666 } 1667 1668 static inline struct timespec64 ep_set_mstimeout(long ms) 1669 { 1670 struct timespec64 now, ts = { 1671 .tv_sec = ms / MSEC_PER_SEC, 1672 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1673 }; 1674 1675 ktime_get_ts64(&now); 1676 return timespec64_add_safe(now, ts); 1677 } 1678 1679 /** 1680 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1681 * event buffer. 1682 * 1683 * @ep: Pointer to the eventpoll context. 1684 * @events: Pointer to the userspace buffer where the ready events should be 1685 * stored. 1686 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1687 * @timeout: Maximum timeout for the ready events fetch operation, in 1688 * milliseconds. If the @timeout is zero, the function will not block, 1689 * while if the @timeout is less than zero, the function will block 1690 * until at least one event has been retrieved (or an error 1691 * occurred). 1692 * 1693 * Returns: Returns the number of ready events which have been fetched, or an 1694 * error code, in case of error. 1695 */ 1696 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1697 int maxevents, long timeout) 1698 { 1699 int res = 0, eavail, timed_out = 0; 1700 unsigned long flags; 1701 u64 slack = 0; 1702 wait_queue_t wait; 1703 ktime_t expires, *to = NULL; 1704 1705 if (timeout > 0) { 1706 struct timespec64 end_time = ep_set_mstimeout(timeout); 1707 1708 slack = select_estimate_accuracy(&end_time); 1709 to = &expires; 1710 *to = timespec64_to_ktime(end_time); 1711 } else if (timeout == 0) { 1712 /* 1713 * Avoid the unnecessary trip to the wait queue loop, if the 1714 * caller specified a non blocking operation. 1715 */ 1716 timed_out = 1; 1717 spin_lock_irqsave(&ep->lock, flags); 1718 goto check_events; 1719 } 1720 1721 fetch_events: 1722 1723 if (!ep_events_available(ep)) 1724 ep_busy_loop(ep, timed_out); 1725 1726 spin_lock_irqsave(&ep->lock, flags); 1727 1728 if (!ep_events_available(ep)) { 1729 /* 1730 * Busy poll timed out. Drop NAPI ID for now, we can add 1731 * it back in when we have moved a socket with a valid NAPI 1732 * ID onto the ready list. 1733 */ 1734 ep_reset_busy_poll_napi_id(ep); 1735 1736 /* 1737 * We don't have any available event to return to the caller. 1738 * We need to sleep here, and we will be wake up by 1739 * ep_poll_callback() when events will become available. 1740 */ 1741 init_waitqueue_entry(&wait, current); 1742 __add_wait_queue_exclusive(&ep->wq, &wait); 1743 1744 for (;;) { 1745 /* 1746 * We don't want to sleep if the ep_poll_callback() sends us 1747 * a wakeup in between. That's why we set the task state 1748 * to TASK_INTERRUPTIBLE before doing the checks. 1749 */ 1750 set_current_state(TASK_INTERRUPTIBLE); 1751 if (ep_events_available(ep) || timed_out) 1752 break; 1753 if (signal_pending(current)) { 1754 res = -EINTR; 1755 break; 1756 } 1757 1758 spin_unlock_irqrestore(&ep->lock, flags); 1759 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1760 timed_out = 1; 1761 1762 spin_lock_irqsave(&ep->lock, flags); 1763 } 1764 1765 __remove_wait_queue(&ep->wq, &wait); 1766 __set_current_state(TASK_RUNNING); 1767 } 1768 check_events: 1769 /* Is it worth to try to dig for events ? */ 1770 eavail = ep_events_available(ep); 1771 1772 spin_unlock_irqrestore(&ep->lock, flags); 1773 1774 /* 1775 * Try to transfer events to user space. In case we get 0 events and 1776 * there's still timeout left over, we go trying again in search of 1777 * more luck. 1778 */ 1779 if (!res && eavail && 1780 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1781 goto fetch_events; 1782 1783 return res; 1784 } 1785 1786 /** 1787 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1788 * API, to verify that adding an epoll file inside another 1789 * epoll structure, does not violate the constraints, in 1790 * terms of closed loops, or too deep chains (which can 1791 * result in excessive stack usage). 