1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <net/busy_poll.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (rwlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a rwlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 74 * case when one epoll fd is added to another. In this case, we 75 * always acquire the locks in the order of nesting (i.e. after 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 77 * before e2->mtx). Since we disallow cycles of epoll file 78 * descriptors, this ensures that the mutexes are well-ordered. In 79 * order to communicate this nesting to lockdep, when walking a tree 80 * of epoll file descriptors, we use the current recursion depth as 81 * the lockdep subkey. 82 * It is possible to drop the "ep->mtx" and to use the global 83 * mutex "epmutex" (together with "ep->lock") to have it working, 84 * but having "ep->mtx" will make the interface more scalable. 85 * Events that require holding "epmutex" are very rare, while for 86 * normal operations the epoll private "ep->mtx" will guarantee 87 * a better scalability. 88 */ 89 90 /* Epoll private bits inside the event mask */ 91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 92 93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 94 95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 97 98 /* Maximum number of nesting allowed inside epoll sets */ 99 #define EP_MAX_NESTS 4 100 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 102 103 #define EP_UNACTIVE_PTR ((void *) -1L) 104 105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 106 107 struct epoll_filefd { 108 struct file *file; 109 int fd; 110 } __packed; 111 112 /* Wait structure used by the poll hooks */ 113 struct eppoll_entry { 114 /* List header used to link this structure to the "struct epitem" */ 115 struct eppoll_entry *next; 116 117 /* The "base" pointer is set to the container "struct epitem" */ 118 struct epitem *base; 119 120 /* 121 * Wait queue item that will be linked to the target file wait 122 * queue head. 123 */ 124 wait_queue_entry_t wait; 125 126 /* The wait queue head that linked the "wait" wait queue item */ 127 wait_queue_head_t *whead; 128 }; 129 130 /* 131 * Each file descriptor added to the eventpoll interface will 132 * have an entry of this type linked to the "rbr" RB tree. 133 * Avoid increasing the size of this struct, there can be many thousands 134 * of these on a server and we do not want this to take another cache line. 135 */ 136 struct epitem { 137 union { 138 /* RB tree node links this structure to the eventpoll RB tree */ 139 struct rb_node rbn; 140 /* Used to free the struct epitem */ 141 struct rcu_head rcu; 142 }; 143 144 /* List header used to link this structure to the eventpoll ready list */ 145 struct list_head rdllink; 146 147 /* 148 * Works together "struct eventpoll"->ovflist in keeping the 149 * single linked chain of items. 150 */ 151 struct epitem *next; 152 153 /* The file descriptor information this item refers to */ 154 struct epoll_filefd ffd; 155 156 /* List containing poll wait queues */ 157 struct eppoll_entry *pwqlist; 158 159 /* The "container" of this item */ 160 struct eventpoll *ep; 161 162 /* List header used to link this item to the "struct file" items list */ 163 struct hlist_node fllink; 164 165 /* wakeup_source used when EPOLLWAKEUP is set */ 166 struct wakeup_source __rcu *ws; 167 168 /* The structure that describe the interested events and the source fd */ 169 struct epoll_event event; 170 }; 171 172 /* 173 * This structure is stored inside the "private_data" member of the file 174 * structure and represents the main data structure for the eventpoll 175 * interface. 176 */ 177 struct eventpoll { 178 /* 179 * This mutex is used to ensure that files are not removed 180 * while epoll is using them. This is held during the event 181 * collection loop, the file cleanup path, the epoll file exit 182 * code and the ctl operations. 183 */ 184 struct mutex mtx; 185 186 /* Wait queue used by sys_epoll_wait() */ 187 wait_queue_head_t wq; 188 189 /* Wait queue used by file->poll() */ 190 wait_queue_head_t poll_wait; 191 192 /* List of ready file descriptors */ 193 struct list_head rdllist; 194 195 /* Lock which protects rdllist and ovflist */ 196 rwlock_t lock; 197 198 /* RB tree root used to store monitored fd structs */ 199 struct rb_root_cached rbr; 200 201 /* 202 * This is a single linked list that chains all the "struct epitem" that 203 * happened while transferring ready events to userspace w/out 204 * holding ->lock. 205 */ 206 struct epitem *ovflist; 207 208 /* wakeup_source used when ep_scan_ready_list is running */ 209 struct wakeup_source *ws; 210 211 /* The user that created the eventpoll descriptor */ 212 struct user_struct *user; 213 214 struct file *file; 215 216 /* used to optimize loop detection check */ 217 u64 gen; 218 struct hlist_head refs; 219 220 #ifdef CONFIG_NET_RX_BUSY_POLL 221 /* used to track busy poll napi_id */ 222 unsigned int napi_id; 223 #endif 224 225 #ifdef CONFIG_DEBUG_LOCK_ALLOC 226 /* tracks wakeup nests for lockdep validation */ 227 u8 nests; 228 #endif 229 }; 230 231 /* Wrapper struct used by poll queueing */ 232 struct ep_pqueue { 233 poll_table pt; 234 struct epitem *epi; 235 }; 236 237 /* 238 * Configuration options available inside /proc/sys/fs/epoll/ 239 */ 240 /* Maximum number of epoll watched descriptors, per user */ 241 static long max_user_watches __read_mostly; 242 243 /* 244 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 245 */ 246 static DEFINE_MUTEX(epmutex); 247 248 static u64 loop_check_gen = 0; 249 250 /* Used to check for epoll file descriptor inclusion loops */ 251 static struct eventpoll *inserting_into; 252 253 /* Slab cache used to allocate "struct epitem" */ 254 static struct kmem_cache *epi_cache __read_mostly; 255 256 /* Slab cache used to allocate "struct eppoll_entry" */ 257 static struct kmem_cache *pwq_cache __read_mostly; 258 259 /* 260 * List of files with newly added links, where we may need to limit the number 261 * of emanating paths. Protected by the epmutex. 262 */ 263 struct epitems_head { 264 struct hlist_head epitems; 265 struct epitems_head *next; 266 }; 267 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 268 269 static struct kmem_cache *ephead_cache __read_mostly; 270 271 static inline void free_ephead(struct epitems_head *head) 272 { 273 if (head) 274 kmem_cache_free(ephead_cache, head); 275 } 276 277 static void list_file(struct file *file) 278 { 279 struct epitems_head *head; 280 281 head = container_of(file->f_ep, struct epitems_head, epitems); 282 if (!head->next) { 283 head->next = tfile_check_list; 284 tfile_check_list = head; 285 } 286 } 287 288 static void unlist_file(struct epitems_head *head) 289 { 290 struct epitems_head *to_free = head; 291 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 292 if (p) { 293 struct epitem *epi= container_of(p, struct epitem, fllink); 294 spin_lock(&epi->ffd.file->f_lock); 295 if (!hlist_empty(&head->epitems)) 296 to_free = NULL; 297 head->next = NULL; 298 spin_unlock(&epi->ffd.file->f_lock); 299 } 300 free_ephead(to_free); 301 } 302 303 #ifdef CONFIG_SYSCTL 304 305 #include <linux/sysctl.h> 306 307 static long long_zero; 308 static long long_max = LONG_MAX; 309 310 struct ctl_table epoll_table[] = { 311 { 312 .procname = "max_user_watches", 313 .data = &max_user_watches, 314 .maxlen = sizeof(max_user_watches), 315 .mode = 0644, 316 .proc_handler = proc_doulongvec_minmax, 317 .extra1 = &long_zero, 318 .extra2 = &long_max, 319 }, 320 { } 321 }; 322 #endif /* CONFIG_SYSCTL */ 323 324 static const struct file_operations eventpoll_fops; 325 326 static inline int is_file_epoll(struct file *f) 327 { 328 return f->f_op == &eventpoll_fops; 329 } 330 331 /* Setup the structure that is used as key for the RB tree */ 332 static inline void ep_set_ffd(struct epoll_filefd *ffd, 333 struct file *file, int fd) 334 { 335 ffd->file = file; 336 ffd->fd = fd; 337 } 338 339 /* Compare RB tree keys */ 340 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 341 struct epoll_filefd *p2) 342 { 343 return (p1->file > p2->file ? +1: 344 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 345 } 346 347 /* Tells us if the item is currently linked */ 348 static inline int ep_is_linked(struct epitem *epi) 349 { 350 return !list_empty(&epi->rdllink); 351 } 352 353 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 354 { 355 return container_of(p, struct eppoll_entry, wait); 356 } 357 358 /* Get the "struct epitem" from a wait queue pointer */ 359 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 360 { 361 return container_of(p, struct eppoll_entry, wait)->base; 362 } 363 364 /** 365 * ep_events_available - Checks if ready events might be available. 