1792 * 1793 * @priv: Pointer to the epoll file to be currently checked. 1794 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1795 * data structure pointer. 1796 * @call_nests: Current dept of the @ep_call_nested() call stack. 1797 * 1798 * Returns: Returns zero if adding the epoll @file inside current epoll 1799 * structure @ep does not violate the constraints, or -1 otherwise. 1800 */ 1801 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1802 { 1803 int error = 0; 1804 struct file *file = priv; 1805 struct eventpoll *ep = file->private_data; 1806 struct eventpoll *ep_tovisit; 1807 struct rb_node *rbp; 1808 struct epitem *epi; 1809 1810 mutex_lock_nested(&ep->mtx, call_nests + 1); 1811 ep->visited = 1; 1812 list_add(&ep->visited_list_link, &visited_list); 1813 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1814 epi = rb_entry(rbp, struct epitem, rbn); 1815 if (unlikely(is_file_epoll(epi->ffd.file))) { 1816 ep_tovisit = epi->ffd.file->private_data; 1817 if (ep_tovisit->visited) 1818 continue; 1819 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1820 ep_loop_check_proc, epi->ffd.file, 1821 ep_tovisit, current); 1822 if (error != 0) 1823 break; 1824 } else { 1825 /* 1826 * If we've reached a file that is not associated with 1827 * an ep, then we need to check if the newly added 1828 * links are going to add too many wakeup paths. We do 1829 * this by adding it to the tfile_check_list, if it's 1830 * not already there, and calling reverse_path_check() 1831 * during ep_insert(). 1832 */ 1833 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1834 list_add(&epi->ffd.file->f_tfile_llink, 1835 &tfile_check_list); 1836 } 1837 } 1838 mutex_unlock(&ep->mtx); 1839 1840 return error; 1841 } 1842 1843 /** 1844 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1845 * another epoll file (represented by @ep) does not create 1846 * closed loops or too deep chains. 1847 * 1848 * @ep: Pointer to the epoll private data structure. 1849 * @file: Pointer to the epoll file to be checked. 1850 * 1851 * Returns: Returns zero if adding the epoll @file inside current epoll 1852 * structure @ep does not violate the constraints, or -1 otherwise. 1853 */ 1854 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1855 { 1856 int ret; 1857 struct eventpoll *ep_cur, *ep_next; 1858 1859 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1860 ep_loop_check_proc, file, ep, current); 1861 /* clear visited list */ 1862 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1863 visited_list_link) { 1864 ep_cur->visited = 0; 1865 list_del(&ep_cur->visited_list_link); 1866 } 1867 return ret; 1868 } 1869 1870 static void clear_tfile_check_list(void) 1871 { 1872 struct file *file; 1873 1874 /* first clear the tfile_check_list */ 1875 while (!list_empty(&tfile_check_list)) { 1876 file = list_first_entry(&tfile_check_list, struct file, 1877 f_tfile_llink); 1878 list_del_init(&file->f_tfile_llink); 1879 } 1880 INIT_LIST_HEAD(&tfile_check_list); 1881 } 1882 1883 /* 1884 * Open an eventpoll file descriptor. 1885 */ 1886 SYSCALL_DEFINE1(epoll_create1, int, flags) 1887 { 1888 int error, fd; 1889 struct eventpoll *ep = NULL; 1890 struct file *file; 1891 1892 /* Check the EPOLL_* constant for consistency. */ 1893 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1894 1895 if (flags & ~EPOLL_CLOEXEC) 1896 return -EINVAL; 1897 /* 1898 * Create the internal data structure ("struct eventpoll"). 