366 * 367 * @ep: Pointer to the eventpoll context. 368 * 369 * Return: a value different than %zero if ready events are available, 370 * or %zero otherwise. 371 */ 372 static inline int ep_events_available(struct eventpoll *ep) 373 { 374 return !list_empty_careful(&ep->rdllist) || 375 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 376 } 377 378 #ifdef CONFIG_NET_RX_BUSY_POLL 379 static bool ep_busy_loop_end(void *p, unsigned long start_time) 380 { 381 struct eventpoll *ep = p; 382 383 return ep_events_available(ep) || busy_loop_timeout(start_time); 384 } 385 386 /* 387 * Busy poll if globally on and supporting sockets found && no events, 388 * busy loop will return if need_resched or ep_events_available. 389 * 390 * we must do our busy polling with irqs enabled 391 */ 392 static bool ep_busy_loop(struct eventpoll *ep, int nonblock) 393 { 394 unsigned int napi_id = READ_ONCE(ep->napi_id); 395 396 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) { 397 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false, 398 BUSY_POLL_BUDGET); 399 if (ep_events_available(ep)) 400 return true; 401 /* 402 * Busy poll timed out. Drop NAPI ID for now, we can add 403 * it back in when we have moved a socket with a valid NAPI 404 * ID onto the ready list. 405 */ 406 ep->napi_id = 0; 407 return false; 408 } 409 return false; 410 } 411 412 /* 413 * Set epoll busy poll NAPI ID from sk. 414 */ 415 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 416 { 417 struct eventpoll *ep; 418 unsigned int napi_id; 419 struct socket *sock; 420 struct sock *sk; 421 422 if (!net_busy_loop_on()) 423 return; 424 425 sock = sock_from_file(epi->ffd.file); 426 if (!sock) 427 return; 428 429 sk = sock->sk; 430 if (!sk) 431 return; 432 433 napi_id = READ_ONCE(sk->sk_napi_id); 434 ep = epi->ep; 435 436 /* Non-NAPI IDs can be rejected 437 * or 438 * Nothing to do if we already have this ID 439 */ 440 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 441 return; 442 443 /* record NAPI ID for use in next busy poll */ 444 ep->napi_id = napi_id; 445 } 446 447 #else 448 449 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) 450 { 451 return false; 452 } 453 454 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 455 { 456 } 457 458 #endif /* CONFIG_NET_RX_BUSY_POLL */ 459 460 /* 461 * As described in commit 0ccf831cb lockdep: annotate epoll 462 * the use of wait queues used by epoll is done in a very controlled 463 * manner. Wake ups can nest inside each other, but are never done 464 * with the same locking. For example: 465 * 466 * dfd = socket(...); 467 * efd1 = epoll_create(); 468 * efd2 = epoll_create(); 469 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 470 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 471 * 472 * When a packet arrives to the device underneath "dfd", the net code will 473 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 474 * callback wakeup entry on that queue, and the wake_up() performed by the 475 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 476 * (efd1) notices that it may have some event ready, so it needs to wake up 477 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 478 * that ends up in another wake_up(), after having checked about the 479 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 480 * avoid stack blasting. 481 * 482 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 483 * this special case of epoll. 484 */ 485 #ifdef CONFIG_DEBUG_LOCK_ALLOC 486 487 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) 488 { 489 struct eventpoll *ep_src; 490 unsigned long flags; 491 u8 nests = 0; 492 493 /* 494 * To set the subclass or nesting level for spin_lock_irqsave_nested() 495 * it might be natural to create a per-cpu nest count. However, since 496 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 497 * schedule() in the -rt kernel, the per-cpu variable are no longer 498 * protected. Thus, we are introducing a per eventpoll nest field. 499 * If we are not being call from ep_poll_callback(), epi is NULL and 500 * we are at the first level of nesting, 0. Otherwise, we are being 501 * called from ep_poll_callback() and if a previous wakeup source is 502 * not an epoll file itself, we are at depth 1 since the wakeup source 503 * is depth 0. If the wakeup source is a previous epoll file in the 504 * wakeup chain then we use its nests value and record ours as 505 * nests + 1. The previous epoll file nests value is stable since its 506 * already holding its own poll_wait.lock. 507 */ 508 if (epi) { 509 if ((is_file_epoll(epi->ffd.file))) { 510 ep_src = epi->ffd.file->private_data; 511 nests = ep_src->nests; 512 } else { 513 nests = 1; 514 } 515 } 516 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 517 ep->nests = nests + 1; 518 wake_up_locked_poll(&ep->poll_wait, EPOLLIN); 519 ep->nests = 0; 520 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 521 } 522 523 #else 524 525 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) 526 { 527 wake_up_poll(&ep->poll_wait, EPOLLIN); 528 } 529 530 #endif 531 532 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 533 { 534 wait_queue_head_t *whead; 535 536 rcu_read_lock(); 537 /* 538 * If it is cleared by POLLFREE, it should be rcu-safe. 539 * If we read NULL we need a barrier paired with 540 * smp_store_release() in ep_poll_callback(), otherwise 541 * we rely on whead->lock. 542 */ 543 whead = smp_load_acquire(&pwq->whead); 544 if (whead) 545 remove_wait_queue(whead, &pwq->wait); 546 rcu_read_unlock(); 547 } 548 549 /* 550 * This function unregisters poll callbacks from the associated file 551 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 552 * ep_free). 553 */ 554 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 555 { 556 struct eppoll_entry **p = &epi->pwqlist; 557 struct eppoll_entry *pwq; 558 559 while ((pwq = *p) != NULL) { 560 *p = pwq->next; 561 ep_remove_wait_queue(pwq); 562 kmem_cache_free(pwq_cache, pwq); 563 } 564 } 565 566 /* call only when ep->mtx is held */ 567 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 568 { 569 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 570 } 571 572 /* call only when ep->mtx is held */ 573 static inline void ep_pm_stay_awake(struct epitem *epi) 574 { 575 struct wakeup_source *ws = ep_wakeup_source(epi); 576 577 if (ws) 578 __pm_stay_awake(ws); 579 } 580 581 static inline bool ep_has_wakeup_source(struct epitem *epi) 582 { 583 return rcu_access_pointer(epi->ws) ? true : false; 584 } 585 586 /* call when ep->mtx cannot be held (ep_poll_callback) */ 587 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 588 { 589 struct wakeup_source *ws; 590 591 rcu_read_lock(); 592 ws = rcu_dereference(epi->ws); 593 if (ws) 594 __pm_stay_awake(ws); 595 rcu_read_unlock(); 596 } 597 598 599 /* 600 * ep->mutex needs to be held because we could be hit by 601 * eventpoll_release_file() and epoll_ctl(). 602 */ 603 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 604 { 605 /* 606 * Steal the ready list, and re-init the original one to the 607 * empty list. Also, set ep->ovflist to NULL so that events 608 * happening while looping w/out locks, are not lost. We cannot 609 * have the poll callback to queue directly on ep->rdllist, 610 * because we want the "sproc" callback to be able to do it 611 * in a lockless way. 612 */ 613 lockdep_assert_irqs_enabled(); 614 write_lock_irq(&ep->lock); 615 list_splice_init(&ep->rdllist, txlist); 616 WRITE_ONCE(ep->ovflist, NULL); 617 write_unlock_irq(&ep->lock); 618 } 619 620 static void ep_done_scan(struct eventpoll *ep, 621 struct list_head *txlist) 622 { 623 struct epitem *epi, *nepi; 624 625 write_lock_irq(&ep->lock); 626 /* 627 * During the time we spent inside the "sproc" callback, some 628 * other events might have been queued by the poll callback. 629 * We re-insert them inside the main ready-list here. 630 */ 631 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 632 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 633 /* 634 * We need to check if the item is already in the list. 635 * During the "sproc" callback execution time, items are 636 * queued into ->ovflist but the "txlist" might already 637 * contain them, and the list_splice() below takes care of them. 638 */ 639 if (!ep_is_linked(epi)) { 640 /* 641 * ->ovflist is LIFO, so we have to reverse it in order 642 * to keep in FIFO. 643 */ 644 list_add(&epi->rdllink, &ep->rdllist); 645 ep_pm_stay_awake(epi); 646 } 647 } 648 /* 649 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 650 * releasing the lock, events will be queued in the normal way inside 651 * ep->rdllist. 652 */ 653 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 654 655 /* 656 * Quickly re-inject items left on "txlist". 657 */ 658 list_splice(txlist, &ep->rdllist); 659 __pm_relax(ep->ws); 660 write_unlock_irq(&ep->lock); 661 } 662 663 static void epi_rcu_free(struct rcu_head *head) 664 { 665 struct epitem *epi = container_of(head, struct epitem, rcu); 666 kmem_cache_free(epi_cache, epi); 667 } 668 669 /* 670 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 671 * all the associated resources. Must be called with "mtx" held. 672 */ 673 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 674 { 675 struct file *file = epi->ffd.file; 676 struct epitems_head *to_free; 677 struct hlist_head *head; 678 679 lockdep_assert_irqs_enabled(); 680 681 /* 682 * Removes poll wait queue hooks. 683 */ 684 ep_unregister_pollwait(ep, epi); 685 686 /* Remove the current item from the list of epoll hooks */ 687 spin_lock(&file->f_lock); 688 to_free = NULL; 689 head = file->f_ep; 690 if (head->first == &epi->fllink && !epi->fllink.next) { 691 file->f_ep = NULL; 692 if (!is_file_epoll(file)) { 693 struct epitems_head *v; 694 v = container_of(head, struct epitems_head, epitems); 695 if (!smp_load_acquire(&v->next)) 696 to_free = v; 697 } 698 } 699 hlist_del_rcu(&epi->fllink); 700 spin_unlock(&file->f_lock); 701 free_ephead(to_free); 702 703 rb_erase_cached(&epi->rbn, &ep->rbr); 704 705 write_lock_irq(&ep->lock); 706 if (ep_is_linked(epi)) 707 list_del_init(&epi->rdllink); 708 write_unlock_irq(&ep->lock); 709 710 wakeup_source_unregister(ep_wakeup_source(epi)); 711 /* 712 * At this point it is safe to free the eventpoll item. Use the union 713 * field epi->rcu, since we are trying to minimize the size of 714 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 715 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 716 * use of the rbn field. 717 */ 718 call_rcu(&epi->rcu, epi_rcu_free); 719 720 atomic_long_dec(&ep->user->epoll_watches); 721 722 return 0; 723 } 724 725 static void ep_free(struct eventpoll *ep) 726 { 727 struct rb_node *rbp; 728 struct epitem *epi; 729 730 /* We need to release all tasks waiting for these file */ 731 if (waitqueue_active(&ep->poll_wait)) 732 ep_poll_safewake(ep, NULL); 733 734 /* 735 * We need to lock this because we could be hit by 736 * eventpoll_release_file() while we're freeing the "struct eventpoll". 737 * We do not need to hold "ep->mtx" here because the epoll file 738 * is on the way to be removed and no one has references to it 739 * anymore. The only hit might come from eventpoll_release_file() but 740 * holding "epmutex" is sufficient here. 741 */ 742 mutex_lock(&epmutex); 743 744 /* 745 * Walks through the whole tree by unregistering poll callbacks. 746 */ 747 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 748 epi = rb_entry(rbp, struct epitem, rbn); 749 750 ep_unregister_pollwait(ep, epi); 751 cond_resched(); 752 } 753 754 /* 755 * Walks through the whole tree by freeing each "struct epitem". At this 756 * point we are sure no poll callbacks will be lingering around, and also by 757 * holding "epmutex" we can be sure that no file cleanup code will hit 758 * us during this operation. So we can avoid the lock on "ep->lock". 759 * We do not need to lock ep->mtx, either, we only do it to prevent 760 * a lockdep warning. 761 */ 762 mutex_lock(&ep->mtx); 763 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 764 epi = rb_entry(rbp, struct epitem, rbn); 765 ep_remove(ep, epi); 766 cond_resched(); 767 } 768 mutex_unlock(&ep->mtx); 769 770 mutex_unlock(&epmutex); 771 mutex_destroy(&ep->mtx); 772 free_uid(ep->user); 773 wakeup_source_unregister(ep->ws); 774 kfree(ep); 775 } 776 777 static int ep_eventpoll_release(struct inode *inode, struct file *file) 778 { 779 struct eventpoll *ep = file->private_data; 780 781 if (ep) 782 ep_free(ep); 783 784 return 0; 785 } 786 787 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 788 789 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 790 { 791 struct eventpoll *ep = file->private_data; 792 LIST_HEAD(txlist); 793 struct epitem *epi, *tmp; 794 poll_table pt; 795 __poll_t res = 0; 796 797 init_poll_funcptr(&pt, NULL); 798 799 /* Insert inside our poll wait queue */ 800 poll_wait(file, &ep->poll_wait, wait); 801 802 /* 803 * Proceed to find out if wanted events are really available inside 804 * the ready list. 805 */ 806 mutex_lock_nested(&ep->mtx, depth); 807 ep_start_scan(ep, &txlist); 808 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 809 if (ep_item_poll(epi, &pt, depth + 1)) { 810 res = EPOLLIN | EPOLLRDNORM; 811 break; 812 } else { 813 /* 814 * Item has been dropped into the ready list by the poll 815 * callback, but it's not actually ready, as far as 816 * caller requested events goes. We can remove it here. 817 */ 818 __pm_relax(ep_wakeup_source(epi)); 819 list_del_init(&epi->rdllink); 820 } 821 } 822 ep_done_scan(ep, &txlist); 823 mutex_unlock(&ep->mtx); 824 return res; 825 } 826 827 /* 828 * Differs from ep_eventpoll_poll() in that internal callers already have 829 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 830 * is correctly annotated. 831 */ 832 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 833 int depth) 834 { 835 struct file *file = epi->ffd.file; 836 __poll_t res; 837 838 pt->_key = epi->event.events; 839 if (!is_file_epoll(file)) 840 res = vfs_poll(file, pt); 841 else 842 res = __ep_eventpoll_poll(file, pt, depth); 843 return res & epi->event.events; 844 } 845 846 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 847 { 848 return __ep_eventpoll_poll(file, wait, 0); 849 } 850 851 #ifdef CONFIG_PROC_FS 852 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 853 { 854 struct eventpoll *ep = f->private_data; 855 struct rb_node *rbp; 856 857 mutex_lock(&ep->mtx); 858 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 859 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 860 struct inode *inode = file_inode(epi->ffd.file); 861 862 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 863 " pos:%lli ino:%lx sdev:%x\n", 864 epi->ffd.fd, epi->event.events, 865 (long long)epi->event.data, 866 (long long)epi->ffd.file->f_pos, 867 inode->i_ino, inode->i_sb->s_dev); 868 if (seq_has_overflowed(m)) 869 break; 870 } 871 mutex_unlock(&ep->mtx); 872 } 873 #endif 874 875 /* File callbacks that implement the eventpoll file behaviour */ 876 static const struct file_operations eventpoll_fops = { 877 #ifdef CONFIG_PROC_FS 878 .show_fdinfo = ep_show_fdinfo, 879 #endif 880 .release = ep_eventpoll_release, 881 .poll = ep_eventpoll_poll, 882 .llseek = noop_llseek, 883 }; 884 885 /* 886 * This is called from eventpoll_release() to unlink files from the eventpoll 887 * interface. We need to have this facility to cleanup correctly files that are 888 * closed without being removed from the eventpoll interface. 889 */ 890 void eventpoll_release_file(struct file *file) 891 { 892 struct eventpoll *ep; 893 struct epitem *epi; 894 struct hlist_node *next; 895 896 /* 897 * We don't want to get "file->f_lock" because it is not 898 * necessary. It is not necessary because we're in the "struct file" 899 * cleanup path, and this means that no one is using this file anymore. 900 * So, for example, epoll_ctl() cannot hit here since if we reach this 901 * point, the file counter already went to zero and fget() would fail. 902 * The only hit might come from ep_free() but by holding the mutex 903 * will correctly serialize the operation. We do need to acquire 904 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 905 * from anywhere but ep_free(). 