1899 */ 1900 error = ep_alloc(&ep); 1901 if (error < 0) 1902 return error; 1903 /* 1904 * Creates all the items needed to setup an eventpoll file. That is, 1905 * a file structure and a free file descriptor. 1906 */ 1907 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1908 if (fd < 0) { 1909 error = fd; 1910 goto out_free_ep; 1911 } 1912 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1913 O_RDWR | (flags & O_CLOEXEC)); 1914 if (IS_ERR(file)) { 1915 error = PTR_ERR(file); 1916 goto out_free_fd; 1917 } 1918 ep->file = file; 1919 fd_install(fd, file); 1920 return fd; 1921 1922 out_free_fd: 1923 put_unused_fd(fd); 1924 out_free_ep: 1925 ep_free(ep); 1926 return error; 1927 } 1928 1929 SYSCALL_DEFINE1(epoll_create, int, size) 1930 { 1931 if (size <= 0) 1932 return -EINVAL; 1933 1934 return sys_epoll_create1(0); 1935 } 1936 1937 /* 1938 * The following function implements the controller interface for 1939 * the eventpoll file that enables the insertion/removal/change of 1940 * file descriptors inside the interest set. 1941 */ 1942 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1943 struct epoll_event __user *, event) 1944 { 1945 int error; 1946 int full_check = 0; 1947 struct fd f, tf; 1948 struct eventpoll *ep; 1949 struct epitem *epi; 1950 struct epoll_event epds; 1951 struct eventpoll *tep = NULL; 1952 1953 error = -EFAULT; 1954 if (ep_op_has_event(op) && 1955 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1956 goto error_return; 1957 1958 error = -EBADF; 1959 f = fdget(epfd); 1960 if (!f.file) 1961 goto error_return; 1962 1963 /* Get the "struct file *" for the target file */ 1964 tf = fdget(fd); 1965 if (!tf.file) 1966 goto error_fput; 1967 1968 /* The target file descriptor must support poll */ 1969 error = -EPERM; 1970 if (!tf.file->f_op->poll) 1971 goto error_tgt_fput; 1972 1973 /* Check if EPOLLWAKEUP is allowed */ 1974 if (ep_op_has_event(op)) 1975 ep_take_care_of_epollwakeup(&epds); 1976 1977 /* 1978 * We have to check that the file structure underneath the file descriptor 1979 * the user passed to us _is_ an eventpoll file. And also we do not permit 1980 * adding an epoll file descriptor inside itself. 1981 */ 1982 error = -EINVAL; 1983 if (f.file == tf.file || !is_file_epoll(f.file)) 1984 goto error_tgt_fput; 1985 1986 /* 1987 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 1988 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 1989 * Also, we do not currently supported nested exclusive wakeups. 1990 */ 1991 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) { 1992 if (op == EPOLL_CTL_MOD) 1993 goto error_tgt_fput; 1994 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 1995 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS))) 1996 goto error_tgt_fput; 1997 } 1998 1999 /* 2000 * At this point it is safe to assume that the "private_data" contains 2001 * our own data structure. 2002 */ 2003 ep = f.file->private_data; 2004 2005 /* 2006 * When we insert an epoll file descriptor, inside another epoll file 2007 * descriptor, there is the change of creating closed loops, which are 2008 * better be handled here, than in more critical paths. While we are 2009 * checking for loops we also determine the list of files reachable 2010 * and hang them on the tfile_check_list, so we can check that we 2011 * haven't created too many possible wakeup paths. 2012 * 2013 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2014 * the epoll file descriptor is attaching directly to a wakeup source, 2015 * unless the epoll file descriptor is nested. The purpose of taking the 2016 * 'epmutex' on add is to prevent complex toplogies such as loops and 2017 * deep wakeup paths from forming in parallel through multiple 2018 * EPOLL_CTL_ADD operations. 2019 */ 2020 mutex_lock_nested(&ep->mtx, 0); 2021 if (op == EPOLL_CTL_ADD) { 2022 if (!list_empty(&f.file->f_ep_links) || 2023 is_file_epoll(tf.file)) { 2024 full_check = 1; 2025 mutex_unlock(&ep->mtx); 2026 mutex_lock(&epmutex); 2027 if (is_file_epoll(tf.file)) { 2028 error = -ELOOP; 2029 if (ep_loop_check(ep, tf.file) != 0) { 2030 clear_tfile_check_list(); 2031 goto error_tgt_fput; 2032 } 2033 } else 2034 list_add(&tf.file->f_tfile_llink, 2035 &tfile_check_list); 2036 mutex_lock_nested(&ep->mtx, 0); 2037 if (is_file_epoll(tf.file)) { 2038 tep = tf.file->private_data; 2039 mutex_lock_nested(&tep->mtx, 1); 2040 } 2041 } 2042 } 2043 2044 /* 2045 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2046 * above, we can be sure to be able to use the item looked up by 2047 * ep_find() till we release the mutex. 2048 */ 2049 epi = ep_find(ep, tf.file, fd); 2050 2051 error = -EINVAL; 2052 switch (op) { 2053 case EPOLL_CTL_ADD: 2054 if (!epi) { 2055 epds.events |= POLLERR | POLLHUP; 2056 error = ep_insert(ep, &epds, tf.file, fd, full_check); 2057 } else 2058 error = -EEXIST; 2059 if (full_check) 2060 clear_tfile_check_list(); 2061 break; 2062 case EPOLL_CTL_DEL: 2063 if (epi) 2064 error = ep_remove(ep, epi); 2065 else 2066 error = -ENOENT; 2067 break; 2068 case EPOLL_CTL_MOD: 2069 if (epi) { 2070 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2071 epds.events |= POLLERR | POLLHUP; 2072 error = ep_modify(ep, epi, &epds); 2073 } 2074 } else 2075 error = -ENOENT; 2076 break; 2077 } 2078 if (tep != NULL) 2079 mutex_unlock(&tep->mtx); 2080 mutex_unlock(&ep->mtx); 2081 2082 error_tgt_fput: 2083 if (full_check) 2084 mutex_unlock(&epmutex); 2085 2086 fdput(tf); 2087 error_fput: 2088 fdput(f); 2089 error_return: 2090 2091 return error; 2092 } 2093 2094 /* 2095 * Implement the event wait interface for the eventpoll file. It is the kernel 2096 * part of the user space epoll_wait(2). 2097 */ 2098 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2099 int, maxevents, int, timeout) 2100 { 2101 int error; 2102 struct fd f; 2103 struct eventpoll *ep; 2104 2105 /* The maximum number of event must be greater than zero */ 2106 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2107 return -EINVAL; 2108 2109 /* Verify that the area passed by the user is writeable */ 2110 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 2111 return -EFAULT; 2112 2113 /* Get the "struct file *" for the eventpoll file */ 2114 f = fdget(epfd); 2115 if (!f.file) 2116 return -EBADF; 2117 2118 /* 2119 * We have to check that the file structure underneath the fd 2120 * the user passed to us _is_ an eventpoll file. 2121 */ 2122 error = -EINVAL; 2123 if (!is_file_epoll(f.file)) 2124 goto error_fput; 2125 2126 /* 2127 * At this point it is safe to assume that the "private_data" contains 2128 * our own data structure. 2129 */ 2130 ep = f.file->private_data; 2131 2132 /* Time to fish for events ... */ 2133 error = ep_poll(ep, events, maxevents, timeout); 2134 2135 error_fput: 2136 fdput(f); 2137 return error; 2138 } 2139 2140 /* 2141 * Implement the event wait interface for the eventpoll file. It is the kernel 2142 * part of the user space epoll_pwait(2). 