906 * 907 * Besides, ep_remove() acquires the lock, so we can't hold it here. 908 */ 909 mutex_lock(&epmutex); 910 if (unlikely(!file->f_ep)) { 911 mutex_unlock(&epmutex); 912 return; 913 } 914 hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) { 915 ep = epi->ep; 916 mutex_lock_nested(&ep->mtx, 0); 917 ep_remove(ep, epi); 918 mutex_unlock(&ep->mtx); 919 } 920 mutex_unlock(&epmutex); 921 } 922 923 static int ep_alloc(struct eventpoll **pep) 924 { 925 int error; 926 struct user_struct *user; 927 struct eventpoll *ep; 928 929 user = get_current_user(); 930 error = -ENOMEM; 931 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 932 if (unlikely(!ep)) 933 goto free_uid; 934 935 mutex_init(&ep->mtx); 936 rwlock_init(&ep->lock); 937 init_waitqueue_head(&ep->wq); 938 init_waitqueue_head(&ep->poll_wait); 939 INIT_LIST_HEAD(&ep->rdllist); 940 ep->rbr = RB_ROOT_CACHED; 941 ep->ovflist = EP_UNACTIVE_PTR; 942 ep->user = user; 943 944 *pep = ep; 945 946 return 0; 947 948 free_uid: 949 free_uid(user); 950 return error; 951 } 952 953 /* 954 * Search the file inside the eventpoll tree. The RB tree operations 955 * are protected by the "mtx" mutex, and ep_find() must be called with 956 * "mtx" held. 957 */ 958 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 959 { 960 int kcmp; 961 struct rb_node *rbp; 962 struct epitem *epi, *epir = NULL; 963 struct epoll_filefd ffd; 964 965 ep_set_ffd(&ffd, file, fd); 966 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 967 epi = rb_entry(rbp, struct epitem, rbn); 968 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 969 if (kcmp > 0) 970 rbp = rbp->rb_right; 971 else if (kcmp < 0) 972 rbp = rbp->rb_left; 973 else { 974 epir = epi; 975 break; 976 } 977 } 978 979 return epir; 980 } 981 982 #ifdef CONFIG_KCMP 983 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 984 { 985 struct rb_node *rbp; 986 struct epitem *epi; 987 988 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 989 epi = rb_entry(rbp, struct epitem, rbn); 990 if (epi->ffd.fd == tfd) { 991 if (toff == 0) 992 return epi; 993 else 994 toff--; 995 } 996 cond_resched(); 997 } 998 999 return NULL; 1000 } 1001 1002 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1003 unsigned long toff) 1004 { 1005 struct file *file_raw; 1006 struct eventpoll *ep; 1007 struct epitem *epi; 1008 1009 if (!is_file_epoll(file)) 1010 return ERR_PTR(-EINVAL); 1011 1012 ep = file->private_data; 1013 1014 mutex_lock(&ep->mtx); 1015 epi = ep_find_tfd(ep, tfd, toff); 1016 if (epi) 1017 file_raw = epi->ffd.file; 1018 else 1019 file_raw = ERR_PTR(-ENOENT); 1020 mutex_unlock(&ep->mtx); 1021 1022 return file_raw; 1023 } 1024 #endif /* CONFIG_KCMP */ 1025 1026 /* 1027 * Adds a new entry to the tail of the list in a lockless way, i.e. 1028 * multiple CPUs are allowed to call this function concurrently. 1029 * 1030 * Beware: it is necessary to prevent any other modifications of the 1031 * existing list until all changes are completed, in other words 1032 * concurrent list_add_tail_lockless() calls should be protected 1033 * with a read lock, where write lock acts as a barrier which 1034 * makes sure all list_add_tail_lockless() calls are fully 1035 * completed. 1036 * 1037 * Also an element can be locklessly added to the list only in one 1038 * direction i.e. either to the tail or to the head, otherwise 1039 * concurrent access will corrupt the list. 1040 * 1041 * Return: %false if element has been already added to the list, %true 1042 * otherwise. 1043 */ 1044 static inline bool list_add_tail_lockless(struct list_head *new, 1045 struct list_head *head) 1046 { 1047 struct list_head *prev; 1048 1049 /* 1050 * This is simple 'new->next = head' operation, but cmpxchg() 1051 * is used in order to detect that same element has been just 1052 * added to the list from another CPU: the winner observes 1053 * new->next == new. 1054 */ 1055 if (cmpxchg(&new->next, new, head) != new) 1056 return false; 1057 1058 /* 1059 * Initially ->next of a new element must be updated with the head 1060 * (we are inserting to the tail) and only then pointers are atomically 1061 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1062 * updated before pointers are actually swapped and pointers are 1063 * swapped before prev->next is updated. 1064 */ 1065 1066 prev = xchg(&head->prev, new); 1067 1068 /* 1069 * It is safe to modify prev->next and new->prev, because a new element 1070 * is added only to the tail and new->next is updated before XCHG. 1071 */ 1072 1073 prev->next = new; 1074 new->prev = prev; 1075 1076 return true; 1077 } 1078 1079 /* 1080 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1081 * i.e. multiple CPUs are allowed to call this function concurrently. 1082 * 1083 * Return: %false if epi element has been already chained, %true otherwise. 1084 */ 1085 static inline bool chain_epi_lockless(struct epitem *epi) 1086 { 1087 struct eventpoll *ep = epi->ep; 1088 1089 /* Fast preliminary check */ 1090 if (epi->next != EP_UNACTIVE_PTR) 1091 return false; 1092 1093 /* Check that the same epi has not been just chained from another CPU */ 1094 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1095 return false; 1096 1097 /* Atomically exchange tail */ 1098 epi->next = xchg(&ep->ovflist, epi); 1099 1100 return true; 1101 } 1102 1103 /* 1104 * This is the callback that is passed to the wait queue wakeup 1105 * mechanism. It is called by the stored file descriptors when they 1106 * have events to report. 1107 * 1108 * This callback takes a read lock in order not to contend with concurrent 1109 * events from another file descriptor, thus all modifications to ->rdllist 1110 * or ->ovflist are lockless. Read lock is paired with the write lock from 1111 * ep_scan_ready_list(), which stops all list modifications and guarantees 1112 * that lists state is seen correctly. 1113 * 1114 * Another thing worth to mention is that ep_poll_callback() can be called 1115 * concurrently for the same @epi from different CPUs if poll table was inited 1116 * with several wait queues entries. Plural wakeup from different CPUs of a 1117 * single wait queue is serialized by wq.lock, but the case when multiple wait 1118 * queues are used should be detected accordingly. This is detected using 1119 * cmpxchg() operation. 1120 */ 1121 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1122 { 1123 int pwake = 0; 1124 struct epitem *epi = ep_item_from_wait(wait); 1125 struct eventpoll *ep = epi->ep; 1126 __poll_t pollflags = key_to_poll(key); 1127 unsigned long flags; 1128 int ewake = 0; 1129 1130 read_lock_irqsave(&ep->lock, flags); 1131 1132 ep_set_busy_poll_napi_id(epi); 1133 1134 /* 1135 * If the event mask does not contain any poll(2) event, we consider the 1136 * descriptor to be disabled. This condition is likely the effect of the 1137 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1138 * until the next EPOLL_CTL_MOD will be issued. 1139 */ 1140 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1141 goto out_unlock; 1142 1143 /* 1144 * Check the events coming with the callback. At this stage, not 1145 * every device reports the events in the "key" parameter of the 1146 * callback. We need to be able to handle both cases here, hence the 1147 * test for "key" != NULL before the event match test. 1148 */ 1149 if (pollflags && !(pollflags & epi->event.events)) 1150 goto out_unlock; 1151 1152 /* 1153 * If we are transferring events to userspace, we can hold no locks 1154 * (because we're accessing user memory, and because of linux f_op->poll() 1155 * semantics). All the events that happen during that period of time are 1156 * chained in ep->ovflist and requeued later on. 1157 */ 1158 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1159 if (chain_epi_lockless(epi)) 1160 ep_pm_stay_awake_rcu(epi); 1161 } else if (!ep_is_linked(epi)) { 1162 /* In the usual case, add event to ready list. */ 1163 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1164 ep_pm_stay_awake_rcu(epi); 1165 } 1166 1167 /* 1168 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1169 * wait list. 1170 */ 1171 if (waitqueue_active(&ep->wq)) { 1172 if ((epi->event.events & EPOLLEXCLUSIVE) && 1173 !(pollflags & POLLFREE)) { 1174 switch (pollflags & EPOLLINOUT_BITS) { 1175 case EPOLLIN: 1176 if (epi->event.events & EPOLLIN) 1177 ewake = 1; 1178 break; 1179 case EPOLLOUT: 1180 if (epi->event.events & EPOLLOUT) 1181 ewake = 1; 1182 break; 1183 case 0: 1184 ewake = 1; 1185 break; 1186 } 1187 } 1188 wake_up(&ep->wq); 1189 } 1190 if (waitqueue_active(&ep->poll_wait)) 1191 pwake++; 1192 1193 out_unlock: 1194 read_unlock_irqrestore(&ep->lock, flags); 1195 1196 /* We have to call this outside the lock */ 1197 if (pwake) 1198 ep_poll_safewake(ep, epi); 1199 1200 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1201 ewake = 1; 1202 1203 if (pollflags & POLLFREE) { 1204 /* 1205 * If we race with ep_remove_wait_queue() it can miss 1206 * ->whead = NULL and do another remove_wait_queue() after 1207 * us, so we can't use __remove_wait_queue(). 1208 */ 1209 list_del_init(&wait->entry); 1210 /* 1211 * ->whead != NULL protects us from the race with ep_free() 1212 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1213 * held by the caller. Once we nullify it, nothing protects 1214 * ep/epi or even wait. 1215 */ 1216 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1217 } 1218 1219 return ewake; 1220 } 1221 1222 /* 1223 * This is the callback that is used to add our wait queue to the 1224 * target file wakeup lists. 1225 */ 1226 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1227 poll_table *pt) 1228 { 1229 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1230 struct epitem *epi = epq->epi; 1231 struct eppoll_entry *pwq; 1232 1233 if (unlikely(!epi)) // an earlier allocation has failed 1234 return; 1235 1236 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1237 if (unlikely(!pwq)) { 1238 epq->epi = NULL; 1239 return; 1240 } 1241 1242 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1243 pwq->whead = whead; 1244 pwq->base = epi; 1245 if (epi->event.events & EPOLLEXCLUSIVE) 1246 add_wait_queue_exclusive(whead, &pwq->wait); 1247 else 1248 add_wait_queue(whead, &pwq->wait); 1249 pwq->next = epi->pwqlist; 1250 epi->pwqlist = pwq; 1251 } 1252 1253 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1254 { 1255 int kcmp; 1256 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1257 struct epitem *epic; 1258 bool leftmost = true; 1259 1260 while (*p) { 1261 parent = *p; 1262 epic = rb_entry(parent, struct epitem, rbn); 1263 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1264 if (kcmp > 0) { 1265 p = &parent->rb_right; 1266 leftmost = false; 1267 } else 1268 p = &parent->rb_left; 1269 } 1270 rb_link_node(&epi->rbn, parent, p); 1271 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1272 } 1273 1274 1275 1276 #define PATH_ARR_SIZE 5 1277 /* 1278 * These are the number paths of length 1 to 5, that we are allowing to emanate 1279 * from a single file of interest. For example, we allow 1000 paths of length 1280 * 1, to emanate from each file of interest. This essentially represents the 1281 * potential wakeup paths, which need to be limited in order to avoid massive 1282 * uncontrolled wakeup storms. The common use case should be a single ep which 1283 * is connected to n file sources. In this case each file source has 1 path 1284 * of length 1. Thus, the numbers below should be more than sufficient. These 1285 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1286 * and delete can't add additional paths. Protected by the epmutex. 1287 */ 1288 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1289 static int path_count[PATH_ARR_SIZE]; 1290 1291 static int path_count_inc(int nests) 1292 { 1293 /* Allow an arbitrary number of depth 1 paths */ 1294 if (nests == 0) 1295 return 0; 1296 1297 if (++path_count[nests] > path_limits[nests]) 1298 return -1; 1299 return 0; 1300 } 1301 1302 static void path_count_init(void) 1303 { 1304 int i; 1305 1306 for (i = 0; i < PATH_ARR_SIZE; i++) 1307 path_count[i] = 0; 1308 } 1309 1310 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1311 { 1312 int error = 0; 1313 struct epitem *epi; 1314 1315 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1316 return -1; 1317 1318 /* CTL_DEL can remove links here, but that can't increase our count */ 1319 hlist_for_each_entry_rcu(epi, refs, fllink) { 1320 struct hlist_head *refs = &epi->ep->refs; 1321 if (hlist_empty(refs)) 1322 error = path_count_inc(depth); 1323 else 1324 error = reverse_path_check_proc(refs, depth + 1); 1325 if (error != 0) 1326 break; 1327 } 1328 return error; 1329 } 1330 1331 /** 1332 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1333 * links that are proposed to be newly added. We need to 1334 * make sure that those added links don't add too many 1335 * paths such that we will spend all our time waking up 1336 * eventpoll objects. 1337 * 1338 * Return: %zero if the proposed links don't create too many paths, 1339 * %-1 otherwise. 1340 */ 1341 static int reverse_path_check(void) 1342 { 1343 struct epitems_head *p; 1344 1345 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1346 int error; 1347 path_count_init(); 1348 rcu_read_lock(); 1349 error = reverse_path_check_proc(&p->epitems, 0); 1350 rcu_read_unlock(); 1351 if (error) 1352 return error; 1353 } 1354 return 0; 1355 } 1356 1357 static int ep_create_wakeup_source(struct epitem *epi) 1358 { 1359 struct name_snapshot n; 1360 struct wakeup_source *ws; 1361 1362 if (!epi->ep->ws) { 1363 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1364 if (!epi->ep->ws) 1365 return -ENOMEM; 1366 } 1367 1368 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1369 ws = wakeup_source_register(NULL, n.name.name); 1370 release_dentry_name_snapshot(&n); 1371 1372 if (!ws) 1373 return -ENOMEM; 1374 rcu_assign_pointer(epi->ws, ws); 1375 1376 return 0; 1377 } 1378 1379 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1380 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1381 { 1382 struct wakeup_source *ws = ep_wakeup_source(epi); 1383 1384 RCU_INIT_POINTER(epi->ws, NULL); 1385 1386 /* 1387 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1388 * used internally by wakeup_source_remove, too (called by 1389 * wakeup_source_unregister), so we cannot use call_rcu 1390 */ 1391 synchronize_rcu(); 1392 wakeup_source_unregister(ws); 1393 } 1394 1395 static int attach_epitem(struct file *file, struct epitem *epi) 1396 { 1397 struct epitems_head *to_free = NULL; 1398 struct hlist_head *head = NULL; 1399 struct eventpoll *ep = NULL; 1400 1401 if (is_file_epoll(file)) 1402 ep = file->private_data; 1403 1404 if (ep) { 1405 head = &ep->refs; 1406 } else if (!READ_ONCE(file->f_ep)) { 1407 allocate: 1408 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1409 if (!to_free) 1410 return -ENOMEM; 1411 head = &to_free->epitems; 1412 } 1413 spin_lock(&file->f_lock); 1414 if (!file->f_ep) { 1415 if (unlikely(!head)) { 1416 spin_unlock(&file->f_lock); 1417 goto allocate; 1418 } 1419 file->f_ep = head; 1420 to_free = NULL; 1421 } 1422 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1423 spin_unlock(&file->f_lock); 1424 free_ephead(to_free); 1425 return 0; 1426 } 1427 1428 /* 1429 * Must be called with "mtx" held. 1430 */ 1431 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1432 struct file *tfile, int fd, int full_check) 1433 { 1434 int error, pwake = 0; 1435 __poll_t revents; 1436 long user_watches; 1437 struct epitem *epi; 1438 struct ep_pqueue epq; 1439 struct eventpoll *tep = NULL; 1440 1441 if (is_file_epoll(tfile)) 1442 tep = tfile->private_data; 1443 1444 lockdep_assert_irqs_enabled(); 1445 1446 user_watches = atomic_long_read(&ep->user->epoll_watches); 1447 if (unlikely(user_watches >= max_user_watches)) 1448 return -ENOSPC; 1449 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) 1450 return -ENOMEM; 1451 1452 /* Item initialization follow here ... */ 1453 INIT_LIST_HEAD(&epi->rdllink); 1454 epi->ep = ep; 1455 ep_set_ffd(&epi->ffd, tfile, fd); 1456 epi->event = *event; 1457 epi->next = EP_UNACTIVE_PTR; 1458 1459 if (tep) 1460 mutex_lock_nested(&tep->mtx, 1); 1461 /* Add the current item to the list of active epoll hook for this file */ 1462 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1463 kmem_cache_free(epi_cache, epi); 1464 if (tep) 1465 mutex_unlock(&tep->mtx); 1466 return -ENOMEM; 1467 } 1468 1469 if (full_check && !tep) 1470 list_file(tfile); 1471 1472 atomic_long_inc(&ep->user->epoll_watches); 1473 1474 /* 1475 * Add the current item to the RB tree. All RB tree operations are 1476 * protected by "mtx", and ep_insert() is called with "mtx" held. 1477 */ 1478 ep_rbtree_insert(ep, epi); 1479 if (tep) 1480 mutex_unlock(&tep->mtx); 1481 1482 /* now check if we've created too many backpaths */ 1483 if (unlikely(full_check && reverse_path_check())) { 1484 ep_remove(ep, epi); 1485 return -EINVAL; 1486 } 1487 1488 if (epi->event.events & EPOLLWAKEUP) { 1489 error = ep_create_wakeup_source(epi); 1490 if (error) { 1491 ep_remove(ep, epi); 1492 return error; 1493 } 1494 } 1495 1496 /* Initialize the poll table using the queue callback */ 1497 epq.epi = epi; 1498 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1499 1500 /* 1501 * Attach the item to the poll hooks and get current event bits. 1502 * We can safely use the file* here because its usage count has 1503 * been increased by the caller of this function. Note that after 1504 * this operation completes, the poll callback can start hitting 1505 * the new item. 1506 */ 1507 revents = ep_item_poll(epi, &epq.pt, 1); 1508 1509 /* 1510 * We have to check if something went wrong during the poll wait queue 1511 * install process. Namely an allocation for a wait queue failed due 1512 * high memory pressure. 