2143 */ 2144 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2145 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2146 size_t, sigsetsize) 2147 { 2148 int error; 2149 sigset_t ksigmask, sigsaved; 2150 2151 /* 2152 * If the caller wants a certain signal mask to be set during the wait, 2153 * we apply it here. 2154 */ 2155 if (sigmask) { 2156 if (sigsetsize != sizeof(sigset_t)) 2157 return -EINVAL; 2158 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 2159 return -EFAULT; 2160 sigsaved = current->blocked; 2161 set_current_blocked(&ksigmask); 2162 } 2163 2164 error = sys_epoll_wait(epfd, events, maxevents, timeout); 2165 2166 /* 2167 * If we changed the signal mask, we need to restore the original one. 2168 * In case we've got a signal while waiting, we do not restore the 2169 * signal mask yet, and we allow do_signal() to deliver the signal on 2170 * the way back to userspace, before the signal mask is restored. 2171 */ 2172 if (sigmask) { 2173 if (error == -EINTR) { 2174 memcpy(¤t->saved_sigmask, &sigsaved, 2175 sizeof(sigsaved)); 2176 set_restore_sigmask(); 2177 } else 2178 set_current_blocked(&sigsaved); 2179 } 2180 2181 return error; 2182 } 2183 2184 #ifdef CONFIG_COMPAT 2185 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2186 struct epoll_event __user *, events, 2187 int, maxevents, int, timeout, 2188 const compat_sigset_t __user *, sigmask, 2189 compat_size_t, sigsetsize) 2190 { 2191 long err; 2192 compat_sigset_t csigmask; 2193 sigset_t ksigmask, sigsaved; 2194 2195 /* 2196 * If the caller wants a certain signal mask to be set during the wait, 2197 * we apply it here. 2198 */ 2199 if (sigmask) { 2200 if (sigsetsize != sizeof(compat_sigset_t)) 2201 return -EINVAL; 2202 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask))) 2203 return -EFAULT; 2204 sigset_from_compat(&ksigmask, &csigmask); 2205 sigsaved = current->blocked; 2206 set_current_blocked(&ksigmask); 2207 } 2208 2209 err = sys_epoll_wait(epfd, events, maxevents, timeout); 2210 2211 /* 2212 * If we changed the signal mask, we need to restore the original one. 2213 * In case we've got a signal while waiting, we do not restore the 2214 * signal mask yet, and we allow do_signal() to deliver the signal on 2215 * the way back to userspace, before the signal mask is restored. 2216 */ 2217 if (sigmask) { 2218 if (err == -EINTR) { 2219 memcpy(¤t->saved_sigmask, &sigsaved, 2220 sizeof(sigsaved)); 2221 set_restore_sigmask(); 2222 } else 2223 set_current_blocked(&sigsaved); 2224 } 2225 2226 return err; 2227 } 2228 #endif 2229 2230 static int __init eventpoll_init(void) 2231 { 2232 struct sysinfo si; 2233 2234 si_meminfo(&si); 2235 /* 2236 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2237 */ 2238 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2239 EP_ITEM_COST; 2240 BUG_ON(max_user_watches < 0); 2241 2242 /* 2243 * Initialize the structure used to perform epoll file descriptor 2244 * inclusion loops checks. 2245 */ 2246 ep_nested_calls_init(&poll_loop_ncalls); 2247 2248 /* Initialize the structure used to perform safe poll wait head wake ups */ 2249 ep_nested_calls_init(&poll_safewake_ncalls); 2250 2251 /* Initialize the structure used to perform file's f_op->poll() calls */ 2252 ep_nested_calls_init(&poll_readywalk_ncalls); 2253 2254 /* 2255 * We can have many thousands of epitems, so prevent this from 2256 * using an extra cache line on 64-bit (and smaller) CPUs 2257 */ 2258 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2259 2260 /* Allocates slab cache used to allocate "struct epitem" items */ 2261 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2262 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2263 2264 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2265 pwq_cache = kmem_cache_create("eventpoll_pwq", 2266 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 2267 2268 return 0; 2269 } 2270 fs_initcall(eventpoll_init); 2271