1513 */ 1514 if (unlikely(!epq.epi)) { 1515 ep_remove(ep, epi); 1516 return -ENOMEM; 1517 } 1518 1519 /* We have to drop the new item inside our item list to keep track of it */ 1520 write_lock_irq(&ep->lock); 1521 1522 /* record NAPI ID of new item if present */ 1523 ep_set_busy_poll_napi_id(epi); 1524 1525 /* If the file is already "ready" we drop it inside the ready list */ 1526 if (revents && !ep_is_linked(epi)) { 1527 list_add_tail(&epi->rdllink, &ep->rdllist); 1528 ep_pm_stay_awake(epi); 1529 1530 /* Notify waiting tasks that events are available */ 1531 if (waitqueue_active(&ep->wq)) 1532 wake_up(&ep->wq); 1533 if (waitqueue_active(&ep->poll_wait)) 1534 pwake++; 1535 } 1536 1537 write_unlock_irq(&ep->lock); 1538 1539 /* We have to call this outside the lock */ 1540 if (pwake) 1541 ep_poll_safewake(ep, NULL); 1542 1543 return 0; 1544 } 1545 1546 /* 1547 * Modify the interest event mask by dropping an event if the new mask 1548 * has a match in the current file status. Must be called with "mtx" held. 1549 */ 1550 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1551 const struct epoll_event *event) 1552 { 1553 int pwake = 0; 1554 poll_table pt; 1555 1556 lockdep_assert_irqs_enabled(); 1557 1558 init_poll_funcptr(&pt, NULL); 1559 1560 /* 1561 * Set the new event interest mask before calling f_op->poll(); 1562 * otherwise we might miss an event that happens between the 1563 * f_op->poll() call and the new event set registering. 1564 */ 1565 epi->event.events = event->events; /* need barrier below */ 1566 epi->event.data = event->data; /* protected by mtx */ 1567 if (epi->event.events & EPOLLWAKEUP) { 1568 if (!ep_has_wakeup_source(epi)) 1569 ep_create_wakeup_source(epi); 1570 } else if (ep_has_wakeup_source(epi)) { 1571 ep_destroy_wakeup_source(epi); 1572 } 1573 1574 /* 1575 * The following barrier has two effects: 1576 * 1577 * 1) Flush epi changes above to other CPUs. This ensures 1578 * we do not miss events from ep_poll_callback if an 1579 * event occurs immediately after we call f_op->poll(). 1580 * We need this because we did not take ep->lock while 1581 * changing epi above (but ep_poll_callback does take 1582 * ep->lock). 1583 * 1584 * 2) We also need to ensure we do not miss _past_ events 1585 * when calling f_op->poll(). This barrier also 1586 * pairs with the barrier in wq_has_sleeper (see 1587 * comments for wq_has_sleeper). 1588 * 1589 * This barrier will now guarantee ep_poll_callback or f_op->poll 1590 * (or both) will notice the readiness of an item. 1591 */ 1592 smp_mb(); 1593 1594 /* 1595 * Get current event bits. We can safely use the file* here because 1596 * its usage count has been increased by the caller of this function. 1597 * If the item is "hot" and it is not registered inside the ready 1598 * list, push it inside. 1599 */ 1600 if (ep_item_poll(epi, &pt, 1)) { 1601 write_lock_irq(&ep->lock); 1602 if (!ep_is_linked(epi)) { 1603 list_add_tail(&epi->rdllink, &ep->rdllist); 1604 ep_pm_stay_awake(epi); 1605 1606 /* Notify waiting tasks that events are available */ 1607 if (waitqueue_active(&ep->wq)) 1608 wake_up(&ep->wq); 1609 if (waitqueue_active(&ep->poll_wait)) 1610 pwake++; 1611 } 1612 write_unlock_irq(&ep->lock); 1613 } 1614 1615 /* We have to call this outside the lock */ 1616 if (pwake) 1617 ep_poll_safewake(ep, NULL); 1618 1619 return 0; 1620 } 1621 1622 static int ep_send_events(struct eventpoll *ep, 1623 struct epoll_event __user *events, int maxevents) 1624 { 1625 struct epitem *epi, *tmp; 1626 LIST_HEAD(txlist); 1627 poll_table pt; 1628 int res = 0; 1629 1630 /* 1631 * Always short-circuit for fatal signals to allow threads to make a 1632 * timely exit without the chance of finding more events available and 1633 * fetching repeatedly. 1634 */ 1635 if (fatal_signal_pending(current)) 1636 return -EINTR; 1637 1638 init_poll_funcptr(&pt, NULL); 1639 1640 mutex_lock(&ep->mtx); 1641 ep_start_scan(ep, &txlist); 1642 1643 /* 1644 * We can loop without lock because we are passed a task private list. 1645 * Items cannot vanish during the loop we are holding ep->mtx. 1646 */ 1647 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1648 struct wakeup_source *ws; 1649 __poll_t revents; 1650 1651 if (res >= maxevents) 1652 break; 1653 1654 /* 1655 * Activate ep->ws before deactivating epi->ws to prevent 1656 * triggering auto-suspend here (in case we reactive epi->ws 1657 * below). 1658 * 1659 * This could be rearranged to delay the deactivation of epi->ws 1660 * instead, but then epi->ws would temporarily be out of sync 1661 * with ep_is_linked(). 1662 */ 1663 ws = ep_wakeup_source(epi); 1664 if (ws) { 1665 if (ws->active) 1666 __pm_stay_awake(ep->ws); 1667 __pm_relax(ws); 1668 } 1669 1670 list_del_init(&epi->rdllink); 1671 1672 /* 1673 * If the event mask intersect the caller-requested one, 1674 * deliver the event to userspace. Again, we are holding ep->mtx, 1675 * so no operations coming from userspace can change the item. 1676 */ 1677 revents = ep_item_poll(epi, &pt, 1); 1678 if (!revents) 1679 continue; 1680 1681 if (__put_user(revents, &events->events) || 1682 __put_user(epi->event.data, &events->data)) { 1683 list_add(&epi->rdllink, &txlist); 1684 ep_pm_stay_awake(epi); 1685 if (!res) 1686 res = -EFAULT; 1687 break; 1688 } 1689 res++; 1690 events++; 1691 if (epi->event.events & EPOLLONESHOT) 1692 epi->event.events &= EP_PRIVATE_BITS; 1693 else if (!(epi->event.events & EPOLLET)) { 1694 /* 1695 * If this file has been added with Level 1696 * Trigger mode, we need to insert back inside 1697 * the ready list, so that the next call to 1698 * epoll_wait() will check again the events 1699 * availability. At this point, no one can insert 1700 * into ep->rdllist besides us. The epoll_ctl() 1701 * callers are locked out by 1702 * ep_scan_ready_list() holding "mtx" and the 1703 * poll callback will queue them in ep->ovflist. 1704 */ 1705 list_add_tail(&epi->rdllink, &ep->rdllist); 1706 ep_pm_stay_awake(epi); 1707 } 1708 } 1709 ep_done_scan(ep, &txlist); 1710 mutex_unlock(&ep->mtx); 1711 1712 return res; 1713 } 1714 1715 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1716 { 1717 struct timespec64 now; 1718 1719 if (ms < 0) 1720 return NULL; 1721 1722 if (!ms) { 1723 to->tv_sec = 0; 1724 to->tv_nsec = 0; 1725 return to; 1726 } 1727 1728 to->tv_sec = ms / MSEC_PER_SEC; 1729 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1730 1731 ktime_get_ts64(&now); 1732 *to = timespec64_add_safe(now, *to); 1733 return to; 1734 } 1735 1736 /** 1737 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1738 * event buffer. 1739 * 1740 * @ep: Pointer to the eventpoll context. 1741 * @events: Pointer to the userspace buffer where the ready events should be 1742 * stored. 1743 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1744 * @timeout: Maximum timeout for the ready events fetch operation, in 1745 * timespec. If the timeout is zero, the function will not block, 1746 * while if the @timeout ptr is NULL, the function will block 1747 * until at least one event has been retrieved (or an error 1748 * occurred). 1749 * 1750 * Return: the number of ready events which have been fetched, or an 1751 * error code, in case of error. 1752 */ 1753 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1754 int maxevents, struct timespec64 *timeout) 1755 { 1756 int res, eavail, timed_out = 0; 1757 u64 slack = 0; 1758 wait_queue_entry_t wait; 1759 ktime_t expires, *to = NULL; 1760 1761 lockdep_assert_irqs_enabled(); 1762 1763 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 1764 slack = select_estimate_accuracy(timeout); 1765 to = &expires; 1766 *to = timespec64_to_ktime(*timeout); 1767 } else if (timeout) { 1768 /* 1769 * Avoid the unnecessary trip to the wait queue loop, if the 1770 * caller specified a non blocking operation. 1771 */ 1772 timed_out = 1; 1773 } 1774 1775 /* 1776 * This call is racy: We may or may not see events that are being added 1777 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 1778 * with a non-zero timeout, this thread will check the ready list under 1779 * lock and will add to the wait queue. For cases with a zero 1780 * timeout, the user by definition should not care and will have to 1781 * recheck again. 1782 */ 1783 eavail = ep_events_available(ep); 1784 1785 while (1) { 1786 if (eavail) { 1787 /* 1788 * Try to transfer events to user space. In case we get 1789 * 0 events and there's still timeout left over, we go 1790 * trying again in search of more luck. 1791 */ 1792 res = ep_send_events(ep, events, maxevents); 1793 if (res) 1794 return res; 1795 } 1796 1797 if (timed_out) 1798 return 0; 1799 1800 eavail = ep_busy_loop(ep, timed_out); 1801 if (eavail) 1802 continue; 1803 1804 if (signal_pending(current)) 1805 return -EINTR; 1806 1807 /* 1808 * Internally init_wait() uses autoremove_wake_function(), 1809 * thus wait entry is removed from the wait queue on each 1810 * wakeup. Why it is important? In case of several waiters 1811 * each new wakeup will hit the next waiter, giving it the 1812 * chance to harvest new event. Otherwise wakeup can be 1813 * lost. This is also good performance-wise, because on 1814 * normal wakeup path no need to call __remove_wait_queue() 1815 * explicitly, thus ep->lock is not taken, which halts the 1816 * event delivery. 1817 */ 1818 init_wait(&wait); 1819 1820 write_lock_irq(&ep->lock); 1821 /* 1822 * Barrierless variant, waitqueue_active() is called under 1823 * the same lock on wakeup ep_poll_callback() side, so it 1824 * is safe to avoid an explicit barrier. 1825 */ 1826 __set_current_state(TASK_INTERRUPTIBLE); 1827 1828 /* 1829 * Do the final check under the lock. ep_scan_ready_list() 1830 * plays with two lists (->rdllist and ->ovflist) and there 1831 * is always a race when both lists are empty for short 1832 * period of time although events are pending, so lock is 1833 * important. 1834 */ 1835 eavail = ep_events_available(ep); 1836 if (!eavail) 1837 __add_wait_queue_exclusive(&ep->wq, &wait); 1838 1839 write_unlock_irq(&ep->lock); 1840 1841 if (!eavail) 1842 timed_out = !schedule_hrtimeout_range(to, slack, 1843 HRTIMER_MODE_ABS); 1844 __set_current_state(TASK_RUNNING); 1845 1846 /* 1847 * We were woken up, thus go and try to harvest some events. 1848 * If timed out and still on the wait queue, recheck eavail 1849 * carefully under lock, below. 1850 */ 1851 eavail = 1; 1852 1853 if (!list_empty_careful(&wait.entry)) { 1854 write_lock_irq(&ep->lock); 1855 /* 1856 * If the thread timed out and is not on the wait queue, 1857 * it means that the thread was woken up after its 1858 * timeout expired before it could reacquire the lock. 1859 * Thus, when wait.entry is empty, it needs to harvest 1860 * events. 1861 */ 1862 if (timed_out) 1863 eavail = list_empty(&wait.entry); 1864 __remove_wait_queue(&ep->wq, &wait); 1865 write_unlock_irq(&ep->lock); 1866 } 1867 } 1868 } 1869 1870 /** 1871 * ep_loop_check_proc - verify that adding an epoll file inside another 1872 * epoll structure does not violate the constraints, in 1873 * terms of closed loops, or too deep chains (which can 1874 * result in excessive stack usage). 1875 * 1876 * @ep: the &struct eventpoll to be currently checked. 1877 * @depth: Current depth of the path being checked. 1878 * 1879 * Return: %zero if adding the epoll @file inside current epoll 1880 * structure @ep does not violate the constraints, or %-1 otherwise. 1881 */ 1882 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 1883 { 1884 int error = 0; 1885 struct rb_node *rbp; 1886 struct epitem *epi; 1887 1888 mutex_lock_nested(&ep->mtx, depth + 1); 1889 ep->gen = loop_check_gen; 1890 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1891 epi = rb_entry(rbp, struct epitem, rbn); 1892 if (unlikely(is_file_epoll(epi->ffd.file))) { 1893 struct eventpoll *ep_tovisit; 1894 ep_tovisit = epi->ffd.file->private_data; 1895 if (ep_tovisit->gen == loop_check_gen) 1896 continue; 1897 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 1898 error = -1; 1899 else 1900 error = ep_loop_check_proc(ep_tovisit, depth + 1); 1901 if (error != 0) 1902 break; 1903 } else { 1904 /* 1905 * If we've reached a file that is not associated with 1906 * an ep, then we need to check if the newly added 1907 * links are going to add too many wakeup paths. We do 1908 * this by adding it to the tfile_check_list, if it's 1909 * not already there, and calling reverse_path_check() 1910 * during ep_insert(). 1911 */ 1912 list_file(epi->ffd.file); 1913 } 1914 } 1915 mutex_unlock(&ep->mtx); 1916 1917 return error; 1918 } 1919 1920 /** 1921 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 1922 * into another epoll file (represented by @ep) does not create 1923 * closed loops or too deep chains. 1924 * 1925 * @ep: Pointer to the epoll we are inserting into. 1926 * @to: Pointer to the epoll to be inserted. 1927 * 1928 * Return: %zero if adding the epoll @to inside the epoll @from 1929 * does not violate the constraints, or %-1 otherwise. 1930 */ 1931 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 1932 { 1933 inserting_into = ep; 1934 return ep_loop_check_proc(to, 0); 1935 } 1936 1937 static void clear_tfile_check_list(void) 1938 { 1939 rcu_read_lock(); 1940 while (tfile_check_list != EP_UNACTIVE_PTR) { 1941 struct epitems_head *head = tfile_check_list; 1942 tfile_check_list = head->next; 1943 unlist_file(head); 1944 } 1945 rcu_read_unlock(); 1946 } 1947 1948 /* 1949 * Open an eventpoll file descriptor. 1950 */ 1951 static int do_epoll_create(int flags) 1952 { 1953 int error, fd; 1954 struct eventpoll *ep = NULL; 1955 struct file *file; 1956 1957 /* Check the EPOLL_* constant for consistency. */ 1958 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1959 1960 if (flags & ~EPOLL_CLOEXEC) 1961 return -EINVAL; 1962 /* 1963 * Create the internal data structure ("struct eventpoll"). 1964 */ 1965 error = ep_alloc(&ep); 1966 if (error < 0) 1967 return error; 1968 /* 1969 * Creates all the items needed to setup an eventpoll file. That is, 1970 * a file structure and a free file descriptor. 1971 */ 1972 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1973 if (fd < 0) { 1974 error = fd; 1975 goto out_free_ep; 1976 } 1977 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1978 O_RDWR | (flags & O_CLOEXEC)); 1979 if (IS_ERR(file)) { 1980 error = PTR_ERR(file); 1981 goto out_free_fd; 1982 } 1983 ep->file = file; 1984 fd_install(fd, file); 1985 return fd; 1986 1987 out_free_fd: 1988 put_unused_fd(fd); 1989 out_free_ep: 1990 ep_free(ep); 1991 return error; 1992 } 1993 1994 SYSCALL_DEFINE1(epoll_create1, int, flags) 1995 { 1996 return do_epoll_create(flags); 1997 } 1998 1999 SYSCALL_DEFINE1(epoll_create, int, size) 2000 { 2001 if (size <= 0) 2002 return -EINVAL; 2003 2004 return do_epoll_create(0); 2005 } 2006 2007 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2008 bool nonblock) 2009 { 2010 if (!nonblock) { 2011 mutex_lock_nested(mutex, depth); 2012 return 0; 2013 } 2014 if (mutex_trylock(mutex)) 2015 return 0; 2016 return -EAGAIN; 2017 } 2018 2019 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2020 bool nonblock) 2021 { 2022 int error; 2023 int full_check = 0; 2024 struct fd f, tf; 2025 struct eventpoll *ep; 2026 struct epitem *epi; 2027 struct eventpoll *tep = NULL; 2028 2029 error = -EBADF; 2030 f = fdget(epfd); 2031 if (!f.file) 2032 goto error_return; 2033 2034 /* Get the "struct file *" for the target file */ 2035 tf = fdget(fd); 2036 if (!tf.file) 2037 goto error_fput; 2038 2039 /* The target file descriptor must support poll */ 2040 error = -EPERM; 2041 if (!file_can_poll(tf.file)) 2042 goto error_tgt_fput; 2043 2044 /* Check if EPOLLWAKEUP is allowed */ 2045 if (ep_op_has_event(op)) 2046 ep_take_care_of_epollwakeup(epds); 2047 2048 /* 2049 * We have to check that the file structure underneath the file descriptor 2050 * the user passed to us _is_ an eventpoll file. And also we do not permit 2051 * adding an epoll file descriptor inside itself. 2052 */ 2053 error = -EINVAL; 2054 if (f.file == tf.file || !is_file_epoll(f.file)) 2055 goto error_tgt_fput; 2056 2057 /* 2058 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2059 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2060 * Also, we do not currently supported nested exclusive wakeups. 2061 */ 2062 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2063 if (op == EPOLL_CTL_MOD) 2064 goto error_tgt_fput; 2065 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2066 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2067 goto error_tgt_fput; 2068 } 2069 2070 /* 2071 * At this point it is safe to assume that the "private_data" contains 2072 * our own data structure. 2073 */ 2074 ep = f.file->private_data; 2075 2076 /* 2077 * When we insert an epoll file descriptor inside another epoll file 2078 * descriptor, there is the chance of creating closed loops, which are 2079 * better be handled here, than in more critical paths. While we are 2080 * checking for loops we also determine the list of files reachable 2081 * and hang them on the tfile_check_list, so we can check that we 2082 * haven't created too many possible wakeup paths. 2083 * 2084 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2085 * the epoll file descriptor is attaching directly to a wakeup source, 2086 * unless the epoll file descriptor is nested. The purpose of taking the 2087 * 'epmutex' on add is to prevent complex toplogies such as loops and 2088 * deep wakeup paths from forming in parallel through multiple 2089 * EPOLL_CTL_ADD operations. 2090 */ 2091 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2092 if (error) 2093 goto error_tgt_fput; 2094 if (op == EPOLL_CTL_ADD) { 2095 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || 2096 is_file_epoll(tf.file)) { 2097 mutex_unlock(&ep->mtx); 2098 error = epoll_mutex_lock(&epmutex, 0, nonblock); 2099 if (error) 2100 goto error_tgt_fput; 2101 loop_check_gen++; 2102 full_check = 1; 2103 if (is_file_epoll(tf.file)) { 2104 tep = tf.file->private_data; 2105 error = -ELOOP; 2106 if (ep_loop_check(ep, tep) != 0) 2107 goto error_tgt_fput; 2108 } 2109 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2110 if (error) 2111 goto error_tgt_fput; 2112 } 2113 } 2114 2115 /* 2116 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2117 * above, we can be sure to be able to use the item looked up by 2118 * ep_find() till we release the mutex. 2119 */ 2120 epi = ep_find(ep, tf.file, fd); 2121 2122 error = -EINVAL; 2123 switch (op) { 2124 case EPOLL_CTL_ADD: 2125 if (!epi) { 2126 epds->events |= EPOLLERR | EPOLLHUP; 2127 error = ep_insert(ep, epds, tf.file, fd, full_check); 2128 } else 2129 error = -EEXIST; 2130 break; 2131 case EPOLL_CTL_DEL: 2132 if (epi) 2133 error = ep_remove(ep, epi); 2134 else 2135 error = -ENOENT; 2136 break; 2137 case EPOLL_CTL_MOD: 2138 if (epi) { 2139 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2140 epds->events |= EPOLLERR | EPOLLHUP; 2141 error = ep_modify(ep, epi, epds); 2142 } 2143 } else 2144 error = -ENOENT; 2145 break; 2146 } 2147 mutex_unlock(&ep->mtx); 2148 2149 error_tgt_fput: 2150 if (full_check) { 2151 clear_tfile_check_list(); 2152 loop_check_gen++; 2153 mutex_unlock(&epmutex); 2154 } 2155 2156 fdput(tf); 2157 error_fput: 2158 fdput(f); 2159 error_return: 2160 2161 return error; 2162 } 2163 2164 /* 2165 * The following function implements the controller interface for 2166 * the eventpoll file that enables the insertion/removal/change of 2167 * file descriptors inside the interest set. 2168 */ 2169 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2170 struct epoll_event __user *, event) 2171 { 2172 struct epoll_event epds; 2173 2174 if (ep_op_has_event(op) && 2175 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2176 return -EFAULT; 2177 2178 return do_epoll_ctl(epfd, op, fd, &epds, false); 2179 } 2180 2181 /* 2182 * Implement the event wait interface for the eventpoll file. It is the kernel 2183 * part of the user space epoll_wait(2). 2184 */ 2185 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2186 int maxevents, struct timespec64 *to) 2187 { 2188 int error; 2189 struct fd f; 2190 struct eventpoll *ep; 2191 2192 /* The maximum number of event must be greater than zero */ 2193 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2194 return -EINVAL; 2195 2196 /* Verify that the area passed by the user is writeable */ 2197 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2198 return -EFAULT; 2199 2200 /* Get the "struct file *" for the eventpoll file */ 2201 f = fdget(epfd); 2202 if (!f.file) 2203 return -EBADF; 2204 2205 /* 2206 * We have to check that the file structure underneath the fd 2207 * the user passed to us _is_ an eventpoll file. 2208 */ 2209 error = -EINVAL; 2210 if (!is_file_epoll(f.file)) 2211 goto error_fput; 2212 2213 /* 2214 * At this point it is safe to assume that the "private_data" contains 2215 * our own data structure. 2216 */ 2217 ep = f.file->private_data; 2218 2219 /* Time to fish for events ... */ 2220 error = ep_poll(ep, events, maxevents, to); 2221 2222 error_fput: 2223 fdput(f); 2224 return error; 2225 } 2226 2227 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2228 int, maxevents, int, timeout) 2229 { 2230 struct timespec64 to; 2231 2232 return do_epoll_wait(epfd, events, maxevents, 2233 ep_timeout_to_timespec(&to, timeout)); 2234 } 2235 2236 /* 2237 * Implement the event wait interface for the eventpoll file. It is the kernel 2238 * part of the user space epoll_pwait(2). 2239 */ 2240 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2241 int maxevents, struct timespec64 *to, 2242 const sigset_t __user *sigmask, size_t sigsetsize) 2243 { 2244 int error; 2245 2246 /* 2247 * If the caller wants a certain signal mask to be set during the wait, 2248 * we apply it here. 2249 */ 2250 error = set_user_sigmask(sigmask, sigsetsize); 2251 if (error) 2252 return error; 2253 2254 error = do_epoll_wait(epfd, events, maxevents, to); 2255 2256 restore_saved_sigmask_unless(error == -EINTR); 2257 2258 return error; 2259 } 2260 2261 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2262 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2263 size_t, sigsetsize) 2264 { 2265 struct timespec64 to; 2266 2267 return do_epoll_pwait(epfd, events, maxevents, 2268 ep_timeout_to_timespec(&to, timeout), 2269 sigmask, sigsetsize); 2270 } 2271 2272 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2273 int, maxevents, const struct __kernel_timespec __user *, timeout, 2274 const sigset_t __user *, sigmask, size_t, sigsetsize) 2275 { 2276 struct timespec64 ts, *to = NULL; 2277 2278 if (timeout) { 2279 if (get_timespec64(&ts, timeout)) 2280 return -EFAULT; 2281 to = &ts; 2282 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2283 return -EINVAL; 2284 } 2285 2286 return do_epoll_pwait(epfd, events, maxevents, to, 2287 sigmask, sigsetsize); 2288 } 2289 2290 #ifdef CONFIG_COMPAT 2291 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2292 int maxevents, struct timespec64 *timeout, 2293 const compat_sigset_t __user *sigmask, 2294 compat_size_t sigsetsize) 2295 { 2296 long err; 2297 2298 /* 2299 * If the caller wants a certain signal mask to be set during the wait, 2300 * we apply it here. 2301 */ 2302 err = set_compat_user_sigmask(sigmask, sigsetsize); 2303 if (err) 2304 return err; 2305 2306 err = do_epoll_wait(epfd, events, maxevents, timeout); 2307 2308 restore_saved_sigmask_unless(err == -EINTR); 2309 2310 return err; 2311 } 2312 2313 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2314 struct epoll_event __user *, events, 2315 int, maxevents, int, timeout, 2316 const compat_sigset_t __user *, sigmask, 2317 compat_size_t, sigsetsize) 2318 { 2319 struct timespec64 to; 2320 2321 return do_compat_epoll_pwait(epfd, events, maxevents, 2322 ep_timeout_to_timespec(&to, timeout), 2323 sigmask, sigsetsize); 2324 } 2325 2326 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2327 struct epoll_event __user *, events, 2328 int, maxevents, 2329 const struct __kernel_timespec __user *, timeout, 2330 const compat_sigset_t __user *, sigmask, 2331 compat_size_t, sigsetsize) 2332 { 2333 struct timespec64 ts, *to = NULL; 2334 2335 if (timeout) { 2336 if (get_timespec64(&ts, timeout)) 2337 return -EFAULT; 2338 to = &ts; 2339 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2340 return -EINVAL; 2341 } 2342 2343 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2344 sigmask, sigsetsize); 2345 } 2346 2347 #endif 2348 2349 static int __init eventpoll_init(void) 2350 { 2351 struct sysinfo si; 2352 2353 si_meminfo(&si); 2354 /* 2355 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2356 */ 2357 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2358 EP_ITEM_COST; 2359 BUG_ON(max_user_watches < 0); 2360 2361 /* 2362 * We can have many thousands of epitems, so prevent this from 2363 * using an extra cache line on 64-bit (and smaller) CPUs 2364 */ 2365 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2366 2367 /* Allocates slab cache used to allocate "struct epitem" items */ 2368 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2369 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2370 2371 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2372 pwq_cache = kmem_cache_create("eventpoll_pwq", 2373 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2374 2375 ephead_cache = kmem_cache_create("ep_head", 2376 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2377 2378 return 0; 2379 } 2380 fs_initcall(eventpoll_init); 2381